kern - Convert aio from zalloc to objcache
[dragonfly.git] / sys / kern / lwkt_thread.c
blob82014c3d1e41c3930440aebf45ca407138f80a90
1 /*
2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
61 #include <sys/dsched.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 #ifdef INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
111 * We can make all thread ports use the spin backend instead of the thread
112 * backend. This should only be set to debug the spin backend.
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
116 #ifdef INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118 "Panic if attempting to switch lwkt's while mastering cpusync");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121 "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123 "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125 "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127 "Number of preempted threads.");
128 #ifdef INVARIANTS
129 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
130 &token_contention_count, 0, "spinning due to token contention");
131 #endif
132 static int fairq_enable = 1;
133 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
134 &fairq_enable, 0, "Turn on fairq priority accumulators");
135 static int lwkt_spin_loops = 10;
136 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
137 &lwkt_spin_loops, 0, "");
138 static int lwkt_spin_delay = 1;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW,
140 &lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto");
141 static int lwkt_spin_method = 1;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW,
143 &lwkt_spin_method, 0, "LWKT scheduler behavior when contended");
144 static int lwkt_spin_fatal = 0; /* disabled */
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
146 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
147 static int preempt_enable = 1;
148 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
149 &preempt_enable, 0, "Enable preemption");
151 static __cachealign int lwkt_cseq_rindex;
152 static __cachealign int lwkt_cseq_windex;
155 * These helper procedures handle the runq, they can only be called from
156 * within a critical section.
158 * WARNING! Prior to SMP being brought up it is possible to enqueue and
159 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
160 * instead of 'mycpu' when referencing the globaldata structure. Once
161 * SMP live enqueuing and dequeueing only occurs on the current cpu.
163 static __inline
164 void
165 _lwkt_dequeue(thread_t td)
167 if (td->td_flags & TDF_RUNQ) {
168 struct globaldata *gd = td->td_gd;
170 td->td_flags &= ~TDF_RUNQ;
171 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
172 gd->gd_fairq_total_pri -= td->td_pri;
173 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
174 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
179 * Priority enqueue.
181 * NOTE: There are a limited number of lwkt threads runnable since user
182 * processes only schedule one at a time per cpu.
184 static __inline
185 void
186 _lwkt_enqueue(thread_t td)
188 thread_t xtd;
190 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
191 struct globaldata *gd = td->td_gd;
193 td->td_flags |= TDF_RUNQ;
194 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 if (xtd == NULL) {
196 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
198 } else {
199 while (xtd && xtd->td_pri > td->td_pri)
200 xtd = TAILQ_NEXT(xtd, td_threadq);
201 if (xtd)
202 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
203 else
204 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
206 gd->gd_fairq_total_pri += td->td_pri;
210 static __boolean_t
211 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
213 struct thread *td = (struct thread *)obj;
215 td->td_kstack = NULL;
216 td->td_kstack_size = 0;
217 td->td_flags = TDF_ALLOCATED_THREAD;
218 return (1);
221 static void
222 _lwkt_thread_dtor(void *obj, void *privdata)
224 struct thread *td = (struct thread *)obj;
226 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
227 ("_lwkt_thread_dtor: not allocated from objcache"));
228 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
229 td->td_kstack_size > 0,
230 ("_lwkt_thread_dtor: corrupted stack"));
231 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
235 * Initialize the lwkt s/system.
237 void
238 lwkt_init(void)
240 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
241 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
242 NULL, CACHE_NTHREADS/2,
243 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
247 * Schedule a thread to run. As the current thread we can always safely
248 * schedule ourselves, and a shortcut procedure is provided for that
249 * function.
251 * (non-blocking, self contained on a per cpu basis)
253 void
254 lwkt_schedule_self(thread_t td)
256 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
257 crit_enter_quick(td);
258 KASSERT(td != &td->td_gd->gd_idlethread,
259 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
260 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
261 _lwkt_enqueue(td);
262 crit_exit_quick(td);
266 * Deschedule a thread.
268 * (non-blocking, self contained on a per cpu basis)
270 void
271 lwkt_deschedule_self(thread_t td)
273 crit_enter_quick(td);
274 _lwkt_dequeue(td);
275 crit_exit_quick(td);
279 * LWKTs operate on a per-cpu basis
281 * WARNING! Called from early boot, 'mycpu' may not work yet.
283 void
284 lwkt_gdinit(struct globaldata *gd)
286 TAILQ_INIT(&gd->gd_tdrunq);
287 TAILQ_INIT(&gd->gd_tdallq);
291 * Create a new thread. The thread must be associated with a process context
292 * or LWKT start address before it can be scheduled. If the target cpu is
293 * -1 the thread will be created on the current cpu.
295 * If you intend to create a thread without a process context this function
296 * does everything except load the startup and switcher function.
298 thread_t
299 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
301 globaldata_t gd = mycpu;
302 void *stack;
305 * If static thread storage is not supplied allocate a thread. Reuse
306 * a cached free thread if possible. gd_freetd is used to keep an exiting
307 * thread intact through the exit.
309 if (td == NULL) {
310 crit_enter_gd(gd);
311 if ((td = gd->gd_freetd) != NULL) {
312 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
313 TDF_RUNQ)) == 0);
314 gd->gd_freetd = NULL;
315 } else {
316 td = objcache_get(thread_cache, M_WAITOK);
317 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
318 TDF_RUNQ)) == 0);
320 crit_exit_gd(gd);
321 KASSERT((td->td_flags &
322 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
323 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
324 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
328 * Try to reuse cached stack.
330 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
331 if (flags & TDF_ALLOCATED_STACK) {
332 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
333 stack = NULL;
336 if (stack == NULL) {
337 stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
338 flags |= TDF_ALLOCATED_STACK;
340 if (cpu < 0)
341 lwkt_init_thread(td, stack, stksize, flags, gd);
342 else
343 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
344 return(td);
348 * Initialize a preexisting thread structure. This function is used by
349 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
351 * All threads start out in a critical section at a priority of
352 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
353 * appropriate. This function may send an IPI message when the
354 * requested cpu is not the current cpu and consequently gd_tdallq may
355 * not be initialized synchronously from the point of view of the originating
356 * cpu.
358 * NOTE! we have to be careful in regards to creating threads for other cpus
359 * if SMP has not yet been activated.
361 #ifdef SMP
363 static void
364 lwkt_init_thread_remote(void *arg)
366 thread_t td = arg;
369 * Protected by critical section held by IPI dispatch
371 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
374 #endif
377 * lwkt core thread structural initialization.
379 * NOTE: All threads are initialized as mpsafe threads.
381 void
382 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
383 struct globaldata *gd)
385 globaldata_t mygd = mycpu;
387 bzero(td, sizeof(struct thread));
388 td->td_kstack = stack;
389 td->td_kstack_size = stksize;
390 td->td_flags = flags;
391 td->td_gd = gd;
392 td->td_pri = TDPRI_KERN_DAEMON;
393 td->td_critcount = 1;
394 td->td_toks_stop = &td->td_toks_base;
395 if (lwkt_use_spin_port)
396 lwkt_initport_spin(&td->td_msgport);
397 else
398 lwkt_initport_thread(&td->td_msgport, td);
399 pmap_init_thread(td);
400 #ifdef SMP
402 * Normally initializing a thread for a remote cpu requires sending an
403 * IPI. However, the idlethread is setup before the other cpus are
404 * activated so we have to treat it as a special case. XXX manipulation
405 * of gd_tdallq requires the BGL.
407 if (gd == mygd || td == &gd->gd_idlethread) {
408 crit_enter_gd(mygd);
409 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
410 crit_exit_gd(mygd);
411 } else {
412 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
414 #else
415 crit_enter_gd(mygd);
416 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
417 crit_exit_gd(mygd);
418 #endif
420 dsched_new_thread(td);
423 void
424 lwkt_set_comm(thread_t td, const char *ctl, ...)
426 __va_list va;
428 __va_start(va, ctl);
429 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
430 __va_end(va);
431 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
434 void
435 lwkt_hold(thread_t td)
437 atomic_add_int(&td->td_refs, 1);
440 void
441 lwkt_rele(thread_t td)
443 KKASSERT(td->td_refs > 0);
444 atomic_add_int(&td->td_refs, -1);
447 void
448 lwkt_wait_free(thread_t td)
450 while (td->td_refs)
451 tsleep(td, 0, "tdreap", hz);
454 void
455 lwkt_free_thread(thread_t td)
457 KKASSERT(td->td_refs == 0);
458 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
459 if (td->td_flags & TDF_ALLOCATED_THREAD) {
460 objcache_put(thread_cache, td);
461 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
462 /* client-allocated struct with internally allocated stack */
463 KASSERT(td->td_kstack && td->td_kstack_size > 0,
464 ("lwkt_free_thread: corrupted stack"));
465 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
466 td->td_kstack = NULL;
467 td->td_kstack_size = 0;
469 KTR_LOG(ctxsw_deadtd, td);
474 * Switch to the next runnable lwkt. If no LWKTs are runnable then
475 * switch to the idlethread. Switching must occur within a critical
476 * section to avoid races with the scheduling queue.
478 * We always have full control over our cpu's run queue. Other cpus
479 * that wish to manipulate our queue must use the cpu_*msg() calls to
480 * talk to our cpu, so a critical section is all that is needed and
481 * the result is very, very fast thread switching.
483 * The LWKT scheduler uses a fixed priority model and round-robins at
484 * each priority level. User process scheduling is a totally
485 * different beast and LWKT priorities should not be confused with
486 * user process priorities.
488 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
489 * is not called by the current thread in the preemption case, only when
490 * the preempting thread blocks (in order to return to the original thread).
492 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
493 * migration and tsleep deschedule the current lwkt thread and call
494 * lwkt_switch(). In particular, the target cpu of the migration fully
495 * expects the thread to become non-runnable and can deadlock against
496 * cpusync operations if we run any IPIs prior to switching the thread out.
498 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
499 * THE CURRENET THREAD HAS BEEN DESCHEDULED!
501 void
502 lwkt_switch(void)
504 globaldata_t gd = mycpu;
505 thread_t td = gd->gd_curthread;
506 thread_t ntd;
507 thread_t xtd;
508 int spinning = lwkt_spin_loops; /* loops before HLTing */
509 int reqflags;
510 int cseq;
511 int oseq;
512 int fatal_count;
515 * Switching from within a 'fast' (non thread switched) interrupt or IPI
516 * is illegal. However, we may have to do it anyway if we hit a fatal
517 * kernel trap or we have paniced.
519 * If this case occurs save and restore the interrupt nesting level.
521 if (gd->gd_intr_nesting_level) {
522 int savegdnest;
523 int savegdtrap;
525 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
526 panic("lwkt_switch: Attempt to switch from a "
527 "a fast interrupt, ipi, or hard code section, "
528 "td %p\n",
529 td);
530 } else {
531 savegdnest = gd->gd_intr_nesting_level;
532 savegdtrap = gd->gd_trap_nesting_level;
533 gd->gd_intr_nesting_level = 0;
534 gd->gd_trap_nesting_level = 0;
535 if ((td->td_flags & TDF_PANICWARN) == 0) {
536 td->td_flags |= TDF_PANICWARN;
537 kprintf("Warning: thread switch from interrupt, IPI, "
538 "or hard code section.\n"
539 "thread %p (%s)\n", td, td->td_comm);
540 print_backtrace(-1);
542 lwkt_switch();
543 gd->gd_intr_nesting_level = savegdnest;
544 gd->gd_trap_nesting_level = savegdtrap;
545 return;
550 * Passive release (used to transition from user to kernel mode
551 * when we block or switch rather then when we enter the kernel).
552 * This function is NOT called if we are switching into a preemption
553 * or returning from a preemption. Typically this causes us to lose
554 * our current process designation (if we have one) and become a true
555 * LWKT thread, and may also hand the current process designation to
556 * another process and schedule thread.
558 if (td->td_release)
559 td->td_release(td);
561 crit_enter_gd(gd);
562 if (TD_TOKS_HELD(td))
563 lwkt_relalltokens(td);
566 * We had better not be holding any spin locks, but don't get into an
567 * endless panic loop.
569 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
570 ("lwkt_switch: still holding %d exclusive spinlocks!",
571 gd->gd_spinlocks_wr));
574 #ifdef SMP
575 #ifdef INVARIANTS
576 if (td->td_cscount) {
577 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
578 td);
579 if (panic_on_cscount)
580 panic("switching while mastering cpusync");
582 #endif
583 #endif
586 * If we had preempted another thread on this cpu, resume the preempted
587 * thread. This occurs transparently, whether the preempted thread
588 * was scheduled or not (it may have been preempted after descheduling
589 * itself).
591 * We have to setup the MP lock for the original thread after backing
592 * out the adjustment that was made to curthread when the original
593 * was preempted.
595 if ((ntd = td->td_preempted) != NULL) {
596 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
597 ntd->td_flags |= TDF_PREEMPT_DONE;
600 * The interrupt may have woken a thread up, we need to properly
601 * set the reschedule flag if the originally interrupted thread is
602 * at a lower priority.
604 if (TAILQ_FIRST(&gd->gd_tdrunq) &&
605 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
606 need_lwkt_resched();
608 /* YYY release mp lock on switchback if original doesn't need it */
609 goto havethread_preempted;
613 * Implement round-robin fairq with priority insertion. The priority
614 * insertion is handled by _lwkt_enqueue()
616 * If we cannot obtain ownership of the tokens we cannot immediately
617 * schedule the target thread.
619 * Reminder: Again, we cannot afford to run any IPIs in this path if
620 * the current thread has been descheduled.
622 for (;;) {
624 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request)
625 * and set RQF_WAKEUP (prevent unnecessary IPIs from being
626 * received).
628 for (;;) {
629 reqflags = gd->gd_reqflags;
630 if (atomic_cmpset_int(&gd->gd_reqflags, reqflags,
631 (reqflags & ~RQF_AST_LWKT_RESCHED) |
632 RQF_WAKEUP)) {
633 break;
638 * Hotpath - pull the head of the run queue and attempt to schedule
639 * it. Fairq exhaustion moves the task to the end of the list. If
640 * no threads are runnable we switch to the idle thread.
642 for (;;) {
643 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
645 if (ntd == NULL) {
647 * Runq is empty, switch to idle and clear RQF_WAKEUP
648 * to allow it to halt.
650 ntd = &gd->gd_idlethread;
651 #ifdef SMP
652 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
653 ASSERT_NO_TOKENS_HELD(ntd);
654 #endif
655 cpu_time.cp_msg[0] = 0;
656 cpu_time.cp_stallpc = 0;
657 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
658 goto haveidle;
661 if (ntd->td_fairq_accum >= 0)
662 break;
664 /*splz_check(); cannot do this here, see above */
665 lwkt_fairq_accumulate(gd, ntd);
666 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
667 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
671 * Hotpath - schedule ntd. Leaves RQF_WAKEUP set to prevent
672 * unwanted decontention IPIs.
674 * NOTE: For UP there is no mplock and lwkt_getalltokens()
675 * always succeeds.
677 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
678 goto havethread;
681 * Coldpath (SMP only since tokens always succeed on UP)
683 * We had some contention on the thread we wanted to schedule.
684 * What we do now is try to find a thread that we can schedule
685 * in its stead until decontention reschedules on our cpu.
687 * The coldpath scan does NOT rearrange threads in the run list
688 * and it also ignores the accumulator.
690 * We do not immediately schedule a user priority thread, instead
691 * we record it in xtd and continue looking for kernel threads.
692 * A cpu can only have one user priority thread (normally) so just
693 * record the first one.
695 * NOTE: This scan will also include threads whos fairq's were
696 * accumulated in the first loop.
698 ++token_contention_count;
699 xtd = NULL;
700 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
702 * Try to switch to this thread. If the thread is running at
703 * user priority we clear WAKEUP to allow decontention IPIs
704 * (since this thread is simply running until the one we wanted
705 * decontends), and we make sure that LWKT_RESCHED is not set.
707 * Otherwise for kernel threads we leave WAKEUP set to avoid
708 * unnecessary decontention IPIs.
710 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
711 if (xtd == NULL)
712 xtd = ntd;
713 continue;
717 * Do not let the fairq get too negative. Even though we are
718 * ignoring it atm once the scheduler decontends a very negative
719 * thread will get moved to the end of the queue.
721 if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) {
722 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
723 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
724 goto havethread;
728 * Well fubar, this thread is contended as well, loop
730 /* */
734 * We exhausted the run list but we may have recorded a user
735 * thread to try. We have three choices based on
736 * lwkt.decontention_method.
738 * (0) Atomically clear RQF_WAKEUP in order to receive decontention
739 * IPIs (to interrupt the user process) and test
740 * RQF_AST_LWKT_RESCHED at the same time.
742 * This results in significant decontention IPI traffic but may
743 * be more responsive.
745 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI.
746 * An automatic LWKT reschedule will occur on the next hardclock
747 * (typically 100hz).
749 * This results in no decontention IPI traffic but may be less
750 * responsive. This is the default.
752 * (2) Refuse to schedule the user process at this time.
754 * This is highly experimental and should not be used under
755 * normal circumstances. This can cause a user process to
756 * get starved out in situations where kernel threads are
757 * fighting each other for tokens.
759 if (xtd) {
760 ntd = xtd;
762 switch(lwkt_spin_method) {
763 case 0:
764 for (;;) {
765 reqflags = gd->gd_reqflags;
766 if (atomic_cmpset_int(&gd->gd_reqflags,
767 reqflags,
768 reqflags & ~RQF_WAKEUP)) {
769 break;
772 break;
773 case 1:
774 reqflags = gd->gd_reqflags;
775 break;
776 default:
777 goto skip;
778 break;
780 if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 &&
781 (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
783 if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
784 ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
785 goto havethread;
788 skip:
790 * Make sure RQF_WAKEUP is set if we failed to schedule the
791 * user thread to prevent the idle thread from halting.
793 atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP);
797 * We exhausted the run list, meaning that all runnable threads
798 * are contended.
800 cpu_pause();
801 ntd = &gd->gd_idlethread;
802 #ifdef SMP
803 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
804 ASSERT_NO_TOKENS_HELD(ntd);
805 /* contention case, do not clear contention mask */
806 #endif
809 * Ok, we might want to spin a few times as some tokens are held for
810 * very short periods of time and IPI overhead is 1uS or worse
811 * (meaning it is usually better to spin). Regardless we have to
812 * call splz_check() to be sure to service any interrupts blocked
813 * by our critical section, otherwise we could livelock e.g. IPIs.
815 * The IPI mechanic is really a last resort. In nearly all other
816 * cases RQF_WAKEUP is left set to prevent decontention IPIs.
818 * When we decide not to spin we clear RQF_WAKEUP and switch to
819 * the idle thread. Clearing RQF_WEAKEUP allows the idle thread
820 * to halt and decontended tokens will issue an IPI to us. The
821 * idle thread will check for pending reschedules already set
822 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have
823 * to here.
825 * Also, if TDF_RUNQ is not set the current thread is trying to
826 * deschedule, possibly in an atomic fashion. We cannot afford to
827 * stay here.
829 if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) {
830 atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
831 goto haveidle;
833 --spinning;
836 * When spinning a delay is required both to avoid livelocks from
837 * token order reversals (a thread may be trying to acquire multiple
838 * tokens), and also to reduce cpu cache management traffic.
840 * In order to scale to a large number of CPUs we use a time slot
841 * resequencer to force contending cpus into non-contending
842 * time-slots. The scheduler may still contend with the lock holder
843 * but will not (generally) contend with all the other cpus trying
844 * trying to get the same token.
846 * The resequencer uses a FIFO counter mechanic. The owner of the
847 * rindex at the head of the FIFO is allowed to pull itself off
848 * the FIFO and fetchadd is used to enter into the FIFO. This bit
849 * of code is VERY cache friendly and forces all spinning schedulers
850 * into their own time slots.
852 * This code has been tested to 48-cpus and caps the cache
853 * contention load at ~1uS intervals regardless of the number of
854 * cpus. Scaling beyond 64 cpus might require additional smarts
855 * (such as separate FIFOs for specific token cases).
857 * WARNING! We can't call splz_check() or anything else here as
858 * it could cause a deadlock.
860 #if defined(INVARIANTS) && defined(__amd64__)
861 if ((read_rflags() & PSL_I) == 0) {
862 cpu_enable_intr();
863 panic("lwkt_switch() called with interrupts disabled");
865 #endif
866 cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
867 fatal_count = lwkt_spin_fatal;
868 while ((oseq = lwkt_cseq_rindex) != cseq) {
869 cpu_ccfence();
870 #if !defined(_KERNEL_VIRTUAL)
871 if (cpu_mi_feature & CPU_MI_MONITOR) {
872 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
873 } else
874 #endif
876 DELAY(1);
877 cpu_lfence();
879 if (fatal_count && --fatal_count == 0)
880 panic("lwkt_switch: fatal spin wait");
882 cseq = lwkt_spin_delay; /* don't trust the system operator */
883 cpu_ccfence();
884 if (cseq < 1)
885 cseq = 1;
886 if (cseq > 1000)
887 cseq = 1000;
888 DELAY(cseq);
889 atomic_add_int(&lwkt_cseq_rindex, 1);
890 splz_check(); /* ok, we already checked that td is still scheduled */
891 /* highest level for(;;) loop */
894 havethread:
896 * We must always decrement td_fairq_accum on non-idle threads just
897 * in case a thread never gets a tick due to being in a continuous
898 * critical section. The page-zeroing code does this, for example.
900 * If the thread we came up with is a higher or equal priority verses
901 * the thread at the head of the queue we move our thread to the
902 * front. This way we can always check the front of the queue.
904 * Clear gd_idle_repeat when doing a normal switch to a non-idle
905 * thread.
907 ++gd->gd_cnt.v_swtch;
908 --ntd->td_fairq_accum;
909 ntd->td_wmesg = NULL;
910 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
911 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
912 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
913 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
915 gd->gd_idle_repeat = 0;
917 havethread_preempted:
919 * If the new target does not need the MP lock and we are holding it,
920 * release the MP lock. If the new target requires the MP lock we have
921 * already acquired it for the target.
924 haveidle:
925 KASSERT(ntd->td_critcount,
926 ("priority problem in lwkt_switch %d %d",
927 td->td_critcount, ntd->td_critcount));
929 if (td != ntd) {
930 ++switch_count;
931 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
932 td->td_switch(ntd);
934 /* NOTE: current cpu may have changed after switch */
935 crit_exit_quick(td);
939 * Request that the target thread preempt the current thread. Preemption
940 * only works under a specific set of conditions:
942 * - We are not preempting ourselves
943 * - The target thread is owned by the current cpu
944 * - We are not currently being preempted
945 * - The target is not currently being preempted
946 * - We are not holding any spin locks
947 * - The target thread is not holding any tokens
948 * - We are able to satisfy the target's MP lock requirements (if any).
950 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
951 * this is called via lwkt_schedule() through the td_preemptable callback.
952 * critcount is the managed critical priority that we should ignore in order
953 * to determine whether preemption is possible (aka usually just the crit
954 * priority of lwkt_schedule() itself).
956 * XXX at the moment we run the target thread in a critical section during
957 * the preemption in order to prevent the target from taking interrupts
958 * that *WE* can't. Preemption is strictly limited to interrupt threads
959 * and interrupt-like threads, outside of a critical section, and the
960 * preempted source thread will be resumed the instant the target blocks
961 * whether or not the source is scheduled (i.e. preemption is supposed to
962 * be as transparent as possible).
964 void
965 lwkt_preempt(thread_t ntd, int critcount)
967 struct globaldata *gd = mycpu;
968 thread_t td;
969 int save_gd_intr_nesting_level;
972 * The caller has put us in a critical section. We can only preempt
973 * if the caller of the caller was not in a critical section (basically
974 * a local interrupt), as determined by the 'critcount' parameter. We
975 * also can't preempt if the caller is holding any spinlocks (even if
976 * he isn't in a critical section). This also handles the tokens test.
978 * YYY The target thread must be in a critical section (else it must
979 * inherit our critical section? I dunno yet).
981 * Set need_lwkt_resched() unconditionally for now YYY.
983 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
985 if (preempt_enable == 0) {
986 ++preempt_miss;
987 return;
990 td = gd->gd_curthread;
991 if (ntd->td_pri <= td->td_pri) {
992 ++preempt_miss;
993 return;
995 if (td->td_critcount > critcount) {
996 ++preempt_miss;
997 need_lwkt_resched();
998 return;
1000 #ifdef SMP
1001 if (ntd->td_gd != gd) {
1002 ++preempt_miss;
1003 need_lwkt_resched();
1004 return;
1006 #endif
1008 * We don't have to check spinlocks here as they will also bump
1009 * td_critcount.
1011 * Do not try to preempt if the target thread is holding any tokens.
1012 * We could try to acquire the tokens but this case is so rare there
1013 * is no need to support it.
1015 KKASSERT(gd->gd_spinlocks_wr == 0);
1017 if (TD_TOKS_HELD(ntd)) {
1018 ++preempt_miss;
1019 need_lwkt_resched();
1020 return;
1022 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1023 ++preempt_weird;
1024 need_lwkt_resched();
1025 return;
1027 if (ntd->td_preempted) {
1028 ++preempt_hit;
1029 need_lwkt_resched();
1030 return;
1034 * Since we are able to preempt the current thread, there is no need to
1035 * call need_lwkt_resched().
1037 * We must temporarily clear gd_intr_nesting_level around the switch
1038 * since switchouts from the target thread are allowed (they will just
1039 * return to our thread), and since the target thread has its own stack.
1041 ++preempt_hit;
1042 ntd->td_preempted = td;
1043 td->td_flags |= TDF_PREEMPT_LOCK;
1044 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1045 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1046 gd->gd_intr_nesting_level = 0;
1047 td->td_switch(ntd);
1048 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1050 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1051 ntd->td_preempted = NULL;
1052 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1056 * Conditionally call splz() if gd_reqflags indicates work is pending.
1057 * This will work inside a critical section but not inside a hard code
1058 * section.
1060 * (self contained on a per cpu basis)
1062 void
1063 splz_check(void)
1065 globaldata_t gd = mycpu;
1066 thread_t td = gd->gd_curthread;
1068 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1069 gd->gd_intr_nesting_level == 0 &&
1070 td->td_nest_count < 2)
1072 splz();
1077 * This version is integrated into crit_exit, reqflags has already
1078 * been tested but td_critcount has not.
1080 * We only want to execute the splz() on the 1->0 transition of
1081 * critcount and not in a hard code section or if too deeply nested.
1083 void
1084 lwkt_maybe_splz(thread_t td)
1086 globaldata_t gd = td->td_gd;
1088 if (td->td_critcount == 0 &&
1089 gd->gd_intr_nesting_level == 0 &&
1090 td->td_nest_count < 2)
1092 splz();
1097 * This function is used to negotiate a passive release of the current
1098 * process/lwp designation with the user scheduler, allowing the user
1099 * scheduler to schedule another user thread. The related kernel thread
1100 * (curthread) continues running in the released state.
1102 void
1103 lwkt_passive_release(struct thread *td)
1105 struct lwp *lp = td->td_lwp;
1107 td->td_release = NULL;
1108 lwkt_setpri_self(TDPRI_KERN_USER);
1109 lp->lwp_proc->p_usched->release_curproc(lp);
1114 * This implements a normal yield. This routine is virtually a nop if
1115 * there is nothing to yield to but it will always run any pending interrupts
1116 * if called from a critical section.
1118 * This yield is designed for kernel threads without a user context.
1120 * (self contained on a per cpu basis)
1122 void
1123 lwkt_yield(void)
1125 globaldata_t gd = mycpu;
1126 thread_t td = gd->gd_curthread;
1127 thread_t xtd;
1129 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1130 splz();
1131 if (td->td_fairq_accum < 0) {
1132 lwkt_schedule_self(curthread);
1133 lwkt_switch();
1134 } else {
1135 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1136 if (xtd && xtd->td_pri > td->td_pri) {
1137 lwkt_schedule_self(curthread);
1138 lwkt_switch();
1144 * This yield is designed for kernel threads with a user context.
1146 * The kernel acting on behalf of the user is potentially cpu-bound,
1147 * this function will efficiently allow other threads to run and also
1148 * switch to other processes by releasing.
1150 * The lwkt_user_yield() function is designed to have very low overhead
1151 * if no yield is determined to be needed.
1153 void
1154 lwkt_user_yield(void)
1156 globaldata_t gd = mycpu;
1157 thread_t td = gd->gd_curthread;
1160 * Always run any pending interrupts in case we are in a critical
1161 * section.
1163 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1164 splz();
1167 * Switch (which forces a release) if another kernel thread needs
1168 * the cpu, if userland wants us to resched, or if our kernel
1169 * quantum has run out.
1171 if (lwkt_resched_wanted() ||
1172 user_resched_wanted() ||
1173 td->td_fairq_accum < 0)
1175 lwkt_switch();
1178 #if 0
1180 * Reacquire the current process if we are released.
1182 * XXX not implemented atm. The kernel may be holding locks and such,
1183 * so we want the thread to continue to receive cpu.
1185 if (td->td_release == NULL && lp) {
1186 lp->lwp_proc->p_usched->acquire_curproc(lp);
1187 td->td_release = lwkt_passive_release;
1188 lwkt_setpri_self(TDPRI_USER_NORM);
1190 #endif
1194 * Generic schedule. Possibly schedule threads belonging to other cpus and
1195 * deal with threads that might be blocked on a wait queue.
1197 * We have a little helper inline function which does additional work after
1198 * the thread has been enqueued, including dealing with preemption and
1199 * setting need_lwkt_resched() (which prevents the kernel from returning
1200 * to userland until it has processed higher priority threads).
1202 * It is possible for this routine to be called after a failed _enqueue
1203 * (due to the target thread migrating, sleeping, or otherwise blocked).
1204 * We have to check that the thread is actually on the run queue!
1206 * reschedok is an optimized constant propagated from lwkt_schedule() or
1207 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1208 * reschedule to be requested if the target thread has a higher priority.
1209 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1210 * be 0, prevented undesired reschedules.
1212 static __inline
1213 void
1214 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1216 thread_t otd;
1218 if (ntd->td_flags & TDF_RUNQ) {
1219 if (ntd->td_preemptable && reschedok) {
1220 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1221 } else if (reschedok) {
1222 otd = curthread;
1223 if (ntd->td_pri > otd->td_pri)
1224 need_lwkt_resched();
1228 * Give the thread a little fair share scheduler bump if it
1229 * has been asleep for a while. This is primarily to avoid
1230 * a degenerate case for interrupt threads where accumulator
1231 * crosses into negative territory unnecessarily.
1233 if (ntd->td_fairq_lticks != ticks) {
1234 ntd->td_fairq_lticks = ticks;
1235 ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1236 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1237 ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1242 static __inline
1243 void
1244 _lwkt_schedule(thread_t td, int reschedok)
1246 globaldata_t mygd = mycpu;
1248 KASSERT(td != &td->td_gd->gd_idlethread,
1249 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1250 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1251 crit_enter_gd(mygd);
1252 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1253 if (td == mygd->gd_curthread) {
1254 _lwkt_enqueue(td);
1255 } else {
1257 * If we own the thread, there is no race (since we are in a
1258 * critical section). If we do not own the thread there might
1259 * be a race but the target cpu will deal with it.
1261 #ifdef SMP
1262 if (td->td_gd == mygd) {
1263 _lwkt_enqueue(td);
1264 _lwkt_schedule_post(mygd, td, 1, reschedok);
1265 } else {
1266 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1268 #else
1269 _lwkt_enqueue(td);
1270 _lwkt_schedule_post(mygd, td, 1, reschedok);
1271 #endif
1273 crit_exit_gd(mygd);
1276 void
1277 lwkt_schedule(thread_t td)
1279 _lwkt_schedule(td, 1);
1282 void
1283 lwkt_schedule_noresched(thread_t td)
1285 _lwkt_schedule(td, 0);
1288 #ifdef SMP
1291 * When scheduled remotely if frame != NULL the IPIQ is being
1292 * run via doreti or an interrupt then preemption can be allowed.
1294 * To allow preemption we have to drop the critical section so only
1295 * one is present in _lwkt_schedule_post.
1297 static void
1298 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1300 thread_t td = curthread;
1301 thread_t ntd = arg;
1303 if (frame && ntd->td_preemptable) {
1304 crit_exit_noyield(td);
1305 _lwkt_schedule(ntd, 1);
1306 crit_enter_quick(td);
1307 } else {
1308 _lwkt_schedule(ntd, 1);
1313 * Thread migration using a 'Pull' method. The thread may or may not be
1314 * the current thread. It MUST be descheduled and in a stable state.
1315 * lwkt_giveaway() must be called on the cpu owning the thread.
1317 * At any point after lwkt_giveaway() is called, the target cpu may
1318 * 'pull' the thread by calling lwkt_acquire().
1320 * We have to make sure the thread is not sitting on a per-cpu tsleep
1321 * queue or it will blow up when it moves to another cpu.
1323 * MPSAFE - must be called under very specific conditions.
1325 void
1326 lwkt_giveaway(thread_t td)
1328 globaldata_t gd = mycpu;
1330 crit_enter_gd(gd);
1331 if (td->td_flags & TDF_TSLEEPQ)
1332 tsleep_remove(td);
1333 KKASSERT(td->td_gd == gd);
1334 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1335 td->td_flags |= TDF_MIGRATING;
1336 crit_exit_gd(gd);
1339 void
1340 lwkt_acquire(thread_t td)
1342 globaldata_t gd;
1343 globaldata_t mygd;
1345 KKASSERT(td->td_flags & TDF_MIGRATING);
1346 gd = td->td_gd;
1347 mygd = mycpu;
1348 if (gd != mycpu) {
1349 cpu_lfence();
1350 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1351 crit_enter_gd(mygd);
1352 DEBUG_PUSH_INFO("lwkt_acquire");
1353 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1354 #ifdef SMP
1355 lwkt_process_ipiq();
1356 #endif
1357 cpu_lfence();
1359 DEBUG_POP_INFO();
1360 cpu_mfence();
1361 td->td_gd = mygd;
1362 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1363 td->td_flags &= ~TDF_MIGRATING;
1364 crit_exit_gd(mygd);
1365 } else {
1366 crit_enter_gd(mygd);
1367 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1368 td->td_flags &= ~TDF_MIGRATING;
1369 crit_exit_gd(mygd);
1373 #endif
1376 * Generic deschedule. Descheduling threads other then your own should be
1377 * done only in carefully controlled circumstances. Descheduling is
1378 * asynchronous.
1380 * This function may block if the cpu has run out of messages.
1382 void
1383 lwkt_deschedule(thread_t td)
1385 crit_enter();
1386 #ifdef SMP
1387 if (td == curthread) {
1388 _lwkt_dequeue(td);
1389 } else {
1390 if (td->td_gd == mycpu) {
1391 _lwkt_dequeue(td);
1392 } else {
1393 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1396 #else
1397 _lwkt_dequeue(td);
1398 #endif
1399 crit_exit();
1403 * Set the target thread's priority. This routine does not automatically
1404 * switch to a higher priority thread, LWKT threads are not designed for
1405 * continuous priority changes. Yield if you want to switch.
1407 void
1408 lwkt_setpri(thread_t td, int pri)
1410 KKASSERT(td->td_gd == mycpu);
1411 if (td->td_pri != pri) {
1412 KKASSERT(pri >= 0);
1413 crit_enter();
1414 if (td->td_flags & TDF_RUNQ) {
1415 _lwkt_dequeue(td);
1416 td->td_pri = pri;
1417 _lwkt_enqueue(td);
1418 } else {
1419 td->td_pri = pri;
1421 crit_exit();
1426 * Set the initial priority for a thread prior to it being scheduled for
1427 * the first time. The thread MUST NOT be scheduled before or during
1428 * this call. The thread may be assigned to a cpu other then the current
1429 * cpu.
1431 * Typically used after a thread has been created with TDF_STOPPREQ,
1432 * and before the thread is initially scheduled.
1434 void
1435 lwkt_setpri_initial(thread_t td, int pri)
1437 KKASSERT(pri >= 0);
1438 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1439 td->td_pri = pri;
1442 void
1443 lwkt_setpri_self(int pri)
1445 thread_t td = curthread;
1447 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1448 crit_enter();
1449 if (td->td_flags & TDF_RUNQ) {
1450 _lwkt_dequeue(td);
1451 td->td_pri = pri;
1452 _lwkt_enqueue(td);
1453 } else {
1454 td->td_pri = pri;
1456 crit_exit();
1460 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1462 * Example: two competing threads, same priority N. decrement by (2*N)
1463 * increment by N*8, each thread will get 4 ticks.
1465 void
1466 lwkt_fairq_schedulerclock(thread_t td)
1468 globaldata_t gd;
1470 if (fairq_enable) {
1471 while (td) {
1472 gd = td->td_gd;
1473 if (td != &gd->gd_idlethread) {
1474 td->td_fairq_accum -= gd->gd_fairq_total_pri;
1475 if (td->td_fairq_accum < -TDFAIRQ_MAX(gd))
1476 td->td_fairq_accum = -TDFAIRQ_MAX(gd);
1477 if (td->td_fairq_accum < 0)
1478 need_lwkt_resched();
1479 td->td_fairq_lticks = ticks;
1481 td = td->td_preempted;
1486 static void
1487 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1489 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1490 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1491 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1495 * Migrate the current thread to the specified cpu.
1497 * This is accomplished by descheduling ourselves from the current cpu,
1498 * moving our thread to the tdallq of the target cpu, IPI messaging the
1499 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1500 * races while the thread is being migrated.
1502 * We must be sure to remove ourselves from the current cpu's tsleepq
1503 * before potentially moving to another queue. The thread can be on
1504 * a tsleepq due to a left-over tsleep_interlock().
1506 #ifdef SMP
1507 static void lwkt_setcpu_remote(void *arg);
1508 #endif
1510 void
1511 lwkt_setcpu_self(globaldata_t rgd)
1513 #ifdef SMP
1514 thread_t td = curthread;
1516 if (td->td_gd != rgd) {
1517 crit_enter_quick(td);
1518 if (td->td_flags & TDF_TSLEEPQ)
1519 tsleep_remove(td);
1520 td->td_flags |= TDF_MIGRATING;
1521 lwkt_deschedule_self(td);
1522 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1523 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1524 lwkt_switch();
1525 /* we are now on the target cpu */
1526 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1527 crit_exit_quick(td);
1529 #endif
1532 void
1533 lwkt_migratecpu(int cpuid)
1535 #ifdef SMP
1536 globaldata_t rgd;
1538 rgd = globaldata_find(cpuid);
1539 lwkt_setcpu_self(rgd);
1540 #endif
1544 * Remote IPI for cpu migration (called while in a critical section so we
1545 * do not have to enter another one). The thread has already been moved to
1546 * our cpu's allq, but we must wait for the thread to be completely switched
1547 * out on the originating cpu before we schedule it on ours or the stack
1548 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1549 * change to main memory.
1551 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1552 * against wakeups. It is best if this interface is used only when there
1553 * are no pending events that might try to schedule the thread.
1555 #ifdef SMP
1556 static void
1557 lwkt_setcpu_remote(void *arg)
1559 thread_t td = arg;
1560 globaldata_t gd = mycpu;
1561 int retry = 10000000;
1563 DEBUG_PUSH_INFO("lwkt_setcpu_remote");
1564 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1565 #ifdef SMP
1566 lwkt_process_ipiq();
1567 #endif
1568 cpu_lfence();
1569 cpu_pause();
1570 if (--retry == 0) {
1571 kprintf("lwkt_setcpu_remote: td->td_flags %08x\n",
1572 td->td_flags);
1573 retry = 10000000;
1576 DEBUG_POP_INFO();
1577 td->td_gd = gd;
1578 cpu_mfence();
1579 td->td_flags &= ~TDF_MIGRATING;
1580 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1581 _lwkt_enqueue(td);
1583 #endif
1585 struct lwp *
1586 lwkt_preempted_proc(void)
1588 thread_t td = curthread;
1589 while (td->td_preempted)
1590 td = td->td_preempted;
1591 return(td->td_lwp);
1595 * Create a kernel process/thread/whatever. It shares it's address space
1596 * with proc0 - ie: kernel only.
1598 * NOTE! By default new threads are created with the MP lock held. A
1599 * thread which does not require the MP lock should release it by calling
1600 * rel_mplock() at the start of the new thread.
1603 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1604 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1606 thread_t td;
1607 __va_list ap;
1609 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1610 tdflags);
1611 if (tdp)
1612 *tdp = td;
1613 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1616 * Set up arg0 for 'ps' etc
1618 __va_start(ap, fmt);
1619 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1620 __va_end(ap);
1623 * Schedule the thread to run
1625 if ((td->td_flags & TDF_STOPREQ) == 0)
1626 lwkt_schedule(td);
1627 else
1628 td->td_flags &= ~TDF_STOPREQ;
1629 return 0;
1633 * Destroy an LWKT thread. Warning! This function is not called when
1634 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1635 * uses a different reaping mechanism.
1637 void
1638 lwkt_exit(void)
1640 thread_t td = curthread;
1641 thread_t std;
1642 globaldata_t gd;
1645 * Do any cleanup that might block here
1647 if (td->td_flags & TDF_VERBOSE)
1648 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1649 caps_exit(td);
1650 biosched_done(td);
1651 dsched_exit_thread(td);
1654 * Get us into a critical section to interlock gd_freetd and loop
1655 * until we can get it freed.
1657 * We have to cache the current td in gd_freetd because objcache_put()ing
1658 * it would rip it out from under us while our thread is still active.
1660 gd = mycpu;
1661 crit_enter_quick(td);
1662 while ((std = gd->gd_freetd) != NULL) {
1663 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1664 gd->gd_freetd = NULL;
1665 objcache_put(thread_cache, std);
1669 * Remove thread resources from kernel lists and deschedule us for
1670 * the last time. We cannot block after this point or we may end
1671 * up with a stale td on the tsleepq.
1673 if (td->td_flags & TDF_TSLEEPQ)
1674 tsleep_remove(td);
1675 lwkt_deschedule_self(td);
1676 lwkt_remove_tdallq(td);
1677 KKASSERT(td->td_refs == 0);
1680 * Final cleanup
1682 KKASSERT(gd->gd_freetd == NULL);
1683 if (td->td_flags & TDF_ALLOCATED_THREAD)
1684 gd->gd_freetd = td;
1685 cpu_thread_exit();
1688 void
1689 lwkt_remove_tdallq(thread_t td)
1691 KKASSERT(td->td_gd == mycpu);
1692 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1696 * Code reduction and branch prediction improvements. Call/return
1697 * overhead on modern cpus often degenerates into 0 cycles due to
1698 * the cpu's branch prediction hardware and return pc cache. We
1699 * can take advantage of this by not inlining medium-complexity
1700 * functions and we can also reduce the branch prediction impact
1701 * by collapsing perfectly predictable branches into a single
1702 * procedure instead of duplicating it.
1704 * Is any of this noticeable? Probably not, so I'll take the
1705 * smaller code size.
1707 void
1708 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1710 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1713 void
1714 crit_panic(void)
1716 thread_t td = curthread;
1717 int lcrit = td->td_critcount;
1719 td->td_critcount = 0;
1720 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1721 /* NOT REACHED */
1724 #ifdef SMP
1727 * Called from debugger/panic on cpus which have been stopped. We must still
1728 * process the IPIQ while stopped, even if we were stopped while in a critical
1729 * section (XXX).
1731 * If we are dumping also try to process any pending interrupts. This may
1732 * or may not work depending on the state of the cpu at the point it was
1733 * stopped.
1735 void
1736 lwkt_smp_stopped(void)
1738 globaldata_t gd = mycpu;
1740 crit_enter_gd(gd);
1741 if (dumping) {
1742 lwkt_process_ipiq();
1743 splz();
1744 } else {
1745 lwkt_process_ipiq();
1747 crit_exit_gd(gd);
1750 #endif