libm: Import fdim{,f,l} functions from FreeBSD.
[dragonfly.git] / contrib / hostapd-0.5.8 / md4.c
blob41c84a3a7b5d075a09e8291b5ad74d228065705c
1 /*
2 * MD4 hash implementation
3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include "includes.h"
17 #include "common.h"
18 #include "crypto.h"
21 #ifdef INTERNAL_MD4
23 #define MD4_BLOCK_LENGTH 64
24 #define MD4_DIGEST_LENGTH 16
26 typedef struct MD4Context {
27 u32 state[4]; /* state */
28 u64 count; /* number of bits, mod 2^64 */
29 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */
30 } MD4_CTX;
33 static void MD4Init(MD4_CTX *ctx);
34 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
35 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
38 void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
40 MD4_CTX ctx;
41 size_t i;
43 MD4Init(&ctx);
44 for (i = 0; i < num_elem; i++)
45 MD4Update(&ctx, addr[i], len[i]);
46 MD4Final(mac, &ctx);
50 /* ===== start - public domain MD4 implementation ===== */
51 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */
54 * This code implements the MD4 message-digest algorithm.
55 * The algorithm is due to Ron Rivest. This code was
56 * written by Colin Plumb in 1993, no copyright is claimed.
57 * This code is in the public domain; do with it what you wish.
58 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
60 * Equivalent code is available from RSA Data Security, Inc.
61 * This code has been tested against that, and is equivalent,
62 * except that you don't need to include two pages of legalese
63 * with every copy.
65 * To compute the message digest of a chunk of bytes, declare an
66 * MD4Context structure, pass it to MD4Init, call MD4Update as
67 * needed on buffers full of bytes, and then call MD4Final, which
68 * will fill a supplied 16-byte array with the digest.
71 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1)
74 static void
75 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
77 #define PUT_64BIT_LE(cp, value) do { \
78 (cp)[7] = (value) >> 56; \
79 (cp)[6] = (value) >> 48; \
80 (cp)[5] = (value) >> 40; \
81 (cp)[4] = (value) >> 32; \
82 (cp)[3] = (value) >> 24; \
83 (cp)[2] = (value) >> 16; \
84 (cp)[1] = (value) >> 8; \
85 (cp)[0] = (value); } while (0)
87 #define PUT_32BIT_LE(cp, value) do { \
88 (cp)[3] = (value) >> 24; \
89 (cp)[2] = (value) >> 16; \
90 (cp)[1] = (value) >> 8; \
91 (cp)[0] = (value); } while (0)
93 static u8 PADDING[MD4_BLOCK_LENGTH] = {
94 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
95 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
96 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
100 * Start MD4 accumulation.
101 * Set bit count to 0 and buffer to mysterious initialization constants.
103 static void MD4Init(MD4_CTX *ctx)
105 ctx->count = 0;
106 ctx->state[0] = 0x67452301;
107 ctx->state[1] = 0xefcdab89;
108 ctx->state[2] = 0x98badcfe;
109 ctx->state[3] = 0x10325476;
113 * Update context to reflect the concatenation of another buffer full
114 * of bytes.
116 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
118 size_t have, need;
120 /* Check how many bytes we already have and how many more we need. */
121 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
122 need = MD4_BLOCK_LENGTH - have;
124 /* Update bitcount */
125 ctx->count += (u64)len << 3;
127 if (len >= need) {
128 if (have != 0) {
129 os_memcpy(ctx->buffer + have, input, need);
130 MD4Transform(ctx->state, ctx->buffer);
131 input += need;
132 len -= need;
133 have = 0;
136 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */
137 while (len >= MD4_BLOCK_LENGTH) {
138 MD4Transform(ctx->state, input);
139 input += MD4_BLOCK_LENGTH;
140 len -= MD4_BLOCK_LENGTH;
144 /* Handle any remaining bytes of data. */
145 if (len != 0)
146 os_memcpy(ctx->buffer + have, input, len);
150 * Pad pad to 64-byte boundary with the bit pattern
151 * 1 0* (64-bit count of bits processed, MSB-first)
153 static void MD4Pad(MD4_CTX *ctx)
155 u8 count[8];
156 size_t padlen;
158 /* Convert count to 8 bytes in little endian order. */
159 PUT_64BIT_LE(count, ctx->count);
161 /* Pad out to 56 mod 64. */
162 padlen = MD4_BLOCK_LENGTH -
163 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
164 if (padlen < 1 + 8)
165 padlen += MD4_BLOCK_LENGTH;
166 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
167 MD4Update(ctx, count, 8);
171 * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
173 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
175 int i;
177 MD4Pad(ctx);
178 if (digest != NULL) {
179 for (i = 0; i < 4; i++)
180 PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
181 os_memset(ctx, 0, sizeof(*ctx));
186 /* The three core functions - F1 is optimized somewhat */
188 /* #define F1(x, y, z) (x & y | ~x & z) */
189 #define F1(x, y, z) (z ^ (x & (y ^ z)))
190 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
191 #define F3(x, y, z) (x ^ y ^ z)
193 /* This is the central step in the MD4 algorithm. */
194 #define MD4STEP(f, w, x, y, z, data, s) \
195 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )
198 * The core of the MD4 algorithm, this alters an existing MD4 hash to
199 * reflect the addition of 16 longwords of new data. MD4Update blocks
200 * the data and converts bytes into longwords for this routine.
202 static void
203 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
205 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
207 #if BYTE_ORDER == LITTLE_ENDIAN
208 os_memcpy(in, block, sizeof(in));
209 #else
210 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
211 in[a] = (u32)(
212 (u32)(block[a * 4 + 0]) |
213 (u32)(block[a * 4 + 1]) << 8 |
214 (u32)(block[a * 4 + 2]) << 16 |
215 (u32)(block[a * 4 + 3]) << 24);
217 #endif
219 a = state[0];
220 b = state[1];
221 c = state[2];
222 d = state[3];
224 MD4STEP(F1, a, b, c, d, in[ 0], 3);
225 MD4STEP(F1, d, a, b, c, in[ 1], 7);
226 MD4STEP(F1, c, d, a, b, in[ 2], 11);
227 MD4STEP(F1, b, c, d, a, in[ 3], 19);
228 MD4STEP(F1, a, b, c, d, in[ 4], 3);
229 MD4STEP(F1, d, a, b, c, in[ 5], 7);
230 MD4STEP(F1, c, d, a, b, in[ 6], 11);
231 MD4STEP(F1, b, c, d, a, in[ 7], 19);
232 MD4STEP(F1, a, b, c, d, in[ 8], 3);
233 MD4STEP(F1, d, a, b, c, in[ 9], 7);
234 MD4STEP(F1, c, d, a, b, in[10], 11);
235 MD4STEP(F1, b, c, d, a, in[11], 19);
236 MD4STEP(F1, a, b, c, d, in[12], 3);
237 MD4STEP(F1, d, a, b, c, in[13], 7);
238 MD4STEP(F1, c, d, a, b, in[14], 11);
239 MD4STEP(F1, b, c, d, a, in[15], 19);
241 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3);
242 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5);
243 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9);
244 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
245 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3);
246 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5);
247 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9);
248 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
249 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3);
250 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5);
251 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9);
252 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
253 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3);
254 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5);
255 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9);
256 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
258 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3);
259 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9);
260 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
261 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
262 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3);
263 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9);
264 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
265 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
266 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3);
267 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9);
268 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
269 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
270 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3);
271 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9);
272 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
273 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
275 state[0] += a;
276 state[1] += b;
277 state[2] += c;
278 state[3] += d;
280 /* ===== end - public domain MD4 implementation ===== */
282 #endif /* INTERNAL_MD4 */