acpi: restructure genwakecode.sh
[dragonfly.git] / sys / vfs / nfs / nfs_vnops.c
blobefea9bdae71af390b9eff9b8341b94ef080a9e1e
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95
37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
43 * vnode op calls for Sun NFS version 2 and 3
46 #include "opt_inet.h"
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
72 #include <sys/buf2.h>
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
77 #undef DIRBLKSIZ
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
91 #include <sys/thread2.h>
93 /* Defs */
94 #define TRUE 1
95 #define FALSE 0
97 static int nfsfifo_read (struct vop_read_args *);
98 static int nfsfifo_write (struct vop_write_args *);
99 static int nfsfifo_close (struct vop_close_args *);
100 #define nfs_poll vop_nopoll
101 static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
102 static int nfs_lookup (struct vop_old_lookup_args *);
103 static int nfs_create (struct vop_old_create_args *);
104 static int nfs_mknod (struct vop_old_mknod_args *);
105 static int nfs_open (struct vop_open_args *);
106 static int nfs_close (struct vop_close_args *);
107 static int nfs_access (struct vop_access_args *);
108 static int nfs_getattr (struct vop_getattr_args *);
109 static int nfs_setattr (struct vop_setattr_args *);
110 static int nfs_read (struct vop_read_args *);
111 static int nfs_mmap (struct vop_mmap_args *);
112 static int nfs_fsync (struct vop_fsync_args *);
113 static int nfs_remove (struct vop_old_remove_args *);
114 static int nfs_link (struct vop_old_link_args *);
115 static int nfs_rename (struct vop_old_rename_args *);
116 static int nfs_mkdir (struct vop_old_mkdir_args *);
117 static int nfs_rmdir (struct vop_old_rmdir_args *);
118 static int nfs_symlink (struct vop_old_symlink_args *);
119 static int nfs_readdir (struct vop_readdir_args *);
120 static int nfs_bmap (struct vop_bmap_args *);
121 static int nfs_strategy (struct vop_strategy_args *);
122 static int nfs_lookitup (struct vnode *, const char *, int,
123 struct ucred *, struct thread *, struct nfsnode **);
124 static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
125 static int nfs_laccess (struct vop_access_args *);
126 static int nfs_readlink (struct vop_readlink_args *);
127 static int nfs_print (struct vop_print_args *);
128 static int nfs_advlock (struct vop_advlock_args *);
130 static int nfs_nresolve (struct vop_nresolve_args *);
132 * Global vfs data structures for nfs
134 struct vop_ops nfsv2_vnode_vops = {
135 .vop_default = vop_defaultop,
136 .vop_access = nfs_access,
137 .vop_advlock = nfs_advlock,
138 .vop_bmap = nfs_bmap,
139 .vop_close = nfs_close,
140 .vop_old_create = nfs_create,
141 .vop_fsync = nfs_fsync,
142 .vop_getattr = nfs_getattr,
143 .vop_getpages = nfs_getpages,
144 .vop_putpages = nfs_putpages,
145 .vop_inactive = nfs_inactive,
146 .vop_old_link = nfs_link,
147 .vop_old_lookup = nfs_lookup,
148 .vop_old_mkdir = nfs_mkdir,
149 .vop_old_mknod = nfs_mknod,
150 .vop_mmap = nfs_mmap,
151 .vop_open = nfs_open,
152 .vop_poll = nfs_poll,
153 .vop_print = nfs_print,
154 .vop_read = nfs_read,
155 .vop_readdir = nfs_readdir,
156 .vop_readlink = nfs_readlink,
157 .vop_reclaim = nfs_reclaim,
158 .vop_old_remove = nfs_remove,
159 .vop_old_rename = nfs_rename,
160 .vop_old_rmdir = nfs_rmdir,
161 .vop_setattr = nfs_setattr,
162 .vop_strategy = nfs_strategy,
163 .vop_old_symlink = nfs_symlink,
164 .vop_write = nfs_write,
165 .vop_nresolve = nfs_nresolve
169 * Special device vnode ops
171 struct vop_ops nfsv2_spec_vops = {
172 .vop_default = vop_defaultop,
173 .vop_access = nfs_laccess,
174 .vop_close = nfs_close,
175 .vop_fsync = nfs_fsync,
176 .vop_getattr = nfs_getattr,
177 .vop_inactive = nfs_inactive,
178 .vop_print = nfs_print,
179 .vop_read = vop_stdnoread,
180 .vop_reclaim = nfs_reclaim,
181 .vop_setattr = nfs_setattr,
182 .vop_write = vop_stdnowrite
185 struct vop_ops nfsv2_fifo_vops = {
186 .vop_default = fifo_vnoperate,
187 .vop_access = nfs_laccess,
188 .vop_close = nfsfifo_close,
189 .vop_fsync = nfs_fsync,
190 .vop_getattr = nfs_getattr,
191 .vop_inactive = nfs_inactive,
192 .vop_print = nfs_print,
193 .vop_read = nfsfifo_read,
194 .vop_reclaim = nfs_reclaim,
195 .vop_setattr = nfs_setattr,
196 .vop_write = nfsfifo_write
199 static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
200 struct componentname *cnp,
201 struct vattr *vap);
202 static int nfs_removerpc (struct vnode *dvp, const char *name,
203 int namelen,
204 struct ucred *cred, struct thread *td);
205 static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
206 int fnamelen, struct vnode *tdvp,
207 const char *tnameptr, int tnamelen,
208 struct ucred *cred, struct thread *td);
209 static int nfs_renameit (struct vnode *sdvp,
210 struct componentname *scnp,
211 struct sillyrename *sp);
213 SYSCTL_DECL(_vfs_nfs);
215 static int nfs_flush_on_rename = 1;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
217 &nfs_flush_on_rename, 0, "flush fvp prior to rename");
218 static int nfs_flush_on_hlink = 0;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
220 &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
222 static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
223 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
226 static int nfsneg_cache_timeout = NFS_MINATTRTIMO;
227 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
228 &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
230 static int nfspos_cache_timeout = NFS_MINATTRTIMO;
231 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
232 &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
234 static int nfsv3_commit_on_close = 0;
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
236 &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
237 #if 0
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
239 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
242 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
243 #endif
245 #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \
246 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \
247 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
248 static int
249 nfs3_access_otw(struct vnode *vp, int wmode,
250 struct thread *td, struct ucred *cred)
252 struct nfsnode *np = VTONFS(vp);
253 int attrflag;
254 int error = 0;
255 u_int32_t *tl;
256 u_int32_t rmode;
257 struct nfsm_info info;
259 info.mrep = NULL;
260 info.v3 = 1;
262 nfsstats.rpccnt[NFSPROC_ACCESS]++;
263 nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
264 NFSX_FH(info.v3) + NFSX_UNSIGNED);
265 ERROROUT(nfsm_fhtom(&info, vp));
266 tl = nfsm_build(&info, NFSX_UNSIGNED);
267 *tl = txdr_unsigned(wmode);
268 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
269 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
270 if (error == 0) {
271 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
272 rmode = fxdr_unsigned(u_int32_t, *tl);
273 np->n_mode = rmode;
274 np->n_modeuid = cred->cr_uid;
275 np->n_modestamp = mycpu->gd_time_seconds;
277 m_freem(info.mrep);
278 info.mrep = NULL;
279 nfsmout:
280 return error;
284 * nfs access vnode op.
285 * For nfs version 2, just return ok. File accesses may fail later.
286 * For nfs version 3, use the access rpc to check accessibility. If file modes
287 * are changed on the server, accesses might still fail later.
289 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
291 static int
292 nfs_access(struct vop_access_args *ap)
294 struct vnode *vp = ap->a_vp;
295 thread_t td = curthread;
296 int error = 0;
297 u_int32_t mode, wmode;
298 struct nfsnode *np = VTONFS(vp);
299 int v3 = NFS_ISV3(vp);
302 * Disallow write attempts on filesystems mounted read-only;
303 * unless the file is a socket, fifo, or a block or character
304 * device resident on the filesystem.
306 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
307 switch (vp->v_type) {
308 case VREG:
309 case VDIR:
310 case VLNK:
311 return (EROFS);
312 default:
313 break;
317 * For nfs v3, check to see if we have done this recently, and if
318 * so return our cached result instead of making an ACCESS call.
319 * If not, do an access rpc, otherwise you are stuck emulating
320 * ufs_access() locally using the vattr. This may not be correct,
321 * since the server may apply other access criteria such as
322 * client uid-->server uid mapping that we do not know about.
324 if (v3) {
325 if (ap->a_mode & VREAD)
326 mode = NFSV3ACCESS_READ;
327 else
328 mode = 0;
329 if (vp->v_type != VDIR) {
330 if (ap->a_mode & VWRITE)
331 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
332 if (ap->a_mode & VEXEC)
333 mode |= NFSV3ACCESS_EXECUTE;
334 } else {
335 if (ap->a_mode & VWRITE)
336 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
337 NFSV3ACCESS_DELETE);
338 if (ap->a_mode & VEXEC)
339 mode |= NFSV3ACCESS_LOOKUP;
341 /* XXX safety belt, only make blanket request if caching */
342 if (nfsaccess_cache_timeout > 0) {
343 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
344 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
345 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
346 } else {
347 wmode = mode;
351 * Does our cached result allow us to give a definite yes to
352 * this request?
354 if (np->n_modestamp &&
355 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
356 (ap->a_cred->cr_uid == np->n_modeuid) &&
357 ((np->n_mode & mode) == mode)) {
358 nfsstats.accesscache_hits++;
359 } else {
361 * Either a no, or a don't know. Go to the wire.
363 nfsstats.accesscache_misses++;
364 error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
365 if (!error) {
366 if ((np->n_mode & mode) != mode) {
367 error = EACCES;
371 } else {
372 if ((error = nfs_laccess(ap)) != 0)
373 return (error);
376 * Attempt to prevent a mapped root from accessing a file
377 * which it shouldn't. We try to read a byte from the file
378 * if the user is root and the file is not zero length.
379 * After calling nfs_laccess, we should have the correct
380 * file size cached.
382 if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
383 && VTONFS(vp)->n_size > 0) {
384 struct iovec aiov;
385 struct uio auio;
386 char buf[1];
388 aiov.iov_base = buf;
389 aiov.iov_len = 1;
390 auio.uio_iov = &aiov;
391 auio.uio_iovcnt = 1;
392 auio.uio_offset = 0;
393 auio.uio_resid = 1;
394 auio.uio_segflg = UIO_SYSSPACE;
395 auio.uio_rw = UIO_READ;
396 auio.uio_td = td;
398 if (vp->v_type == VREG) {
399 error = nfs_readrpc_uio(vp, &auio);
400 } else if (vp->v_type == VDIR) {
401 char* bp;
402 bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
403 aiov.iov_base = bp;
404 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
405 error = nfs_readdirrpc_uio(vp, &auio);
406 kfree(bp, M_TEMP);
407 } else if (vp->v_type == VLNK) {
408 error = nfs_readlinkrpc_uio(vp, &auio);
409 } else {
410 error = EACCES;
415 * [re]record creds for reading and/or writing if access
416 * was granted. Assume the NFS server will grant read access
417 * for execute requests.
419 if (error == 0) {
420 if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
421 crhold(ap->a_cred);
422 if (np->n_rucred)
423 crfree(np->n_rucred);
424 np->n_rucred = ap->a_cred;
426 if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
427 crhold(ap->a_cred);
428 if (np->n_wucred)
429 crfree(np->n_wucred);
430 np->n_wucred = ap->a_cred;
433 return(error);
437 * nfs open vnode op
438 * Check to see if the type is ok
439 * and that deletion is not in progress.
440 * For paged in text files, you will need to flush the page cache
441 * if consistency is lost.
443 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
444 * struct file *a_fp)
446 /* ARGSUSED */
447 static int
448 nfs_open(struct vop_open_args *ap)
450 struct vnode *vp = ap->a_vp;
451 struct nfsnode *np = VTONFS(vp);
452 struct vattr vattr;
453 int error;
455 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
456 #ifdef DIAGNOSTIC
457 kprintf("open eacces vtyp=%d\n",vp->v_type);
458 #endif
459 return (EOPNOTSUPP);
463 * Save valid creds for reading and writing for later RPCs.
465 if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
466 crhold(ap->a_cred);
467 if (np->n_rucred)
468 crfree(np->n_rucred);
469 np->n_rucred = ap->a_cred;
471 if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
472 crhold(ap->a_cred);
473 if (np->n_wucred)
474 crfree(np->n_wucred);
475 np->n_wucred = ap->a_cred;
479 * Clear the attribute cache only if opening with write access. It
480 * is unclear if we should do this at all here, but we certainly
481 * should not clear the cache unconditionally simply because a file
482 * is being opened.
484 if (ap->a_mode & FWRITE)
485 np->n_attrstamp = 0;
488 * For normal NFS, reconcile changes made locally verses
489 * changes made remotely. Note that VOP_GETATTR only goes
490 * to the wire if the cached attribute has timed out or been
491 * cleared.
493 * If local modifications have been made clear the attribute
494 * cache to force an attribute and modified time check. If
495 * GETATTR detects that the file has been changed by someone
496 * other then us it will set NRMODIFIED.
498 * If we are opening a directory and local changes have been
499 * made we have to invalidate the cache in order to ensure
500 * that we get the most up-to-date information from the
501 * server. XXX
503 if (np->n_flag & NLMODIFIED) {
504 np->n_attrstamp = 0;
505 if (vp->v_type == VDIR) {
506 error = nfs_vinvalbuf(vp, V_SAVE, 1);
507 if (error == EINTR)
508 return (error);
509 nfs_invaldir(vp);
512 error = VOP_GETATTR(vp, &vattr);
513 if (error)
514 return (error);
515 if (np->n_flag & NRMODIFIED) {
516 if (vp->v_type == VDIR)
517 nfs_invaldir(vp);
518 error = nfs_vinvalbuf(vp, V_SAVE, 1);
519 if (error == EINTR)
520 return (error);
521 np->n_flag &= ~NRMODIFIED;
524 return (vop_stdopen(ap));
528 * nfs close vnode op
529 * What an NFS client should do upon close after writing is a debatable issue.
530 * Most NFS clients push delayed writes to the server upon close, basically for
531 * two reasons:
532 * 1 - So that any write errors may be reported back to the client process
533 * doing the close system call. By far the two most likely errors are
534 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
535 * 2 - To put a worst case upper bound on cache inconsistency between
536 * multiple clients for the file.
537 * There is also a consistency problem for Version 2 of the protocol w.r.t.
538 * not being able to tell if other clients are writing a file concurrently,
539 * since there is no way of knowing if the changed modify time in the reply
540 * is only due to the write for this client.
541 * (NFS Version 3 provides weak cache consistency data in the reply that
542 * should be sufficient to detect and handle this case.)
544 * The current code does the following:
545 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
546 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
547 * or commit them (this satisfies 1 and 2 except for the
548 * case where the server crashes after this close but
549 * before the commit RPC, which is felt to be "good
550 * enough". Changing the last argument to nfs_flush() to
551 * a 1 would force a commit operation, if it is felt a
552 * commit is necessary now.
553 * for NQNFS - do nothing now, since 2 is dealt with via leases and
554 * 1 should be dealt with via an fsync() system call for
555 * cases where write errors are important.
557 * nfs_close(struct vnode *a_vp, int a_fflag)
559 /* ARGSUSED */
560 static int
561 nfs_close(struct vop_close_args *ap)
563 struct vnode *vp = ap->a_vp;
564 struct nfsnode *np = VTONFS(vp);
565 int error = 0;
566 thread_t td = curthread;
568 if (vp->v_type == VREG) {
569 if (np->n_flag & NLMODIFIED) {
570 if (NFS_ISV3(vp)) {
572 * Under NFSv3 we have dirty buffers to dispose of. We
573 * must flush them to the NFS server. We have the option
574 * of waiting all the way through the commit rpc or just
575 * waiting for the initial write. The default is to only
576 * wait through the initial write so the data is in the
577 * server's cache, which is roughly similar to the state
578 * a standard disk subsystem leaves the file in on close().
580 * We cannot clear the NLMODIFIED bit in np->n_flag due to
581 * potential races with other processes, and certainly
582 * cannot clear it if we don't commit.
584 int cm = nfsv3_commit_on_close ? 1 : 0;
585 error = nfs_flush(vp, MNT_WAIT, td, cm);
586 /* np->n_flag &= ~NLMODIFIED; */
587 } else {
588 error = nfs_vinvalbuf(vp, V_SAVE, 1);
590 np->n_attrstamp = 0;
592 if (np->n_flag & NWRITEERR) {
593 np->n_flag &= ~NWRITEERR;
594 error = np->n_error;
597 vop_stdclose(ap);
598 return (error);
602 * nfs getattr call from vfs.
604 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
606 static int
607 nfs_getattr(struct vop_getattr_args *ap)
609 struct vnode *vp = ap->a_vp;
610 struct nfsnode *np = VTONFS(vp);
611 int error = 0;
612 thread_t td = curthread;
613 struct nfsm_info info;
615 info.mrep = NULL;
616 info.v3 = NFS_ISV3(vp);
619 * Update local times for special files.
621 if (np->n_flag & (NACC | NUPD))
622 np->n_flag |= NCHG;
624 * First look in the cache.
626 if (nfs_getattrcache(vp, ap->a_vap) == 0)
627 return (0);
629 if (info.v3 && nfsaccess_cache_timeout > 0) {
630 nfsstats.accesscache_misses++;
631 nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
632 if (nfs_getattrcache(vp, ap->a_vap) == 0)
633 return (0);
636 nfsstats.rpccnt[NFSPROC_GETATTR]++;
637 nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
638 ERROROUT(nfsm_fhtom(&info, vp));
639 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
640 nfs_vpcred(vp, ND_CHECK), &error));
641 if (error == 0) {
642 ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
644 m_freem(info.mrep);
645 info.mrep = NULL;
646 nfsmout:
647 return (error);
651 * nfs setattr call.
653 * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
655 static int
656 nfs_setattr(struct vop_setattr_args *ap)
658 struct vnode *vp = ap->a_vp;
659 struct nfsnode *np = VTONFS(vp);
660 struct vattr *vap = ap->a_vap;
661 struct buf *bp;
662 int biosize = vp->v_mount->mnt_stat.f_iosize;
663 int error = 0;
664 int boff;
665 off_t tsize;
666 thread_t td = curthread;
668 #ifndef nolint
669 tsize = (off_t)0;
670 #endif
673 * Setting of flags is not supported.
675 if (vap->va_flags != VNOVAL)
676 return (EOPNOTSUPP);
679 * Disallow write attempts if the filesystem is mounted read-only.
681 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
682 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
683 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
684 (vp->v_mount->mnt_flag & MNT_RDONLY))
685 return (EROFS);
687 if (vap->va_size != VNOVAL) {
689 * truncation requested
691 switch (vp->v_type) {
692 case VDIR:
693 return (EISDIR);
694 case VCHR:
695 case VBLK:
696 case VSOCK:
697 case VFIFO:
698 if (vap->va_mtime.tv_sec == VNOVAL &&
699 vap->va_atime.tv_sec == VNOVAL &&
700 vap->va_mode == (mode_t)VNOVAL &&
701 vap->va_uid == (uid_t)VNOVAL &&
702 vap->va_gid == (gid_t)VNOVAL)
703 return (0);
704 vap->va_size = VNOVAL;
705 break;
706 default:
708 * Disallow write attempts if the filesystem is
709 * mounted read-only.
711 if (vp->v_mount->mnt_flag & MNT_RDONLY)
712 return (EROFS);
715 * This is nasty. The RPCs we send to flush pending
716 * data often return attribute information which is
717 * cached via a callback to nfs_loadattrcache(), which
718 * has the effect of changing our notion of the file
719 * size. Due to flushed appends and other operations
720 * the file size can be set to virtually anything,
721 * including values that do not match either the old
722 * or intended file size.
724 * When this condition is detected we must loop to
725 * try the operation again. Hopefully no more
726 * flushing is required on the loop so it works the
727 * second time around. THIS CASE ALMOST ALWAYS
728 * HAPPENS!
730 tsize = np->n_size;
731 again:
732 boff = (int)vap->va_size & (biosize - 1);
733 bp = nfs_meta_setsize(vp, td, vap->va_size - boff,
734 boff, 0);
735 if (bp) {
736 error = 0;
737 brelse(bp);
738 } else {
739 error = EINTR;
742 if (np->n_flag & NLMODIFIED) {
743 if (vap->va_size == 0)
744 error = nfs_vinvalbuf(vp, 0, 1);
745 else
746 error = nfs_vinvalbuf(vp, V_SAVE, 1);
749 * note: this loop case almost always happens at
750 * least once per truncation.
752 if (error == 0 && np->n_size != vap->va_size)
753 goto again;
754 np->n_vattr.va_size = vap->va_size;
755 break;
757 } else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
759 * What to do. If we are modifying the mtime we lose
760 * mtime detection of changes made by the server or other
761 * clients. But programs like rsync/rdist/cpdup are going
762 * to call utimes a lot. We don't want to piecemeal sync.
764 * For now sync if any prior remote changes were detected,
765 * but allow us to lose track of remote changes made during
766 * the utimes operation.
768 if (np->n_flag & NRMODIFIED)
769 error = nfs_vinvalbuf(vp, V_SAVE, 1);
770 if (error == EINTR)
771 return (error);
772 if (error == 0) {
773 if (vap->va_mtime.tv_sec != VNOVAL) {
774 np->n_mtime = vap->va_mtime.tv_sec;
778 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
781 * Sanity check if a truncation was issued. This should only occur
782 * if multiple processes are racing on the same file.
784 if (error == 0 && vap->va_size != VNOVAL &&
785 np->n_size != vap->va_size) {
786 kprintf("NFS ftruncate: server disagrees on the file size: "
787 "%jd/%jd/%jd\n",
788 (intmax_t)tsize,
789 (intmax_t)vap->va_size,
790 (intmax_t)np->n_size);
791 goto again;
793 if (error && vap->va_size != VNOVAL) {
794 np->n_size = np->n_vattr.va_size = tsize;
795 boff = (int)np->n_size & (biosize - 1);
796 vnode_pager_setsize(vp, np->n_size);
798 return (error);
802 * Do an nfs setattr rpc.
804 static int
805 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
806 struct ucred *cred, struct thread *td)
808 struct nfsv2_sattr *sp;
809 struct nfsnode *np = VTONFS(vp);
810 u_int32_t *tl;
811 int error = 0, wccflag = NFSV3_WCCRATTR;
812 struct nfsm_info info;
814 info.mrep = NULL;
815 info.v3 = NFS_ISV3(vp);
817 nfsstats.rpccnt[NFSPROC_SETATTR]++;
818 nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
819 NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
820 ERROROUT(nfsm_fhtom(&info, vp));
821 if (info.v3) {
822 nfsm_v3attrbuild(&info, vap, TRUE);
823 tl = nfsm_build(&info, NFSX_UNSIGNED);
824 *tl = nfs_false;
825 } else {
826 sp = nfsm_build(&info, NFSX_V2SATTR);
827 if (vap->va_mode == (mode_t)VNOVAL)
828 sp->sa_mode = nfs_xdrneg1;
829 else
830 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
831 if (vap->va_uid == (uid_t)VNOVAL)
832 sp->sa_uid = nfs_xdrneg1;
833 else
834 sp->sa_uid = txdr_unsigned(vap->va_uid);
835 if (vap->va_gid == (gid_t)VNOVAL)
836 sp->sa_gid = nfs_xdrneg1;
837 else
838 sp->sa_gid = txdr_unsigned(vap->va_gid);
839 sp->sa_size = txdr_unsigned(vap->va_size);
840 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
841 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
843 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
844 if (info.v3) {
845 np->n_modestamp = 0;
846 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
847 } else {
848 ERROROUT(nfsm_loadattr(&info, vp, NULL));
850 m_freem(info.mrep);
851 info.mrep = NULL;
852 nfsmout:
853 return (error);
856 static
857 void
858 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
860 if (nctimeout == 0)
861 nctimeout = 1;
862 else
863 nctimeout *= hz;
864 cache_setvp(nch, vp);
865 cache_settimeout(nch, nctimeout);
869 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove
870 * nfs_lookup() until all remaining new api calls are implemented.
872 * Resolve a namecache entry. This function is passed a locked ncp and
873 * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
875 static int
876 nfs_nresolve(struct vop_nresolve_args *ap)
878 struct thread *td = curthread;
879 struct namecache *ncp;
880 struct ucred *cred;
881 struct nfsnode *np;
882 struct vnode *dvp;
883 struct vnode *nvp;
884 nfsfh_t *fhp;
885 int attrflag;
886 int fhsize;
887 int error;
888 int tmp_error;
889 int len;
890 struct nfsm_info info;
892 cred = ap->a_cred;
893 dvp = ap->a_dvp;
895 if ((error = vget(dvp, LK_SHARED)) != 0)
896 return (error);
898 info.mrep = NULL;
899 info.v3 = NFS_ISV3(dvp);
901 nvp = NULL;
902 nfsstats.lookupcache_misses++;
903 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
904 ncp = ap->a_nch->ncp;
905 len = ncp->nc_nlen;
906 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
907 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
908 ERROROUT(nfsm_fhtom(&info, dvp));
909 ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
910 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
911 ap->a_cred, &error));
912 if (error) {
914 * Cache negatve lookups to reduce NFS traffic, but use
915 * a fast timeout. Otherwise use a timeout of 1 tick.
916 * XXX we should add a namecache flag for no-caching
917 * to uncache the negative hit as soon as possible, but
918 * we cannot simply destroy the entry because it is used
919 * as a placeholder by the caller.
921 * The refactored nfs code will overwrite a non-zero error
922 * with 0 when we use ERROROUT(), so don't here.
924 if (error == ENOENT)
925 nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
926 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
927 NFS_LATTR_NOSHRINK);
928 if (tmp_error) {
929 error = tmp_error;
930 goto nfsmout;
932 m_freem(info.mrep);
933 info.mrep = NULL;
934 goto nfsmout;
938 * Success, get the file handle, do various checks, and load
939 * post-operation data from the reply packet. Theoretically
940 * we should never be looking up "." so, theoretically, we
941 * should never get the same file handle as our directory. But
942 * we check anyway. XXX
944 * Note that no timeout is set for the positive cache hit. We
945 * assume, theoretically, that ESTALE returns will be dealt with
946 * properly to handle NFS races and in anycase we cannot depend
947 * on a timeout to deal with NFS open/create/excl issues so instead
948 * of a bad hack here the rest of the NFS client code needs to do
949 * the right thing.
951 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
953 np = VTONFS(dvp);
954 if (NFS_CMPFH(np, fhp, fhsize)) {
955 vref(dvp);
956 nvp = dvp;
957 } else {
958 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
959 if (error) {
960 m_freem(info.mrep);
961 info.mrep = NULL;
962 vput(dvp);
963 return (error);
965 nvp = NFSTOV(np);
967 if (info.v3) {
968 ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
969 NFS_LATTR_NOSHRINK));
970 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
971 NFS_LATTR_NOSHRINK));
972 } else {
973 ERROROUT(nfsm_loadattr(&info, nvp, NULL));
975 nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
976 m_freem(info.mrep);
977 info.mrep = NULL;
978 nfsmout:
979 vput(dvp);
980 if (nvp) {
981 if (nvp == dvp)
982 vrele(nvp);
983 else
984 vput(nvp);
986 return (error);
990 * 'cached' nfs directory lookup
992 * NOTE: cannot be removed until NFS implements all the new n*() API calls.
994 * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
995 * struct componentname *a_cnp)
997 static int
998 nfs_lookup(struct vop_old_lookup_args *ap)
1000 struct componentname *cnp = ap->a_cnp;
1001 struct vnode *dvp = ap->a_dvp;
1002 struct vnode **vpp = ap->a_vpp;
1003 int flags = cnp->cn_flags;
1004 struct vnode *newvp;
1005 struct nfsmount *nmp;
1006 long len;
1007 nfsfh_t *fhp;
1008 struct nfsnode *np;
1009 int lockparent, wantparent, attrflag, fhsize;
1010 int error;
1011 int tmp_error;
1012 struct nfsm_info info;
1014 info.mrep = NULL;
1015 info.v3 = NFS_ISV3(dvp);
1016 error = 0;
1019 * Read-only mount check and directory check.
1021 *vpp = NULLVP;
1022 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1023 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1024 return (EROFS);
1026 if (dvp->v_type != VDIR)
1027 return (ENOTDIR);
1030 * Look it up in the cache. Note that ENOENT is only returned if we
1031 * previously entered a negative hit (see later on). The additional
1032 * nfsneg_cache_timeout check causes previously cached results to
1033 * be instantly ignored if the negative caching is turned off.
1035 lockparent = flags & CNP_LOCKPARENT;
1036 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1037 nmp = VFSTONFS(dvp->v_mount);
1038 np = VTONFS(dvp);
1041 * Go to the wire.
1043 error = 0;
1044 newvp = NULLVP;
1045 nfsstats.lookupcache_misses++;
1046 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1047 len = cnp->cn_namelen;
1048 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1049 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1050 ERROROUT(nfsm_fhtom(&info, dvp));
1051 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1052 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1053 cnp->cn_cred, &error));
1054 if (error) {
1055 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1056 NFS_LATTR_NOSHRINK);
1057 if (tmp_error) {
1058 error = tmp_error;
1059 goto nfsmout;
1062 m_freem(info.mrep);
1063 info.mrep = NULL;
1064 goto nfsmout;
1066 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1069 * Handle RENAME case...
1071 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1072 if (NFS_CMPFH(np, fhp, fhsize)) {
1073 m_freem(info.mrep);
1074 info.mrep = NULL;
1075 return (EISDIR);
1077 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1078 if (error) {
1079 m_freem(info.mrep);
1080 info.mrep = NULL;
1081 return (error);
1083 newvp = NFSTOV(np);
1084 if (info.v3) {
1085 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1086 NFS_LATTR_NOSHRINK));
1087 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1088 NFS_LATTR_NOSHRINK));
1089 } else {
1090 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1092 *vpp = newvp;
1093 m_freem(info.mrep);
1094 info.mrep = NULL;
1095 if (!lockparent) {
1096 vn_unlock(dvp);
1097 cnp->cn_flags |= CNP_PDIRUNLOCK;
1099 return (0);
1102 if (flags & CNP_ISDOTDOT) {
1103 vn_unlock(dvp);
1104 cnp->cn_flags |= CNP_PDIRUNLOCK;
1105 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1106 if (error) {
1107 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1108 cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1109 return (error); /* NOTE: return error from nget */
1111 newvp = NFSTOV(np);
1112 if (lockparent) {
1113 error = vn_lock(dvp, LK_EXCLUSIVE);
1114 if (error) {
1115 vput(newvp);
1116 return (error);
1118 cnp->cn_flags |= CNP_PDIRUNLOCK;
1120 } else if (NFS_CMPFH(np, fhp, fhsize)) {
1121 vref(dvp);
1122 newvp = dvp;
1123 } else {
1124 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1125 if (error) {
1126 m_freem(info.mrep);
1127 info.mrep = NULL;
1128 return (error);
1130 if (!lockparent) {
1131 vn_unlock(dvp);
1132 cnp->cn_flags |= CNP_PDIRUNLOCK;
1134 newvp = NFSTOV(np);
1136 if (info.v3) {
1137 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1138 NFS_LATTR_NOSHRINK));
1139 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1140 NFS_LATTR_NOSHRINK));
1141 } else {
1142 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1144 #if 0
1145 /* XXX MOVE TO nfs_nremove() */
1146 if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1147 cnp->cn_nameiop != NAMEI_DELETE) {
1148 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1150 #endif
1151 *vpp = newvp;
1152 m_freem(info.mrep);
1153 info.mrep = NULL;
1154 nfsmout:
1155 if (error) {
1156 if (newvp != NULLVP) {
1157 vrele(newvp);
1158 *vpp = NULLVP;
1160 if ((cnp->cn_nameiop == NAMEI_CREATE ||
1161 cnp->cn_nameiop == NAMEI_RENAME) &&
1162 error == ENOENT) {
1163 if (!lockparent) {
1164 vn_unlock(dvp);
1165 cnp->cn_flags |= CNP_PDIRUNLOCK;
1167 if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1168 error = EROFS;
1169 else
1170 error = EJUSTRETURN;
1173 return (error);
1177 * nfs read call.
1178 * Just call nfs_bioread() to do the work.
1180 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1181 * struct ucred *a_cred)
1183 static int
1184 nfs_read(struct vop_read_args *ap)
1186 struct vnode *vp = ap->a_vp;
1188 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1192 * nfs readlink call
1194 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1196 static int
1197 nfs_readlink(struct vop_readlink_args *ap)
1199 struct vnode *vp = ap->a_vp;
1201 if (vp->v_type != VLNK)
1202 return (EINVAL);
1203 return (nfs_bioread(vp, ap->a_uio, 0));
1207 * Do a readlink rpc.
1208 * Called by nfs_doio() from below the buffer cache.
1211 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1213 int error = 0, len, attrflag;
1214 struct nfsm_info info;
1216 info.mrep = NULL;
1217 info.v3 = NFS_ISV3(vp);
1219 nfsstats.rpccnt[NFSPROC_READLINK]++;
1220 nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1221 ERROROUT(nfsm_fhtom(&info, vp));
1222 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1223 nfs_vpcred(vp, ND_CHECK), &error));
1224 if (info.v3) {
1225 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1226 NFS_LATTR_NOSHRINK));
1228 if (!error) {
1229 NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1230 if (len == NFS_MAXPATHLEN) {
1231 struct nfsnode *np = VTONFS(vp);
1232 if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1233 len = np->n_size;
1235 ERROROUT(nfsm_mtouio(&info, uiop, len));
1237 m_freem(info.mrep);
1238 info.mrep = NULL;
1239 nfsmout:
1240 return (error);
1244 * nfs synchronous read rpc using UIO
1247 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1249 u_int32_t *tl;
1250 struct nfsmount *nmp;
1251 int error = 0, len, retlen, tsiz, eof, attrflag;
1252 struct nfsm_info info;
1253 off_t tmp_off;
1255 info.mrep = NULL;
1256 info.v3 = NFS_ISV3(vp);
1258 #ifndef nolint
1259 eof = 0;
1260 #endif
1261 nmp = VFSTONFS(vp->v_mount);
1262 tsiz = uiop->uio_resid;
1263 tmp_off = uiop->uio_offset + tsiz;
1264 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1265 return (EFBIG);
1266 tmp_off = uiop->uio_offset;
1267 while (tsiz > 0) {
1268 nfsstats.rpccnt[NFSPROC_READ]++;
1269 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1270 nfsm_reqhead(&info, vp, NFSPROC_READ,
1271 NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1272 ERROROUT(nfsm_fhtom(&info, vp));
1273 tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1274 if (info.v3) {
1275 txdr_hyper(uiop->uio_offset, tl);
1276 *(tl + 2) = txdr_unsigned(len);
1277 } else {
1278 *tl++ = txdr_unsigned(uiop->uio_offset);
1279 *tl++ = txdr_unsigned(len);
1280 *tl = 0;
1282 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1283 nfs_vpcred(vp, ND_READ), &error));
1284 if (info.v3) {
1285 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1286 NFS_LATTR_NOSHRINK));
1287 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1288 eof = fxdr_unsigned(int, *(tl + 1));
1289 } else {
1290 ERROROUT(nfsm_loadattr(&info, vp, NULL));
1292 NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1293 ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1294 m_freem(info.mrep);
1295 info.mrep = NULL;
1298 * Handle short-read from server (NFSv3). If EOF is not
1299 * flagged (and no error occurred), but retlen is less
1300 * then the request size, we must zero-fill the remainder.
1302 if (retlen < len && info.v3 && eof == 0) {
1303 ERROROUT(uiomovez(len - retlen, uiop));
1304 retlen = len;
1306 tsiz -= retlen;
1309 * Terminate loop on EOF or zero-length read.
1311 * For NFSv2 a short-read indicates EOF, not zero-fill,
1312 * and also terminates the loop.
1314 if (info.v3) {
1315 if (eof || retlen == 0)
1316 tsiz = 0;
1317 } else if (retlen < len) {
1318 tsiz = 0;
1321 nfsmout:
1322 return (error);
1326 * nfs write call
1329 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1330 int *iomode, int *must_commit)
1332 u_int32_t *tl;
1333 int32_t backup;
1334 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1335 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1336 int committed = NFSV3WRITE_FILESYNC;
1337 struct nfsm_info info;
1339 info.mrep = NULL;
1340 info.v3 = NFS_ISV3(vp);
1342 #ifndef DIAGNOSTIC
1343 if (uiop->uio_iovcnt != 1)
1344 panic("nfs: writerpc iovcnt > 1");
1345 #endif
1346 *must_commit = 0;
1347 tsiz = uiop->uio_resid;
1348 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1349 return (EFBIG);
1350 while (tsiz > 0) {
1351 nfsstats.rpccnt[NFSPROC_WRITE]++;
1352 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1353 nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1354 NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1355 ERROROUT(nfsm_fhtom(&info, vp));
1356 if (info.v3) {
1357 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1358 txdr_hyper(uiop->uio_offset, tl);
1359 tl += 2;
1360 *tl++ = txdr_unsigned(len);
1361 *tl++ = txdr_unsigned(*iomode);
1362 *tl = txdr_unsigned(len);
1363 } else {
1364 u_int32_t x;
1366 tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1367 /* Set both "begin" and "current" to non-garbage. */
1368 x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1369 *tl++ = x; /* "begin offset" */
1370 *tl++ = x; /* "current offset" */
1371 x = txdr_unsigned(len);
1372 *tl++ = x; /* total to this offset */
1373 *tl = x; /* size of this write */
1375 ERROROUT(nfsm_uiotom(&info, uiop, len));
1376 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1377 nfs_vpcred(vp, ND_WRITE), &error));
1378 if (info.v3) {
1380 * The write RPC returns a before and after mtime. The
1381 * nfsm_wcc_data() macro checks the before n_mtime
1382 * against the before time and stores the after time
1383 * in the nfsnode's cached vattr and n_mtime field.
1384 * The NRMODIFIED bit will be set if the before
1385 * time did not match the original mtime.
1387 wccflag = NFSV3_WCCCHK;
1388 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1389 if (error == 0) {
1390 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1391 rlen = fxdr_unsigned(int, *tl++);
1392 if (rlen == 0) {
1393 error = NFSERR_IO;
1394 m_freem(info.mrep);
1395 info.mrep = NULL;
1396 break;
1397 } else if (rlen < len) {
1398 backup = len - rlen;
1399 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1400 uiop->uio_iov->iov_len += backup;
1401 uiop->uio_offset -= backup;
1402 uiop->uio_resid += backup;
1403 len = rlen;
1405 commit = fxdr_unsigned(int, *tl++);
1408 * Return the lowest committment level
1409 * obtained by any of the RPCs.
1411 if (committed == NFSV3WRITE_FILESYNC)
1412 committed = commit;
1413 else if (committed == NFSV3WRITE_DATASYNC &&
1414 commit == NFSV3WRITE_UNSTABLE)
1415 committed = commit;
1416 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1417 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1418 NFSX_V3WRITEVERF);
1419 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1420 } else if (bcmp((caddr_t)tl,
1421 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1422 *must_commit = 1;
1423 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1424 NFSX_V3WRITEVERF);
1427 } else {
1428 ERROROUT(nfsm_loadattr(&info, vp, NULL));
1430 m_freem(info.mrep);
1431 info.mrep = NULL;
1432 if (error)
1433 break;
1434 tsiz -= len;
1436 nfsmout:
1437 if (vp->v_mount->mnt_flag & MNT_ASYNC)
1438 committed = NFSV3WRITE_FILESYNC;
1439 *iomode = committed;
1440 if (error)
1441 uiop->uio_resid = tsiz;
1442 return (error);
1446 * nfs mknod rpc
1447 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1448 * mode set to specify the file type and the size field for rdev.
1450 static int
1451 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1452 struct vattr *vap)
1454 struct nfsv2_sattr *sp;
1455 u_int32_t *tl;
1456 struct vnode *newvp = NULL;
1457 struct nfsnode *np = NULL;
1458 struct vattr vattr;
1459 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1460 int rmajor, rminor;
1461 struct nfsm_info info;
1463 info.mrep = NULL;
1464 info.v3 = NFS_ISV3(dvp);
1466 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1467 rmajor = txdr_unsigned(vap->va_rmajor);
1468 rminor = txdr_unsigned(vap->va_rminor);
1469 } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1470 rmajor = nfs_xdrneg1;
1471 rminor = nfs_xdrneg1;
1472 } else {
1473 return (EOPNOTSUPP);
1475 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1476 return (error);
1478 nfsstats.rpccnt[NFSPROC_MKNOD]++;
1479 nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1480 NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1481 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1482 ERROROUT(nfsm_fhtom(&info, dvp));
1483 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1484 NFS_MAXNAMLEN));
1485 if (info.v3) {
1486 tl = nfsm_build(&info, NFSX_UNSIGNED);
1487 *tl++ = vtonfsv3_type(vap->va_type);
1488 nfsm_v3attrbuild(&info, vap, FALSE);
1489 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1490 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1491 *tl++ = txdr_unsigned(vap->va_rmajor);
1492 *tl = txdr_unsigned(vap->va_rminor);
1494 } else {
1495 sp = nfsm_build(&info, NFSX_V2SATTR);
1496 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1497 sp->sa_uid = nfs_xdrneg1;
1498 sp->sa_gid = nfs_xdrneg1;
1499 sp->sa_size = makeudev(rmajor, rminor);
1500 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1501 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1503 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1504 cnp->cn_cred, &error));
1505 if (!error) {
1506 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1507 if (!gotvp) {
1508 if (newvp) {
1509 vput(newvp);
1510 newvp = NULL;
1512 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1513 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1514 if (!error)
1515 newvp = NFSTOV(np);
1518 if (info.v3) {
1519 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1521 m_freem(info.mrep);
1522 info.mrep = NULL;
1523 nfsmout:
1524 if (error) {
1525 if (newvp)
1526 vput(newvp);
1527 } else {
1528 *vpp = newvp;
1530 VTONFS(dvp)->n_flag |= NLMODIFIED;
1531 if (!wccflag)
1532 VTONFS(dvp)->n_attrstamp = 0;
1533 return (error);
1537 * nfs mknod vop
1538 * just call nfs_mknodrpc() to do the work.
1540 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1541 * struct componentname *a_cnp, struct vattr *a_vap)
1543 /* ARGSUSED */
1544 static int
1545 nfs_mknod(struct vop_old_mknod_args *ap)
1547 return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1550 static u_long create_verf;
1552 * nfs file create call
1554 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1555 * struct componentname *a_cnp, struct vattr *a_vap)
1557 static int
1558 nfs_create(struct vop_old_create_args *ap)
1560 struct vnode *dvp = ap->a_dvp;
1561 struct vattr *vap = ap->a_vap;
1562 struct componentname *cnp = ap->a_cnp;
1563 struct nfsv2_sattr *sp;
1564 u_int32_t *tl;
1565 struct nfsnode *np = NULL;
1566 struct vnode *newvp = NULL;
1567 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1568 struct vattr vattr;
1569 struct nfsm_info info;
1571 info.mrep = NULL;
1572 info.v3 = NFS_ISV3(dvp);
1575 * Oops, not for me..
1577 if (vap->va_type == VSOCK)
1578 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1580 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1581 return (error);
1583 if (vap->va_vaflags & VA_EXCLUSIVE)
1584 fmode |= O_EXCL;
1585 again:
1586 nfsstats.rpccnt[NFSPROC_CREATE]++;
1587 nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1588 NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1589 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1590 ERROROUT(nfsm_fhtom(&info, dvp));
1591 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1592 NFS_MAXNAMLEN));
1593 if (info.v3) {
1594 tl = nfsm_build(&info, NFSX_UNSIGNED);
1595 if (fmode & O_EXCL) {
1596 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1597 tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1598 #ifdef INET
1599 if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1600 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1601 else
1602 #endif
1603 *tl++ = create_verf;
1604 *tl = ++create_verf;
1605 } else {
1606 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1607 nfsm_v3attrbuild(&info, vap, FALSE);
1609 } else {
1610 sp = nfsm_build(&info, NFSX_V2SATTR);
1611 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1612 sp->sa_uid = nfs_xdrneg1;
1613 sp->sa_gid = nfs_xdrneg1;
1614 sp->sa_size = 0;
1615 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1616 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1618 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1619 cnp->cn_cred, &error));
1620 if (error == 0) {
1621 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1622 if (!gotvp) {
1623 if (newvp) {
1624 vput(newvp);
1625 newvp = NULL;
1627 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1628 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1629 if (!error)
1630 newvp = NFSTOV(np);
1633 if (info.v3) {
1634 if (error == 0)
1635 error = nfsm_wcc_data(&info, dvp, &wccflag);
1636 else
1637 (void)nfsm_wcc_data(&info, dvp, &wccflag);
1639 m_freem(info.mrep);
1640 info.mrep = NULL;
1641 nfsmout:
1642 if (error) {
1643 if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1644 KKASSERT(newvp == NULL);
1645 fmode &= ~O_EXCL;
1646 goto again;
1648 } else if (info.v3 && (fmode & O_EXCL)) {
1650 * We are normally called with only a partially initialized
1651 * VAP. Since the NFSv3 spec says that server may use the
1652 * file attributes to store the verifier, the spec requires
1653 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1654 * in atime, but we can't really assume that all servers will
1655 * so we ensure that our SETATTR sets both atime and mtime.
1657 if (vap->va_mtime.tv_sec == VNOVAL)
1658 vfs_timestamp(&vap->va_mtime);
1659 if (vap->va_atime.tv_sec == VNOVAL)
1660 vap->va_atime = vap->va_mtime;
1661 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1663 if (error == 0) {
1665 * The new np may have enough info for access
1666 * checks, make sure rucred and wucred are
1667 * initialized for read and write rpc's.
1669 np = VTONFS(newvp);
1670 if (np->n_rucred == NULL)
1671 np->n_rucred = crhold(cnp->cn_cred);
1672 if (np->n_wucred == NULL)
1673 np->n_wucred = crhold(cnp->cn_cred);
1674 *ap->a_vpp = newvp;
1675 } else if (newvp) {
1676 vput(newvp);
1678 VTONFS(dvp)->n_flag |= NLMODIFIED;
1679 if (!wccflag)
1680 VTONFS(dvp)->n_attrstamp = 0;
1681 return (error);
1685 * nfs file remove call
1686 * To try and make nfs semantics closer to ufs semantics, a file that has
1687 * other processes using the vnode is renamed instead of removed and then
1688 * removed later on the last close.
1689 * - If v_sysref.refcnt > 1
1690 * If a rename is not already in the works
1691 * call nfs_sillyrename() to set it up
1692 * else
1693 * do the remove rpc
1695 * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1696 * struct componentname *a_cnp)
1698 static int
1699 nfs_remove(struct vop_old_remove_args *ap)
1701 struct vnode *vp = ap->a_vp;
1702 struct vnode *dvp = ap->a_dvp;
1703 struct componentname *cnp = ap->a_cnp;
1704 struct nfsnode *np = VTONFS(vp);
1705 int error = 0;
1706 struct vattr vattr;
1708 #ifndef DIAGNOSTIC
1709 if (vp->v_sysref.refcnt < 1)
1710 panic("nfs_remove: bad v_sysref.refcnt");
1711 #endif
1712 if (vp->v_type == VDIR)
1713 error = EPERM;
1714 else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1715 VOP_GETATTR(vp, &vattr) == 0 &&
1716 vattr.va_nlink > 1)) {
1718 * throw away biocache buffers, mainly to avoid
1719 * unnecessary delayed writes later.
1721 error = nfs_vinvalbuf(vp, 0, 1);
1722 /* Do the rpc */
1723 if (error != EINTR)
1724 error = nfs_removerpc(dvp, cnp->cn_nameptr,
1725 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1727 * Kludge City: If the first reply to the remove rpc is lost..
1728 * the reply to the retransmitted request will be ENOENT
1729 * since the file was in fact removed
1730 * Therefore, we cheat and return success.
1732 if (error == ENOENT)
1733 error = 0;
1734 } else if (!np->n_sillyrename) {
1735 error = nfs_sillyrename(dvp, vp, cnp);
1737 np->n_attrstamp = 0;
1738 return (error);
1742 * nfs file remove rpc called from nfs_inactive
1745 nfs_removeit(struct sillyrename *sp)
1747 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1748 sp->s_cred, NULL));
1752 * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1754 static int
1755 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1756 struct ucred *cred, struct thread *td)
1758 int error = 0, wccflag = NFSV3_WCCRATTR;
1759 struct nfsm_info info;
1761 info.mrep = NULL;
1762 info.v3 = NFS_ISV3(dvp);
1764 nfsstats.rpccnt[NFSPROC_REMOVE]++;
1765 nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1766 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1767 ERROROUT(nfsm_fhtom(&info, dvp));
1768 ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1769 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1770 if (info.v3) {
1771 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1773 m_freem(info.mrep);
1774 info.mrep = NULL;
1775 nfsmout:
1776 VTONFS(dvp)->n_flag |= NLMODIFIED;
1777 if (!wccflag)
1778 VTONFS(dvp)->n_attrstamp = 0;
1779 return (error);
1783 * nfs file rename call
1785 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1786 * struct componentname *a_fcnp, struct vnode *a_tdvp,
1787 * struct vnode *a_tvp, struct componentname *a_tcnp)
1789 static int
1790 nfs_rename(struct vop_old_rename_args *ap)
1792 struct vnode *fvp = ap->a_fvp;
1793 struct vnode *tvp = ap->a_tvp;
1794 struct vnode *fdvp = ap->a_fdvp;
1795 struct vnode *tdvp = ap->a_tdvp;
1796 struct componentname *tcnp = ap->a_tcnp;
1797 struct componentname *fcnp = ap->a_fcnp;
1798 int error;
1800 /* Check for cross-device rename */
1801 if ((fvp->v_mount != tdvp->v_mount) ||
1802 (tvp && (fvp->v_mount != tvp->v_mount))) {
1803 error = EXDEV;
1804 goto out;
1808 * We shouldn't have to flush fvp on rename for most server-side
1809 * filesystems as the file handle should not change. Unfortunately
1810 * the inode for some filesystems (msdosfs) might be tied to the
1811 * file name or directory position so to be completely safe
1812 * vfs.nfs.flush_on_rename is set by default. Clear to improve
1813 * performance.
1815 * We must flush tvp on rename because it might become stale on the
1816 * server after the rename.
1818 if (nfs_flush_on_rename)
1819 VOP_FSYNC(fvp, MNT_WAIT, 0);
1820 if (tvp)
1821 VOP_FSYNC(tvp, MNT_WAIT, 0);
1824 * If the tvp exists and is in use, sillyrename it before doing the
1825 * rename of the new file over it.
1827 * XXX Can't sillyrename a directory.
1829 * We do not attempt to do any namecache purges in this old API
1830 * routine. The new API compat functions have access to the actual
1831 * namecache structures and will do it for us.
1833 if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1834 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1835 vput(tvp);
1836 tvp = NULL;
1837 } else if (tvp) {
1841 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1842 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1843 tcnp->cn_td);
1845 out:
1846 if (tdvp == tvp)
1847 vrele(tdvp);
1848 else
1849 vput(tdvp);
1850 if (tvp)
1851 vput(tvp);
1852 vrele(fdvp);
1853 vrele(fvp);
1855 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1857 if (error == ENOENT)
1858 error = 0;
1859 return (error);
1863 * nfs file rename rpc called from nfs_remove() above
1865 static int
1866 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1867 struct sillyrename *sp)
1869 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1870 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1874 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1876 static int
1877 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1878 struct vnode *tdvp, const char *tnameptr, int tnamelen,
1879 struct ucred *cred, struct thread *td)
1881 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1882 struct nfsm_info info;
1884 info.mrep = NULL;
1885 info.v3 = NFS_ISV3(fdvp);
1887 nfsstats.rpccnt[NFSPROC_RENAME]++;
1888 nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1889 (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1890 nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1891 ERROROUT(nfsm_fhtom(&info, fdvp));
1892 ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1893 ERROROUT(nfsm_fhtom(&info, tdvp));
1894 ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1895 NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1896 if (info.v3) {
1897 ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1898 ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1900 m_freem(info.mrep);
1901 info.mrep = NULL;
1902 nfsmout:
1903 VTONFS(fdvp)->n_flag |= NLMODIFIED;
1904 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1905 if (!fwccflag)
1906 VTONFS(fdvp)->n_attrstamp = 0;
1907 if (!twccflag)
1908 VTONFS(tdvp)->n_attrstamp = 0;
1909 return (error);
1913 * nfs hard link create call
1915 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1916 * struct componentname *a_cnp)
1918 static int
1919 nfs_link(struct vop_old_link_args *ap)
1921 struct vnode *vp = ap->a_vp;
1922 struct vnode *tdvp = ap->a_tdvp;
1923 struct componentname *cnp = ap->a_cnp;
1924 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1925 struct nfsm_info info;
1927 if (vp->v_mount != tdvp->v_mount) {
1928 return (EXDEV);
1932 * The attribute cache may get out of sync with the server on link.
1933 * Pushing writes to the server before handle was inherited from
1934 * long long ago and it is unclear if we still need to do this.
1935 * Defaults to off.
1937 if (nfs_flush_on_hlink)
1938 VOP_FSYNC(vp, MNT_WAIT, 0);
1940 info.mrep = NULL;
1941 info.v3 = NFS_ISV3(vp);
1943 nfsstats.rpccnt[NFSPROC_LINK]++;
1944 nfsm_reqhead(&info, vp, NFSPROC_LINK,
1945 NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1946 nfsm_rndup(cnp->cn_namelen));
1947 ERROROUT(nfsm_fhtom(&info, vp));
1948 ERROROUT(nfsm_fhtom(&info, tdvp));
1949 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1950 NFS_MAXNAMLEN));
1951 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1952 cnp->cn_cred, &error));
1953 if (info.v3) {
1954 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1955 NFS_LATTR_NOSHRINK));
1956 ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1958 m_freem(info.mrep);
1959 info.mrep = NULL;
1960 nfsmout:
1961 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1962 if (!attrflag)
1963 VTONFS(vp)->n_attrstamp = 0;
1964 if (!wccflag)
1965 VTONFS(tdvp)->n_attrstamp = 0;
1967 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1969 if (error == EEXIST)
1970 error = 0;
1971 return (error);
1975 * nfs symbolic link create call
1977 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1978 * struct componentname *a_cnp, struct vattr *a_vap,
1979 * char *a_target)
1981 static int
1982 nfs_symlink(struct vop_old_symlink_args *ap)
1984 struct vnode *dvp = ap->a_dvp;
1985 struct vattr *vap = ap->a_vap;
1986 struct componentname *cnp = ap->a_cnp;
1987 struct nfsv2_sattr *sp;
1988 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1989 struct vnode *newvp = NULL;
1990 struct nfsm_info info;
1992 info.mrep = NULL;
1993 info.v3 = NFS_ISV3(dvp);
1995 nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1996 slen = strlen(ap->a_target);
1997 nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
1998 NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
1999 nfsm_rndup(cnp->cn_namelen) +
2000 nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2001 ERROROUT(nfsm_fhtom(&info, dvp));
2002 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2003 NFS_MAXNAMLEN));
2004 if (info.v3) {
2005 nfsm_v3attrbuild(&info, vap, FALSE);
2007 ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2008 if (info.v3 == 0) {
2009 sp = nfsm_build(&info, NFSX_V2SATTR);
2010 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2011 sp->sa_uid = nfs_xdrneg1;
2012 sp->sa_gid = nfs_xdrneg1;
2013 sp->sa_size = nfs_xdrneg1;
2014 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2015 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2019 * Issue the NFS request and get the rpc response.
2021 * Only NFSv3 responses returning an error of 0 actually return
2022 * a file handle that can be converted into newvp without having
2023 * to do an extra lookup rpc.
2025 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2026 cnp->cn_cred, &error));
2027 if (info.v3) {
2028 if (error == 0) {
2029 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2031 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2035 * out code jumps -> here, mrep is also freed.
2038 m_freem(info.mrep);
2039 info.mrep = NULL;
2040 nfsmout:
2043 * If we get an EEXIST error, silently convert it to no-error
2044 * in case of an NFS retry.
2046 if (error == EEXIST)
2047 error = 0;
2050 * If we do not have (or no longer have) an error, and we could
2051 * not extract the newvp from the response due to the request being
2052 * NFSv2 or the error being EEXIST. We have to do a lookup in order
2053 * to obtain a newvp to return.
2055 if (error == 0 && newvp == NULL) {
2056 struct nfsnode *np = NULL;
2058 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2059 cnp->cn_cred, cnp->cn_td, &np);
2060 if (!error)
2061 newvp = NFSTOV(np);
2063 if (error) {
2064 if (newvp)
2065 vput(newvp);
2066 } else {
2067 *ap->a_vpp = newvp;
2069 VTONFS(dvp)->n_flag |= NLMODIFIED;
2070 if (!wccflag)
2071 VTONFS(dvp)->n_attrstamp = 0;
2072 return (error);
2076 * nfs make dir call
2078 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2079 * struct componentname *a_cnp, struct vattr *a_vap)
2081 static int
2082 nfs_mkdir(struct vop_old_mkdir_args *ap)
2084 struct vnode *dvp = ap->a_dvp;
2085 struct vattr *vap = ap->a_vap;
2086 struct componentname *cnp = ap->a_cnp;
2087 struct nfsv2_sattr *sp;
2088 struct nfsnode *np = NULL;
2089 struct vnode *newvp = NULL;
2090 struct vattr vattr;
2091 int error = 0, wccflag = NFSV3_WCCRATTR;
2092 int gotvp = 0;
2093 int len;
2094 struct nfsm_info info;
2096 info.mrep = NULL;
2097 info.v3 = NFS_ISV3(dvp);
2099 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2100 return (error);
2102 len = cnp->cn_namelen;
2103 nfsstats.rpccnt[NFSPROC_MKDIR]++;
2104 nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2105 NFSX_FH(info.v3) + NFSX_UNSIGNED +
2106 nfsm_rndup(len) + NFSX_SATTR(info.v3));
2107 ERROROUT(nfsm_fhtom(&info, dvp));
2108 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2109 if (info.v3) {
2110 nfsm_v3attrbuild(&info, vap, FALSE);
2111 } else {
2112 sp = nfsm_build(&info, NFSX_V2SATTR);
2113 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2114 sp->sa_uid = nfs_xdrneg1;
2115 sp->sa_gid = nfs_xdrneg1;
2116 sp->sa_size = nfs_xdrneg1;
2117 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2118 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2120 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2121 cnp->cn_cred, &error));
2122 if (error == 0) {
2123 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2125 if (info.v3) {
2126 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2128 m_freem(info.mrep);
2129 info.mrep = NULL;
2130 nfsmout:
2131 VTONFS(dvp)->n_flag |= NLMODIFIED;
2132 if (!wccflag)
2133 VTONFS(dvp)->n_attrstamp = 0;
2135 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2136 * if we can succeed in looking up the directory.
2138 if (error == EEXIST || (!error && !gotvp)) {
2139 if (newvp) {
2140 vrele(newvp);
2141 newvp = NULL;
2143 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2144 cnp->cn_td, &np);
2145 if (!error) {
2146 newvp = NFSTOV(np);
2147 if (newvp->v_type != VDIR)
2148 error = EEXIST;
2151 if (error) {
2152 if (newvp)
2153 vrele(newvp);
2154 } else
2155 *ap->a_vpp = newvp;
2156 return (error);
2160 * nfs remove directory call
2162 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2163 * struct componentname *a_cnp)
2165 static int
2166 nfs_rmdir(struct vop_old_rmdir_args *ap)
2168 struct vnode *vp = ap->a_vp;
2169 struct vnode *dvp = ap->a_dvp;
2170 struct componentname *cnp = ap->a_cnp;
2171 int error = 0, wccflag = NFSV3_WCCRATTR;
2172 struct nfsm_info info;
2174 info.mrep = NULL;
2175 info.v3 = NFS_ISV3(dvp);
2177 if (dvp == vp)
2178 return (EINVAL);
2179 nfsstats.rpccnt[NFSPROC_RMDIR]++;
2180 nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2181 NFSX_FH(info.v3) + NFSX_UNSIGNED +
2182 nfsm_rndup(cnp->cn_namelen));
2183 ERROROUT(nfsm_fhtom(&info, dvp));
2184 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2185 NFS_MAXNAMLEN));
2186 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2187 cnp->cn_cred, &error));
2188 if (info.v3) {
2189 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2191 m_freem(info.mrep);
2192 info.mrep = NULL;
2193 nfsmout:
2194 VTONFS(dvp)->n_flag |= NLMODIFIED;
2195 if (!wccflag)
2196 VTONFS(dvp)->n_attrstamp = 0;
2198 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2200 if (error == ENOENT)
2201 error = 0;
2202 return (error);
2206 * nfs readdir call
2208 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2210 static int
2211 nfs_readdir(struct vop_readdir_args *ap)
2213 struct vnode *vp = ap->a_vp;
2214 struct nfsnode *np = VTONFS(vp);
2215 struct uio *uio = ap->a_uio;
2216 int tresid, error;
2217 struct vattr vattr;
2219 if (vp->v_type != VDIR)
2220 return (EPERM);
2222 if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2223 return (error);
2226 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2227 * and then check that is still valid, or if this is an NQNFS mount
2228 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that
2229 * VOP_GETATTR() does not necessarily go to the wire.
2231 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2232 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2233 if (VOP_GETATTR(vp, &vattr) == 0 &&
2234 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2236 nfsstats.direofcache_hits++;
2237 goto done;
2242 * Call nfs_bioread() to do the real work. nfs_bioread() does its
2243 * own cache coherency checks so we do not have to.
2245 tresid = uio->uio_resid;
2246 error = nfs_bioread(vp, uio, 0);
2248 if (!error && uio->uio_resid == tresid)
2249 nfsstats.direofcache_misses++;
2250 done:
2251 vn_unlock(vp);
2252 return (error);
2256 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc.
2258 * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2259 * offset/block and converts the nfs formatted directory entries for userland
2260 * consumption as well as deals with offsets into the middle of blocks.
2261 * nfs_doio only deals with logical blocks. In particular, uio_offset will
2262 * be block-bounded. It must convert to cookies for the actual RPC.
2265 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2267 int len, left;
2268 struct nfs_dirent *dp = NULL;
2269 u_int32_t *tl;
2270 nfsuint64 *cookiep;
2271 caddr_t cp;
2272 nfsuint64 cookie;
2273 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2274 struct nfsnode *dnp = VTONFS(vp);
2275 u_quad_t fileno;
2276 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2277 int attrflag;
2278 struct nfsm_info info;
2280 info.mrep = NULL;
2281 info.v3 = NFS_ISV3(vp);
2283 #ifndef DIAGNOSTIC
2284 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2285 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2286 panic("nfs readdirrpc bad uio");
2287 #endif
2290 * If there is no cookie, assume directory was stale.
2292 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2293 if (cookiep)
2294 cookie = *cookiep;
2295 else
2296 return (NFSERR_BAD_COOKIE);
2298 * Loop around doing readdir rpc's of size nm_readdirsize
2299 * truncated to a multiple of DIRBLKSIZ.
2300 * The stopping criteria is EOF or buffer full.
2302 while (more_dirs && bigenough) {
2303 nfsstats.rpccnt[NFSPROC_READDIR]++;
2304 nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2305 NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2306 ERROROUT(nfsm_fhtom(&info, vp));
2307 if (info.v3) {
2308 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2309 *tl++ = cookie.nfsuquad[0];
2310 *tl++ = cookie.nfsuquad[1];
2311 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2312 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2313 } else {
2314 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2315 *tl++ = cookie.nfsuquad[0];
2317 *tl = txdr_unsigned(nmp->nm_readdirsize);
2318 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2319 uiop->uio_td,
2320 nfs_vpcred(vp, ND_READ), &error));
2321 if (info.v3) {
2322 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2323 NFS_LATTR_NOSHRINK));
2324 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2325 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2326 dnp->n_cookieverf.nfsuquad[1] = *tl;
2328 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2329 more_dirs = fxdr_unsigned(int, *tl);
2331 /* loop thru the dir entries, converting them to std form */
2332 while (more_dirs && bigenough) {
2333 if (info.v3) {
2334 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2335 fileno = fxdr_hyper(tl);
2336 len = fxdr_unsigned(int, *(tl + 2));
2337 } else {
2338 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2339 fileno = fxdr_unsigned(u_quad_t, *tl++);
2340 len = fxdr_unsigned(int, *tl);
2342 if (len <= 0 || len > NFS_MAXNAMLEN) {
2343 error = EBADRPC;
2344 m_freem(info.mrep);
2345 info.mrep = NULL;
2346 goto nfsmout;
2350 * len is the number of bytes in the path element
2351 * name, not including the \0 termination.
2353 * tlen is the number of bytes w have to reserve for
2354 * the path element name.
2356 tlen = nfsm_rndup(len);
2357 if (tlen == len)
2358 tlen += 4; /* To ensure null termination */
2361 * If the entry would cross a DIRBLKSIZ boundary,
2362 * extend the previous nfs_dirent to cover the
2363 * remaining space.
2365 left = DIRBLKSIZ - blksiz;
2366 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2367 dp->nfs_reclen += left;
2368 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2369 uiop->uio_iov->iov_len -= left;
2370 uiop->uio_offset += left;
2371 uiop->uio_resid -= left;
2372 blksiz = 0;
2374 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2375 bigenough = 0;
2376 if (bigenough) {
2377 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2378 dp->nfs_ino = fileno;
2379 dp->nfs_namlen = len;
2380 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2381 dp->nfs_type = DT_UNKNOWN;
2382 blksiz += dp->nfs_reclen;
2383 if (blksiz == DIRBLKSIZ)
2384 blksiz = 0;
2385 uiop->uio_offset += sizeof(struct nfs_dirent);
2386 uiop->uio_resid -= sizeof(struct nfs_dirent);
2387 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2388 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2389 ERROROUT(nfsm_mtouio(&info, uiop, len));
2392 * The uiop has advanced by nfs_dirent + len
2393 * but really needs to advance by
2394 * nfs_dirent + tlen
2396 cp = uiop->uio_iov->iov_base;
2397 tlen -= len;
2398 *cp = '\0'; /* null terminate */
2399 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2400 uiop->uio_iov->iov_len -= tlen;
2401 uiop->uio_offset += tlen;
2402 uiop->uio_resid -= tlen;
2403 } else {
2405 * NFS strings must be rounded up (nfsm_myouio
2406 * handled that in the bigenough case).
2408 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2410 if (info.v3) {
2411 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2412 } else {
2413 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2417 * If we were able to accomodate the last entry,
2418 * get the cookie for the next one. Otherwise
2419 * hold-over the cookie for the one we were not
2420 * able to accomodate.
2422 if (bigenough) {
2423 cookie.nfsuquad[0] = *tl++;
2424 if (info.v3)
2425 cookie.nfsuquad[1] = *tl++;
2426 } else if (info.v3) {
2427 tl += 2;
2428 } else {
2429 tl++;
2431 more_dirs = fxdr_unsigned(int, *tl);
2434 * If at end of rpc data, get the eof boolean
2436 if (!more_dirs) {
2437 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2438 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2440 m_freem(info.mrep);
2441 info.mrep = NULL;
2444 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2445 * by increasing d_reclen for the last record.
2447 if (blksiz > 0) {
2448 left = DIRBLKSIZ - blksiz;
2449 dp->nfs_reclen += left;
2450 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2451 uiop->uio_iov->iov_len -= left;
2452 uiop->uio_offset += left;
2453 uiop->uio_resid -= left;
2456 if (bigenough) {
2458 * We hit the end of the directory, update direofoffset.
2460 dnp->n_direofoffset = uiop->uio_offset;
2461 } else {
2463 * There is more to go, insert the link cookie so the
2464 * next block can be read.
2466 if (uiop->uio_resid > 0)
2467 kprintf("EEK! readdirrpc resid > 0\n");
2468 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2469 *cookiep = cookie;
2471 nfsmout:
2472 return (error);
2476 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2479 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2481 int len, left;
2482 struct nfs_dirent *dp;
2483 u_int32_t *tl;
2484 struct vnode *newvp;
2485 nfsuint64 *cookiep;
2486 caddr_t dpossav1, dpossav2;
2487 caddr_t cp;
2488 struct mbuf *mdsav1, *mdsav2;
2489 nfsuint64 cookie;
2490 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2491 struct nfsnode *dnp = VTONFS(vp), *np;
2492 nfsfh_t *fhp;
2493 u_quad_t fileno;
2494 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2495 int attrflag, fhsize;
2496 struct nchandle nch;
2497 struct nchandle dnch;
2498 struct nlcomponent nlc;
2499 struct nfsm_info info;
2501 info.mrep = NULL;
2502 info.v3 = 1;
2504 #ifndef nolint
2505 dp = NULL;
2506 #endif
2507 #ifndef DIAGNOSTIC
2508 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2509 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2510 panic("nfs readdirplusrpc bad uio");
2511 #endif
2513 * Obtain the namecache record for the directory so we have something
2514 * to use as a basis for creating the entries. This function will
2515 * return a held (but not locked) ncp. The ncp may be disconnected
2516 * from the tree and cannot be used for upward traversals, and the
2517 * ncp may be unnamed. Note that other unrelated operations may
2518 * cause the ncp to be named at any time.
2520 cache_fromdvp(vp, NULL, 0, &dnch);
2521 bzero(&nlc, sizeof(nlc));
2522 newvp = NULLVP;
2525 * If there is no cookie, assume directory was stale.
2527 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2528 if (cookiep)
2529 cookie = *cookiep;
2530 else
2531 return (NFSERR_BAD_COOKIE);
2533 * Loop around doing readdir rpc's of size nm_readdirsize
2534 * truncated to a multiple of DIRBLKSIZ.
2535 * The stopping criteria is EOF or buffer full.
2537 while (more_dirs && bigenough) {
2538 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2539 nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2540 NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2541 ERROROUT(nfsm_fhtom(&info, vp));
2542 tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2543 *tl++ = cookie.nfsuquad[0];
2544 *tl++ = cookie.nfsuquad[1];
2545 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2546 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2547 *tl++ = txdr_unsigned(nmp->nm_readdirsize);
2548 *tl = txdr_unsigned(nmp->nm_rsize);
2549 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2550 uiop->uio_td,
2551 nfs_vpcred(vp, ND_READ), &error));
2552 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2553 NFS_LATTR_NOSHRINK));
2554 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2555 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2556 dnp->n_cookieverf.nfsuquad[1] = *tl++;
2557 more_dirs = fxdr_unsigned(int, *tl);
2559 /* loop thru the dir entries, doctoring them to 4bsd form */
2560 while (more_dirs && bigenough) {
2561 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2562 fileno = fxdr_hyper(tl);
2563 len = fxdr_unsigned(int, *(tl + 2));
2564 if (len <= 0 || len > NFS_MAXNAMLEN) {
2565 error = EBADRPC;
2566 m_freem(info.mrep);
2567 info.mrep = NULL;
2568 goto nfsmout;
2570 tlen = nfsm_rndup(len);
2571 if (tlen == len)
2572 tlen += 4; /* To ensure null termination*/
2573 left = DIRBLKSIZ - blksiz;
2574 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2575 dp->nfs_reclen += left;
2576 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2577 uiop->uio_iov->iov_len -= left;
2578 uiop->uio_offset += left;
2579 uiop->uio_resid -= left;
2580 blksiz = 0;
2582 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2583 bigenough = 0;
2584 if (bigenough) {
2585 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2586 dp->nfs_ino = fileno;
2587 dp->nfs_namlen = len;
2588 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2589 dp->nfs_type = DT_UNKNOWN;
2590 blksiz += dp->nfs_reclen;
2591 if (blksiz == DIRBLKSIZ)
2592 blksiz = 0;
2593 uiop->uio_offset += sizeof(struct nfs_dirent);
2594 uiop->uio_resid -= sizeof(struct nfs_dirent);
2595 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2596 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2597 nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2598 nlc.nlc_namelen = len;
2599 ERROROUT(nfsm_mtouio(&info, uiop, len));
2600 cp = uiop->uio_iov->iov_base;
2601 tlen -= len;
2602 *cp = '\0';
2603 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2604 uiop->uio_iov->iov_len -= tlen;
2605 uiop->uio_offset += tlen;
2606 uiop->uio_resid -= tlen;
2607 } else {
2608 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2610 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2611 if (bigenough) {
2612 cookie.nfsuquad[0] = *tl++;
2613 cookie.nfsuquad[1] = *tl++;
2614 } else
2615 tl += 2;
2618 * Since the attributes are before the file handle
2619 * (sigh), we must skip over the attributes and then
2620 * come back and get them.
2622 attrflag = fxdr_unsigned(int, *tl);
2623 if (attrflag) {
2624 dpossav1 = info.dpos;
2625 mdsav1 = info.md;
2626 ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2627 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2628 doit = fxdr_unsigned(int, *tl);
2629 if (doit) {
2630 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2631 if (NFS_CMPFH(dnp, fhp, fhsize)) {
2632 vref(vp);
2633 newvp = vp;
2634 np = dnp;
2635 } else {
2636 error = nfs_nget(vp->v_mount, fhp,
2637 fhsize, &np);
2638 if (error)
2639 doit = 0;
2640 else
2641 newvp = NFSTOV(np);
2644 if (doit && bigenough) {
2645 dpossav2 = info.dpos;
2646 info.dpos = dpossav1;
2647 mdsav2 = info.md;
2648 info.md = mdsav1;
2649 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2650 info.dpos = dpossav2;
2651 info.md = mdsav2;
2652 dp->nfs_type =
2653 IFTODT(VTTOIF(np->n_vattr.va_type));
2654 if (dnch.ncp) {
2655 kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2656 nlc.nlc_namelen, nlc.nlc_namelen,
2657 nlc.nlc_nameptr);
2658 nch = cache_nlookup(&dnch, &nlc);
2659 cache_setunresolved(&nch);
2660 nfs_cache_setvp(&nch, newvp,
2661 nfspos_cache_timeout);
2662 cache_put(&nch);
2663 } else {
2664 kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2665 " %*.*s\n",
2666 nlc.nlc_namelen, nlc.nlc_namelen,
2667 nlc.nlc_nameptr);
2670 } else {
2671 /* Just skip over the file handle */
2672 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2673 i = fxdr_unsigned(int, *tl);
2674 ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2676 if (newvp != NULLVP) {
2677 if (newvp == vp)
2678 vrele(newvp);
2679 else
2680 vput(newvp);
2681 newvp = NULLVP;
2683 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2684 more_dirs = fxdr_unsigned(int, *tl);
2687 * If at end of rpc data, get the eof boolean
2689 if (!more_dirs) {
2690 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2691 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2693 m_freem(info.mrep);
2694 info.mrep = NULL;
2697 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2698 * by increasing d_reclen for the last record.
2700 if (blksiz > 0) {
2701 left = DIRBLKSIZ - blksiz;
2702 dp->nfs_reclen += left;
2703 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2704 uiop->uio_iov->iov_len -= left;
2705 uiop->uio_offset += left;
2706 uiop->uio_resid -= left;
2710 * We are now either at the end of the directory or have filled the
2711 * block.
2713 if (bigenough)
2714 dnp->n_direofoffset = uiop->uio_offset;
2715 else {
2716 if (uiop->uio_resid > 0)
2717 kprintf("EEK! readdirplusrpc resid > 0\n");
2718 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2719 *cookiep = cookie;
2721 nfsmout:
2722 if (newvp != NULLVP) {
2723 if (newvp == vp)
2724 vrele(newvp);
2725 else
2726 vput(newvp);
2727 newvp = NULLVP;
2729 if (dnch.ncp)
2730 cache_drop(&dnch);
2731 return (error);
2735 * Silly rename. To make the NFS filesystem that is stateless look a little
2736 * more like the "ufs" a remove of an active vnode is translated to a rename
2737 * to a funny looking filename that is removed by nfs_inactive on the
2738 * nfsnode. There is the potential for another process on a different client
2739 * to create the same funny name between the nfs_lookitup() fails and the
2740 * nfs_rename() completes, but...
2742 static int
2743 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2745 struct sillyrename *sp;
2746 struct nfsnode *np;
2747 int error;
2750 * We previously purged dvp instead of vp. I don't know why, it
2751 * completely destroys performance. We can't do it anyway with the
2752 * new VFS API since we would be breaking the namecache topology.
2754 cache_purge(vp); /* XXX */
2755 np = VTONFS(vp);
2756 #ifndef DIAGNOSTIC
2757 if (vp->v_type == VDIR)
2758 panic("nfs: sillyrename dir");
2759 #endif
2760 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2761 M_NFSREQ, M_WAITOK);
2762 sp->s_cred = crdup(cnp->cn_cred);
2763 sp->s_dvp = dvp;
2764 vref(dvp);
2766 /* Fudge together a funny name */
2767 sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2768 (int)(intptr_t)cnp->cn_td);
2770 /* Try lookitups until we get one that isn't there */
2771 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2772 cnp->cn_td, NULL) == 0) {
2773 sp->s_name[4]++;
2774 if (sp->s_name[4] > 'z') {
2775 error = EINVAL;
2776 goto bad;
2779 error = nfs_renameit(dvp, cnp, sp);
2780 if (error)
2781 goto bad;
2782 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2783 cnp->cn_td, &np);
2784 np->n_sillyrename = sp;
2785 return (0);
2786 bad:
2787 vrele(sp->s_dvp);
2788 crfree(sp->s_cred);
2789 kfree((caddr_t)sp, M_NFSREQ);
2790 return (error);
2794 * Look up a file name and optionally either update the file handle or
2795 * allocate an nfsnode, depending on the value of npp.
2796 * npp == NULL --> just do the lookup
2797 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2798 * handled too
2799 * *npp != NULL --> update the file handle in the vnode
2801 static int
2802 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2803 struct thread *td, struct nfsnode **npp)
2805 struct vnode *newvp = NULL;
2806 struct nfsnode *np, *dnp = VTONFS(dvp);
2807 int error = 0, fhlen, attrflag;
2808 nfsfh_t *nfhp;
2809 struct nfsm_info info;
2811 info.mrep = NULL;
2812 info.v3 = NFS_ISV3(dvp);
2814 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2815 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2816 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2817 ERROROUT(nfsm_fhtom(&info, dvp));
2818 ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2819 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2820 if (npp && !error) {
2821 NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2822 if (*npp) {
2823 np = *npp;
2824 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2825 kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2826 np->n_fhp = &np->n_fh;
2827 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2828 np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2829 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2830 np->n_fhsize = fhlen;
2831 newvp = NFSTOV(np);
2832 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2833 vref(dvp);
2834 newvp = dvp;
2835 } else {
2836 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2837 if (error) {
2838 m_freem(info.mrep);
2839 info.mrep = NULL;
2840 return (error);
2842 newvp = NFSTOV(np);
2844 if (info.v3) {
2845 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2846 NFS_LATTR_NOSHRINK));
2847 if (!attrflag && *npp == NULL) {
2848 m_freem(info.mrep);
2849 info.mrep = NULL;
2850 if (newvp == dvp)
2851 vrele(newvp);
2852 else
2853 vput(newvp);
2854 return (ENOENT);
2856 } else {
2857 ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2860 m_freem(info.mrep);
2861 info.mrep = NULL;
2862 nfsmout:
2863 if (npp && *npp == NULL) {
2864 if (error) {
2865 if (newvp) {
2866 if (newvp == dvp)
2867 vrele(newvp);
2868 else
2869 vput(newvp);
2871 } else
2872 *npp = np;
2874 return (error);
2878 * Nfs Version 3 commit rpc
2880 * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2881 * involved.
2884 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2886 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2887 int error = 0, wccflag = NFSV3_WCCRATTR;
2888 struct nfsm_info info;
2889 u_int32_t *tl;
2891 info.mrep = NULL;
2892 info.v3 = 1;
2894 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2895 return (0);
2896 nfsstats.rpccnt[NFSPROC_COMMIT]++;
2897 nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2898 ERROROUT(nfsm_fhtom(&info, vp));
2899 tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2900 txdr_hyper(offset, tl);
2901 tl += 2;
2902 *tl = txdr_unsigned(cnt);
2903 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2904 nfs_vpcred(vp, ND_WRITE), &error));
2905 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2906 if (!error) {
2907 NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2908 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2909 NFSX_V3WRITEVERF)) {
2910 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2911 NFSX_V3WRITEVERF);
2912 error = NFSERR_STALEWRITEVERF;
2915 m_freem(info.mrep);
2916 info.mrep = NULL;
2917 nfsmout:
2918 return (error);
2922 * Kludge City..
2923 * - make nfs_bmap() essentially a no-op that does no translation
2924 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2925 * (Maybe I could use the process's page mapping, but I was concerned that
2926 * Kernel Write might not be enabled and also figured copyout() would do
2927 * a lot more work than bcopy() and also it currently happens in the
2928 * context of the swapper process (2).
2930 * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2931 * off_t *a_doffsetp, int *a_runp, int *a_runb)
2933 static int
2934 nfs_bmap(struct vop_bmap_args *ap)
2936 if (ap->a_doffsetp != NULL)
2937 *ap->a_doffsetp = ap->a_loffset;
2938 if (ap->a_runp != NULL)
2939 *ap->a_runp = 0;
2940 if (ap->a_runb != NULL)
2941 *ap->a_runb = 0;
2942 return (0);
2946 * Strategy routine.
2948 static int
2949 nfs_strategy(struct vop_strategy_args *ap)
2951 struct bio *bio = ap->a_bio;
2952 struct bio *nbio;
2953 struct buf *bp = bio->bio_buf;
2954 struct thread *td;
2955 int error;
2957 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2958 ("nfs_strategy: buffer %p unexpectedly marked done", bp));
2959 KASSERT(BUF_REFCNT(bp) > 0,
2960 ("nfs_strategy: buffer %p not locked", bp));
2962 if (bio->bio_flags & BIO_SYNC)
2963 td = curthread; /* XXX */
2964 else
2965 td = NULL;
2968 * We probably don't need to push an nbio any more since no
2969 * block conversion is required due to the use of 64 bit byte
2970 * offsets, but do it anyway.
2972 * NOTE: When NFS callers itself via this strategy routines and
2973 * sets up a synchronous I/O, it expects the I/O to run
2974 * synchronously (its bio_done routine just assumes it),
2975 * so for now we have to honor the bit.
2977 nbio = push_bio(bio);
2978 nbio->bio_offset = bio->bio_offset;
2979 nbio->bio_flags = bio->bio_flags & BIO_SYNC;
2982 * If the op is asynchronous and an i/o daemon is waiting
2983 * queue the request, wake it up and wait for completion
2984 * otherwise just do it ourselves.
2986 if (bio->bio_flags & BIO_SYNC) {
2987 error = nfs_doio(ap->a_vp, nbio, td);
2988 } else {
2989 nfs_asyncio(ap->a_vp, nbio);
2990 error = 0;
2992 return (error);
2996 * Mmap a file
2998 * NB Currently unsupported.
3000 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3002 /* ARGSUSED */
3003 static int
3004 nfs_mmap(struct vop_mmap_args *ap)
3006 return (EINVAL);
3010 * fsync vnode op. Just call nfs_flush() with commit == 1.
3012 * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3014 /* ARGSUSED */
3015 static int
3016 nfs_fsync(struct vop_fsync_args *ap)
3018 return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3022 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be
3023 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains
3024 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is
3025 * set the buffer contains data that has already been written to the server
3026 * and which now needs a commit RPC.
3028 * If commit is 0 we only take one pass and only flush buffers containing new
3029 * dirty data.
3031 * If commit is 1 we take two passes, issuing a commit RPC in the second
3032 * pass.
3034 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3035 * to completely flush all pending data.
3037 * Note that the RB_SCAN code properly handles the case where the
3038 * callback might block and directly or indirectly (another thread) cause
3039 * the RB tree to change.
3042 #ifndef NFS_COMMITBVECSIZ
3043 #define NFS_COMMITBVECSIZ 16
3044 #endif
3046 struct nfs_flush_info {
3047 enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3048 struct thread *td;
3049 struct vnode *vp;
3050 int waitfor;
3051 int slpflag;
3052 int slptimeo;
3053 int loops;
3054 struct buf *bvary[NFS_COMMITBVECSIZ];
3055 int bvsize;
3056 off_t beg_off;
3057 off_t end_off;
3060 static int nfs_flush_bp(struct buf *bp, void *data);
3061 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3064 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3066 struct nfsnode *np = VTONFS(vp);
3067 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3068 struct nfs_flush_info info;
3069 lwkt_tokref vlock;
3070 int error;
3072 bzero(&info, sizeof(info));
3073 info.td = td;
3074 info.vp = vp;
3075 info.waitfor = waitfor;
3076 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3077 info.loops = 0;
3078 lwkt_gettoken(&vlock, &vp->v_token);
3080 do {
3082 * Flush mode
3084 info.mode = NFI_FLUSHNEW;
3085 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3086 nfs_flush_bp, &info);
3089 * Take a second pass if committing and no error occured.
3090 * Clean up any left over collection (whether an error
3091 * occurs or not).
3093 if (commit && error == 0) {
3094 info.mode = NFI_COMMIT;
3095 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3096 nfs_flush_bp, &info);
3097 if (info.bvsize)
3098 error = nfs_flush_docommit(&info, error);
3102 * Wait for pending I/O to complete before checking whether
3103 * any further dirty buffers exist.
3105 while (waitfor == MNT_WAIT &&
3106 bio_track_active(&vp->v_track_write)) {
3107 error = bio_track_wait(&vp->v_track_write,
3108 info.slpflag, info.slptimeo);
3109 if (error) {
3111 * We have to be able to break out if this
3112 * is an 'intr' mount.
3114 if (nfs_sigintr(nmp, NULL, td)) {
3115 error = -EINTR;
3116 break;
3120 * Since we do not process pending signals,
3121 * once we get a PCATCH our tsleep() will no
3122 * longer sleep, switch to a fixed timeout
3123 * instead.
3125 if (info.slpflag == PCATCH) {
3126 info.slpflag = 0;
3127 info.slptimeo = 2 * hz;
3129 error = 0;
3132 ++info.loops;
3134 * Loop if we are flushing synchronous as well as committing,
3135 * and dirty buffers are still present. Otherwise we might livelock.
3137 } while (waitfor == MNT_WAIT && commit &&
3138 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3141 * The callbacks have to return a negative error to terminate the
3142 * RB scan.
3144 if (error < 0)
3145 error = -error;
3148 * Deal with any error collection
3150 if (np->n_flag & NWRITEERR) {
3151 error = np->n_error;
3152 np->n_flag &= ~NWRITEERR;
3154 lwkt_reltoken(&vlock);
3155 return (error);
3158 static
3160 nfs_flush_bp(struct buf *bp, void *data)
3162 struct nfs_flush_info *info = data;
3163 int lkflags;
3164 int error;
3165 off_t toff;
3167 error = 0;
3168 switch(info->mode) {
3169 case NFI_FLUSHNEW:
3170 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3171 if (error && info->loops && info->waitfor == MNT_WAIT) {
3172 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3173 if (error) {
3174 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3175 if (info->slpflag & PCATCH)
3176 lkflags |= LK_PCATCH;
3177 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3178 info->slptimeo);
3183 * Ignore locking errors
3185 if (error) {
3186 error = 0;
3187 break;
3191 * The buffer may have changed out from under us, even if
3192 * we did not block (MPSAFE). Check again now that it is
3193 * locked.
3195 if (bp->b_vp == info->vp &&
3196 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3197 bremfree(bp);
3198 bawrite(bp);
3199 } else {
3200 BUF_UNLOCK(bp);
3202 break;
3203 case NFI_COMMIT:
3205 * Only process buffers in need of a commit which we can
3206 * immediately lock. This may prevent a buffer from being
3207 * committed, but the normal flush loop will block on the
3208 * same buffer so we shouldn't get into an endless loop.
3210 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3211 (B_DELWRI | B_NEEDCOMMIT)) {
3212 break;
3214 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3215 break;
3218 * We must recheck after successfully locking the buffer.
3220 if (bp->b_vp != info->vp ||
3221 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3222 (B_DELWRI | B_NEEDCOMMIT)) {
3223 BUF_UNLOCK(bp);
3224 break;
3228 * NOTE: storing the bp in the bvary[] basically sets
3229 * it up for a commit operation.
3231 * We must call vfs_busy_pages() now so the commit operation
3232 * is interlocked with user modifications to memory mapped
3233 * pages. The b_dirtyoff/b_dirtyend range is not correct
3234 * until after the pages have been busied.
3236 * Note: to avoid loopback deadlocks, we do not
3237 * assign b_runningbufspace.
3239 bremfree(bp);
3240 bp->b_cmd = BUF_CMD_WRITE;
3241 vfs_busy_pages(bp->b_vp, bp);
3242 info->bvary[info->bvsize] = bp;
3243 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3244 if (info->bvsize == 0 || toff < info->beg_off)
3245 info->beg_off = toff;
3246 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3247 if (info->bvsize == 0 || toff > info->end_off)
3248 info->end_off = toff;
3249 ++info->bvsize;
3250 if (info->bvsize == NFS_COMMITBVECSIZ) {
3251 error = nfs_flush_docommit(info, 0);
3252 KKASSERT(info->bvsize == 0);
3255 return (error);
3258 static
3260 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3262 struct vnode *vp;
3263 struct buf *bp;
3264 off_t bytes;
3265 int retv;
3266 int i;
3268 vp = info->vp;
3270 if (info->bvsize > 0) {
3272 * Commit data on the server, as required. Note that
3273 * nfs_commit will use the vnode's cred for the commit.
3274 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3276 bytes = info->end_off - info->beg_off;
3277 if (bytes > 0x40000000)
3278 bytes = 0x40000000;
3279 if (error) {
3280 retv = -error;
3281 } else {
3282 retv = nfs_commitrpc_uio(vp, info->beg_off,
3283 (int)bytes, info->td);
3284 if (retv == NFSERR_STALEWRITEVERF)
3285 nfs_clearcommit(vp->v_mount);
3289 * Now, either mark the blocks I/O done or mark the
3290 * blocks dirty, depending on whether the commit
3291 * succeeded.
3293 for (i = 0; i < info->bvsize; ++i) {
3294 bp = info->bvary[i];
3295 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3296 if (retv) {
3298 * Error, leave B_DELWRI intact
3300 vfs_unbusy_pages(bp);
3301 bp->b_cmd = BUF_CMD_DONE;
3302 brelse(bp);
3303 } else {
3305 * Success, remove B_DELWRI ( bundirty() ).
3307 * b_dirtyoff/b_dirtyend seem to be NFS
3308 * specific. We should probably move that
3309 * into bundirty(). XXX
3311 * We are faking an I/O write, we have to
3312 * start the transaction in order to
3313 * immediately biodone() it.
3315 bundirty(bp);
3316 bp->b_flags &= ~B_ERROR;
3317 bp->b_dirtyoff = bp->b_dirtyend = 0;
3318 biodone(&bp->b_bio1);
3321 info->bvsize = 0;
3323 return (error);
3327 * NFS advisory byte-level locks.
3328 * Currently unsupported.
3330 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3331 * int a_flags)
3333 static int
3334 nfs_advlock(struct vop_advlock_args *ap)
3336 struct nfsnode *np = VTONFS(ap->a_vp);
3339 * The following kludge is to allow diskless support to work
3340 * until a real NFS lockd is implemented. Basically, just pretend
3341 * that this is a local lock.
3343 return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3347 * Print out the contents of an nfsnode.
3349 * nfs_print(struct vnode *a_vp)
3351 static int
3352 nfs_print(struct vop_print_args *ap)
3354 struct vnode *vp = ap->a_vp;
3355 struct nfsnode *np = VTONFS(vp);
3357 kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3358 (long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3359 if (vp->v_type == VFIFO)
3360 fifo_printinfo(vp);
3361 kprintf("\n");
3362 return (0);
3366 * nfs special file access vnode op.
3368 * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3370 static int
3371 nfs_laccess(struct vop_access_args *ap)
3373 struct vattr vattr;
3374 int error;
3376 error = VOP_GETATTR(ap->a_vp, &vattr);
3377 if (!error)
3378 error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3379 vattr.va_mode, 0);
3380 return (error);
3384 * Read wrapper for fifos.
3386 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3387 * struct ucred *a_cred)
3389 static int
3390 nfsfifo_read(struct vop_read_args *ap)
3392 struct nfsnode *np = VTONFS(ap->a_vp);
3395 * Set access flag.
3397 np->n_flag |= NACC;
3398 getnanotime(&np->n_atim);
3399 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3403 * Write wrapper for fifos.
3405 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3406 * struct ucred *a_cred)
3408 static int
3409 nfsfifo_write(struct vop_write_args *ap)
3411 struct nfsnode *np = VTONFS(ap->a_vp);
3414 * Set update flag.
3416 np->n_flag |= NUPD;
3417 getnanotime(&np->n_mtim);
3418 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3422 * Close wrapper for fifos.
3424 * Update the times on the nfsnode then do fifo close.
3426 * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3428 static int
3429 nfsfifo_close(struct vop_close_args *ap)
3431 struct vnode *vp = ap->a_vp;
3432 struct nfsnode *np = VTONFS(vp);
3433 struct vattr vattr;
3434 struct timespec ts;
3436 if (np->n_flag & (NACC | NUPD)) {
3437 getnanotime(&ts);
3438 if (np->n_flag & NACC)
3439 np->n_atim = ts;
3440 if (np->n_flag & NUPD)
3441 np->n_mtim = ts;
3442 np->n_flag |= NCHG;
3443 if (vp->v_sysref.refcnt == 1 &&
3444 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3445 VATTR_NULL(&vattr);
3446 if (np->n_flag & NACC)
3447 vattr.va_atime = np->n_atim;
3448 if (np->n_flag & NUPD)
3449 vattr.va_mtime = np->n_mtim;
3450 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3453 return (VOCALL(&fifo_vnode_vops, &ap->a_head));