i4b(4): Initialize callout handles before first accessing them.
[dragonfly.git] / sys / kern / kern_time.c
blob8383eae11d1136617bc2aee4a84ecfabdd1b21fe
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <sys/msgport2.h>
56 #include <sys/thread2.h>
58 struct timezone tz;
61 * Time of day and interval timer support.
63 * These routines provide the kernel entry points to get and set
64 * the time-of-day and per-process interval timers. Subroutines
65 * here provide support for adding and subtracting timeval structures
66 * and decrementing interval timers, optionally reloading the interval
67 * timers when they expire.
70 static int nanosleep1 (struct timespec *rqt,
71 struct timespec *rmt);
72 static int settime (struct timeval *);
73 static void timevalfix (struct timeval *);
75 static int sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
78 static int
79 settime(struct timeval *tv)
81 struct timeval delta, tv1, tv2;
82 static struct timeval maxtime, laststep;
83 struct timespec ts;
84 int origcpu;
86 if ((origcpu = mycpu->gd_cpuid) != 0)
87 lwkt_setcpu_self(globaldata_find(0));
89 crit_enter();
90 microtime(&tv1);
91 delta = *tv;
92 timevalsub(&delta, &tv1);
95 * If the system is secure, we do not allow the time to be
96 * set to a value earlier than 1 second less than the highest
97 * time we have yet seen. The worst a miscreant can do in
98 * this circumstance is "freeze" time. He couldn't go
99 * back to the past.
101 * We similarly do not allow the clock to be stepped more
102 * than one second, nor more than once per second. This allows
103 * a miscreant to make the clock march double-time, but no worse.
105 if (securelevel > 1) {
106 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 * Update maxtime to latest time we've seen.
110 if (tv1.tv_sec > maxtime.tv_sec)
111 maxtime = tv1;
112 tv2 = *tv;
113 timevalsub(&tv2, &maxtime);
114 if (tv2.tv_sec < -1) {
115 tv->tv_sec = maxtime.tv_sec - 1;
116 kprintf("Time adjustment clamped to -1 second\n");
118 } else {
119 if (tv1.tv_sec == laststep.tv_sec) {
120 crit_exit();
121 return (EPERM);
123 if (delta.tv_sec > 1) {
124 tv->tv_sec = tv1.tv_sec + 1;
125 kprintf("Time adjustment clamped to +1 second\n");
127 laststep = *tv;
131 ts.tv_sec = tv->tv_sec;
132 ts.tv_nsec = tv->tv_usec * 1000;
133 set_timeofday(&ts);
134 crit_exit();
136 if (origcpu != 0)
137 lwkt_setcpu_self(globaldata_find(origcpu));
139 resettodr();
140 return (0);
143 /* ARGSUSED */
145 sys_clock_gettime(struct clock_gettime_args *uap)
147 struct timespec ats;
149 switch(uap->clock_id) {
150 case CLOCK_REALTIME:
151 nanotime(&ats);
152 return (copyout(&ats, uap->tp, sizeof(ats)));
153 case CLOCK_MONOTONIC:
154 nanouptime(&ats);
155 return (copyout(&ats, uap->tp, sizeof(ats)));
156 default:
157 return (EINVAL);
161 /* ARGSUSED */
163 sys_clock_settime(struct clock_settime_args *uap)
165 struct thread *td = curthread;
166 struct timeval atv;
167 struct timespec ats;
168 int error;
170 if ((error = priv_check(td, PRIV_ROOT)) != 0)
171 return (error);
172 switch(uap->clock_id) {
173 case CLOCK_REALTIME:
174 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
175 return (error);
176 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
177 return (EINVAL);
178 /* XXX Don't convert nsec->usec and back */
179 TIMESPEC_TO_TIMEVAL(&atv, &ats);
180 error = settime(&atv);
181 return (error);
182 default:
183 return (EINVAL);
188 sys_clock_getres(struct clock_getres_args *uap)
190 struct timespec ts;
192 switch(uap->clock_id) {
193 case CLOCK_REALTIME:
194 case CLOCK_MONOTONIC:
196 * Round up the result of the division cheaply
197 * by adding 1. Rounding up is especially important
198 * if rounding down would give 0. Perfect rounding
199 * is unimportant.
201 ts.tv_sec = 0;
202 ts.tv_nsec = 1000000000 / sys_cputimer->freq + 1;
203 return(copyout(&ts, uap->tp, sizeof(ts)));
204 default:
205 return(EINVAL);
210 * nanosleep1()
212 * This is a general helper function for nanosleep() (aka sleep() aka
213 * usleep()).
215 * If there is less then one tick's worth of time left and
216 * we haven't done a yield, or the remaining microseconds is
217 * ridiculously low, do a yield. This avoids having
218 * to deal with systimer overheads when the system is under
219 * heavy loads. If we have done a yield already then use
220 * a systimer and an uninterruptable thread wait.
222 * If there is more then a tick's worth of time left,
223 * calculate the baseline ticks and use an interruptable
224 * tsleep, then handle the fine-grained delay on the next
225 * loop. This usually results in two sleeps occuring, a long one
226 * and a short one.
228 static void
229 ns1_systimer(systimer_t info)
231 lwkt_schedule(info->data);
234 static int
235 nanosleep1(struct timespec *rqt, struct timespec *rmt)
237 static int nanowait;
238 struct timespec ts, ts2, ts3;
239 struct timeval tv;
240 int error;
241 int tried_yield;
243 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
244 return (EINVAL);
245 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
246 return (0);
247 nanouptime(&ts);
248 timespecadd(&ts, rqt); /* ts = target timestamp compare */
249 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
250 tried_yield = 0;
252 for (;;) {
253 int ticks;
254 struct systimer info;
256 ticks = tv.tv_usec / tick; /* approximate */
258 if (tv.tv_sec == 0 && ticks == 0) {
259 thread_t td = curthread;
260 if (tried_yield || tv.tv_usec < sleep_hard_us) {
261 tried_yield = 0;
262 uio_yield();
263 } else {
264 crit_enter_quick(td);
265 systimer_init_oneshot(&info, ns1_systimer,
266 td, tv.tv_usec);
267 lwkt_deschedule_self(td);
268 crit_exit_quick(td);
269 lwkt_switch();
270 systimer_del(&info); /* make sure it's gone */
272 error = iscaught(td->td_lwp);
273 } else if (tv.tv_sec == 0) {
274 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
275 } else {
276 ticks = tvtohz_low(&tv); /* also handles overflow */
277 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
279 nanouptime(&ts2);
280 if (error && error != EWOULDBLOCK) {
281 if (error == ERESTART)
282 error = EINTR;
283 if (rmt != NULL) {
284 timespecsub(&ts, &ts2);
285 if (ts.tv_sec < 0)
286 timespecclear(&ts);
287 *rmt = ts;
289 return (error);
291 if (timespeccmp(&ts2, &ts, >=))
292 return (0);
293 ts3 = ts;
294 timespecsub(&ts3, &ts2);
295 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
299 /* ARGSUSED */
301 sys_nanosleep(struct nanosleep_args *uap)
303 int error;
304 struct timespec rqt;
305 struct timespec rmt;
307 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
308 if (error)
309 return (error);
311 error = nanosleep1(&rqt, &rmt);
314 * copyout the residual if nanosleep was interrupted.
316 if (error && uap->rmtp)
317 error = copyout(&rmt, uap->rmtp, sizeof(rmt));
318 return (error);
321 /* ARGSUSED */
323 sys_gettimeofday(struct gettimeofday_args *uap)
325 struct timeval atv;
326 int error = 0;
328 if (uap->tp) {
329 microtime(&atv);
330 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
331 sizeof (atv))))
332 return (error);
334 if (uap->tzp)
335 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
336 sizeof (tz));
337 return (error);
340 /* ARGSUSED */
342 sys_settimeofday(struct settimeofday_args *uap)
344 struct thread *td = curthread;
345 struct timeval atv;
346 struct timezone atz;
347 int error;
349 if ((error = priv_check(td, PRIV_ROOT)))
350 return (error);
351 /* Verify all parameters before changing time. */
352 if (uap->tv) {
353 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
354 sizeof(atv))))
355 return (error);
356 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
357 return (EINVAL);
359 if (uap->tzp &&
360 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
361 return (error);
362 if (uap->tv && (error = settime(&atv)))
363 return (error);
364 if (uap->tzp)
365 tz = atz;
366 return (0);
369 static void
370 kern_adjtime_common(void)
372 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
373 (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
374 ntp_tick_delta = ntp_delta;
375 else if (ntp_delta > ntp_big_delta)
376 ntp_tick_delta = 10 * ntp_default_tick_delta;
377 else if (ntp_delta < -ntp_big_delta)
378 ntp_tick_delta = -10 * ntp_default_tick_delta;
379 else if (ntp_delta > 0)
380 ntp_tick_delta = ntp_default_tick_delta;
381 else
382 ntp_tick_delta = -ntp_default_tick_delta;
385 void
386 kern_adjtime(int64_t delta, int64_t *odelta)
388 int origcpu;
390 if ((origcpu = mycpu->gd_cpuid) != 0)
391 lwkt_setcpu_self(globaldata_find(0));
393 crit_enter();
394 *odelta = ntp_delta;
395 ntp_delta = delta;
396 kern_adjtime_common();
397 crit_exit();
399 if (origcpu != 0)
400 lwkt_setcpu_self(globaldata_find(origcpu));
403 static void
404 kern_get_ntp_delta(int64_t *delta)
406 int origcpu;
408 if ((origcpu = mycpu->gd_cpuid) != 0)
409 lwkt_setcpu_self(globaldata_find(0));
411 crit_enter();
412 *delta = ntp_delta;
413 crit_exit();
415 if (origcpu != 0)
416 lwkt_setcpu_self(globaldata_find(origcpu));
419 void
420 kern_reladjtime(int64_t delta)
422 int origcpu;
424 if ((origcpu = mycpu->gd_cpuid) != 0)
425 lwkt_setcpu_self(globaldata_find(0));
427 crit_enter();
428 ntp_delta += delta;
429 kern_adjtime_common();
430 crit_exit();
432 if (origcpu != 0)
433 lwkt_setcpu_self(globaldata_find(origcpu));
436 static void
437 kern_adjfreq(int64_t rate)
439 int origcpu;
441 if ((origcpu = mycpu->gd_cpuid) != 0)
442 lwkt_setcpu_self(globaldata_find(0));
444 crit_enter();
445 ntp_tick_permanent = rate;
446 crit_exit();
448 if (origcpu != 0)
449 lwkt_setcpu_self(globaldata_find(origcpu));
452 /* ARGSUSED */
454 sys_adjtime(struct adjtime_args *uap)
456 struct thread *td = curthread;
457 struct timeval atv;
458 int64_t ndelta, odelta;
459 int error;
461 if ((error = priv_check(td, PRIV_ROOT)))
462 return (error);
463 if ((error =
464 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
465 return (error);
468 * Compute the total correction and the rate at which to apply it.
469 * Round the adjustment down to a whole multiple of the per-tick
470 * delta, so that after some number of incremental changes in
471 * hardclock(), tickdelta will become zero, lest the correction
472 * overshoot and start taking us away from the desired final time.
474 ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
475 kern_adjtime(ndelta, &odelta);
477 if (uap->olddelta) {
478 atv.tv_sec = odelta / 1000000000;
479 atv.tv_usec = odelta % 1000000000 / 1000;
480 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
481 sizeof(struct timeval));
483 return (0);
486 static int
487 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
489 int64_t delta;
490 int error;
492 if (req->newptr != NULL) {
493 if (priv_check(curthread, PRIV_ROOT))
494 return (EPERM);
495 error = SYSCTL_IN(req, &delta, sizeof(delta));
496 if (error)
497 return (error);
498 kern_reladjtime(delta);
501 if (req->oldptr)
502 kern_get_ntp_delta(&delta);
503 error = SYSCTL_OUT(req, &delta, sizeof(delta));
504 return (error);
508 * delta is in nanoseconds.
510 static int
511 sysctl_delta(SYSCTL_HANDLER_ARGS)
513 int64_t delta, old_delta;
514 int error;
516 if (req->newptr != NULL) {
517 if (priv_check(curthread, PRIV_ROOT))
518 return (EPERM);
519 error = SYSCTL_IN(req, &delta, sizeof(delta));
520 if (error)
521 return (error);
522 kern_adjtime(delta, &old_delta);
525 if (req->oldptr != NULL)
526 kern_get_ntp_delta(&old_delta);
527 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
528 return (error);
532 * frequency is in nanoseconds per second shifted left 32.
533 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
535 static int
536 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
538 int64_t freqdelta;
539 int error;
541 if (req->newptr != NULL) {
542 if (priv_check(curthread, PRIV_ROOT))
543 return (EPERM);
544 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
545 if (error)
546 return (error);
548 freqdelta /= hz;
549 kern_adjfreq(freqdelta);
552 if (req->oldptr != NULL)
553 freqdelta = ntp_tick_permanent * hz;
554 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
555 if (error)
556 return (error);
558 return (0);
561 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
562 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
563 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
564 sysctl_adjfreq, "Q", "permanent correction per second");
565 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
566 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
567 sysctl_delta, "Q", "one-time delta");
568 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
569 &ntp_big_delta, sizeof(ntp_big_delta), "Q",
570 "threshold for fast adjustment");
571 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
572 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
573 "per-tick adjustment");
574 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
575 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
576 "default per-tick adjustment");
577 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
578 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
579 "next leap second");
580 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
581 &ntp_leap_insert, 0, "insert or remove leap second");
582 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
583 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
584 sysctl_adjtime, "Q", "relative adjust for delta");
587 * Get value of an interval timer. The process virtual and
588 * profiling virtual time timers are kept in the p_stats area, since
589 * they can be swapped out. These are kept internally in the
590 * way they are specified externally: in time until they expire.
592 * The real time interval timer is kept in the process table slot
593 * for the process, and its value (it_value) is kept as an
594 * absolute time rather than as a delta, so that it is easy to keep
595 * periodic real-time signals from drifting.
597 * Virtual time timers are processed in the hardclock() routine of
598 * kern_clock.c. The real time timer is processed by a timeout
599 * routine, called from the softclock() routine. Since a callout
600 * may be delayed in real time due to interrupt processing in the system,
601 * it is possible for the real time timeout routine (realitexpire, given below),
602 * to be delayed in real time past when it is supposed to occur. It
603 * does not suffice, therefore, to reload the real timer .it_value from the
604 * real time timers .it_interval. Rather, we compute the next time in
605 * absolute time the timer should go off.
607 /* ARGSUSED */
609 sys_getitimer(struct getitimer_args *uap)
611 struct proc *p = curproc;
612 struct timeval ctv;
613 struct itimerval aitv;
615 if (uap->which > ITIMER_PROF)
616 return (EINVAL);
617 crit_enter();
618 if (uap->which == ITIMER_REAL) {
620 * Convert from absolute to relative time in .it_value
621 * part of real time timer. If time for real time timer
622 * has passed return 0, else return difference between
623 * current time and time for the timer to go off.
625 aitv = p->p_realtimer;
626 if (timevalisset(&aitv.it_value)) {
627 getmicrouptime(&ctv);
628 if (timevalcmp(&aitv.it_value, &ctv, <))
629 timevalclear(&aitv.it_value);
630 else
631 timevalsub(&aitv.it_value, &ctv);
633 } else {
634 aitv = p->p_timer[uap->which];
636 crit_exit();
637 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
638 sizeof (struct itimerval)));
641 /* ARGSUSED */
643 sys_setitimer(struct setitimer_args *uap)
645 struct itimerval aitv;
646 struct timeval ctv;
647 struct itimerval *itvp;
648 struct proc *p = curproc;
649 int error;
651 if (uap->which > ITIMER_PROF)
652 return (EINVAL);
653 itvp = uap->itv;
654 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
655 sizeof(struct itimerval))))
656 return (error);
657 if ((uap->itv = uap->oitv) &&
658 (error = sys_getitimer((struct getitimer_args *)uap)))
659 return (error);
660 if (itvp == 0)
661 return (0);
662 if (itimerfix(&aitv.it_value))
663 return (EINVAL);
664 if (!timevalisset(&aitv.it_value))
665 timevalclear(&aitv.it_interval);
666 else if (itimerfix(&aitv.it_interval))
667 return (EINVAL);
668 crit_enter();
669 if (uap->which == ITIMER_REAL) {
670 if (timevalisset(&p->p_realtimer.it_value))
671 callout_stop(&p->p_ithandle);
672 if (timevalisset(&aitv.it_value))
673 callout_reset(&p->p_ithandle,
674 tvtohz_high(&aitv.it_value), realitexpire, p);
675 getmicrouptime(&ctv);
676 timevaladd(&aitv.it_value, &ctv);
677 p->p_realtimer = aitv;
678 } else {
679 p->p_timer[uap->which] = aitv;
681 crit_exit();
682 return (0);
686 * Real interval timer expired:
687 * send process whose timer expired an alarm signal.
688 * If time is not set up to reload, then just return.
689 * Else compute next time timer should go off which is > current time.
690 * This is where delay in processing this timeout causes multiple
691 * SIGALRM calls to be compressed into one.
692 * tvtohz_high() always adds 1 to allow for the time until the next clock
693 * interrupt being strictly less than 1 clock tick, but we don't want
694 * that here since we want to appear to be in sync with the clock
695 * interrupt even when we're delayed.
697 void
698 realitexpire(void *arg)
700 struct proc *p;
701 struct timeval ctv, ntv;
703 p = (struct proc *)arg;
704 ksignal(p, SIGALRM);
705 if (!timevalisset(&p->p_realtimer.it_interval)) {
706 timevalclear(&p->p_realtimer.it_value);
707 return;
709 for (;;) {
710 crit_enter();
711 timevaladd(&p->p_realtimer.it_value,
712 &p->p_realtimer.it_interval);
713 getmicrouptime(&ctv);
714 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
715 ntv = p->p_realtimer.it_value;
716 timevalsub(&ntv, &ctv);
717 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
718 realitexpire, p);
719 crit_exit();
720 return;
722 crit_exit();
727 * Check that a proposed value to load into the .it_value or
728 * .it_interval part of an interval timer is acceptable, and
729 * fix it to have at least minimal value (i.e. if it is less
730 * than the resolution of the clock, round it up.)
733 itimerfix(struct timeval *tv)
736 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
737 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
738 return (EINVAL);
739 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
740 tv->tv_usec = tick;
741 return (0);
745 * Decrement an interval timer by a specified number
746 * of microseconds, which must be less than a second,
747 * i.e. < 1000000. If the timer expires, then reload
748 * it. In this case, carry over (usec - old value) to
749 * reduce the value reloaded into the timer so that
750 * the timer does not drift. This routine assumes
751 * that it is called in a context where the timers
752 * on which it is operating cannot change in value.
755 itimerdecr(struct itimerval *itp, int usec)
758 if (itp->it_value.tv_usec < usec) {
759 if (itp->it_value.tv_sec == 0) {
760 /* expired, and already in next interval */
761 usec -= itp->it_value.tv_usec;
762 goto expire;
764 itp->it_value.tv_usec += 1000000;
765 itp->it_value.tv_sec--;
767 itp->it_value.tv_usec -= usec;
768 usec = 0;
769 if (timevalisset(&itp->it_value))
770 return (1);
771 /* expired, exactly at end of interval */
772 expire:
773 if (timevalisset(&itp->it_interval)) {
774 itp->it_value = itp->it_interval;
775 itp->it_value.tv_usec -= usec;
776 if (itp->it_value.tv_usec < 0) {
777 itp->it_value.tv_usec += 1000000;
778 itp->it_value.tv_sec--;
780 } else
781 itp->it_value.tv_usec = 0; /* sec is already 0 */
782 return (0);
786 * Add and subtract routines for timevals.
787 * N.B.: subtract routine doesn't deal with
788 * results which are before the beginning,
789 * it just gets very confused in this case.
790 * Caveat emptor.
792 void
793 timevaladd(struct timeval *t1, const struct timeval *t2)
796 t1->tv_sec += t2->tv_sec;
797 t1->tv_usec += t2->tv_usec;
798 timevalfix(t1);
801 void
802 timevalsub(struct timeval *t1, const struct timeval *t2)
805 t1->tv_sec -= t2->tv_sec;
806 t1->tv_usec -= t2->tv_usec;
807 timevalfix(t1);
810 static void
811 timevalfix(struct timeval *t1)
814 if (t1->tv_usec < 0) {
815 t1->tv_sec--;
816 t1->tv_usec += 1000000;
818 if (t1->tv_usec >= 1000000) {
819 t1->tv_sec++;
820 t1->tv_usec -= 1000000;
825 * ratecheck(): simple time-based rate-limit checking.
828 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
830 struct timeval tv, delta;
831 int rv = 0;
833 getmicrouptime(&tv); /* NB: 10ms precision */
834 delta = tv;
835 timevalsub(&delta, lasttime);
838 * check for 0,0 is so that the message will be seen at least once,
839 * even if interval is huge.
841 if (timevalcmp(&delta, mininterval, >=) ||
842 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
843 *lasttime = tv;
844 rv = 1;
847 return (rv);
851 * ppsratecheck(): packets (or events) per second limitation.
853 * Return 0 if the limit is to be enforced (e.g. the caller
854 * should drop a packet because of the rate limitation).
856 * maxpps of 0 always causes zero to be returned. maxpps of -1
857 * always causes 1 to be returned; this effectively defeats rate
858 * limiting.
860 * Note that we maintain the struct timeval for compatibility
861 * with other bsd systems. We reuse the storage and just monitor
862 * clock ticks for minimal overhead.
865 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
867 int now;
870 * Reset the last time and counter if this is the first call
871 * or more than a second has passed since the last update of
872 * lasttime.
874 now = ticks;
875 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
876 lasttime->tv_sec = now;
877 *curpps = 1;
878 return (maxpps != 0);
879 } else {
880 (*curpps)++; /* NB: ignore potential overflow */
881 return (maxpps < 0 || *curpps < maxpps);