kernel/usb4bsd: Add a quirk for the Corsair STRAFE Gaming keyboard.
[dragonfly.git] / sys / vm / vm_page.c
blob15c1a4faaf5cd31c669608f262904b5f5ee99c9f
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
33 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
63 * Resident memory management module. The module manipulates 'VM pages'.
64 * A VM page is the core building block for memory management.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
99 * Action hash for user umtx support.
101 #define VMACTION_HSIZE 256
102 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
105 * SET - Minimum required set associative size, must be a power of 2. We
106 * want this to match or exceed the set-associativeness of the cpu.
108 * GRP - A larger set that allows bleed-over into the domains of other
109 * nearby cpus. Also must be a power of 2. Used by the page zeroing
110 * code to smooth things out a bit.
112 #define PQ_SET_ASSOC 16
113 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
115 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
116 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
118 static void vm_page_queue_init(void);
119 static void vm_page_free_wakeup(void);
120 static vm_page_t vm_page_select_cache(u_short pg_color);
121 static vm_page_t _vm_page_list_find2(int basequeue, int index);
122 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
125 * Array of tailq lists
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
129 LIST_HEAD(vm_page_action_list, vm_page_action);
131 struct vm_page_action_hash {
132 struct vm_page_action_list list;
133 struct lock lk;
134 } __cachealign;
136 struct vm_page_action_hash action_hash[VMACTION_HSIZE];
137 static volatile int vm_pages_waiting;
139 static struct alist vm_contig_alist;
140 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
141 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
143 static u_long vm_dma_reserved = 0;
144 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
145 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
146 "Memory reserved for DMA");
147 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
148 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
150 static int vm_contig_verbose = 0;
151 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
153 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
154 vm_pindex_t, pindex);
156 static void
157 vm_page_queue_init(void)
159 int i;
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_FREE+i].cnt_offset =
163 offsetof(struct vmstats, v_free_count);
164 for (i = 0; i < PQ_L2_SIZE; i++)
165 vm_page_queues[PQ_CACHE+i].cnt_offset =
166 offsetof(struct vmstats, v_cache_count);
167 for (i = 0; i < PQ_L2_SIZE; i++)
168 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
169 offsetof(struct vmstats, v_inactive_count);
170 for (i = 0; i < PQ_L2_SIZE; i++)
171 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
172 offsetof(struct vmstats, v_active_count);
173 for (i = 0; i < PQ_L2_SIZE; i++)
174 vm_page_queues[PQ_HOLD+i].cnt_offset =
175 offsetof(struct vmstats, v_active_count);
176 /* PQ_NONE has no queue */
178 for (i = 0; i < PQ_COUNT; i++) {
179 TAILQ_INIT(&vm_page_queues[i].pl);
180 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
184 * NOTE: Action lock might recurse due to callback, so allow
185 * recursion.
187 for (i = 0; i < VMACTION_HSIZE; i++) {
188 LIST_INIT(&action_hash[i].list);
189 lockinit(&action_hash[i].lk, "actlk", 0, LK_CANRECURSE);
194 * note: place in initialized data section? Is this necessary?
196 long first_page = 0;
197 int vm_page_array_size = 0;
198 vm_page_t vm_page_array = NULL;
199 vm_paddr_t vm_low_phys_reserved;
202 * (low level boot)
204 * Sets the page size, perhaps based upon the memory size.
205 * Must be called before any use of page-size dependent functions.
207 void
208 vm_set_page_size(void)
210 if (vmstats.v_page_size == 0)
211 vmstats.v_page_size = PAGE_SIZE;
212 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
213 panic("vm_set_page_size: page size not a power of two");
217 * (low level boot)
219 * Add a new page to the freelist for use by the system. New pages
220 * are added to both the head and tail of the associated free page
221 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
222 * requests pull 'recent' adds (higher physical addresses) first.
224 * Beware that the page zeroing daemon will also be running soon after
225 * boot, moving pages from the head to the tail of the PQ_FREE queues.
227 * Must be called in a critical section.
229 static void
230 vm_add_new_page(vm_paddr_t pa)
232 struct vpgqueues *vpq;
233 vm_page_t m;
235 m = PHYS_TO_VM_PAGE(pa);
236 m->phys_addr = pa;
237 m->flags = 0;
238 m->pat_mode = PAT_WRITE_BACK;
239 m->pc = (pa >> PAGE_SHIFT);
242 * Twist for cpu localization in addition to page coloring, so
243 * different cpus selecting by m->queue get different page colors.
245 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
246 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
247 m->pc &= PQ_L2_MASK;
250 * Reserve a certain number of contiguous low memory pages for
251 * contigmalloc() to use.
253 if (pa < vm_low_phys_reserved) {
254 atomic_add_int(&vmstats.v_page_count, 1);
255 atomic_add_int(&vmstats.v_dma_pages, 1);
256 m->queue = PQ_NONE;
257 m->wire_count = 1;
258 atomic_add_int(&vmstats.v_wire_count, 1);
259 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
260 return;
264 * General page
266 m->queue = m->pc + PQ_FREE;
267 KKASSERT(m->dirty == 0);
269 atomic_add_int(&vmstats.v_page_count, 1);
270 atomic_add_int(&vmstats.v_free_count, 1);
271 vpq = &vm_page_queues[m->queue];
272 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
273 ++vpq->lcnt;
277 * (low level boot)
279 * Initializes the resident memory module.
281 * Preallocates memory for critical VM structures and arrays prior to
282 * kernel_map becoming available.
284 * Memory is allocated from (virtual2_start, virtual2_end) if available,
285 * otherwise memory is allocated from (virtual_start, virtual_end).
287 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
288 * large enough to hold vm_page_array & other structures for machines with
289 * large amounts of ram, so we want to use virtual2* when available.
291 void
292 vm_page_startup(void)
294 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
295 vm_offset_t mapped;
296 vm_size_t npages;
297 vm_paddr_t page_range;
298 vm_paddr_t new_end;
299 int i;
300 vm_paddr_t pa;
301 vm_paddr_t last_pa;
302 vm_paddr_t end;
303 vm_paddr_t biggestone, biggestsize;
304 vm_paddr_t total;
305 vm_page_t m;
307 total = 0;
308 biggestsize = 0;
309 biggestone = 0;
310 vaddr = round_page(vaddr);
313 * Make sure ranges are page-aligned.
315 for (i = 0; phys_avail[i].phys_end; ++i) {
316 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
317 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
318 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
319 phys_avail[i].phys_end = phys_avail[i].phys_beg;
323 * Locate largest block
325 for (i = 0; phys_avail[i].phys_end; ++i) {
326 vm_paddr_t size = phys_avail[i].phys_end -
327 phys_avail[i].phys_beg;
329 if (size > biggestsize) {
330 biggestone = i;
331 biggestsize = size;
333 total += size;
335 --i; /* adjust to last entry for use down below */
337 end = phys_avail[biggestone].phys_end;
338 end = trunc_page(end);
341 * Initialize the queue headers for the free queue, the active queue
342 * and the inactive queue.
344 vm_page_queue_init();
346 #if !defined(_KERNEL_VIRTUAL)
348 * VKERNELs don't support minidumps and as such don't need
349 * vm_page_dump
351 * Allocate a bitmap to indicate that a random physical page
352 * needs to be included in a minidump.
354 * The amd64 port needs this to indicate which direct map pages
355 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
357 * However, i386 still needs this workspace internally within the
358 * minidump code. In theory, they are not needed on i386, but are
359 * included should the sf_buf code decide to use them.
361 page_range = phys_avail[i].phys_end / PAGE_SIZE;
362 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
363 end -= vm_page_dump_size;
364 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
365 VM_PROT_READ | VM_PROT_WRITE);
366 bzero((void *)vm_page_dump, vm_page_dump_size);
367 #endif
369 * Compute the number of pages of memory that will be available for
370 * use (taking into account the overhead of a page structure per
371 * page).
373 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
374 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
375 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
377 #ifndef _KERNEL_VIRTUAL
379 * (only applies to real kernels)
381 * Reserve a large amount of low memory for potential 32-bit DMA
382 * space allocations. Once device initialization is complete we
383 * release most of it, but keep (vm_dma_reserved) memory reserved
384 * for later use. Typically for X / graphics. Through trial and
385 * error we find that GPUs usually requires ~60-100MB or so.
387 * By default, 128M is left in reserve on machines with 2G+ of ram.
389 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
390 if (vm_low_phys_reserved > total / 4)
391 vm_low_phys_reserved = total / 4;
392 if (vm_dma_reserved == 0) {
393 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
394 if (vm_dma_reserved > total / 16)
395 vm_dma_reserved = total / 16;
397 #endif
398 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
399 ALIST_RECORDS_65536);
402 * Initialize the mem entry structures now, and put them in the free
403 * queue.
405 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
406 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
407 vm_page_array = (vm_page_t)mapped;
409 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
411 * since pmap_map on amd64 returns stuff out of a direct-map region,
412 * we have to manually add these pages to the minidump tracking so
413 * that they can be dumped, including the vm_page_array.
415 for (pa = new_end;
416 pa < phys_avail[biggestone].phys_end;
417 pa += PAGE_SIZE) {
418 dump_add_page(pa);
420 #endif
423 * Clear all of the page structures, run basic initialization so
424 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
425 * map.
427 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
428 vm_page_array_size = page_range;
430 m = &vm_page_array[0];
431 pa = ptoa(first_page);
432 for (i = 0; i < page_range; ++i) {
433 spin_init(&m->spin, "vm_page");
434 m->phys_addr = pa;
435 pa += PAGE_SIZE;
436 ++m;
440 * Construct the free queue(s) in ascending order (by physical
441 * address) so that the first 16MB of physical memory is allocated
442 * last rather than first. On large-memory machines, this avoids
443 * the exhaustion of low physical memory before isa_dmainit has run.
445 vmstats.v_page_count = 0;
446 vmstats.v_free_count = 0;
447 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
448 pa = phys_avail[i].phys_beg;
449 if (i == biggestone)
450 last_pa = new_end;
451 else
452 last_pa = phys_avail[i].phys_end;
453 while (pa < last_pa && npages-- > 0) {
454 vm_add_new_page(pa);
455 pa += PAGE_SIZE;
458 if (virtual2_start)
459 virtual2_start = vaddr;
460 else
461 virtual_start = vaddr;
462 mycpu->gd_vmstats = vmstats;
466 * Reorganize VM pages based on numa data. May be called as many times as
467 * necessary. Will reorganize the vm_page_t page color and related queue(s)
468 * to allow vm_page_alloc() to choose pages based on socket affinity.
470 * NOTE: This function is only called while we are still in UP mode, so
471 * we only need a critical section to protect the queues (which
472 * saves a lot of time, there are likely a ton of pages).
474 void
475 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
477 vm_paddr_t scan_beg;
478 vm_paddr_t scan_end;
479 vm_paddr_t ran_end;
480 struct vpgqueues *vpq;
481 vm_page_t m;
482 vm_page_t mend;
483 int i;
484 int socket_mod;
485 int socket_value;
488 * Check if no physical information, or there was only one socket
489 * (so don't waste time doing nothing!).
491 if (cpu_topology_phys_ids <= 1 ||
492 cpu_topology_core_ids == 0) {
493 return;
497 * Setup for our iteration. Note that ACPI may iterate CPU
498 * sockets starting at 0 or 1 or some other number. The
499 * cpu_topology code mod's it against the socket count.
501 ran_end = ran_beg + bytes;
502 physid %= cpu_topology_phys_ids;
504 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
505 socket_value = physid * socket_mod;
506 mend = &vm_page_array[vm_page_array_size];
508 crit_enter();
511 * Adjust vm_page->pc and requeue all affected pages. The
512 * allocator will then be able to localize memory allocations
513 * to some degree.
515 for (i = 0; phys_avail[i].phys_end; ++i) {
516 scan_beg = phys_avail[i].phys_beg;
517 scan_end = phys_avail[i].phys_end;
518 if (scan_end <= ran_beg)
519 continue;
520 if (scan_beg >= ran_end)
521 continue;
522 if (scan_beg < ran_beg)
523 scan_beg = ran_beg;
524 if (scan_end > ran_end)
525 scan_end = ran_end;
526 if (atop(scan_end) > first_page + vm_page_array_size)
527 scan_end = ptoa(first_page + vm_page_array_size);
529 m = PHYS_TO_VM_PAGE(scan_beg);
530 while (scan_beg < scan_end) {
531 KKASSERT(m < mend);
532 if (m->queue != PQ_NONE) {
533 vpq = &vm_page_queues[m->queue];
534 TAILQ_REMOVE(&vpq->pl, m, pageq);
535 --vpq->lcnt;
536 /* queue doesn't change, no need to adj cnt */
537 m->queue -= m->pc;
538 m->pc %= socket_mod;
539 m->pc += socket_value;
540 m->pc &= PQ_L2_MASK;
541 m->queue += m->pc;
542 vpq = &vm_page_queues[m->queue];
543 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
544 ++vpq->lcnt;
545 /* queue doesn't change, no need to adj cnt */
546 } else {
547 m->pc %= socket_mod;
548 m->pc += socket_value;
549 m->pc &= PQ_L2_MASK;
551 scan_beg += PAGE_SIZE;
552 ++m;
555 crit_exit();
559 * We tended to reserve a ton of memory for contigmalloc(). Now that most
560 * drivers have initialized we want to return most the remaining free
561 * reserve back to the VM page queues so they can be used for normal
562 * allocations.
564 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
566 static void
567 vm_page_startup_finish(void *dummy __unused)
569 alist_blk_t blk;
570 alist_blk_t rblk;
571 alist_blk_t count;
572 alist_blk_t xcount;
573 alist_blk_t bfree;
574 vm_page_t m;
576 spin_lock(&vm_contig_spin);
577 for (;;) {
578 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
579 if (bfree <= vm_dma_reserved / PAGE_SIZE)
580 break;
581 if (count == 0)
582 break;
585 * Figure out how much of the initial reserve we have to
586 * free in order to reach our target.
588 bfree -= vm_dma_reserved / PAGE_SIZE;
589 if (count > bfree) {
590 blk += count - bfree;
591 count = bfree;
595 * Calculate the nearest power of 2 <= count.
597 for (xcount = 1; xcount <= count; xcount <<= 1)
599 xcount >>= 1;
600 blk += count - xcount;
601 count = xcount;
604 * Allocate the pages from the alist, then free them to
605 * the normal VM page queues.
607 * Pages allocated from the alist are wired. We have to
608 * busy, unwire, and free them. We must also adjust
609 * vm_low_phys_reserved before freeing any pages to prevent
610 * confusion.
612 rblk = alist_alloc(&vm_contig_alist, blk, count);
613 if (rblk != blk) {
614 kprintf("vm_page_startup_finish: Unable to return "
615 "dma space @0x%08x/%d -> 0x%08x\n",
616 blk, count, rblk);
617 break;
619 atomic_add_int(&vmstats.v_dma_pages, -count);
620 spin_unlock(&vm_contig_spin);
622 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
623 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
624 while (count) {
625 vm_page_busy_wait(m, FALSE, "cpgfr");
626 vm_page_unwire(m, 0);
627 vm_page_free(m);
628 --count;
629 ++m;
631 spin_lock(&vm_contig_spin);
633 spin_unlock(&vm_contig_spin);
636 * Print out how much DMA space drivers have already allocated and
637 * how much is left over.
639 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
640 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
641 (PAGE_SIZE / 1024),
642 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
644 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
645 vm_page_startup_finish, NULL);
649 * Scan comparison function for Red-Black tree scans. An inclusive
650 * (start,end) is expected. Other fields are not used.
653 rb_vm_page_scancmp(struct vm_page *p, void *data)
655 struct rb_vm_page_scan_info *info = data;
657 if (p->pindex < info->start_pindex)
658 return(-1);
659 if (p->pindex > info->end_pindex)
660 return(1);
661 return(0);
665 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
667 if (p1->pindex < p2->pindex)
668 return(-1);
669 if (p1->pindex > p2->pindex)
670 return(1);
671 return(0);
674 void
675 vm_page_init(vm_page_t m)
677 /* do nothing for now. Called from pmap_page_init() */
681 * Each page queue has its own spin lock, which is fairly optimal for
682 * allocating and freeing pages at least.
684 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
685 * queue spinlock via this function. Also note that m->queue cannot change
686 * unless both the page and queue are locked.
688 static __inline
689 void
690 _vm_page_queue_spin_lock(vm_page_t m)
692 u_short queue;
694 queue = m->queue;
695 if (queue != PQ_NONE) {
696 spin_lock(&vm_page_queues[queue].spin);
697 KKASSERT(queue == m->queue);
701 static __inline
702 void
703 _vm_page_queue_spin_unlock(vm_page_t m)
705 u_short queue;
707 queue = m->queue;
708 cpu_ccfence();
709 if (queue != PQ_NONE)
710 spin_unlock(&vm_page_queues[queue].spin);
713 static __inline
714 void
715 _vm_page_queues_spin_lock(u_short queue)
717 cpu_ccfence();
718 if (queue != PQ_NONE)
719 spin_lock(&vm_page_queues[queue].spin);
723 static __inline
724 void
725 _vm_page_queues_spin_unlock(u_short queue)
727 cpu_ccfence();
728 if (queue != PQ_NONE)
729 spin_unlock(&vm_page_queues[queue].spin);
732 void
733 vm_page_queue_spin_lock(vm_page_t m)
735 _vm_page_queue_spin_lock(m);
738 void
739 vm_page_queues_spin_lock(u_short queue)
741 _vm_page_queues_spin_lock(queue);
744 void
745 vm_page_queue_spin_unlock(vm_page_t m)
747 _vm_page_queue_spin_unlock(m);
750 void
751 vm_page_queues_spin_unlock(u_short queue)
753 _vm_page_queues_spin_unlock(queue);
757 * This locks the specified vm_page and its queue in the proper order
758 * (page first, then queue). The queue may change so the caller must
759 * recheck on return.
761 static __inline
762 void
763 _vm_page_and_queue_spin_lock(vm_page_t m)
765 vm_page_spin_lock(m);
766 _vm_page_queue_spin_lock(m);
769 static __inline
770 void
771 _vm_page_and_queue_spin_unlock(vm_page_t m)
773 _vm_page_queues_spin_unlock(m->queue);
774 vm_page_spin_unlock(m);
777 void
778 vm_page_and_queue_spin_unlock(vm_page_t m)
780 _vm_page_and_queue_spin_unlock(m);
783 void
784 vm_page_and_queue_spin_lock(vm_page_t m)
786 _vm_page_and_queue_spin_lock(m);
790 * Helper function removes vm_page from its current queue.
791 * Returns the base queue the page used to be on.
793 * The vm_page and the queue must be spinlocked.
794 * This function will unlock the queue but leave the page spinlocked.
796 static __inline u_short
797 _vm_page_rem_queue_spinlocked(vm_page_t m)
799 struct vpgqueues *pq;
800 u_short queue;
801 u_short oqueue;
802 int *cnt;
804 queue = m->queue;
805 if (queue != PQ_NONE) {
806 pq = &vm_page_queues[queue];
807 TAILQ_REMOVE(&pq->pl, m, pageq);
810 * Adjust our pcpu stats. In order for the nominal low-memory
811 * algorithms to work properly we don't let any pcpu stat get
812 * too negative before we force it to be rolled-up into the
813 * global stats. Otherwise our pageout and vm_wait tests
814 * will fail badly.
816 * The idea here is to reduce unnecessary SMP cache
817 * mastership changes in the global vmstats, which can be
818 * particularly bad in multi-socket systems.
820 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
821 atomic_add_int(cnt, -1);
822 if (*cnt < -VMMETER_SLOP_COUNT) {
823 u_int copy = atomic_swap_int(cnt, 0);
824 cnt = (int *)((char *)&vmstats + pq->cnt_offset);
825 atomic_add_int(cnt, copy);
826 cnt = (int *)((char *)&mycpu->gd_vmstats +
827 pq->cnt_offset);
828 atomic_add_int(cnt, copy);
830 pq->lcnt--;
831 m->queue = PQ_NONE;
832 oqueue = queue;
833 queue -= m->pc;
834 vm_page_queues_spin_unlock(oqueue); /* intended */
836 return queue;
840 * Helper function places the vm_page on the specified queue. Generally
841 * speaking only PQ_FREE pages are placed at the head, to allow them to
842 * be allocated sooner rather than later on the assumption that they
843 * are cache-hot.
845 * The vm_page must be spinlocked.
846 * This function will return with both the page and the queue locked.
848 static __inline void
849 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
851 struct vpgqueues *pq;
852 u_int *cnt;
854 KKASSERT(m->queue == PQ_NONE);
856 if (queue != PQ_NONE) {
857 vm_page_queues_spin_lock(queue);
858 pq = &vm_page_queues[queue];
859 ++pq->lcnt;
862 * Adjust our pcpu stats. If a system entity really needs
863 * to incorporate the count it will call vmstats_rollup()
864 * to roll it all up into the global vmstats strufture.
866 cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
867 atomic_add_int(cnt, 1);
870 * PQ_FREE is always handled LIFO style to try to provide
871 * cache-hot pages to programs.
873 m->queue = queue;
874 if (queue - m->pc == PQ_FREE) {
875 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
876 } else if (athead) {
877 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
878 } else {
879 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
881 /* leave the queue spinlocked */
886 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
887 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
888 * did not. Only one sleep call will be made before returning.
890 * This function does NOT busy the page and on return the page is not
891 * guaranteed to be available.
893 void
894 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
896 u_int32_t flags;
898 for (;;) {
899 flags = m->flags;
900 cpu_ccfence();
902 if ((flags & PG_BUSY) == 0 &&
903 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
904 break;
906 tsleep_interlock(m, 0);
907 if (atomic_cmpset_int(&m->flags, flags,
908 flags | PG_WANTED | PG_REFERENCED)) {
909 tsleep(m, PINTERLOCKED, msg, 0);
910 break;
916 * This calculates and returns a page color given an optional VM object and
917 * either a pindex or an iterator. We attempt to return a cpu-localized
918 * pg_color that is still roughly 16-way set-associative. The CPU topology
919 * is used if it was probed.
921 * The caller may use the returned value to index into e.g. PQ_FREE when
922 * allocating a page in order to nominally obtain pages that are hopefully
923 * already localized to the requesting cpu. This function is not able to
924 * provide any sort of guarantee of this, but does its best to improve
925 * hardware cache management performance.
927 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
929 u_short
930 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
932 u_short pg_color;
933 int phys_id;
934 int core_id;
935 int object_pg_color;
937 phys_id = get_cpu_phys_id(cpuid);
938 core_id = get_cpu_core_id(cpuid);
939 object_pg_color = object ? object->pg_color : 0;
941 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
942 int grpsize;
945 * Break us down by socket and cpu
947 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
948 pg_color += core_id * PQ_L2_SIZE /
949 (cpu_topology_core_ids * cpu_topology_phys_ids);
952 * Calculate remaining component for object/queue color
954 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
955 cpu_topology_phys_ids);
956 if (grpsize >= 8) {
957 pg_color += (pindex + object_pg_color) % grpsize;
958 } else {
959 if (grpsize <= 2) {
960 grpsize = 8;
961 } else {
962 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
963 grpsize += grpsize;
964 if (grpsize < 8)
965 grpsize += grpsize;
967 pg_color += (pindex + object_pg_color) % grpsize;
969 } else {
971 * Unknown topology, distribute things evenly.
973 pg_color = cpuid * PQ_L2_SIZE / ncpus;
974 pg_color += pindex + object_pg_color;
976 return (pg_color & PQ_L2_MASK);
980 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
981 * also wait for m->busy to become 0 before setting PG_BUSY.
983 void
984 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
985 int also_m_busy, const char *msg
986 VM_PAGE_DEBUG_ARGS)
988 u_int32_t flags;
990 for (;;) {
991 flags = m->flags;
992 cpu_ccfence();
993 if (flags & PG_BUSY) {
994 tsleep_interlock(m, 0);
995 if (atomic_cmpset_int(&m->flags, flags,
996 flags | PG_WANTED | PG_REFERENCED)) {
997 tsleep(m, PINTERLOCKED, msg, 0);
999 } else if (also_m_busy && (flags & PG_SBUSY)) {
1000 tsleep_interlock(m, 0);
1001 if (atomic_cmpset_int(&m->flags, flags,
1002 flags | PG_WANTED | PG_REFERENCED)) {
1003 tsleep(m, PINTERLOCKED, msg, 0);
1005 } else {
1006 if (atomic_cmpset_int(&m->flags, flags,
1007 flags | PG_BUSY)) {
1008 #ifdef VM_PAGE_DEBUG
1009 m->busy_func = func;
1010 m->busy_line = lineno;
1011 #endif
1012 break;
1019 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
1020 * is also 0.
1022 * Returns non-zero on failure.
1025 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1026 VM_PAGE_DEBUG_ARGS)
1028 u_int32_t flags;
1030 for (;;) {
1031 flags = m->flags;
1032 cpu_ccfence();
1033 if (flags & PG_BUSY)
1034 return TRUE;
1035 if (also_m_busy && (flags & PG_SBUSY))
1036 return TRUE;
1037 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1038 #ifdef VM_PAGE_DEBUG
1039 m->busy_func = func;
1040 m->busy_line = lineno;
1041 #endif
1042 return FALSE;
1048 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1049 * that a wakeup() should be performed.
1051 * The vm_page must be spinlocked and will remain spinlocked on return.
1052 * The related queue must NOT be spinlocked (which could deadlock us).
1054 * (inline version)
1056 static __inline
1058 _vm_page_wakeup(vm_page_t m)
1060 u_int32_t flags;
1062 for (;;) {
1063 flags = m->flags;
1064 cpu_ccfence();
1065 if (atomic_cmpset_int(&m->flags, flags,
1066 flags & ~(PG_BUSY | PG_WANTED))) {
1067 break;
1070 return(flags & PG_WANTED);
1074 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
1075 * is typically the last call you make on a page before moving onto
1076 * other things.
1078 void
1079 vm_page_wakeup(vm_page_t m)
1081 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1082 vm_page_spin_lock(m);
1083 if (_vm_page_wakeup(m)) {
1084 vm_page_spin_unlock(m);
1085 wakeup(m);
1086 } else {
1087 vm_page_spin_unlock(m);
1092 * Holding a page keeps it from being reused. Other parts of the system
1093 * can still disassociate the page from its current object and free it, or
1094 * perform read or write I/O on it and/or otherwise manipulate the page,
1095 * but if the page is held the VM system will leave the page and its data
1096 * intact and not reuse the page for other purposes until the last hold
1097 * reference is released. (see vm_page_wire() if you want to prevent the
1098 * page from being disassociated from its object too).
1100 * The caller must still validate the contents of the page and, if necessary,
1101 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1102 * before manipulating the page.
1104 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1106 void
1107 vm_page_hold(vm_page_t m)
1109 vm_page_spin_lock(m);
1110 atomic_add_int(&m->hold_count, 1);
1111 if (m->queue - m->pc == PQ_FREE) {
1112 _vm_page_queue_spin_lock(m);
1113 _vm_page_rem_queue_spinlocked(m);
1114 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1115 _vm_page_queue_spin_unlock(m);
1117 vm_page_spin_unlock(m);
1121 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1122 * it was freed while held and must be moved back to the FREE queue.
1124 void
1125 vm_page_unhold(vm_page_t m)
1127 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1128 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1129 m, m->hold_count, m->queue - m->pc));
1130 vm_page_spin_lock(m);
1131 atomic_add_int(&m->hold_count, -1);
1132 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1133 _vm_page_queue_spin_lock(m);
1134 _vm_page_rem_queue_spinlocked(m);
1135 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1136 _vm_page_queue_spin_unlock(m);
1138 vm_page_spin_unlock(m);
1142 * vm_page_getfake:
1144 * Create a fictitious page with the specified physical address and
1145 * memory attribute. The memory attribute is the only the machine-
1146 * dependent aspect of a fictitious page that must be initialized.
1149 void
1150 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1153 if ((m->flags & PG_FICTITIOUS) != 0) {
1155 * The page's memattr might have changed since the
1156 * previous initialization. Update the pmap to the
1157 * new memattr.
1159 goto memattr;
1161 m->phys_addr = paddr;
1162 m->queue = PQ_NONE;
1163 /* Fictitious pages don't use "segind". */
1164 /* Fictitious pages don't use "order" or "pool". */
1165 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1166 m->wire_count = 1;
1167 spin_init(&m->spin, "fake_page");
1168 pmap_page_init(m);
1169 memattr:
1170 pmap_page_set_memattr(m, memattr);
1174 * Inserts the given vm_page into the object and object list.
1176 * The pagetables are not updated but will presumably fault the page
1177 * in if necessary, or if a kernel page the caller will at some point
1178 * enter the page into the kernel's pmap. We are not allowed to block
1179 * here so we *can't* do this anyway.
1181 * This routine may not block.
1182 * This routine must be called with the vm_object held.
1183 * This routine must be called with a critical section held.
1185 * This routine returns TRUE if the page was inserted into the object
1186 * successfully, and FALSE if the page already exists in the object.
1189 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1191 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1192 if (m->object != NULL)
1193 panic("vm_page_insert: already inserted");
1195 atomic_add_int(&object->generation, 1);
1198 * Record the object/offset pair in this page and add the
1199 * pv_list_count of the page to the object.
1201 * The vm_page spin lock is required for interactions with the pmap.
1203 vm_page_spin_lock(m);
1204 m->object = object;
1205 m->pindex = pindex;
1206 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1207 m->object = NULL;
1208 m->pindex = 0;
1209 vm_page_spin_unlock(m);
1210 return FALSE;
1212 ++object->resident_page_count;
1213 ++mycpu->gd_vmtotal.t_rm;
1214 vm_page_spin_unlock(m);
1217 * Since we are inserting a new and possibly dirty page,
1218 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1220 if ((m->valid & m->dirty) ||
1221 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1222 vm_object_set_writeable_dirty(object);
1225 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1227 swap_pager_page_inserted(m);
1228 return TRUE;
1232 * Removes the given vm_page_t from the (object,index) table
1234 * The underlying pmap entry (if any) is NOT removed here.
1235 * This routine may not block.
1237 * The page must be BUSY and will remain BUSY on return.
1238 * No other requirements.
1240 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1241 * it busy.
1243 void
1244 vm_page_remove(vm_page_t m)
1246 vm_object_t object;
1248 if (m->object == NULL) {
1249 return;
1252 if ((m->flags & PG_BUSY) == 0)
1253 panic("vm_page_remove: page not busy");
1255 object = m->object;
1257 vm_object_hold(object);
1260 * Remove the page from the object and update the object.
1262 * The vm_page spin lock is required for interactions with the pmap.
1264 vm_page_spin_lock(m);
1265 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1266 --object->resident_page_count;
1267 --mycpu->gd_vmtotal.t_rm;
1268 m->object = NULL;
1269 atomic_add_int(&object->generation, 1);
1270 vm_page_spin_unlock(m);
1272 vm_object_drop(object);
1276 * Locate and return the page at (object, pindex), or NULL if the
1277 * page could not be found.
1279 * The caller must hold the vm_object token.
1281 vm_page_t
1282 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1284 vm_page_t m;
1287 * Search the hash table for this object/offset pair
1289 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1290 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1291 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1292 return(m);
1295 vm_page_t
1296 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1297 vm_pindex_t pindex,
1298 int also_m_busy, const char *msg
1299 VM_PAGE_DEBUG_ARGS)
1301 u_int32_t flags;
1302 vm_page_t m;
1304 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1305 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1306 while (m) {
1307 KKASSERT(m->object == object && m->pindex == pindex);
1308 flags = m->flags;
1309 cpu_ccfence();
1310 if (flags & PG_BUSY) {
1311 tsleep_interlock(m, 0);
1312 if (atomic_cmpset_int(&m->flags, flags,
1313 flags | PG_WANTED | PG_REFERENCED)) {
1314 tsleep(m, PINTERLOCKED, msg, 0);
1315 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1316 pindex);
1318 } else if (also_m_busy && (flags & PG_SBUSY)) {
1319 tsleep_interlock(m, 0);
1320 if (atomic_cmpset_int(&m->flags, flags,
1321 flags | PG_WANTED | PG_REFERENCED)) {
1322 tsleep(m, PINTERLOCKED, msg, 0);
1323 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1324 pindex);
1326 } else if (atomic_cmpset_int(&m->flags, flags,
1327 flags | PG_BUSY)) {
1328 #ifdef VM_PAGE_DEBUG
1329 m->busy_func = func;
1330 m->busy_line = lineno;
1331 #endif
1332 break;
1335 return m;
1339 * Attempt to lookup and busy a page.
1341 * Returns NULL if the page could not be found
1343 * Returns a vm_page and error == TRUE if the page exists but could not
1344 * be busied.
1346 * Returns a vm_page and error == FALSE on success.
1348 vm_page_t
1349 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1350 vm_pindex_t pindex,
1351 int also_m_busy, int *errorp
1352 VM_PAGE_DEBUG_ARGS)
1354 u_int32_t flags;
1355 vm_page_t m;
1357 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1358 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1359 *errorp = FALSE;
1360 while (m) {
1361 KKASSERT(m->object == object && m->pindex == pindex);
1362 flags = m->flags;
1363 cpu_ccfence();
1364 if (flags & PG_BUSY) {
1365 *errorp = TRUE;
1366 break;
1368 if (also_m_busy && (flags & PG_SBUSY)) {
1369 *errorp = TRUE;
1370 break;
1372 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1373 #ifdef VM_PAGE_DEBUG
1374 m->busy_func = func;
1375 m->busy_line = lineno;
1376 #endif
1377 break;
1380 return m;
1384 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1385 * be repurposed it will be released, *must_reenter will be set to 1, and
1386 * this function will fall-through to vm_page_lookup_busy_try().
1388 * The passed-in page must be wired and not busy. The returned page will
1389 * be busied and not wired.
1391 * A different page may be returned. The returned page will be busied and
1392 * not wired.
1394 * NULL can be returned. If so, the required page could not be busied.
1395 * The passed-in page will be unwired.
1397 vm_page_t
1398 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1399 int also_m_busy, int *errorp, vm_page_t m,
1400 int *must_reenter, int *iswired)
1402 if (m) {
1404 * Do not mess with pages in a complex state, such as pages
1405 * which are mapped, as repurposing such pages can be more
1406 * expensive than simply allocatin a new one.
1408 * NOTE: Soft-busying can deadlock against putpages or I/O
1409 * so we only allow hard-busying here.
1411 KKASSERT(also_m_busy == FALSE);
1412 vm_page_busy_wait(m, also_m_busy, "biodep");
1414 if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1415 PG_FICTITIOUS | PG_SBUSY)) ||
1416 m->busy || m->wire_count != 1 || m->hold_count) {
1417 vm_page_unwire(m, 0);
1418 vm_page_wakeup(m);
1419 /* fall through to normal lookup */
1420 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1421 vm_page_unwire(m, 0);
1422 vm_page_deactivate(m);
1423 vm_page_wakeup(m);
1424 /* fall through to normal lookup */
1425 } else {
1427 * We can safely repurpose the page. It should
1428 * already be unqueued.
1430 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1431 vm_page_remove(m);
1432 m->valid = 0;
1433 m->act_count = 0;
1434 if (vm_page_insert(m, object, pindex)) {
1435 *errorp = 0;
1436 *iswired = 1;
1438 return m;
1440 vm_page_unwire(m, 0);
1441 vm_page_free(m);
1442 /* fall through to normal lookup */
1447 * Cannot repurpose page, attempt to locate the desired page. May
1448 * return NULL.
1450 *must_reenter = 1;
1451 *iswired = 0;
1452 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1454 return m;
1458 * Caller must hold the related vm_object
1460 vm_page_t
1461 vm_page_next(vm_page_t m)
1463 vm_page_t next;
1465 next = vm_page_rb_tree_RB_NEXT(m);
1466 if (next && next->pindex != m->pindex + 1)
1467 next = NULL;
1468 return (next);
1472 * vm_page_rename()
1474 * Move the given vm_page from its current object to the specified
1475 * target object/offset. The page must be busy and will remain so
1476 * on return.
1478 * new_object must be held.
1479 * This routine might block. XXX ?
1481 * NOTE: Swap associated with the page must be invalidated by the move. We
1482 * have to do this for several reasons: (1) we aren't freeing the
1483 * page, (2) we are dirtying the page, (3) the VM system is probably
1484 * moving the page from object A to B, and will then later move
1485 * the backing store from A to B and we can't have a conflict.
1487 * NOTE: We *always* dirty the page. It is necessary both for the
1488 * fact that we moved it, and because we may be invalidating
1489 * swap. If the page is on the cache, we have to deactivate it
1490 * or vm_page_dirty() will panic. Dirty pages are not allowed
1491 * on the cache.
1493 void
1494 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1496 KKASSERT(m->flags & PG_BUSY);
1497 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1498 if (m->object) {
1499 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1500 vm_page_remove(m);
1502 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1503 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1504 new_object, new_pindex);
1506 if (m->queue - m->pc == PQ_CACHE)
1507 vm_page_deactivate(m);
1508 vm_page_dirty(m);
1512 * vm_page_unqueue() without any wakeup. This routine is used when a page
1513 * is to remain BUSYied by the caller.
1515 * This routine may not block.
1517 void
1518 vm_page_unqueue_nowakeup(vm_page_t m)
1520 vm_page_and_queue_spin_lock(m);
1521 (void)_vm_page_rem_queue_spinlocked(m);
1522 vm_page_spin_unlock(m);
1526 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1527 * if necessary.
1529 * This routine may not block.
1531 void
1532 vm_page_unqueue(vm_page_t m)
1534 u_short queue;
1536 vm_page_and_queue_spin_lock(m);
1537 queue = _vm_page_rem_queue_spinlocked(m);
1538 if (queue == PQ_FREE || queue == PQ_CACHE) {
1539 vm_page_spin_unlock(m);
1540 pagedaemon_wakeup();
1541 } else {
1542 vm_page_spin_unlock(m);
1547 * vm_page_list_find()
1549 * Find a page on the specified queue with color optimization.
1551 * The page coloring optimization attempts to locate a page that does
1552 * not overload other nearby pages in the object in the cpu's L1 or L2
1553 * caches. We need this optimization because cpu caches tend to be
1554 * physical caches, while object spaces tend to be virtual.
1556 * The page coloring optimization also, very importantly, tries to localize
1557 * memory to cpus and physical sockets.
1559 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1560 * and the algorithm is adjusted to localize allocations on a per-core basis.
1561 * This is done by 'twisting' the colors.
1563 * The page is returned spinlocked and removed from its queue (it will
1564 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1565 * is responsible for dealing with the busy-page case (usually by
1566 * deactivating the page and looping).
1568 * NOTE: This routine is carefully inlined. A non-inlined version
1569 * is available for outside callers but the only critical path is
1570 * from within this source file.
1572 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1573 * represent stable storage, allowing us to order our locks vm_page
1574 * first, then queue.
1576 static __inline
1577 vm_page_t
1578 _vm_page_list_find(int basequeue, int index)
1580 vm_page_t m;
1582 for (;;) {
1583 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1584 if (m == NULL) {
1585 m = _vm_page_list_find2(basequeue, index);
1586 return(m);
1588 vm_page_and_queue_spin_lock(m);
1589 if (m->queue == basequeue + index) {
1590 _vm_page_rem_queue_spinlocked(m);
1591 /* vm_page_t spin held, no queue spin */
1592 break;
1594 vm_page_and_queue_spin_unlock(m);
1596 return(m);
1600 * If we could not find the page in the desired queue try to find it in
1601 * a nearby queue.
1603 static vm_page_t
1604 _vm_page_list_find2(int basequeue, int index)
1606 struct vpgqueues *pq;
1607 vm_page_t m = NULL;
1608 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1609 int pqi;
1610 int i;
1612 index &= PQ_L2_MASK;
1613 pq = &vm_page_queues[basequeue];
1616 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1617 * else fails (PQ_L2_MASK which is 255).
1619 do {
1620 pqmask = (pqmask << 1) | 1;
1621 for (i = 0; i <= pqmask; ++i) {
1622 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1623 m = TAILQ_FIRST(&pq[pqi].pl);
1624 if (m) {
1625 _vm_page_and_queue_spin_lock(m);
1626 if (m->queue == basequeue + pqi) {
1627 _vm_page_rem_queue_spinlocked(m);
1628 return(m);
1630 _vm_page_and_queue_spin_unlock(m);
1631 --i;
1632 continue;
1635 } while (pqmask != PQ_L2_MASK);
1637 return(m);
1641 * Returns a vm_page candidate for allocation. The page is not busied so
1642 * it can move around. The caller must busy the page (and typically
1643 * deactivate it if it cannot be busied!)
1645 * Returns a spinlocked vm_page that has been removed from its queue.
1647 vm_page_t
1648 vm_page_list_find(int basequeue, int index)
1650 return(_vm_page_list_find(basequeue, index));
1654 * Find a page on the cache queue with color optimization, remove it
1655 * from the queue, and busy it. The returned page will not be spinlocked.
1657 * A candidate failure will be deactivated. Candidates can fail due to
1658 * being busied by someone else, in which case they will be deactivated.
1660 * This routine may not block.
1663 static vm_page_t
1664 vm_page_select_cache(u_short pg_color)
1666 vm_page_t m;
1668 for (;;) {
1669 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1670 if (m == NULL)
1671 break;
1673 * (m) has been removed from its queue and spinlocked
1675 if (vm_page_busy_try(m, TRUE)) {
1676 _vm_page_deactivate_locked(m, 0);
1677 vm_page_spin_unlock(m);
1678 } else {
1680 * We successfully busied the page
1682 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1683 m->hold_count == 0 &&
1684 m->wire_count == 0 &&
1685 (m->dirty & m->valid) == 0) {
1686 vm_page_spin_unlock(m);
1687 pagedaemon_wakeup();
1688 return(m);
1692 * The page cannot be recycled, deactivate it.
1694 _vm_page_deactivate_locked(m, 0);
1695 if (_vm_page_wakeup(m)) {
1696 vm_page_spin_unlock(m);
1697 wakeup(m);
1698 } else {
1699 vm_page_spin_unlock(m);
1703 return (m);
1707 * Find a free page. We attempt to inline the nominal case and fall back
1708 * to _vm_page_select_free() otherwise. A busied page is removed from
1709 * the queue and returned.
1711 * This routine may not block.
1713 static __inline vm_page_t
1714 vm_page_select_free(u_short pg_color)
1716 vm_page_t m;
1718 for (;;) {
1719 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1720 if (m == NULL)
1721 break;
1722 if (vm_page_busy_try(m, TRUE)) {
1724 * Various mechanisms such as a pmap_collect can
1725 * result in a busy page on the free queue. We
1726 * have to move the page out of the way so we can
1727 * retry the allocation. If the other thread is not
1728 * allocating the page then m->valid will remain 0 and
1729 * the pageout daemon will free the page later on.
1731 * Since we could not busy the page, however, we
1732 * cannot make assumptions as to whether the page
1733 * will be allocated by the other thread or not,
1734 * so all we can do is deactivate it to move it out
1735 * of the way. In particular, if the other thread
1736 * wires the page it may wind up on the inactive
1737 * queue and the pageout daemon will have to deal
1738 * with that case too.
1740 _vm_page_deactivate_locked(m, 0);
1741 vm_page_spin_unlock(m);
1742 } else {
1744 * Theoretically if we are able to busy the page
1745 * atomic with the queue removal (using the vm_page
1746 * lock) nobody else should be able to mess with the
1747 * page before us.
1749 KKASSERT((m->flags & (PG_UNMANAGED |
1750 PG_NEED_COMMIT)) == 0);
1751 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1752 "pg %p q=%d flags=%08x hold=%d wire=%d",
1753 m, m->queue, m->flags, m->hold_count, m->wire_count));
1754 KKASSERT(m->wire_count == 0);
1755 vm_page_spin_unlock(m);
1756 pagedaemon_wakeup();
1758 /* return busied and removed page */
1759 return(m);
1762 return(m);
1766 * vm_page_alloc()
1768 * Allocate and return a memory cell associated with this VM object/offset
1769 * pair. If object is NULL an unassociated page will be allocated.
1771 * The returned page will be busied and removed from its queues. This
1772 * routine can block and may return NULL if a race occurs and the page
1773 * is found to already exist at the specified (object, pindex).
1775 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1776 * VM_ALLOC_QUICK like normal but cannot use cache
1777 * VM_ALLOC_SYSTEM greater free drain
1778 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1779 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1780 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1781 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1782 * (see vm_page_grab())
1783 * VM_ALLOC_USE_GD ok to use per-gd cache
1785 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1787 * The object must be held if not NULL
1788 * This routine may not block
1790 * Additional special handling is required when called from an interrupt
1791 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1792 * in this case.
1794 vm_page_t
1795 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1797 globaldata_t gd;
1798 vm_object_t obj;
1799 vm_page_t m;
1800 u_short pg_color;
1801 int cpuid_local;
1803 #if 0
1805 * Special per-cpu free VM page cache. The pages are pre-busied
1806 * and pre-zerod for us.
1808 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1809 crit_enter_gd(gd);
1810 if (gd->gd_vmpg_count) {
1811 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1812 crit_exit_gd(gd);
1813 goto done;
1815 crit_exit_gd(gd);
1817 #endif
1818 m = NULL;
1821 * CPU LOCALIZATION
1823 * CPU localization algorithm. Break the page queues up by physical
1824 * id and core id (note that two cpu threads will have the same core
1825 * id, and core_id != gd_cpuid).
1827 * This is nowhere near perfect, for example the last pindex in a
1828 * subgroup will overflow into the next cpu or package. But this
1829 * should get us good page reuse locality in heavy mixed loads.
1831 * (may be executed before the APs are started, so other GDs might
1832 * not exist!)
1834 if (page_req & VM_ALLOC_CPU_SPEC)
1835 cpuid_local = VM_ALLOC_GETCPU(page_req);
1836 else
1837 cpuid_local = mycpu->gd_cpuid;
1839 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1841 KKASSERT(page_req &
1842 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1843 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1846 * Certain system threads (pageout daemon, buf_daemon's) are
1847 * allowed to eat deeper into the free page list.
1849 if (curthread->td_flags & TDF_SYSTHREAD)
1850 page_req |= VM_ALLOC_SYSTEM;
1853 * Impose various limitations. Note that the v_free_reserved test
1854 * must match the opposite of vm_page_count_target() to avoid
1855 * livelocks, be careful.
1857 loop:
1858 gd = mycpu;
1859 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1860 ((page_req & VM_ALLOC_INTERRUPT) &&
1861 gd->gd_vmstats.v_free_count > 0) ||
1862 ((page_req & VM_ALLOC_SYSTEM) &&
1863 gd->gd_vmstats.v_cache_count == 0 &&
1864 gd->gd_vmstats.v_free_count >
1865 gd->gd_vmstats.v_interrupt_free_min)
1868 * The free queue has sufficient free pages to take one out.
1870 m = vm_page_select_free(pg_color);
1871 } else if (page_req & VM_ALLOC_NORMAL) {
1873 * Allocatable from the cache (non-interrupt only). On
1874 * success, we must free the page and try again, thus
1875 * ensuring that vmstats.v_*_free_min counters are replenished.
1877 #ifdef INVARIANTS
1878 if (curthread->td_preempted) {
1879 kprintf("vm_page_alloc(): warning, attempt to allocate"
1880 " cache page from preempting interrupt\n");
1881 m = NULL;
1882 } else {
1883 m = vm_page_select_cache(pg_color);
1885 #else
1886 m = vm_page_select_cache(pg_color);
1887 #endif
1889 * On success move the page into the free queue and loop.
1891 * Only do this if we can safely acquire the vm_object lock,
1892 * because this is effectively a random page and the caller
1893 * might be holding the lock shared, we don't want to
1894 * deadlock.
1896 if (m != NULL) {
1897 KASSERT(m->dirty == 0,
1898 ("Found dirty cache page %p", m));
1899 if ((obj = m->object) != NULL) {
1900 if (vm_object_hold_try(obj)) {
1901 vm_page_protect(m, VM_PROT_NONE);
1902 vm_page_free(m);
1903 /* m->object NULL here */
1904 vm_object_drop(obj);
1905 } else {
1906 vm_page_deactivate(m);
1907 vm_page_wakeup(m);
1909 } else {
1910 vm_page_protect(m, VM_PROT_NONE);
1911 vm_page_free(m);
1913 goto loop;
1917 * On failure return NULL
1919 atomic_add_int(&vm_pageout_deficit, 1);
1920 pagedaemon_wakeup();
1921 return (NULL);
1922 } else {
1924 * No pages available, wakeup the pageout daemon and give up.
1926 atomic_add_int(&vm_pageout_deficit, 1);
1927 pagedaemon_wakeup();
1928 return (NULL);
1932 * v_free_count can race so loop if we don't find the expected
1933 * page.
1935 if (m == NULL) {
1936 vmstats_rollup();
1937 goto loop;
1941 * Good page found. The page has already been busied for us and
1942 * removed from its queues.
1944 KASSERT(m->dirty == 0,
1945 ("vm_page_alloc: free/cache page %p was dirty", m));
1946 KKASSERT(m->queue == PQ_NONE);
1948 #if 0
1949 done:
1950 #endif
1952 * Initialize the structure, inheriting some flags but clearing
1953 * all the rest. The page has already been busied for us.
1955 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1957 KKASSERT(m->wire_count == 0);
1958 KKASSERT(m->busy == 0);
1959 m->act_count = 0;
1960 m->valid = 0;
1963 * Caller must be holding the object lock (asserted by
1964 * vm_page_insert()).
1966 * NOTE: Inserting a page here does not insert it into any pmaps
1967 * (which could cause us to block allocating memory).
1969 * NOTE: If no object an unassociated page is allocated, m->pindex
1970 * can be used by the caller for any purpose.
1972 if (object) {
1973 if (vm_page_insert(m, object, pindex) == FALSE) {
1974 vm_page_free(m);
1975 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1976 panic("PAGE RACE %p[%ld]/%p",
1977 object, (long)pindex, m);
1978 m = NULL;
1980 } else {
1981 m->pindex = pindex;
1985 * Don't wakeup too often - wakeup the pageout daemon when
1986 * we would be nearly out of memory.
1988 pagedaemon_wakeup();
1991 * A PG_BUSY page is returned.
1993 return (m);
1997 * Returns number of pages available in our DMA memory reserve
1998 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2000 vm_size_t
2001 vm_contig_avail_pages(void)
2003 alist_blk_t blk;
2004 alist_blk_t count;
2005 alist_blk_t bfree;
2006 spin_lock(&vm_contig_spin);
2007 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2008 spin_unlock(&vm_contig_spin);
2010 return bfree;
2014 * Attempt to allocate contiguous physical memory with the specified
2015 * requirements.
2017 vm_page_t
2018 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2019 unsigned long alignment, unsigned long boundary,
2020 unsigned long size, vm_memattr_t memattr)
2022 alist_blk_t blk;
2023 vm_page_t m;
2024 int i;
2026 alignment >>= PAGE_SHIFT;
2027 if (alignment == 0)
2028 alignment = 1;
2029 boundary >>= PAGE_SHIFT;
2030 if (boundary == 0)
2031 boundary = 1;
2032 size = (size + PAGE_MASK) >> PAGE_SHIFT;
2034 spin_lock(&vm_contig_spin);
2035 blk = alist_alloc(&vm_contig_alist, 0, size);
2036 if (blk == ALIST_BLOCK_NONE) {
2037 spin_unlock(&vm_contig_spin);
2038 if (bootverbose) {
2039 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2040 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2042 return(NULL);
2044 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2045 alist_free(&vm_contig_alist, blk, size);
2046 spin_unlock(&vm_contig_spin);
2047 if (bootverbose) {
2048 kprintf("vm_page_alloc_contig: %ldk high "
2049 "%016jx failed\n",
2050 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
2051 (intmax_t)high);
2053 return(NULL);
2055 spin_unlock(&vm_contig_spin);
2056 if (vm_contig_verbose) {
2057 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2058 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2059 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
2062 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2063 if (memattr != VM_MEMATTR_DEFAULT)
2064 for (i = 0;i < size;i++)
2065 pmap_page_set_memattr(&m[i], memattr);
2066 return m;
2070 * Free contiguously allocated pages. The pages will be wired but not busy.
2071 * When freeing to the alist we leave them wired and not busy.
2073 void
2074 vm_page_free_contig(vm_page_t m, unsigned long size)
2076 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2077 vm_pindex_t start = pa >> PAGE_SHIFT;
2078 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2080 if (vm_contig_verbose) {
2081 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2082 (intmax_t)pa, size / 1024);
2084 if (pa < vm_low_phys_reserved) {
2085 KKASSERT(pa + size <= vm_low_phys_reserved);
2086 spin_lock(&vm_contig_spin);
2087 alist_free(&vm_contig_alist, start, pages);
2088 spin_unlock(&vm_contig_spin);
2089 } else {
2090 while (pages) {
2091 vm_page_busy_wait(m, FALSE, "cpgfr");
2092 vm_page_unwire(m, 0);
2093 vm_page_free(m);
2094 --pages;
2095 ++m;
2103 * Wait for sufficient free memory for nominal heavy memory use kernel
2104 * operations.
2106 * WARNING! Be sure never to call this in any vm_pageout code path, which
2107 * will trivially deadlock the system.
2109 void
2110 vm_wait_nominal(void)
2112 while (vm_page_count_min(0))
2113 vm_wait(0);
2117 * Test if vm_wait_nominal() would block.
2120 vm_test_nominal(void)
2122 if (vm_page_count_min(0))
2123 return(1);
2124 return(0);
2128 * Block until free pages are available for allocation, called in various
2129 * places before memory allocations.
2131 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2132 * more generous then that.
2134 void
2135 vm_wait(int timo)
2138 * never wait forever
2140 if (timo == 0)
2141 timo = hz;
2142 lwkt_gettoken(&vm_token);
2144 if (curthread == pagethread) {
2146 * The pageout daemon itself needs pages, this is bad.
2148 if (vm_page_count_min(0)) {
2149 vm_pageout_pages_needed = 1;
2150 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2152 } else {
2154 * Wakeup the pageout daemon if necessary and wait.
2156 * Do not wait indefinitely for the target to be reached,
2157 * as load might prevent it from being reached any time soon.
2158 * But wait a little to try to slow down page allocations
2159 * and to give more important threads (the pagedaemon)
2160 * allocation priority.
2162 if (vm_page_count_target()) {
2163 if (vm_pages_needed == 0) {
2164 vm_pages_needed = 1;
2165 wakeup(&vm_pages_needed);
2167 ++vm_pages_waiting; /* SMP race ok */
2168 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2171 lwkt_reltoken(&vm_token);
2175 * Block until free pages are available for allocation
2177 * Called only from vm_fault so that processes page faulting can be
2178 * easily tracked.
2180 void
2181 vm_wait_pfault(void)
2184 * Wakeup the pageout daemon if necessary and wait.
2186 * Do not wait indefinitely for the target to be reached,
2187 * as load might prevent it from being reached any time soon.
2188 * But wait a little to try to slow down page allocations
2189 * and to give more important threads (the pagedaemon)
2190 * allocation priority.
2192 if (vm_page_count_min(0)) {
2193 lwkt_gettoken(&vm_token);
2194 while (vm_page_count_severe()) {
2195 if (vm_page_count_target()) {
2196 thread_t td;
2198 if (vm_pages_needed == 0) {
2199 vm_pages_needed = 1;
2200 wakeup(&vm_pages_needed);
2202 ++vm_pages_waiting; /* SMP race ok */
2203 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2206 * Do not stay stuck in the loop if the system is trying
2207 * to kill the process.
2209 td = curthread;
2210 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2211 break;
2214 lwkt_reltoken(&vm_token);
2219 * Put the specified page on the active list (if appropriate). Ensure
2220 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2222 * The caller should be holding the page busied ? XXX
2223 * This routine may not block.
2225 void
2226 vm_page_activate(vm_page_t m)
2228 u_short oqueue;
2230 vm_page_spin_lock(m);
2231 if (m->queue - m->pc != PQ_ACTIVE) {
2232 _vm_page_queue_spin_lock(m);
2233 oqueue = _vm_page_rem_queue_spinlocked(m);
2234 /* page is left spinlocked, queue is unlocked */
2236 if (oqueue == PQ_CACHE)
2237 mycpu->gd_cnt.v_reactivated++;
2238 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2239 if (m->act_count < ACT_INIT)
2240 m->act_count = ACT_INIT;
2241 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2243 _vm_page_and_queue_spin_unlock(m);
2244 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2245 pagedaemon_wakeup();
2246 } else {
2247 if (m->act_count < ACT_INIT)
2248 m->act_count = ACT_INIT;
2249 vm_page_spin_unlock(m);
2254 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2255 * routine is called when a page has been added to the cache or free
2256 * queues.
2258 * This routine may not block.
2260 static __inline void
2261 vm_page_free_wakeup(void)
2263 globaldata_t gd = mycpu;
2266 * If the pageout daemon itself needs pages, then tell it that
2267 * there are some free.
2269 if (vm_pageout_pages_needed &&
2270 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2271 gd->gd_vmstats.v_pageout_free_min
2273 vm_pageout_pages_needed = 0;
2274 wakeup(&vm_pageout_pages_needed);
2278 * Wakeup processes that are waiting on memory.
2280 * Generally speaking we want to wakeup stuck processes as soon as
2281 * possible. !vm_page_count_min(0) is the absolute minimum point
2282 * where we can do this. Wait a bit longer to reduce degenerate
2283 * re-blocking (vm_page_free_hysteresis). The target check is just
2284 * to make sure the min-check w/hysteresis does not exceed the
2285 * normal target.
2287 if (vm_pages_waiting) {
2288 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2289 !vm_page_count_target()) {
2290 vm_pages_waiting = 0;
2291 wakeup(&vmstats.v_free_count);
2292 ++mycpu->gd_cnt.v_ppwakeups;
2294 #if 0
2295 if (!vm_page_count_target()) {
2297 * Plenty of pages are free, wakeup everyone.
2299 vm_pages_waiting = 0;
2300 wakeup(&vmstats.v_free_count);
2301 ++mycpu->gd_cnt.v_ppwakeups;
2302 } else if (!vm_page_count_min(0)) {
2304 * Some pages are free, wakeup someone.
2306 int wcount = vm_pages_waiting;
2307 if (wcount > 0)
2308 --wcount;
2309 vm_pages_waiting = wcount;
2310 wakeup_one(&vmstats.v_free_count);
2311 ++mycpu->gd_cnt.v_ppwakeups;
2313 #endif
2318 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2319 * it from its VM object.
2321 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2322 * return (the page will have been freed).
2324 void
2325 vm_page_free_toq(vm_page_t m)
2327 mycpu->gd_cnt.v_tfree++;
2328 KKASSERT((m->flags & PG_MAPPED) == 0);
2329 KKASSERT(m->flags & PG_BUSY);
2331 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2332 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2333 "PG_BUSY(%d), hold(%d)\n",
2334 (u_long)m->pindex, m->busy,
2335 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2336 if ((m->queue - m->pc) == PQ_FREE)
2337 panic("vm_page_free: freeing free page");
2338 else
2339 panic("vm_page_free: freeing busy page");
2343 * Remove from object, spinlock the page and its queues and
2344 * remove from any queue. No queue spinlock will be held
2345 * after this section (because the page was removed from any
2346 * queue).
2348 vm_page_remove(m);
2349 vm_page_and_queue_spin_lock(m);
2350 _vm_page_rem_queue_spinlocked(m);
2353 * No further management of fictitious pages occurs beyond object
2354 * and queue removal.
2356 if ((m->flags & PG_FICTITIOUS) != 0) {
2357 vm_page_spin_unlock(m);
2358 vm_page_wakeup(m);
2359 return;
2362 m->valid = 0;
2363 vm_page_undirty(m);
2365 if (m->wire_count != 0) {
2366 if (m->wire_count > 1) {
2367 panic(
2368 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2369 m->wire_count, (long)m->pindex);
2371 panic("vm_page_free: freeing wired page");
2375 * Clear the UNMANAGED flag when freeing an unmanaged page.
2376 * Clear the NEED_COMMIT flag
2378 if (m->flags & PG_UNMANAGED)
2379 vm_page_flag_clear(m, PG_UNMANAGED);
2380 if (m->flags & PG_NEED_COMMIT)
2381 vm_page_flag_clear(m, PG_NEED_COMMIT);
2383 if (m->hold_count != 0) {
2384 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2385 } else {
2386 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2390 * This sequence allows us to clear PG_BUSY while still holding
2391 * its spin lock, which reduces contention vs allocators. We
2392 * must not leave the queue locked or _vm_page_wakeup() may
2393 * deadlock.
2395 _vm_page_queue_spin_unlock(m);
2396 if (_vm_page_wakeup(m)) {
2397 vm_page_spin_unlock(m);
2398 wakeup(m);
2399 } else {
2400 vm_page_spin_unlock(m);
2402 vm_page_free_wakeup();
2406 * vm_page_unmanage()
2408 * Prevent PV management from being done on the page. The page is
2409 * removed from the paging queues as if it were wired, and as a
2410 * consequence of no longer being managed the pageout daemon will not
2411 * touch it (since there is no way to locate the pte mappings for the
2412 * page). madvise() calls that mess with the pmap will also no longer
2413 * operate on the page.
2415 * Beyond that the page is still reasonably 'normal'. Freeing the page
2416 * will clear the flag.
2418 * This routine is used by OBJT_PHYS objects - objects using unswappable
2419 * physical memory as backing store rather then swap-backed memory and
2420 * will eventually be extended to support 4MB unmanaged physical
2421 * mappings.
2423 * Caller must be holding the page busy.
2425 void
2426 vm_page_unmanage(vm_page_t m)
2428 KKASSERT(m->flags & PG_BUSY);
2429 if ((m->flags & PG_UNMANAGED) == 0) {
2430 if (m->wire_count == 0)
2431 vm_page_unqueue(m);
2433 vm_page_flag_set(m, PG_UNMANAGED);
2437 * Mark this page as wired down by yet another map, removing it from
2438 * paging queues as necessary.
2440 * Caller must be holding the page busy.
2442 void
2443 vm_page_wire(vm_page_t m)
2446 * Only bump the wire statistics if the page is not already wired,
2447 * and only unqueue the page if it is on some queue (if it is unmanaged
2448 * it is already off the queues). Don't do anything with fictitious
2449 * pages because they are always wired.
2451 KKASSERT(m->flags & PG_BUSY);
2452 if ((m->flags & PG_FICTITIOUS) == 0) {
2453 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2454 if ((m->flags & PG_UNMANAGED) == 0)
2455 vm_page_unqueue(m);
2456 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2458 KASSERT(m->wire_count != 0,
2459 ("vm_page_wire: wire_count overflow m=%p", m));
2464 * Release one wiring of this page, potentially enabling it to be paged again.
2466 * Many pages placed on the inactive queue should actually go
2467 * into the cache, but it is difficult to figure out which. What
2468 * we do instead, if the inactive target is well met, is to put
2469 * clean pages at the head of the inactive queue instead of the tail.
2470 * This will cause them to be moved to the cache more quickly and
2471 * if not actively re-referenced, freed more quickly. If we just
2472 * stick these pages at the end of the inactive queue, heavy filesystem
2473 * meta-data accesses can cause an unnecessary paging load on memory bound
2474 * processes. This optimization causes one-time-use metadata to be
2475 * reused more quickly.
2477 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2478 * the inactive queue. This helps the pageout daemon determine memory
2479 * pressure and act on out-of-memory situations more quickly.
2481 * BUT, if we are in a low-memory situation we have no choice but to
2482 * put clean pages on the cache queue.
2484 * A number of routines use vm_page_unwire() to guarantee that the page
2485 * will go into either the inactive or active queues, and will NEVER
2486 * be placed in the cache - for example, just after dirtying a page.
2487 * dirty pages in the cache are not allowed.
2489 * This routine may not block.
2491 void
2492 vm_page_unwire(vm_page_t m, int activate)
2494 KKASSERT(m->flags & PG_BUSY);
2495 if (m->flags & PG_FICTITIOUS) {
2496 /* do nothing */
2497 } else if (m->wire_count <= 0) {
2498 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2499 } else {
2500 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2501 atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2502 if (m->flags & PG_UNMANAGED) {
2504 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2505 vm_page_spin_lock(m);
2506 _vm_page_add_queue_spinlocked(m,
2507 PQ_ACTIVE + m->pc, 0);
2508 _vm_page_and_queue_spin_unlock(m);
2509 } else {
2510 vm_page_spin_lock(m);
2511 vm_page_flag_clear(m, PG_WINATCFLS);
2512 _vm_page_add_queue_spinlocked(m,
2513 PQ_INACTIVE + m->pc, 0);
2514 ++vm_swapcache_inactive_heuristic;
2515 _vm_page_and_queue_spin_unlock(m);
2522 * Move the specified page to the inactive queue. If the page has
2523 * any associated swap, the swap is deallocated.
2525 * Normally athead is 0 resulting in LRU operation. athead is set
2526 * to 1 if we want this page to be 'as if it were placed in the cache',
2527 * except without unmapping it from the process address space.
2529 * vm_page's spinlock must be held on entry and will remain held on return.
2530 * This routine may not block.
2532 static void
2533 _vm_page_deactivate_locked(vm_page_t m, int athead)
2535 u_short oqueue;
2538 * Ignore if already inactive.
2540 if (m->queue - m->pc == PQ_INACTIVE)
2541 return;
2542 _vm_page_queue_spin_lock(m);
2543 oqueue = _vm_page_rem_queue_spinlocked(m);
2545 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2546 if (oqueue == PQ_CACHE)
2547 mycpu->gd_cnt.v_reactivated++;
2548 vm_page_flag_clear(m, PG_WINATCFLS);
2549 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2550 if (athead == 0)
2551 ++vm_swapcache_inactive_heuristic;
2553 /* NOTE: PQ_NONE if condition not taken */
2554 _vm_page_queue_spin_unlock(m);
2555 /* leaves vm_page spinlocked */
2559 * Attempt to deactivate a page.
2561 * No requirements.
2563 void
2564 vm_page_deactivate(vm_page_t m)
2566 vm_page_spin_lock(m);
2567 _vm_page_deactivate_locked(m, 0);
2568 vm_page_spin_unlock(m);
2571 void
2572 vm_page_deactivate_locked(vm_page_t m)
2574 _vm_page_deactivate_locked(m, 0);
2578 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2580 * This function returns non-zero if it successfully moved the page to
2581 * PQ_CACHE.
2583 * This function unconditionally unbusies the page on return.
2586 vm_page_try_to_cache(vm_page_t m)
2588 vm_page_spin_lock(m);
2589 if (m->dirty || m->hold_count || m->wire_count ||
2590 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2591 if (_vm_page_wakeup(m)) {
2592 vm_page_spin_unlock(m);
2593 wakeup(m);
2594 } else {
2595 vm_page_spin_unlock(m);
2597 return(0);
2599 vm_page_spin_unlock(m);
2602 * Page busied by us and no longer spinlocked. Dirty pages cannot
2603 * be moved to the cache.
2605 vm_page_test_dirty(m);
2606 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2607 vm_page_wakeup(m);
2608 return(0);
2610 vm_page_cache(m);
2611 return(1);
2615 * Attempt to free the page. If we cannot free it, we do nothing.
2616 * 1 is returned on success, 0 on failure.
2618 * No requirements.
2621 vm_page_try_to_free(vm_page_t m)
2623 vm_page_spin_lock(m);
2624 if (vm_page_busy_try(m, TRUE)) {
2625 vm_page_spin_unlock(m);
2626 return(0);
2630 * The page can be in any state, including already being on the free
2631 * queue. Check to see if it really can be freed.
2633 if (m->dirty || /* can't free if it is dirty */
2634 m->hold_count || /* or held (XXX may be wrong) */
2635 m->wire_count || /* or wired */
2636 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2637 PG_NEED_COMMIT)) || /* or needs a commit */
2638 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2639 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2640 if (_vm_page_wakeup(m)) {
2641 vm_page_spin_unlock(m);
2642 wakeup(m);
2643 } else {
2644 vm_page_spin_unlock(m);
2646 return(0);
2648 vm_page_spin_unlock(m);
2651 * We can probably free the page.
2653 * Page busied by us and no longer spinlocked. Dirty pages will
2654 * not be freed by this function. We have to re-test the
2655 * dirty bit after cleaning out the pmaps.
2657 vm_page_test_dirty(m);
2658 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2659 vm_page_wakeup(m);
2660 return(0);
2662 vm_page_protect(m, VM_PROT_NONE);
2663 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2664 vm_page_wakeup(m);
2665 return(0);
2667 vm_page_free(m);
2668 return(1);
2672 * vm_page_cache
2674 * Put the specified page onto the page cache queue (if appropriate).
2676 * The page must be busy, and this routine will release the busy and
2677 * possibly even free the page.
2679 void
2680 vm_page_cache(vm_page_t m)
2683 * Not suitable for the cache
2685 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2686 m->busy || m->wire_count || m->hold_count) {
2687 vm_page_wakeup(m);
2688 return;
2692 * Already in the cache (and thus not mapped)
2694 if ((m->queue - m->pc) == PQ_CACHE) {
2695 KKASSERT((m->flags & PG_MAPPED) == 0);
2696 vm_page_wakeup(m);
2697 return;
2701 * Caller is required to test m->dirty, but note that the act of
2702 * removing the page from its maps can cause it to become dirty
2703 * on an SMP system due to another cpu running in usermode.
2705 if (m->dirty) {
2706 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2707 (long)m->pindex);
2711 * Remove all pmaps and indicate that the page is not
2712 * writeable or mapped. Our vm_page_protect() call may
2713 * have blocked (especially w/ VM_PROT_NONE), so recheck
2714 * everything.
2716 vm_page_protect(m, VM_PROT_NONE);
2717 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2718 m->busy || m->wire_count || m->hold_count) {
2719 vm_page_wakeup(m);
2720 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2721 vm_page_deactivate(m);
2722 vm_page_wakeup(m);
2723 } else {
2724 _vm_page_and_queue_spin_lock(m);
2725 _vm_page_rem_queue_spinlocked(m);
2726 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2727 _vm_page_queue_spin_unlock(m);
2728 if (_vm_page_wakeup(m)) {
2729 vm_page_spin_unlock(m);
2730 wakeup(m);
2731 } else {
2732 vm_page_spin_unlock(m);
2734 vm_page_free_wakeup();
2739 * vm_page_dontneed()
2741 * Cache, deactivate, or do nothing as appropriate. This routine
2742 * is typically used by madvise() MADV_DONTNEED.
2744 * Generally speaking we want to move the page into the cache so
2745 * it gets reused quickly. However, this can result in a silly syndrome
2746 * due to the page recycling too quickly. Small objects will not be
2747 * fully cached. On the otherhand, if we move the page to the inactive
2748 * queue we wind up with a problem whereby very large objects
2749 * unnecessarily blow away our inactive and cache queues.
2751 * The solution is to move the pages based on a fixed weighting. We
2752 * either leave them alone, deactivate them, or move them to the cache,
2753 * where moving them to the cache has the highest weighting.
2754 * By forcing some pages into other queues we eventually force the
2755 * system to balance the queues, potentially recovering other unrelated
2756 * space from active. The idea is to not force this to happen too
2757 * often.
2759 * The page must be busied.
2761 void
2762 vm_page_dontneed(vm_page_t m)
2764 static int dnweight;
2765 int dnw;
2766 int head;
2768 dnw = ++dnweight;
2771 * occassionally leave the page alone
2773 if ((dnw & 0x01F0) == 0 ||
2774 m->queue - m->pc == PQ_INACTIVE ||
2775 m->queue - m->pc == PQ_CACHE
2777 if (m->act_count >= ACT_INIT)
2778 --m->act_count;
2779 return;
2783 * If vm_page_dontneed() is inactivating a page, it must clear
2784 * the referenced flag; otherwise the pagedaemon will see references
2785 * on the page in the inactive queue and reactivate it. Until the
2786 * page can move to the cache queue, madvise's job is not done.
2788 vm_page_flag_clear(m, PG_REFERENCED);
2789 pmap_clear_reference(m);
2791 if (m->dirty == 0)
2792 vm_page_test_dirty(m);
2794 if (m->dirty || (dnw & 0x0070) == 0) {
2796 * Deactivate the page 3 times out of 32.
2798 head = 0;
2799 } else {
2801 * Cache the page 28 times out of every 32. Note that
2802 * the page is deactivated instead of cached, but placed
2803 * at the head of the queue instead of the tail.
2805 head = 1;
2807 vm_page_spin_lock(m);
2808 _vm_page_deactivate_locked(m, head);
2809 vm_page_spin_unlock(m);
2813 * These routines manipulate the 'soft busy' count for a page. A soft busy
2814 * is almost like PG_BUSY except that it allows certain compatible operations
2815 * to occur on the page while it is busy. For example, a page undergoing a
2816 * write can still be mapped read-only.
2818 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2819 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2820 * busy bit is cleared.
2822 * The caller must hold the page BUSY when making these two calls.
2824 void
2825 vm_page_io_start(vm_page_t m)
2827 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2828 atomic_add_char(&m->busy, 1);
2829 vm_page_flag_set(m, PG_SBUSY);
2832 void
2833 vm_page_io_finish(vm_page_t m)
2835 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2836 atomic_subtract_char(&m->busy, 1);
2837 if (m->busy == 0)
2838 vm_page_flag_clear(m, PG_SBUSY);
2842 * Indicate that a clean VM page requires a filesystem commit and cannot
2843 * be reused. Used by tmpfs.
2845 void
2846 vm_page_need_commit(vm_page_t m)
2848 vm_page_flag_set(m, PG_NEED_COMMIT);
2849 vm_object_set_writeable_dirty(m->object);
2852 void
2853 vm_page_clear_commit(vm_page_t m)
2855 vm_page_flag_clear(m, PG_NEED_COMMIT);
2859 * Grab a page, blocking if it is busy and allocating a page if necessary.
2860 * A busy page is returned or NULL. The page may or may not be valid and
2861 * might not be on a queue (the caller is responsible for the disposition of
2862 * the page).
2864 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2865 * page will be zero'd and marked valid.
2867 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2868 * valid even if it already exists.
2870 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2871 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2872 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2874 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2875 * always returned if we had blocked.
2877 * This routine may not be called from an interrupt.
2879 * No other requirements.
2881 vm_page_t
2882 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2884 vm_page_t m;
2885 int error;
2886 int shared = 1;
2888 KKASSERT(allocflags &
2889 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2890 vm_object_hold_shared(object);
2891 for (;;) {
2892 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2893 if (error) {
2894 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2895 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2896 m = NULL;
2897 break;
2899 /* retry */
2900 } else if (m == NULL) {
2901 if (shared) {
2902 vm_object_upgrade(object);
2903 shared = 0;
2905 if (allocflags & VM_ALLOC_RETRY)
2906 allocflags |= VM_ALLOC_NULL_OK;
2907 m = vm_page_alloc(object, pindex,
2908 allocflags & ~VM_ALLOC_RETRY);
2909 if (m)
2910 break;
2911 vm_wait(0);
2912 if ((allocflags & VM_ALLOC_RETRY) == 0)
2913 goto failed;
2914 } else {
2915 /* m found */
2916 break;
2921 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2923 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2924 * valid even if already valid.
2926 * NOTE! We have removed all of the PG_ZERO optimizations and also
2927 * removed the idle zeroing code. These optimizations actually
2928 * slow things down on modern cpus because the zerod area is
2929 * likely uncached, placing a memory-access burden on the
2930 * accesors taking the fault.
2932 * By always zeroing the page in-line with the fault, no
2933 * dynamic ram reads are needed and the caches are hot, ready
2934 * for userland to access the memory.
2936 if (m->valid == 0) {
2937 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2938 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2939 m->valid = VM_PAGE_BITS_ALL;
2941 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2942 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2943 m->valid = VM_PAGE_BITS_ALL;
2945 failed:
2946 vm_object_drop(object);
2947 return(m);
2951 * Mapping function for valid bits or for dirty bits in
2952 * a page. May not block.
2954 * Inputs are required to range within a page.
2956 * No requirements.
2957 * Non blocking.
2960 vm_page_bits(int base, int size)
2962 int first_bit;
2963 int last_bit;
2965 KASSERT(
2966 base + size <= PAGE_SIZE,
2967 ("vm_page_bits: illegal base/size %d/%d", base, size)
2970 if (size == 0) /* handle degenerate case */
2971 return(0);
2973 first_bit = base >> DEV_BSHIFT;
2974 last_bit = (base + size - 1) >> DEV_BSHIFT;
2976 return ((2 << last_bit) - (1 << first_bit));
2980 * Sets portions of a page valid and clean. The arguments are expected
2981 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2982 * of any partial chunks touched by the range. The invalid portion of
2983 * such chunks will be zero'd.
2985 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2986 * align base to DEV_BSIZE so as not to mark clean a partially
2987 * truncated device block. Otherwise the dirty page status might be
2988 * lost.
2990 * This routine may not block.
2992 * (base + size) must be less then or equal to PAGE_SIZE.
2994 static void
2995 _vm_page_zero_valid(vm_page_t m, int base, int size)
2997 int frag;
2998 int endoff;
3000 if (size == 0) /* handle degenerate case */
3001 return;
3004 * If the base is not DEV_BSIZE aligned and the valid
3005 * bit is clear, we have to zero out a portion of the
3006 * first block.
3009 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3010 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3012 pmap_zero_page_area(
3013 VM_PAGE_TO_PHYS(m),
3014 frag,
3015 base - frag
3020 * If the ending offset is not DEV_BSIZE aligned and the
3021 * valid bit is clear, we have to zero out a portion of
3022 * the last block.
3025 endoff = base + size;
3027 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3028 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3030 pmap_zero_page_area(
3031 VM_PAGE_TO_PHYS(m),
3032 endoff,
3033 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3039 * Set valid, clear dirty bits. If validating the entire
3040 * page we can safely clear the pmap modify bit. We also
3041 * use this opportunity to clear the PG_NOSYNC flag. If a process
3042 * takes a write fault on a MAP_NOSYNC memory area the flag will
3043 * be set again.
3045 * We set valid bits inclusive of any overlap, but we can only
3046 * clear dirty bits for DEV_BSIZE chunks that are fully within
3047 * the range.
3049 * Page must be busied?
3050 * No other requirements.
3052 void
3053 vm_page_set_valid(vm_page_t m, int base, int size)
3055 _vm_page_zero_valid(m, base, size);
3056 m->valid |= vm_page_bits(base, size);
3061 * Set valid bits and clear dirty bits.
3063 * Page must be busied by caller.
3065 * NOTE: This function does not clear the pmap modified bit.
3066 * Also note that e.g. NFS may use a byte-granular base
3067 * and size.
3069 * No other requirements.
3071 void
3072 vm_page_set_validclean(vm_page_t m, int base, int size)
3074 int pagebits;
3076 _vm_page_zero_valid(m, base, size);
3077 pagebits = vm_page_bits(base, size);
3078 m->valid |= pagebits;
3079 m->dirty &= ~pagebits;
3080 if (base == 0 && size == PAGE_SIZE) {
3081 /*pmap_clear_modify(m);*/
3082 vm_page_flag_clear(m, PG_NOSYNC);
3087 * Set valid & dirty. Used by buwrite()
3089 * Page must be busied by caller.
3091 void
3092 vm_page_set_validdirty(vm_page_t m, int base, int size)
3094 int pagebits;
3096 pagebits = vm_page_bits(base, size);
3097 m->valid |= pagebits;
3098 m->dirty |= pagebits;
3099 if (m->object)
3100 vm_object_set_writeable_dirty(m->object);
3104 * Clear dirty bits.
3106 * NOTE: This function does not clear the pmap modified bit.
3107 * Also note that e.g. NFS may use a byte-granular base
3108 * and size.
3110 * Page must be busied?
3111 * No other requirements.
3113 void
3114 vm_page_clear_dirty(vm_page_t m, int base, int size)
3116 m->dirty &= ~vm_page_bits(base, size);
3117 if (base == 0 && size == PAGE_SIZE) {
3118 /*pmap_clear_modify(m);*/
3119 vm_page_flag_clear(m, PG_NOSYNC);
3124 * Make the page all-dirty.
3126 * Also make sure the related object and vnode reflect the fact that the
3127 * object may now contain a dirty page.
3129 * Page must be busied?
3130 * No other requirements.
3132 void
3133 vm_page_dirty(vm_page_t m)
3135 #ifdef INVARIANTS
3136 int pqtype = m->queue - m->pc;
3137 #endif
3138 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3139 ("vm_page_dirty: page in free/cache queue!"));
3140 if (m->dirty != VM_PAGE_BITS_ALL) {
3141 m->dirty = VM_PAGE_BITS_ALL;
3142 if (m->object)
3143 vm_object_set_writeable_dirty(m->object);
3148 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3149 * valid and dirty bits for the effected areas are cleared.
3151 * Page must be busied?
3152 * Does not block.
3153 * No other requirements.
3155 void
3156 vm_page_set_invalid(vm_page_t m, int base, int size)
3158 int bits;
3160 bits = vm_page_bits(base, size);
3161 m->valid &= ~bits;
3162 m->dirty &= ~bits;
3163 atomic_add_int(&m->object->generation, 1);
3167 * The kernel assumes that the invalid portions of a page contain
3168 * garbage, but such pages can be mapped into memory by user code.
3169 * When this occurs, we must zero out the non-valid portions of the
3170 * page so user code sees what it expects.
3172 * Pages are most often semi-valid when the end of a file is mapped
3173 * into memory and the file's size is not page aligned.
3175 * Page must be busied?
3176 * No other requirements.
3178 void
3179 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3181 int b;
3182 int i;
3185 * Scan the valid bits looking for invalid sections that
3186 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3187 * valid bit may be set ) have already been zerod by
3188 * vm_page_set_validclean().
3190 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3191 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3192 (m->valid & (1 << i))
3194 if (i > b) {
3195 pmap_zero_page_area(
3196 VM_PAGE_TO_PHYS(m),
3197 b << DEV_BSHIFT,
3198 (i - b) << DEV_BSHIFT
3201 b = i + 1;
3206 * setvalid is TRUE when we can safely set the zero'd areas
3207 * as being valid. We can do this if there are no cache consistency
3208 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3210 if (setvalid)
3211 m->valid = VM_PAGE_BITS_ALL;
3215 * Is a (partial) page valid? Note that the case where size == 0
3216 * will return FALSE in the degenerate case where the page is entirely
3217 * invalid, and TRUE otherwise.
3219 * Does not block.
3220 * No other requirements.
3223 vm_page_is_valid(vm_page_t m, int base, int size)
3225 int bits = vm_page_bits(base, size);
3227 if (m->valid && ((m->valid & bits) == bits))
3228 return 1;
3229 else
3230 return 0;
3234 * update dirty bits from pmap/mmu. May not block.
3236 * Caller must hold the page busy
3238 void
3239 vm_page_test_dirty(vm_page_t m)
3241 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3242 vm_page_dirty(m);
3247 * Register an action, associating it with its vm_page
3249 void
3250 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3252 struct vm_page_action_hash *hash;
3253 int hv;
3255 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3256 hash = &action_hash[hv];
3258 lockmgr(&hash->lk, LK_EXCLUSIVE);
3259 vm_page_flag_set(action->m, PG_ACTIONLIST);
3260 action->event = event;
3261 LIST_INSERT_HEAD(&hash->list, action, entry);
3262 lockmgr(&hash->lk, LK_RELEASE);
3266 * Unregister an action, disassociating it from its related vm_page
3268 void
3269 vm_page_unregister_action(vm_page_action_t action)
3271 struct vm_page_action_hash *hash;
3272 int hv;
3274 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3275 hash = &action_hash[hv];
3276 lockmgr(&hash->lk, LK_EXCLUSIVE);
3277 if (action->event != VMEVENT_NONE) {
3278 action->event = VMEVENT_NONE;
3279 LIST_REMOVE(action, entry);
3281 if (LIST_EMPTY(&hash->list))
3282 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3284 lockmgr(&hash->lk, LK_RELEASE);
3288 * Issue an event on a VM page. Corresponding action structures are
3289 * removed from the page's list and called.
3291 * If the vm_page has no more pending action events we clear its
3292 * PG_ACTIONLIST flag.
3294 void
3295 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3297 struct vm_page_action_hash *hash;
3298 struct vm_page_action *scan;
3299 struct vm_page_action *next;
3300 int hv;
3301 int all;
3303 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3304 hash = &action_hash[hv];
3305 all = 1;
3307 lockmgr(&hash->lk, LK_EXCLUSIVE);
3308 LIST_FOREACH_MUTABLE(scan, &hash->list, entry, next) {
3309 if (scan->m == m) {
3310 if (scan->event == event) {
3311 scan->event = VMEVENT_NONE;
3312 LIST_REMOVE(scan, entry);
3313 scan->func(m, scan);
3314 /* XXX */
3315 } else {
3316 all = 0;
3320 if (all)
3321 vm_page_flag_clear(m, PG_ACTIONLIST);
3322 lockmgr(&hash->lk, LK_RELEASE);
3325 #include "opt_ddb.h"
3326 #ifdef DDB
3327 #include <sys/kernel.h>
3329 #include <ddb/ddb.h>
3331 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3333 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3334 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3335 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3336 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3337 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3338 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3339 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3340 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3341 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3342 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3345 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3347 int i;
3348 db_printf("PQ_FREE:");
3349 for (i = 0; i < PQ_L2_SIZE; i++) {
3350 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3352 db_printf("\n");
3354 db_printf("PQ_CACHE:");
3355 for(i = 0; i < PQ_L2_SIZE; i++) {
3356 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3358 db_printf("\n");
3360 db_printf("PQ_ACTIVE:");
3361 for(i = 0; i < PQ_L2_SIZE; i++) {
3362 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3364 db_printf("\n");
3366 db_printf("PQ_INACTIVE:");
3367 for(i = 0; i < PQ_L2_SIZE; i++) {
3368 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3370 db_printf("\n");
3372 #endif /* DDB */