calloc - Work around gcc-8 bug (2).
[dragonfly.git] / sys / vm / vm_page.c
blob275b7ed4c4aa47c349e82a2932891a86c0cede8c
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
9 * This code is derived from software contributed to The DragonFly Project
10 * by Matthew Dillon <dillon@backplane.com>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
67 * Resident memory management module. The module manipulates 'VM pages'.
68 * A VM page is the core building block for memory management.
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
104 * SET - Minimum required set associative size, must be a power of 2. We
105 * want this to match or exceed the set-associativeness of the cpu.
107 * GRP - A larger set that allows bleed-over into the domains of other
108 * nearby cpus. Also must be a power of 2. Used by the page zeroing
109 * code to smooth things out a bit.
111 #define PQ_SET_ASSOC 16
112 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
114 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
124 * Array of tailq lists
126 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
128 static volatile int vm_pages_waiting;
129 static struct alist vm_contig_alist;
130 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
131 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 static u_long vm_dma_reserved = 0;
134 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
135 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
136 "Memory reserved for DMA");
137 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
138 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
140 static int vm_contig_verbose = 0;
141 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
143 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
144 vm_pindex_t, pindex);
146 static void
147 vm_page_queue_init(void)
149 int i;
151 for (i = 0; i < PQ_L2_SIZE; i++)
152 vm_page_queues[PQ_FREE+i].cnt_offset =
153 offsetof(struct vmstats, v_free_count);
154 for (i = 0; i < PQ_L2_SIZE; i++)
155 vm_page_queues[PQ_CACHE+i].cnt_offset =
156 offsetof(struct vmstats, v_cache_count);
157 for (i = 0; i < PQ_L2_SIZE; i++)
158 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
159 offsetof(struct vmstats, v_inactive_count);
160 for (i = 0; i < PQ_L2_SIZE; i++)
161 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
162 offsetof(struct vmstats, v_active_count);
163 for (i = 0; i < PQ_L2_SIZE; i++)
164 vm_page_queues[PQ_HOLD+i].cnt_offset =
165 offsetof(struct vmstats, v_active_count);
166 /* PQ_NONE has no queue */
168 for (i = 0; i < PQ_COUNT; i++) {
169 TAILQ_INIT(&vm_page_queues[i].pl);
170 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
175 * note: place in initialized data section? Is this necessary?
177 vm_pindex_t first_page = 0;
178 vm_pindex_t vm_page_array_size = 0;
179 vm_page_t vm_page_array = NULL;
180 vm_paddr_t vm_low_phys_reserved;
183 * (low level boot)
185 * Sets the page size, perhaps based upon the memory size.
186 * Must be called before any use of page-size dependent functions.
188 void
189 vm_set_page_size(void)
191 if (vmstats.v_page_size == 0)
192 vmstats.v_page_size = PAGE_SIZE;
193 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
194 panic("vm_set_page_size: page size not a power of two");
198 * (low level boot)
200 * Add a new page to the freelist for use by the system. New pages
201 * are added to both the head and tail of the associated free page
202 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
203 * requests pull 'recent' adds (higher physical addresses) first.
205 * Beware that the page zeroing daemon will also be running soon after
206 * boot, moving pages from the head to the tail of the PQ_FREE queues.
208 * Must be called in a critical section.
210 static void
211 vm_add_new_page(vm_paddr_t pa)
213 struct vpgqueues *vpq;
214 vm_page_t m;
216 m = PHYS_TO_VM_PAGE(pa);
217 m->phys_addr = pa;
218 m->flags = 0;
219 m->pat_mode = PAT_WRITE_BACK;
220 m->pc = (pa >> PAGE_SHIFT);
223 * Twist for cpu localization in addition to page coloring, so
224 * different cpus selecting by m->queue get different page colors.
226 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
227 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
228 m->pc &= PQ_L2_MASK;
231 * Reserve a certain number of contiguous low memory pages for
232 * contigmalloc() to use.
234 if (pa < vm_low_phys_reserved) {
235 atomic_add_long(&vmstats.v_page_count, 1);
236 atomic_add_long(&vmstats.v_dma_pages, 1);
237 m->queue = PQ_NONE;
238 m->wire_count = 1;
239 atomic_add_long(&vmstats.v_wire_count, 1);
240 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
241 return;
245 * General page
247 m->queue = m->pc + PQ_FREE;
248 KKASSERT(m->dirty == 0);
250 atomic_add_long(&vmstats.v_page_count, 1);
251 atomic_add_long(&vmstats.v_free_count, 1);
252 vpq = &vm_page_queues[m->queue];
253 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
254 ++vpq->lcnt;
258 * (low level boot)
260 * Initializes the resident memory module.
262 * Preallocates memory for critical VM structures and arrays prior to
263 * kernel_map becoming available.
265 * Memory is allocated from (virtual2_start, virtual2_end) if available,
266 * otherwise memory is allocated from (virtual_start, virtual_end).
268 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
269 * large enough to hold vm_page_array & other structures for machines with
270 * large amounts of ram, so we want to use virtual2* when available.
272 void
273 vm_page_startup(void)
275 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
276 vm_offset_t mapped;
277 vm_pindex_t npages;
278 vm_paddr_t page_range;
279 vm_paddr_t new_end;
280 int i;
281 vm_paddr_t pa;
282 vm_paddr_t last_pa;
283 vm_paddr_t end;
284 vm_paddr_t biggestone, biggestsize;
285 vm_paddr_t total;
286 vm_page_t m;
288 total = 0;
289 biggestsize = 0;
290 biggestone = 0;
291 vaddr = round_page(vaddr);
294 * Make sure ranges are page-aligned.
296 for (i = 0; phys_avail[i].phys_end; ++i) {
297 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
298 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
299 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
300 phys_avail[i].phys_end = phys_avail[i].phys_beg;
304 * Locate largest block
306 for (i = 0; phys_avail[i].phys_end; ++i) {
307 vm_paddr_t size = phys_avail[i].phys_end -
308 phys_avail[i].phys_beg;
310 if (size > biggestsize) {
311 biggestone = i;
312 biggestsize = size;
314 total += size;
316 --i; /* adjust to last entry for use down below */
318 end = phys_avail[biggestone].phys_end;
319 end = trunc_page(end);
322 * Initialize the queue headers for the free queue, the active queue
323 * and the inactive queue.
325 vm_page_queue_init();
327 #if !defined(_KERNEL_VIRTUAL)
329 * VKERNELs don't support minidumps and as such don't need
330 * vm_page_dump
332 * Allocate a bitmap to indicate that a random physical page
333 * needs to be included in a minidump.
335 * The amd64 port needs this to indicate which direct map pages
336 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
338 * However, x86 still needs this workspace internally within the
339 * minidump code. In theory, they are not needed on x86, but are
340 * included should the sf_buf code decide to use them.
342 page_range = phys_avail[i].phys_end / PAGE_SIZE;
343 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
344 end -= vm_page_dump_size;
345 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
346 VM_PROT_READ | VM_PROT_WRITE);
347 bzero((void *)vm_page_dump, vm_page_dump_size);
348 #endif
350 * Compute the number of pages of memory that will be available for
351 * use (taking into account the overhead of a page structure per
352 * page).
354 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
355 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
356 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
358 #ifndef _KERNEL_VIRTUAL
360 * (only applies to real kernels)
362 * Reserve a large amount of low memory for potential 32-bit DMA
363 * space allocations. Once device initialization is complete we
364 * release most of it, but keep (vm_dma_reserved) memory reserved
365 * for later use. Typically for X / graphics. Through trial and
366 * error we find that GPUs usually requires ~60-100MB or so.
368 * By default, 128M is left in reserve on machines with 2G+ of ram.
370 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
371 if (vm_low_phys_reserved > total / 4)
372 vm_low_phys_reserved = total / 4;
373 if (vm_dma_reserved == 0) {
374 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
375 if (vm_dma_reserved > total / 16)
376 vm_dma_reserved = total / 16;
378 #endif
379 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
380 ALIST_RECORDS_65536);
383 * Initialize the mem entry structures now, and put them in the free
384 * queue.
386 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
387 kprintf("initializing vm_page_array ");
388 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
389 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
390 vm_page_array = (vm_page_t)mapped;
392 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
394 * since pmap_map on amd64 returns stuff out of a direct-map region,
395 * we have to manually add these pages to the minidump tracking so
396 * that they can be dumped, including the vm_page_array.
398 for (pa = new_end;
399 pa < phys_avail[biggestone].phys_end;
400 pa += PAGE_SIZE) {
401 dump_add_page(pa);
403 #endif
406 * Clear all of the page structures, run basic initialization so
407 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
408 * map.
410 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
411 vm_page_array_size = page_range;
412 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
413 kprintf("size = 0x%zx\n", vm_page_array_size);
415 m = &vm_page_array[0];
416 pa = ptoa(first_page);
417 for (i = 0; i < page_range; ++i) {
418 spin_init(&m->spin, "vm_page");
419 m->phys_addr = pa;
420 pa += PAGE_SIZE;
421 ++m;
425 * Construct the free queue(s) in ascending order (by physical
426 * address) so that the first 16MB of physical memory is allocated
427 * last rather than first. On large-memory machines, this avoids
428 * the exhaustion of low physical memory before isa_dma_init has run.
430 vmstats.v_page_count = 0;
431 vmstats.v_free_count = 0;
432 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
433 pa = phys_avail[i].phys_beg;
434 if (i == biggestone)
435 last_pa = new_end;
436 else
437 last_pa = phys_avail[i].phys_end;
438 while (pa < last_pa && npages-- > 0) {
439 vm_add_new_page(pa);
440 pa += PAGE_SIZE;
443 if (virtual2_start)
444 virtual2_start = vaddr;
445 else
446 virtual_start = vaddr;
447 mycpu->gd_vmstats = vmstats;
451 * Reorganize VM pages based on numa data. May be called as many times as
452 * necessary. Will reorganize the vm_page_t page color and related queue(s)
453 * to allow vm_page_alloc() to choose pages based on socket affinity.
455 * NOTE: This function is only called while we are still in UP mode, so
456 * we only need a critical section to protect the queues (which
457 * saves a lot of time, there are likely a ton of pages).
459 void
460 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
462 vm_paddr_t scan_beg;
463 vm_paddr_t scan_end;
464 vm_paddr_t ran_end;
465 struct vpgqueues *vpq;
466 vm_page_t m;
467 vm_page_t mend;
468 int i;
469 int socket_mod;
470 int socket_value;
473 * Check if no physical information, or there was only one socket
474 * (so don't waste time doing nothing!).
476 if (cpu_topology_phys_ids <= 1 ||
477 cpu_topology_core_ids == 0) {
478 return;
482 * Setup for our iteration. Note that ACPI may iterate CPU
483 * sockets starting at 0 or 1 or some other number. The
484 * cpu_topology code mod's it against the socket count.
486 ran_end = ran_beg + bytes;
487 physid %= cpu_topology_phys_ids;
489 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
490 socket_value = physid * socket_mod;
491 mend = &vm_page_array[vm_page_array_size];
493 crit_enter();
496 * Adjust vm_page->pc and requeue all affected pages. The
497 * allocator will then be able to localize memory allocations
498 * to some degree.
500 for (i = 0; phys_avail[i].phys_end; ++i) {
501 scan_beg = phys_avail[i].phys_beg;
502 scan_end = phys_avail[i].phys_end;
503 if (scan_end <= ran_beg)
504 continue;
505 if (scan_beg >= ran_end)
506 continue;
507 if (scan_beg < ran_beg)
508 scan_beg = ran_beg;
509 if (scan_end > ran_end)
510 scan_end = ran_end;
511 if (atop(scan_end) > first_page + vm_page_array_size)
512 scan_end = ptoa(first_page + vm_page_array_size);
514 m = PHYS_TO_VM_PAGE(scan_beg);
515 while (scan_beg < scan_end) {
516 KKASSERT(m < mend);
517 if (m->queue != PQ_NONE) {
518 vpq = &vm_page_queues[m->queue];
519 TAILQ_REMOVE(&vpq->pl, m, pageq);
520 --vpq->lcnt;
521 /* queue doesn't change, no need to adj cnt */
522 m->queue -= m->pc;
523 m->pc %= socket_mod;
524 m->pc += socket_value;
525 m->pc &= PQ_L2_MASK;
526 m->queue += m->pc;
527 vpq = &vm_page_queues[m->queue];
528 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
529 ++vpq->lcnt;
530 /* queue doesn't change, no need to adj cnt */
531 } else {
532 m->pc %= socket_mod;
533 m->pc += socket_value;
534 m->pc &= PQ_L2_MASK;
536 scan_beg += PAGE_SIZE;
537 ++m;
540 crit_exit();
544 * We tended to reserve a ton of memory for contigmalloc(). Now that most
545 * drivers have initialized we want to return most the remaining free
546 * reserve back to the VM page queues so they can be used for normal
547 * allocations.
549 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
551 static void
552 vm_page_startup_finish(void *dummy __unused)
554 alist_blk_t blk;
555 alist_blk_t rblk;
556 alist_blk_t count;
557 alist_blk_t xcount;
558 alist_blk_t bfree;
559 vm_page_t m;
561 spin_lock(&vm_contig_spin);
562 for (;;) {
563 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
564 if (bfree <= vm_dma_reserved / PAGE_SIZE)
565 break;
566 if (count == 0)
567 break;
570 * Figure out how much of the initial reserve we have to
571 * free in order to reach our target.
573 bfree -= vm_dma_reserved / PAGE_SIZE;
574 if (count > bfree) {
575 blk += count - bfree;
576 count = bfree;
580 * Calculate the nearest power of 2 <= count.
582 for (xcount = 1; xcount <= count; xcount <<= 1)
584 xcount >>= 1;
585 blk += count - xcount;
586 count = xcount;
589 * Allocate the pages from the alist, then free them to
590 * the normal VM page queues.
592 * Pages allocated from the alist are wired. We have to
593 * busy, unwire, and free them. We must also adjust
594 * vm_low_phys_reserved before freeing any pages to prevent
595 * confusion.
597 rblk = alist_alloc(&vm_contig_alist, blk, count);
598 if (rblk != blk) {
599 kprintf("vm_page_startup_finish: Unable to return "
600 "dma space @0x%08x/%d -> 0x%08x\n",
601 blk, count, rblk);
602 break;
604 atomic_add_long(&vmstats.v_dma_pages, -(long)count);
605 spin_unlock(&vm_contig_spin);
607 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
608 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
609 while (count) {
610 vm_page_busy_wait(m, FALSE, "cpgfr");
611 vm_page_unwire(m, 0);
612 vm_page_free(m);
613 --count;
614 ++m;
616 spin_lock(&vm_contig_spin);
618 spin_unlock(&vm_contig_spin);
621 * Print out how much DMA space drivers have already allocated and
622 * how much is left over.
624 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
625 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
626 (PAGE_SIZE / 1024),
627 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
629 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
630 vm_page_startup_finish, NULL);
634 * Scan comparison function for Red-Black tree scans. An inclusive
635 * (start,end) is expected. Other fields are not used.
638 rb_vm_page_scancmp(struct vm_page *p, void *data)
640 struct rb_vm_page_scan_info *info = data;
642 if (p->pindex < info->start_pindex)
643 return(-1);
644 if (p->pindex > info->end_pindex)
645 return(1);
646 return(0);
650 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
652 if (p1->pindex < p2->pindex)
653 return(-1);
654 if (p1->pindex > p2->pindex)
655 return(1);
656 return(0);
659 void
660 vm_page_init(vm_page_t m)
662 /* do nothing for now. Called from pmap_page_init() */
666 * Each page queue has its own spin lock, which is fairly optimal for
667 * allocating and freeing pages at least.
669 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
670 * queue spinlock via this function. Also note that m->queue cannot change
671 * unless both the page and queue are locked.
673 static __inline
674 void
675 _vm_page_queue_spin_lock(vm_page_t m)
677 u_short queue;
679 queue = m->queue;
680 if (queue != PQ_NONE) {
681 spin_lock(&vm_page_queues[queue].spin);
682 KKASSERT(queue == m->queue);
686 static __inline
687 void
688 _vm_page_queue_spin_unlock(vm_page_t m)
690 u_short queue;
692 queue = m->queue;
693 cpu_ccfence();
694 if (queue != PQ_NONE)
695 spin_unlock(&vm_page_queues[queue].spin);
698 static __inline
699 void
700 _vm_page_queues_spin_lock(u_short queue)
702 cpu_ccfence();
703 if (queue != PQ_NONE)
704 spin_lock(&vm_page_queues[queue].spin);
708 static __inline
709 void
710 _vm_page_queues_spin_unlock(u_short queue)
712 cpu_ccfence();
713 if (queue != PQ_NONE)
714 spin_unlock(&vm_page_queues[queue].spin);
717 void
718 vm_page_queue_spin_lock(vm_page_t m)
720 _vm_page_queue_spin_lock(m);
723 void
724 vm_page_queues_spin_lock(u_short queue)
726 _vm_page_queues_spin_lock(queue);
729 void
730 vm_page_queue_spin_unlock(vm_page_t m)
732 _vm_page_queue_spin_unlock(m);
735 void
736 vm_page_queues_spin_unlock(u_short queue)
738 _vm_page_queues_spin_unlock(queue);
742 * This locks the specified vm_page and its queue in the proper order
743 * (page first, then queue). The queue may change so the caller must
744 * recheck on return.
746 static __inline
747 void
748 _vm_page_and_queue_spin_lock(vm_page_t m)
750 vm_page_spin_lock(m);
751 _vm_page_queue_spin_lock(m);
754 static __inline
755 void
756 _vm_page_and_queue_spin_unlock(vm_page_t m)
758 _vm_page_queues_spin_unlock(m->queue);
759 vm_page_spin_unlock(m);
762 void
763 vm_page_and_queue_spin_unlock(vm_page_t m)
765 _vm_page_and_queue_spin_unlock(m);
768 void
769 vm_page_and_queue_spin_lock(vm_page_t m)
771 _vm_page_and_queue_spin_lock(m);
775 * Helper function removes vm_page from its current queue.
776 * Returns the base queue the page used to be on.
778 * The vm_page and the queue must be spinlocked.
779 * This function will unlock the queue but leave the page spinlocked.
781 static __inline u_short
782 _vm_page_rem_queue_spinlocked(vm_page_t m)
784 struct vpgqueues *pq;
785 u_short queue;
786 u_short oqueue;
787 long *cnt;
789 queue = m->queue;
790 if (queue != PQ_NONE) {
791 pq = &vm_page_queues[queue];
792 TAILQ_REMOVE(&pq->pl, m, pageq);
795 * Adjust our pcpu stats. In order for the nominal low-memory
796 * algorithms to work properly we don't let any pcpu stat get
797 * too negative before we force it to be rolled-up into the
798 * global stats. Otherwise our pageout and vm_wait tests
799 * will fail badly.
801 * The idea here is to reduce unnecessary SMP cache
802 * mastership changes in the global vmstats, which can be
803 * particularly bad in multi-socket systems.
805 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
806 atomic_add_long(cnt, -1);
807 if (*cnt < -VMMETER_SLOP_COUNT) {
808 u_long copy = atomic_swap_long(cnt, 0);
809 cnt = (long *)((char *)&vmstats + pq->cnt_offset);
810 atomic_add_long(cnt, copy);
811 cnt = (long *)((char *)&mycpu->gd_vmstats +
812 pq->cnt_offset);
813 atomic_add_long(cnt, copy);
815 pq->lcnt--;
816 m->queue = PQ_NONE;
817 oqueue = queue;
818 queue -= m->pc;
819 vm_page_queues_spin_unlock(oqueue); /* intended */
821 return queue;
825 * Helper function places the vm_page on the specified queue. Generally
826 * speaking only PQ_FREE pages are placed at the head, to allow them to
827 * be allocated sooner rather than later on the assumption that they
828 * are cache-hot.
830 * The vm_page must be spinlocked.
831 * This function will return with both the page and the queue locked.
833 static __inline void
834 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
836 struct vpgqueues *pq;
837 u_long *cnt;
839 KKASSERT(m->queue == PQ_NONE);
841 if (queue != PQ_NONE) {
842 vm_page_queues_spin_lock(queue);
843 pq = &vm_page_queues[queue];
844 ++pq->lcnt;
847 * Adjust our pcpu stats. If a system entity really needs
848 * to incorporate the count it will call vmstats_rollup()
849 * to roll it all up into the global vmstats strufture.
851 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
852 atomic_add_long(cnt, 1);
855 * PQ_FREE is always handled LIFO style to try to provide
856 * cache-hot pages to programs.
858 m->queue = queue;
859 if (queue - m->pc == PQ_FREE) {
860 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
861 } else if (athead) {
862 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
863 } else {
864 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
866 /* leave the queue spinlocked */
871 * Wait until page is no longer BUSY. If also_m_busy is TRUE we wait
872 * until the page is no longer BUSY or SBUSY (busy_count field is 0).
874 * Returns TRUE if it had to sleep, FALSE if we did not. Only one sleep
875 * call will be made before returning.
877 * This function does NOT busy the page and on return the page is not
878 * guaranteed to be available.
880 void
881 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
883 u_int32_t busy_count;
885 for (;;) {
886 busy_count = m->busy_count;
887 cpu_ccfence();
889 if ((busy_count & PBUSY_LOCKED) == 0 &&
890 (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
891 break;
893 tsleep_interlock(m, 0);
894 if (atomic_cmpset_int(&m->busy_count, busy_count,
895 busy_count | PBUSY_WANTED)) {
896 atomic_set_int(&m->flags, PG_REFERENCED);
897 tsleep(m, PINTERLOCKED, msg, 0);
898 break;
904 * This calculates and returns a page color given an optional VM object and
905 * either a pindex or an iterator. We attempt to return a cpu-localized
906 * pg_color that is still roughly 16-way set-associative. The CPU topology
907 * is used if it was probed.
909 * The caller may use the returned value to index into e.g. PQ_FREE when
910 * allocating a page in order to nominally obtain pages that are hopefully
911 * already localized to the requesting cpu. This function is not able to
912 * provide any sort of guarantee of this, but does its best to improve
913 * hardware cache management performance.
915 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
917 u_short
918 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
920 u_short pg_color;
921 int phys_id;
922 int core_id;
923 int object_pg_color;
925 phys_id = get_cpu_phys_id(cpuid);
926 core_id = get_cpu_core_id(cpuid);
927 object_pg_color = object ? object->pg_color : 0;
929 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
930 int grpsize;
933 * Break us down by socket and cpu
935 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
936 pg_color += core_id * PQ_L2_SIZE /
937 (cpu_topology_core_ids * cpu_topology_phys_ids);
940 * Calculate remaining component for object/queue color
942 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
943 cpu_topology_phys_ids);
944 if (grpsize >= 8) {
945 pg_color += (pindex + object_pg_color) % grpsize;
946 } else {
947 if (grpsize <= 2) {
948 grpsize = 8;
949 } else {
950 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
951 grpsize += grpsize;
952 if (grpsize < 8)
953 grpsize += grpsize;
955 pg_color += (pindex + object_pg_color) % grpsize;
957 } else {
959 * Unknown topology, distribute things evenly.
961 pg_color = cpuid * PQ_L2_SIZE / ncpus;
962 pg_color += pindex + object_pg_color;
964 return (pg_color & PQ_L2_MASK);
968 * Wait until BUSY can be set, then set it. If also_m_busy is TRUE we
969 * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
971 void
972 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
973 int also_m_busy, const char *msg
974 VM_PAGE_DEBUG_ARGS)
976 u_int32_t busy_count;
978 for (;;) {
979 busy_count = m->busy_count;
980 cpu_ccfence();
981 if (busy_count & PBUSY_LOCKED) {
982 tsleep_interlock(m, 0);
983 if (atomic_cmpset_int(&m->busy_count, busy_count,
984 busy_count | PBUSY_WANTED)) {
985 atomic_set_int(&m->flags, PG_REFERENCED);
986 tsleep(m, PINTERLOCKED, msg, 0);
988 } else if (also_m_busy && busy_count) {
989 tsleep_interlock(m, 0);
990 if (atomic_cmpset_int(&m->busy_count, busy_count,
991 busy_count | PBUSY_WANTED)) {
992 atomic_set_int(&m->flags, PG_REFERENCED);
993 tsleep(m, PINTERLOCKED, msg, 0);
995 } else {
996 if (atomic_cmpset_int(&m->busy_count, busy_count,
997 busy_count | PBUSY_LOCKED)) {
998 #ifdef VM_PAGE_DEBUG
999 m->busy_func = func;
1000 m->busy_line = lineno;
1001 #endif
1002 break;
1009 * Attempt to set BUSY. If also_m_busy is TRUE we only succeed if
1010 * m->busy_count is also 0.
1012 * Returns non-zero on failure.
1015 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1016 VM_PAGE_DEBUG_ARGS)
1018 u_int32_t busy_count;
1020 for (;;) {
1021 busy_count = m->busy_count;
1022 cpu_ccfence();
1023 if (busy_count & PBUSY_LOCKED)
1024 return TRUE;
1025 if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1026 return TRUE;
1027 if (atomic_cmpset_int(&m->busy_count, busy_count,
1028 busy_count | PBUSY_LOCKED)) {
1029 #ifdef VM_PAGE_DEBUG
1030 m->busy_func = func;
1031 m->busy_line = lineno;
1032 #endif
1033 return FALSE;
1039 * Clear the BUSY flag and return non-zero to indicate to the caller
1040 * that a wakeup() should be performed.
1042 * The vm_page must be spinlocked and will remain spinlocked on return.
1043 * The related queue must NOT be spinlocked (which could deadlock us).
1045 * (inline version)
1047 static __inline
1049 _vm_page_wakeup(vm_page_t m)
1051 u_int32_t busy_count;
1053 for (;;) {
1054 busy_count = m->busy_count;
1055 cpu_ccfence();
1056 if (atomic_cmpset_int(&m->busy_count, busy_count,
1057 busy_count &
1058 ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1059 break;
1062 return((int)(busy_count & PBUSY_WANTED));
1066 * Clear the BUSY flag and wakeup anyone waiting for the page. This
1067 * is typically the last call you make on a page before moving onto
1068 * other things.
1070 void
1071 vm_page_wakeup(vm_page_t m)
1073 KASSERT(m->busy_count & PBUSY_LOCKED,
1074 ("vm_page_wakeup: page not busy!!!"));
1075 vm_page_spin_lock(m);
1076 if (_vm_page_wakeup(m)) {
1077 vm_page_spin_unlock(m);
1078 wakeup(m);
1079 } else {
1080 vm_page_spin_unlock(m);
1085 * Holding a page keeps it from being reused. Other parts of the system
1086 * can still disassociate the page from its current object and free it, or
1087 * perform read or write I/O on it and/or otherwise manipulate the page,
1088 * but if the page is held the VM system will leave the page and its data
1089 * intact and not reuse the page for other purposes until the last hold
1090 * reference is released. (see vm_page_wire() if you want to prevent the
1091 * page from being disassociated from its object too).
1093 * The caller must still validate the contents of the page and, if necessary,
1094 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1095 * before manipulating the page.
1097 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1099 void
1100 vm_page_hold(vm_page_t m)
1102 vm_page_spin_lock(m);
1103 atomic_add_int(&m->hold_count, 1);
1104 if (m->queue - m->pc == PQ_FREE) {
1105 _vm_page_queue_spin_lock(m);
1106 _vm_page_rem_queue_spinlocked(m);
1107 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1108 _vm_page_queue_spin_unlock(m);
1110 vm_page_spin_unlock(m);
1114 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1115 * it was freed while held and must be moved back to the FREE queue.
1117 void
1118 vm_page_unhold(vm_page_t m)
1120 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1121 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1122 m, m->hold_count, m->queue - m->pc));
1123 vm_page_spin_lock(m);
1124 atomic_add_int(&m->hold_count, -1);
1125 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1126 _vm_page_queue_spin_lock(m);
1127 _vm_page_rem_queue_spinlocked(m);
1128 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1129 _vm_page_queue_spin_unlock(m);
1131 vm_page_spin_unlock(m);
1135 * vm_page_getfake:
1137 * Create a fictitious page with the specified physical address and
1138 * memory attribute. The memory attribute is the only the machine-
1139 * dependent aspect of a fictitious page that must be initialized.
1142 void
1143 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1146 if ((m->flags & PG_FICTITIOUS) != 0) {
1148 * The page's memattr might have changed since the
1149 * previous initialization. Update the pmap to the
1150 * new memattr.
1152 goto memattr;
1154 m->phys_addr = paddr;
1155 m->queue = PQ_NONE;
1156 /* Fictitious pages don't use "segind". */
1157 /* Fictitious pages don't use "order" or "pool". */
1158 m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1159 m->busy_count = PBUSY_LOCKED;
1160 m->wire_count = 1;
1161 spin_init(&m->spin, "fake_page");
1162 pmap_page_init(m);
1163 memattr:
1164 pmap_page_set_memattr(m, memattr);
1168 * Inserts the given vm_page into the object and object list.
1170 * The pagetables are not updated but will presumably fault the page
1171 * in if necessary, or if a kernel page the caller will at some point
1172 * enter the page into the kernel's pmap. We are not allowed to block
1173 * here so we *can't* do this anyway.
1175 * This routine may not block.
1176 * This routine must be called with the vm_object held.
1177 * This routine must be called with a critical section held.
1179 * This routine returns TRUE if the page was inserted into the object
1180 * successfully, and FALSE if the page already exists in the object.
1183 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1185 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1186 if (m->object != NULL)
1187 panic("vm_page_insert: already inserted");
1189 atomic_add_int(&object->generation, 1);
1192 * Record the object/offset pair in this page and add the
1193 * pv_list_count of the page to the object.
1195 * The vm_page spin lock is required for interactions with the pmap.
1197 vm_page_spin_lock(m);
1198 m->object = object;
1199 m->pindex = pindex;
1200 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1201 m->object = NULL;
1202 m->pindex = 0;
1203 vm_page_spin_unlock(m);
1204 return FALSE;
1206 ++object->resident_page_count;
1207 ++mycpu->gd_vmtotal.t_rm;
1208 vm_page_spin_unlock(m);
1211 * Since we are inserting a new and possibly dirty page,
1212 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1214 if ((m->valid & m->dirty) ||
1215 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1216 vm_object_set_writeable_dirty(object);
1219 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1221 swap_pager_page_inserted(m);
1222 return TRUE;
1226 * Removes the given vm_page_t from the (object,index) table
1228 * The underlying pmap entry (if any) is NOT removed here.
1229 * This routine may not block.
1231 * The page must be BUSY and will remain BUSY on return.
1232 * No other requirements.
1234 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1235 * it busy.
1237 void
1238 vm_page_remove(vm_page_t m)
1240 vm_object_t object;
1242 if (m->object == NULL) {
1243 return;
1246 if ((m->busy_count & PBUSY_LOCKED) == 0)
1247 panic("vm_page_remove: page not busy");
1249 object = m->object;
1251 vm_object_hold(object);
1254 * Remove the page from the object and update the object.
1256 * The vm_page spin lock is required for interactions with the pmap.
1258 vm_page_spin_lock(m);
1259 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1260 --object->resident_page_count;
1261 --mycpu->gd_vmtotal.t_rm;
1262 m->object = NULL;
1263 atomic_add_int(&object->generation, 1);
1264 vm_page_spin_unlock(m);
1266 vm_object_drop(object);
1270 * Locate and return the page at (object, pindex), or NULL if the
1271 * page could not be found.
1273 * The caller must hold the vm_object token.
1275 vm_page_t
1276 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1278 vm_page_t m;
1281 * Search the hash table for this object/offset pair
1283 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1284 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1285 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1286 return(m);
1289 vm_page_t
1290 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1291 vm_pindex_t pindex,
1292 int also_m_busy, const char *msg
1293 VM_PAGE_DEBUG_ARGS)
1295 u_int32_t busy_count;
1296 vm_page_t m;
1298 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1299 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1300 while (m) {
1301 KKASSERT(m->object == object && m->pindex == pindex);
1302 busy_count = m->busy_count;
1303 cpu_ccfence();
1304 if (busy_count & PBUSY_LOCKED) {
1305 tsleep_interlock(m, 0);
1306 if (atomic_cmpset_int(&m->busy_count, busy_count,
1307 busy_count | PBUSY_WANTED)) {
1308 atomic_set_int(&m->flags, PG_REFERENCED);
1309 tsleep(m, PINTERLOCKED, msg, 0);
1310 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1311 pindex);
1313 } else if (also_m_busy && busy_count) {
1314 tsleep_interlock(m, 0);
1315 if (atomic_cmpset_int(&m->busy_count, busy_count,
1316 busy_count | PBUSY_WANTED)) {
1317 atomic_set_int(&m->flags, PG_REFERENCED);
1318 tsleep(m, PINTERLOCKED, msg, 0);
1319 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1320 pindex);
1322 } else if (atomic_cmpset_int(&m->busy_count, busy_count,
1323 busy_count | PBUSY_LOCKED)) {
1324 #ifdef VM_PAGE_DEBUG
1325 m->busy_func = func;
1326 m->busy_line = lineno;
1327 #endif
1328 break;
1331 return m;
1335 * Attempt to lookup and busy a page.
1337 * Returns NULL if the page could not be found
1339 * Returns a vm_page and error == TRUE if the page exists but could not
1340 * be busied.
1342 * Returns a vm_page and error == FALSE on success.
1344 vm_page_t
1345 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1346 vm_pindex_t pindex,
1347 int also_m_busy, int *errorp
1348 VM_PAGE_DEBUG_ARGS)
1350 u_int32_t busy_count;
1351 vm_page_t m;
1353 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1354 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1355 *errorp = FALSE;
1356 while (m) {
1357 KKASSERT(m->object == object && m->pindex == pindex);
1358 busy_count = m->busy_count;
1359 cpu_ccfence();
1360 if (busy_count & PBUSY_LOCKED) {
1361 *errorp = TRUE;
1362 break;
1364 if (also_m_busy && busy_count) {
1365 *errorp = TRUE;
1366 break;
1368 if (atomic_cmpset_int(&m->busy_count, busy_count,
1369 busy_count | PBUSY_LOCKED)) {
1370 #ifdef VM_PAGE_DEBUG
1371 m->busy_func = func;
1372 m->busy_line = lineno;
1373 #endif
1374 break;
1377 return m;
1381 * Returns a page that is only soft-busied for use by the caller in
1382 * a read-only fashion. Returns NULL if the page could not be found,
1383 * the soft busy could not be obtained, or the page data is invalid.
1385 vm_page_t
1386 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1387 int pgoff, int pgbytes)
1389 vm_page_t m;
1391 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1392 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1393 if (m) {
1394 if ((m->valid != VM_PAGE_BITS_ALL &&
1395 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1396 (m->flags & PG_FICTITIOUS)) {
1397 m = NULL;
1398 } else if (vm_page_sbusy_try(m)) {
1399 m = NULL;
1400 } else if ((m->valid != VM_PAGE_BITS_ALL &&
1401 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1402 (m->flags & PG_FICTITIOUS)) {
1403 vm_page_sbusy_drop(m);
1404 m = NULL;
1407 return m;
1411 * Caller must hold the related vm_object
1413 vm_page_t
1414 vm_page_next(vm_page_t m)
1416 vm_page_t next;
1418 next = vm_page_rb_tree_RB_NEXT(m);
1419 if (next && next->pindex != m->pindex + 1)
1420 next = NULL;
1421 return (next);
1425 * vm_page_rename()
1427 * Move the given vm_page from its current object to the specified
1428 * target object/offset. The page must be busy and will remain so
1429 * on return.
1431 * new_object must be held.
1432 * This routine might block. XXX ?
1434 * NOTE: Swap associated with the page must be invalidated by the move. We
1435 * have to do this for several reasons: (1) we aren't freeing the
1436 * page, (2) we are dirtying the page, (3) the VM system is probably
1437 * moving the page from object A to B, and will then later move
1438 * the backing store from A to B and we can't have a conflict.
1440 * NOTE: We *always* dirty the page. It is necessary both for the
1441 * fact that we moved it, and because we may be invalidating
1442 * swap. If the page is on the cache, we have to deactivate it
1443 * or vm_page_dirty() will panic. Dirty pages are not allowed
1444 * on the cache.
1446 void
1447 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1449 KKASSERT(m->busy_count & PBUSY_LOCKED);
1450 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1451 if (m->object) {
1452 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1453 vm_page_remove(m);
1455 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1456 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1457 new_object, new_pindex);
1459 if (m->queue - m->pc == PQ_CACHE)
1460 vm_page_deactivate(m);
1461 vm_page_dirty(m);
1465 * vm_page_unqueue() without any wakeup. This routine is used when a page
1466 * is to remain BUSYied by the caller.
1468 * This routine may not block.
1470 void
1471 vm_page_unqueue_nowakeup(vm_page_t m)
1473 vm_page_and_queue_spin_lock(m);
1474 (void)_vm_page_rem_queue_spinlocked(m);
1475 vm_page_spin_unlock(m);
1479 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1480 * if necessary.
1482 * This routine may not block.
1484 void
1485 vm_page_unqueue(vm_page_t m)
1487 u_short queue;
1489 vm_page_and_queue_spin_lock(m);
1490 queue = _vm_page_rem_queue_spinlocked(m);
1491 if (queue == PQ_FREE || queue == PQ_CACHE) {
1492 vm_page_spin_unlock(m);
1493 pagedaemon_wakeup();
1494 } else {
1495 vm_page_spin_unlock(m);
1500 * vm_page_list_find()
1502 * Find a page on the specified queue with color optimization.
1504 * The page coloring optimization attempts to locate a page that does
1505 * not overload other nearby pages in the object in the cpu's L1 or L2
1506 * caches. We need this optimization because cpu caches tend to be
1507 * physical caches, while object spaces tend to be virtual.
1509 * The page coloring optimization also, very importantly, tries to localize
1510 * memory to cpus and physical sockets.
1512 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1513 * and the algorithm is adjusted to localize allocations on a per-core basis.
1514 * This is done by 'twisting' the colors.
1516 * The page is returned spinlocked and removed from its queue (it will
1517 * be on PQ_NONE), or NULL. The page is not BUSY'd. The caller
1518 * is responsible for dealing with the busy-page case (usually by
1519 * deactivating the page and looping).
1521 * NOTE: This routine is carefully inlined. A non-inlined version
1522 * is available for outside callers but the only critical path is
1523 * from within this source file.
1525 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1526 * represent stable storage, allowing us to order our locks vm_page
1527 * first, then queue.
1529 static __inline
1530 vm_page_t
1531 _vm_page_list_find(int basequeue, int index)
1533 vm_page_t m;
1535 for (;;) {
1536 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1537 if (m == NULL) {
1538 m = _vm_page_list_find2(basequeue, index);
1539 return(m);
1541 vm_page_and_queue_spin_lock(m);
1542 if (m->queue == basequeue + index) {
1543 _vm_page_rem_queue_spinlocked(m);
1544 /* vm_page_t spin held, no queue spin */
1545 break;
1547 vm_page_and_queue_spin_unlock(m);
1549 return(m);
1553 * If we could not find the page in the desired queue try to find it in
1554 * a nearby queue.
1556 static vm_page_t
1557 _vm_page_list_find2(int basequeue, int index)
1559 struct vpgqueues *pq;
1560 vm_page_t m = NULL;
1561 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1562 int pqi;
1563 int i;
1565 index &= PQ_L2_MASK;
1566 pq = &vm_page_queues[basequeue];
1569 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1570 * else fails (PQ_L2_MASK which is 255).
1572 do {
1573 pqmask = (pqmask << 1) | 1;
1574 for (i = 0; i <= pqmask; ++i) {
1575 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1576 m = TAILQ_FIRST(&pq[pqi].pl);
1577 if (m) {
1578 _vm_page_and_queue_spin_lock(m);
1579 if (m->queue == basequeue + pqi) {
1580 _vm_page_rem_queue_spinlocked(m);
1581 return(m);
1583 _vm_page_and_queue_spin_unlock(m);
1584 --i;
1585 continue;
1588 } while (pqmask != PQ_L2_MASK);
1590 return(m);
1594 * Returns a vm_page candidate for allocation. The page is not busied so
1595 * it can move around. The caller must busy the page (and typically
1596 * deactivate it if it cannot be busied!)
1598 * Returns a spinlocked vm_page that has been removed from its queue.
1600 vm_page_t
1601 vm_page_list_find(int basequeue, int index)
1603 return(_vm_page_list_find(basequeue, index));
1607 * Find a page on the cache queue with color optimization, remove it
1608 * from the queue, and busy it. The returned page will not be spinlocked.
1610 * A candidate failure will be deactivated. Candidates can fail due to
1611 * being busied by someone else, in which case they will be deactivated.
1613 * This routine may not block.
1616 static vm_page_t
1617 vm_page_select_cache(u_short pg_color)
1619 vm_page_t m;
1621 for (;;) {
1622 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1623 if (m == NULL)
1624 break;
1626 * (m) has been removed from its queue and spinlocked
1628 if (vm_page_busy_try(m, TRUE)) {
1629 _vm_page_deactivate_locked(m, 0);
1630 vm_page_spin_unlock(m);
1631 } else {
1633 * We successfully busied the page
1635 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1636 m->hold_count == 0 &&
1637 m->wire_count == 0 &&
1638 (m->dirty & m->valid) == 0) {
1639 vm_page_spin_unlock(m);
1640 pagedaemon_wakeup();
1641 return(m);
1645 * The page cannot be recycled, deactivate it.
1647 _vm_page_deactivate_locked(m, 0);
1648 if (_vm_page_wakeup(m)) {
1649 vm_page_spin_unlock(m);
1650 wakeup(m);
1651 } else {
1652 vm_page_spin_unlock(m);
1656 return (m);
1660 * Find a free page. We attempt to inline the nominal case and fall back
1661 * to _vm_page_select_free() otherwise. A busied page is removed from
1662 * the queue and returned.
1664 * This routine may not block.
1666 static __inline vm_page_t
1667 vm_page_select_free(u_short pg_color)
1669 vm_page_t m;
1671 for (;;) {
1672 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1673 if (m == NULL)
1674 break;
1675 if (vm_page_busy_try(m, TRUE)) {
1677 * Various mechanisms such as a pmap_collect can
1678 * result in a busy page on the free queue. We
1679 * have to move the page out of the way so we can
1680 * retry the allocation. If the other thread is not
1681 * allocating the page then m->valid will remain 0 and
1682 * the pageout daemon will free the page later on.
1684 * Since we could not busy the page, however, we
1685 * cannot make assumptions as to whether the page
1686 * will be allocated by the other thread or not,
1687 * so all we can do is deactivate it to move it out
1688 * of the way. In particular, if the other thread
1689 * wires the page it may wind up on the inactive
1690 * queue and the pageout daemon will have to deal
1691 * with that case too.
1693 _vm_page_deactivate_locked(m, 0);
1694 vm_page_spin_unlock(m);
1695 } else {
1697 * Theoretically if we are able to busy the page
1698 * atomic with the queue removal (using the vm_page
1699 * lock) nobody else should be able to mess with the
1700 * page before us.
1702 KKASSERT((m->flags & (PG_UNMANAGED |
1703 PG_NEED_COMMIT)) == 0);
1704 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1705 "pg %p q=%d flags=%08x hold=%d wire=%d",
1706 m, m->queue, m->flags, m->hold_count, m->wire_count));
1707 KKASSERT(m->wire_count == 0);
1708 vm_page_spin_unlock(m);
1709 pagedaemon_wakeup();
1711 /* return busied and removed page */
1712 return(m);
1715 return(m);
1719 * vm_page_alloc()
1721 * Allocate and return a memory cell associated with this VM object/offset
1722 * pair. If object is NULL an unassociated page will be allocated.
1724 * The returned page will be busied and removed from its queues. This
1725 * routine can block and may return NULL if a race occurs and the page
1726 * is found to already exist at the specified (object, pindex).
1728 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1729 * VM_ALLOC_QUICK like normal but cannot use cache
1730 * VM_ALLOC_SYSTEM greater free drain
1731 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1732 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1733 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1734 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1735 * (see vm_page_grab())
1736 * VM_ALLOC_USE_GD ok to use per-gd cache
1738 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1740 * The object must be held if not NULL
1741 * This routine may not block
1743 * Additional special handling is required when called from an interrupt
1744 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1745 * in this case.
1747 vm_page_t
1748 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1750 globaldata_t gd;
1751 vm_object_t obj;
1752 vm_page_t m;
1753 u_short pg_color;
1754 int cpuid_local;
1756 #if 0
1758 * Special per-cpu free VM page cache. The pages are pre-busied
1759 * and pre-zerod for us.
1761 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1762 crit_enter_gd(gd);
1763 if (gd->gd_vmpg_count) {
1764 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1765 crit_exit_gd(gd);
1766 goto done;
1768 crit_exit_gd(gd);
1770 #endif
1771 m = NULL;
1774 * CPU LOCALIZATION
1776 * CPU localization algorithm. Break the page queues up by physical
1777 * id and core id (note that two cpu threads will have the same core
1778 * id, and core_id != gd_cpuid).
1780 * This is nowhere near perfect, for example the last pindex in a
1781 * subgroup will overflow into the next cpu or package. But this
1782 * should get us good page reuse locality in heavy mixed loads.
1784 * (may be executed before the APs are started, so other GDs might
1785 * not exist!)
1787 if (page_req & VM_ALLOC_CPU_SPEC)
1788 cpuid_local = VM_ALLOC_GETCPU(page_req);
1789 else
1790 cpuid_local = mycpu->gd_cpuid;
1792 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1794 KKASSERT(page_req &
1795 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1796 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1799 * Certain system threads (pageout daemon, buf_daemon's) are
1800 * allowed to eat deeper into the free page list.
1802 if (curthread->td_flags & TDF_SYSTHREAD)
1803 page_req |= VM_ALLOC_SYSTEM;
1806 * Impose various limitations. Note that the v_free_reserved test
1807 * must match the opposite of vm_page_count_target() to avoid
1808 * livelocks, be careful.
1810 loop:
1811 gd = mycpu;
1812 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1813 ((page_req & VM_ALLOC_INTERRUPT) &&
1814 gd->gd_vmstats.v_free_count > 0) ||
1815 ((page_req & VM_ALLOC_SYSTEM) &&
1816 gd->gd_vmstats.v_cache_count == 0 &&
1817 gd->gd_vmstats.v_free_count >
1818 gd->gd_vmstats.v_interrupt_free_min)
1821 * The free queue has sufficient free pages to take one out.
1823 m = vm_page_select_free(pg_color);
1824 } else if (page_req & VM_ALLOC_NORMAL) {
1826 * Allocatable from the cache (non-interrupt only). On
1827 * success, we must free the page and try again, thus
1828 * ensuring that vmstats.v_*_free_min counters are replenished.
1830 #ifdef INVARIANTS
1831 if (curthread->td_preempted) {
1832 kprintf("vm_page_alloc(): warning, attempt to allocate"
1833 " cache page from preempting interrupt\n");
1834 m = NULL;
1835 } else {
1836 m = vm_page_select_cache(pg_color);
1838 #else
1839 m = vm_page_select_cache(pg_color);
1840 #endif
1842 * On success move the page into the free queue and loop.
1844 * Only do this if we can safely acquire the vm_object lock,
1845 * because this is effectively a random page and the caller
1846 * might be holding the lock shared, we don't want to
1847 * deadlock.
1849 if (m != NULL) {
1850 KASSERT(m->dirty == 0,
1851 ("Found dirty cache page %p", m));
1852 if ((obj = m->object) != NULL) {
1853 if (vm_object_hold_try(obj)) {
1854 vm_page_protect(m, VM_PROT_NONE);
1855 vm_page_free(m);
1856 /* m->object NULL here */
1857 vm_object_drop(obj);
1858 } else {
1859 vm_page_deactivate(m);
1860 vm_page_wakeup(m);
1862 } else {
1863 vm_page_protect(m, VM_PROT_NONE);
1864 vm_page_free(m);
1866 goto loop;
1870 * On failure return NULL
1872 atomic_add_int(&vm_pageout_deficit, 1);
1873 pagedaemon_wakeup();
1874 return (NULL);
1875 } else {
1877 * No pages available, wakeup the pageout daemon and give up.
1879 atomic_add_int(&vm_pageout_deficit, 1);
1880 pagedaemon_wakeup();
1881 return (NULL);
1885 * v_free_count can race so loop if we don't find the expected
1886 * page.
1888 if (m == NULL) {
1889 vmstats_rollup();
1890 goto loop;
1894 * Good page found. The page has already been busied for us and
1895 * removed from its queues.
1897 KASSERT(m->dirty == 0,
1898 ("vm_page_alloc: free/cache page %p was dirty", m));
1899 KKASSERT(m->queue == PQ_NONE);
1901 #if 0
1902 done:
1903 #endif
1905 * Initialize the structure, inheriting some flags but clearing
1906 * all the rest. The page has already been busied for us.
1908 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1910 KKASSERT(m->wire_count == 0);
1911 KKASSERT((m->busy_count & PBUSY_MASK) == 0);
1912 m->act_count = 0;
1913 m->valid = 0;
1916 * Caller must be holding the object lock (asserted by
1917 * vm_page_insert()).
1919 * NOTE: Inserting a page here does not insert it into any pmaps
1920 * (which could cause us to block allocating memory).
1922 * NOTE: If no object an unassociated page is allocated, m->pindex
1923 * can be used by the caller for any purpose.
1925 if (object) {
1926 if (vm_page_insert(m, object, pindex) == FALSE) {
1927 vm_page_free(m);
1928 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1929 panic("PAGE RACE %p[%ld]/%p",
1930 object, (long)pindex, m);
1931 m = NULL;
1933 } else {
1934 m->pindex = pindex;
1938 * Don't wakeup too often - wakeup the pageout daemon when
1939 * we would be nearly out of memory.
1941 pagedaemon_wakeup();
1944 * A BUSY page is returned.
1946 return (m);
1950 * Returns number of pages available in our DMA memory reserve
1951 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1953 vm_size_t
1954 vm_contig_avail_pages(void)
1956 alist_blk_t blk;
1957 alist_blk_t count;
1958 alist_blk_t bfree;
1959 spin_lock(&vm_contig_spin);
1960 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1961 spin_unlock(&vm_contig_spin);
1963 return bfree;
1967 * Attempt to allocate contiguous physical memory with the specified
1968 * requirements.
1970 vm_page_t
1971 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1972 unsigned long alignment, unsigned long boundary,
1973 unsigned long size, vm_memattr_t memattr)
1975 alist_blk_t blk;
1976 vm_page_t m;
1977 vm_pindex_t i;
1978 #if 0
1979 static vm_pindex_t contig_rover;
1980 #endif
1982 alignment >>= PAGE_SHIFT;
1983 if (alignment == 0)
1984 alignment = 1;
1985 boundary >>= PAGE_SHIFT;
1986 if (boundary == 0)
1987 boundary = 1;
1988 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1990 #if 0
1992 * Disabled temporarily until we find a solution for DRM (a flag
1993 * to always use the free space reserve, for performance).
1995 if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
1996 boundary <= PAGE_SIZE && size == 1 &&
1997 memattr == VM_MEMATTR_DEFAULT) {
1999 * Any page will work, use vm_page_alloc()
2000 * (e.g. when used from kmem_alloc_attr())
2002 m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2003 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2004 VM_ALLOC_INTERRUPT);
2005 m->valid = VM_PAGE_BITS_ALL;
2006 vm_page_wire(m);
2007 vm_page_wakeup(m);
2008 } else
2009 #endif
2012 * Use the low-memory dma reserve
2014 spin_lock(&vm_contig_spin);
2015 blk = alist_alloc(&vm_contig_alist, 0, size);
2016 if (blk == ALIST_BLOCK_NONE) {
2017 spin_unlock(&vm_contig_spin);
2018 if (bootverbose) {
2019 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2020 (size << PAGE_SHIFT) / 1024);
2021 print_backtrace(5);
2023 return(NULL);
2025 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2026 alist_free(&vm_contig_alist, blk, size);
2027 spin_unlock(&vm_contig_spin);
2028 if (bootverbose) {
2029 kprintf("vm_page_alloc_contig: %ldk high "
2030 "%016jx failed\n",
2031 (size << PAGE_SHIFT) / 1024,
2032 (intmax_t)high);
2034 return(NULL);
2036 spin_unlock(&vm_contig_spin);
2037 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2039 if (vm_contig_verbose) {
2040 kprintf("vm_page_alloc_contig: %016jx/%ldk "
2041 "(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2042 (intmax_t)m->phys_addr,
2043 (size << PAGE_SHIFT) / 1024,
2044 low, high, alignment, boundary, size, memattr);
2046 if (memattr != VM_MEMATTR_DEFAULT) {
2047 for (i = 0;i < size; i++)
2048 pmap_page_set_memattr(&m[i], memattr);
2050 return m;
2054 * Free contiguously allocated pages. The pages will be wired but not busy.
2055 * When freeing to the alist we leave them wired and not busy.
2057 void
2058 vm_page_free_contig(vm_page_t m, unsigned long size)
2060 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2061 vm_pindex_t start = pa >> PAGE_SHIFT;
2062 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2064 if (vm_contig_verbose) {
2065 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2066 (intmax_t)pa, size / 1024);
2068 if (pa < vm_low_phys_reserved) {
2069 KKASSERT(pa + size <= vm_low_phys_reserved);
2070 spin_lock(&vm_contig_spin);
2071 alist_free(&vm_contig_alist, start, pages);
2072 spin_unlock(&vm_contig_spin);
2073 } else {
2074 while (pages) {
2075 vm_page_busy_wait(m, FALSE, "cpgfr");
2076 vm_page_unwire(m, 0);
2077 vm_page_free(m);
2078 --pages;
2079 ++m;
2087 * Wait for sufficient free memory for nominal heavy memory use kernel
2088 * operations.
2090 * WARNING! Be sure never to call this in any vm_pageout code path, which
2091 * will trivially deadlock the system.
2093 void
2094 vm_wait_nominal(void)
2096 while (vm_page_count_min(0))
2097 vm_wait(0);
2101 * Test if vm_wait_nominal() would block.
2104 vm_test_nominal(void)
2106 if (vm_page_count_min(0))
2107 return(1);
2108 return(0);
2112 * Block until free pages are available for allocation, called in various
2113 * places before memory allocations.
2115 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2116 * more generous then that.
2118 void
2119 vm_wait(int timo)
2122 * never wait forever
2124 if (timo == 0)
2125 timo = hz;
2126 lwkt_gettoken(&vm_token);
2128 if (curthread == pagethread ||
2129 curthread == emergpager) {
2131 * The pageout daemon itself needs pages, this is bad.
2133 if (vm_page_count_min(0)) {
2134 vm_pageout_pages_needed = 1;
2135 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2137 } else {
2139 * Wakeup the pageout daemon if necessary and wait.
2141 * Do not wait indefinitely for the target to be reached,
2142 * as load might prevent it from being reached any time soon.
2143 * But wait a little to try to slow down page allocations
2144 * and to give more important threads (the pagedaemon)
2145 * allocation priority.
2147 if (vm_page_count_target()) {
2148 if (vm_pages_needed == 0) {
2149 vm_pages_needed = 1;
2150 wakeup(&vm_pages_needed);
2152 ++vm_pages_waiting; /* SMP race ok */
2153 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2156 lwkt_reltoken(&vm_token);
2160 * Block until free pages are available for allocation
2162 * Called only from vm_fault so that processes page faulting can be
2163 * easily tracked.
2165 void
2166 vm_wait_pfault(void)
2169 * Wakeup the pageout daemon if necessary and wait.
2171 * Do not wait indefinitely for the target to be reached,
2172 * as load might prevent it from being reached any time soon.
2173 * But wait a little to try to slow down page allocations
2174 * and to give more important threads (the pagedaemon)
2175 * allocation priority.
2177 if (vm_page_count_min(0)) {
2178 lwkt_gettoken(&vm_token);
2179 while (vm_page_count_severe()) {
2180 if (vm_page_count_target()) {
2181 thread_t td;
2183 if (vm_pages_needed == 0) {
2184 vm_pages_needed = 1;
2185 wakeup(&vm_pages_needed);
2187 ++vm_pages_waiting; /* SMP race ok */
2188 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2191 * Do not stay stuck in the loop if the system is trying
2192 * to kill the process.
2194 td = curthread;
2195 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2196 break;
2199 lwkt_reltoken(&vm_token);
2204 * Put the specified page on the active list (if appropriate). Ensure
2205 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2207 * The caller should be holding the page busied ? XXX
2208 * This routine may not block.
2210 void
2211 vm_page_activate(vm_page_t m)
2213 u_short oqueue;
2215 vm_page_spin_lock(m);
2216 if (m->queue - m->pc != PQ_ACTIVE) {
2217 _vm_page_queue_spin_lock(m);
2218 oqueue = _vm_page_rem_queue_spinlocked(m);
2219 /* page is left spinlocked, queue is unlocked */
2221 if (oqueue == PQ_CACHE)
2222 mycpu->gd_cnt.v_reactivated++;
2223 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2224 if (m->act_count < ACT_INIT)
2225 m->act_count = ACT_INIT;
2226 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2228 _vm_page_and_queue_spin_unlock(m);
2229 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2230 pagedaemon_wakeup();
2231 } else {
2232 if (m->act_count < ACT_INIT)
2233 m->act_count = ACT_INIT;
2234 vm_page_spin_unlock(m);
2239 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2240 * routine is called when a page has been added to the cache or free
2241 * queues.
2243 * This routine may not block.
2245 static __inline void
2246 vm_page_free_wakeup(void)
2248 globaldata_t gd = mycpu;
2251 * If the pageout daemon itself needs pages, then tell it that
2252 * there are some free.
2254 if (vm_pageout_pages_needed &&
2255 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2256 gd->gd_vmstats.v_pageout_free_min
2258 vm_pageout_pages_needed = 0;
2259 wakeup(&vm_pageout_pages_needed);
2263 * Wakeup processes that are waiting on memory.
2265 * Generally speaking we want to wakeup stuck processes as soon as
2266 * possible. !vm_page_count_min(0) is the absolute minimum point
2267 * where we can do this. Wait a bit longer to reduce degenerate
2268 * re-blocking (vm_page_free_hysteresis). The target check is just
2269 * to make sure the min-check w/hysteresis does not exceed the
2270 * normal target.
2272 if (vm_pages_waiting) {
2273 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2274 !vm_page_count_target()) {
2275 vm_pages_waiting = 0;
2276 wakeup(&vmstats.v_free_count);
2277 ++mycpu->gd_cnt.v_ppwakeups;
2279 #if 0
2280 if (!vm_page_count_target()) {
2282 * Plenty of pages are free, wakeup everyone.
2284 vm_pages_waiting = 0;
2285 wakeup(&vmstats.v_free_count);
2286 ++mycpu->gd_cnt.v_ppwakeups;
2287 } else if (!vm_page_count_min(0)) {
2289 * Some pages are free, wakeup someone.
2291 int wcount = vm_pages_waiting;
2292 if (wcount > 0)
2293 --wcount;
2294 vm_pages_waiting = wcount;
2295 wakeup_one(&vmstats.v_free_count);
2296 ++mycpu->gd_cnt.v_ppwakeups;
2298 #endif
2303 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2304 * it from its VM object.
2306 * The vm_page must be BUSY on entry. BUSY will be released on
2307 * return (the page will have been freed).
2309 void
2310 vm_page_free_toq(vm_page_t m)
2312 mycpu->gd_cnt.v_tfree++;
2313 KKASSERT((m->flags & PG_MAPPED) == 0);
2314 KKASSERT(m->busy_count & PBUSY_LOCKED);
2316 if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2317 kprintf("vm_page_free: pindex(%lu), busy %08x, "
2318 "hold(%d)\n",
2319 (u_long)m->pindex, m->busy_count, m->hold_count);
2320 if ((m->queue - m->pc) == PQ_FREE)
2321 panic("vm_page_free: freeing free page");
2322 else
2323 panic("vm_page_free: freeing busy page");
2327 * Remove from object, spinlock the page and its queues and
2328 * remove from any queue. No queue spinlock will be held
2329 * after this section (because the page was removed from any
2330 * queue).
2332 vm_page_remove(m);
2333 vm_page_and_queue_spin_lock(m);
2334 _vm_page_rem_queue_spinlocked(m);
2337 * No further management of fictitious pages occurs beyond object
2338 * and queue removal.
2340 if ((m->flags & PG_FICTITIOUS) != 0) {
2341 vm_page_spin_unlock(m);
2342 vm_page_wakeup(m);
2343 return;
2346 m->valid = 0;
2347 vm_page_undirty(m);
2349 if (m->wire_count != 0) {
2350 if (m->wire_count > 1) {
2351 panic(
2352 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2353 m->wire_count, (long)m->pindex);
2355 panic("vm_page_free: freeing wired page");
2359 * Clear the UNMANAGED flag when freeing an unmanaged page.
2360 * Clear the NEED_COMMIT flag
2362 if (m->flags & PG_UNMANAGED)
2363 vm_page_flag_clear(m, PG_UNMANAGED);
2364 if (m->flags & PG_NEED_COMMIT)
2365 vm_page_flag_clear(m, PG_NEED_COMMIT);
2367 if (m->hold_count != 0) {
2368 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2369 } else {
2370 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2374 * This sequence allows us to clear BUSY while still holding
2375 * its spin lock, which reduces contention vs allocators. We
2376 * must not leave the queue locked or _vm_page_wakeup() may
2377 * deadlock.
2379 _vm_page_queue_spin_unlock(m);
2380 if (_vm_page_wakeup(m)) {
2381 vm_page_spin_unlock(m);
2382 wakeup(m);
2383 } else {
2384 vm_page_spin_unlock(m);
2386 vm_page_free_wakeup();
2390 * vm_page_unmanage()
2392 * Prevent PV management from being done on the page. The page is
2393 * removed from the paging queues as if it were wired, and as a
2394 * consequence of no longer being managed the pageout daemon will not
2395 * touch it (since there is no way to locate the pte mappings for the
2396 * page). madvise() calls that mess with the pmap will also no longer
2397 * operate on the page.
2399 * Beyond that the page is still reasonably 'normal'. Freeing the page
2400 * will clear the flag.
2402 * This routine is used by OBJT_PHYS objects - objects using unswappable
2403 * physical memory as backing store rather then swap-backed memory and
2404 * will eventually be extended to support 4MB unmanaged physical
2405 * mappings.
2407 * Caller must be holding the page busy.
2409 void
2410 vm_page_unmanage(vm_page_t m)
2412 KKASSERT(m->busy_count & PBUSY_LOCKED);
2413 if ((m->flags & PG_UNMANAGED) == 0) {
2414 if (m->wire_count == 0)
2415 vm_page_unqueue(m);
2417 vm_page_flag_set(m, PG_UNMANAGED);
2421 * Mark this page as wired down by yet another map, removing it from
2422 * paging queues as necessary.
2424 * Caller must be holding the page busy.
2426 void
2427 vm_page_wire(vm_page_t m)
2430 * Only bump the wire statistics if the page is not already wired,
2431 * and only unqueue the page if it is on some queue (if it is unmanaged
2432 * it is already off the queues). Don't do anything with fictitious
2433 * pages because they are always wired.
2435 KKASSERT(m->busy_count & PBUSY_LOCKED);
2436 if ((m->flags & PG_FICTITIOUS) == 0) {
2437 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2438 if ((m->flags & PG_UNMANAGED) == 0)
2439 vm_page_unqueue(m);
2440 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2442 KASSERT(m->wire_count != 0,
2443 ("vm_page_wire: wire_count overflow m=%p", m));
2448 * Release one wiring of this page, potentially enabling it to be paged again.
2450 * Many pages placed on the inactive queue should actually go
2451 * into the cache, but it is difficult to figure out which. What
2452 * we do instead, if the inactive target is well met, is to put
2453 * clean pages at the head of the inactive queue instead of the tail.
2454 * This will cause them to be moved to the cache more quickly and
2455 * if not actively re-referenced, freed more quickly. If we just
2456 * stick these pages at the end of the inactive queue, heavy filesystem
2457 * meta-data accesses can cause an unnecessary paging load on memory bound
2458 * processes. This optimization causes one-time-use metadata to be
2459 * reused more quickly.
2461 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2462 * the inactive queue. This helps the pageout daemon determine memory
2463 * pressure and act on out-of-memory situations more quickly.
2465 * BUT, if we are in a low-memory situation we have no choice but to
2466 * put clean pages on the cache queue.
2468 * A number of routines use vm_page_unwire() to guarantee that the page
2469 * will go into either the inactive or active queues, and will NEVER
2470 * be placed in the cache - for example, just after dirtying a page.
2471 * dirty pages in the cache are not allowed.
2473 * This routine may not block.
2475 void
2476 vm_page_unwire(vm_page_t m, int activate)
2478 KKASSERT(m->busy_count & PBUSY_LOCKED);
2479 if (m->flags & PG_FICTITIOUS) {
2480 /* do nothing */
2481 } else if (m->wire_count <= 0) {
2482 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2483 } else {
2484 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2485 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2486 if (m->flags & PG_UNMANAGED) {
2488 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2489 vm_page_spin_lock(m);
2490 _vm_page_add_queue_spinlocked(m,
2491 PQ_ACTIVE + m->pc, 0);
2492 _vm_page_and_queue_spin_unlock(m);
2493 } else {
2494 vm_page_spin_lock(m);
2495 vm_page_flag_clear(m, PG_WINATCFLS);
2496 _vm_page_add_queue_spinlocked(m,
2497 PQ_INACTIVE + m->pc, 0);
2498 ++vm_swapcache_inactive_heuristic;
2499 _vm_page_and_queue_spin_unlock(m);
2506 * Move the specified page to the inactive queue. If the page has
2507 * any associated swap, the swap is deallocated.
2509 * Normally athead is 0 resulting in LRU operation. athead is set
2510 * to 1 if we want this page to be 'as if it were placed in the cache',
2511 * except without unmapping it from the process address space.
2513 * vm_page's spinlock must be held on entry and will remain held on return.
2514 * This routine may not block.
2516 static void
2517 _vm_page_deactivate_locked(vm_page_t m, int athead)
2519 u_short oqueue;
2522 * Ignore if already inactive.
2524 if (m->queue - m->pc == PQ_INACTIVE)
2525 return;
2526 _vm_page_queue_spin_lock(m);
2527 oqueue = _vm_page_rem_queue_spinlocked(m);
2529 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2530 if (oqueue == PQ_CACHE)
2531 mycpu->gd_cnt.v_reactivated++;
2532 vm_page_flag_clear(m, PG_WINATCFLS);
2533 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2534 if (athead == 0)
2535 ++vm_swapcache_inactive_heuristic;
2537 /* NOTE: PQ_NONE if condition not taken */
2538 _vm_page_queue_spin_unlock(m);
2539 /* leaves vm_page spinlocked */
2543 * Attempt to deactivate a page.
2545 * No requirements.
2547 void
2548 vm_page_deactivate(vm_page_t m)
2550 vm_page_spin_lock(m);
2551 _vm_page_deactivate_locked(m, 0);
2552 vm_page_spin_unlock(m);
2555 void
2556 vm_page_deactivate_locked(vm_page_t m)
2558 _vm_page_deactivate_locked(m, 0);
2562 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2564 * This function returns non-zero if it successfully moved the page to
2565 * PQ_CACHE.
2567 * This function unconditionally unbusies the page on return.
2570 vm_page_try_to_cache(vm_page_t m)
2572 vm_page_spin_lock(m);
2573 if (m->dirty || m->hold_count || m->wire_count ||
2574 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2575 if (_vm_page_wakeup(m)) {
2576 vm_page_spin_unlock(m);
2577 wakeup(m);
2578 } else {
2579 vm_page_spin_unlock(m);
2581 return(0);
2583 vm_page_spin_unlock(m);
2586 * Page busied by us and no longer spinlocked. Dirty pages cannot
2587 * be moved to the cache.
2589 vm_page_test_dirty(m);
2590 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2591 vm_page_wakeup(m);
2592 return(0);
2594 vm_page_cache(m);
2595 return(1);
2599 * Attempt to free the page. If we cannot free it, we do nothing.
2600 * 1 is returned on success, 0 on failure.
2602 * No requirements.
2605 vm_page_try_to_free(vm_page_t m)
2607 vm_page_spin_lock(m);
2608 if (vm_page_busy_try(m, TRUE)) {
2609 vm_page_spin_unlock(m);
2610 return(0);
2614 * The page can be in any state, including already being on the free
2615 * queue. Check to see if it really can be freed.
2617 if (m->dirty || /* can't free if it is dirty */
2618 m->hold_count || /* or held (XXX may be wrong) */
2619 m->wire_count || /* or wired */
2620 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2621 PG_NEED_COMMIT)) || /* or needs a commit */
2622 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2623 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2624 if (_vm_page_wakeup(m)) {
2625 vm_page_spin_unlock(m);
2626 wakeup(m);
2627 } else {
2628 vm_page_spin_unlock(m);
2630 return(0);
2632 vm_page_spin_unlock(m);
2635 * We can probably free the page.
2637 * Page busied by us and no longer spinlocked. Dirty pages will
2638 * not be freed by this function. We have to re-test the
2639 * dirty bit after cleaning out the pmaps.
2641 vm_page_test_dirty(m);
2642 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2643 vm_page_wakeup(m);
2644 return(0);
2646 vm_page_protect(m, VM_PROT_NONE);
2647 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2648 vm_page_wakeup(m);
2649 return(0);
2651 vm_page_free(m);
2652 return(1);
2656 * vm_page_cache
2658 * Put the specified page onto the page cache queue (if appropriate).
2660 * The page must be busy, and this routine will release the busy and
2661 * possibly even free the page.
2663 void
2664 vm_page_cache(vm_page_t m)
2667 * Not suitable for the cache
2669 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2670 (m->busy_count & PBUSY_MASK) ||
2671 m->wire_count || m->hold_count) {
2672 vm_page_wakeup(m);
2673 return;
2677 * Already in the cache (and thus not mapped)
2679 if ((m->queue - m->pc) == PQ_CACHE) {
2680 KKASSERT((m->flags & PG_MAPPED) == 0);
2681 vm_page_wakeup(m);
2682 return;
2686 * Caller is required to test m->dirty, but note that the act of
2687 * removing the page from its maps can cause it to become dirty
2688 * on an SMP system due to another cpu running in usermode.
2690 if (m->dirty) {
2691 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2692 (long)m->pindex);
2696 * Remove all pmaps and indicate that the page is not
2697 * writeable or mapped. Our vm_page_protect() call may
2698 * have blocked (especially w/ VM_PROT_NONE), so recheck
2699 * everything.
2701 vm_page_protect(m, VM_PROT_NONE);
2702 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2703 (m->busy_count & PBUSY_MASK) ||
2704 m->wire_count || m->hold_count) {
2705 vm_page_wakeup(m);
2706 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2707 vm_page_deactivate(m);
2708 vm_page_wakeup(m);
2709 } else {
2710 _vm_page_and_queue_spin_lock(m);
2711 _vm_page_rem_queue_spinlocked(m);
2712 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2713 _vm_page_queue_spin_unlock(m);
2714 if (_vm_page_wakeup(m)) {
2715 vm_page_spin_unlock(m);
2716 wakeup(m);
2717 } else {
2718 vm_page_spin_unlock(m);
2720 vm_page_free_wakeup();
2725 * vm_page_dontneed()
2727 * Cache, deactivate, or do nothing as appropriate. This routine
2728 * is typically used by madvise() MADV_DONTNEED.
2730 * Generally speaking we want to move the page into the cache so
2731 * it gets reused quickly. However, this can result in a silly syndrome
2732 * due to the page recycling too quickly. Small objects will not be
2733 * fully cached. On the otherhand, if we move the page to the inactive
2734 * queue we wind up with a problem whereby very large objects
2735 * unnecessarily blow away our inactive and cache queues.
2737 * The solution is to move the pages based on a fixed weighting. We
2738 * either leave them alone, deactivate them, or move them to the cache,
2739 * where moving them to the cache has the highest weighting.
2740 * By forcing some pages into other queues we eventually force the
2741 * system to balance the queues, potentially recovering other unrelated
2742 * space from active. The idea is to not force this to happen too
2743 * often.
2745 * The page must be busied.
2747 void
2748 vm_page_dontneed(vm_page_t m)
2750 static int dnweight;
2751 int dnw;
2752 int head;
2754 dnw = ++dnweight;
2757 * occassionally leave the page alone
2759 if ((dnw & 0x01F0) == 0 ||
2760 m->queue - m->pc == PQ_INACTIVE ||
2761 m->queue - m->pc == PQ_CACHE
2763 if (m->act_count >= ACT_INIT)
2764 --m->act_count;
2765 return;
2769 * If vm_page_dontneed() is inactivating a page, it must clear
2770 * the referenced flag; otherwise the pagedaemon will see references
2771 * on the page in the inactive queue and reactivate it. Until the
2772 * page can move to the cache queue, madvise's job is not done.
2774 vm_page_flag_clear(m, PG_REFERENCED);
2775 pmap_clear_reference(m);
2777 if (m->dirty == 0)
2778 vm_page_test_dirty(m);
2780 if (m->dirty || (dnw & 0x0070) == 0) {
2782 * Deactivate the page 3 times out of 32.
2784 head = 0;
2785 } else {
2787 * Cache the page 28 times out of every 32. Note that
2788 * the page is deactivated instead of cached, but placed
2789 * at the head of the queue instead of the tail.
2791 head = 1;
2793 vm_page_spin_lock(m);
2794 _vm_page_deactivate_locked(m, head);
2795 vm_page_spin_unlock(m);
2799 * These routines manipulate the 'soft busy' count for a page. A soft busy
2800 * is almost like a hard BUSY except that it allows certain compatible
2801 * operations to occur on the page while it is busy. For example, a page
2802 * undergoing a write can still be mapped read-only.
2804 * We also use soft-busy to quickly pmap_enter shared read-only pages
2805 * without having to hold the page locked.
2807 * The soft-busy count can be > 1 in situations where multiple threads
2808 * are pmap_enter()ing the same page simultaneously, or when two buffer
2809 * cache buffers overlap the same page.
2811 * The caller must hold the page BUSY when making these two calls.
2813 void
2814 vm_page_io_start(vm_page_t m)
2816 uint32_t ocount;
2818 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2819 KKASSERT(ocount & PBUSY_LOCKED);
2822 void
2823 vm_page_io_finish(vm_page_t m)
2825 uint32_t ocount;
2827 ocount = atomic_fetchadd_int(&m->busy_count, -1);
2828 KKASSERT(ocount & PBUSY_MASK);
2829 #if 0
2830 if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
2831 wakeup(m);
2832 #endif
2836 * Attempt to soft-busy a page. The page must not be PBUSY_LOCKED.
2838 * We can't use fetchadd here because we might race a hard-busy and the
2839 * page freeing code asserts on a non-zero soft-busy count (even if only
2840 * temporary).
2842 * Returns 0 on success, non-zero on failure.
2845 vm_page_sbusy_try(vm_page_t m)
2847 uint32_t ocount;
2849 for (;;) {
2850 ocount = m->busy_count;
2851 cpu_ccfence();
2852 if (ocount & PBUSY_LOCKED)
2853 return 1;
2854 if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
2855 break;
2857 return 0;
2858 #if 0
2859 if (m->busy_count & PBUSY_LOCKED)
2860 return 1;
2861 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2862 if (ocount & PBUSY_LOCKED) {
2863 vm_page_sbusy_drop(m);
2864 return 1;
2866 return 0;
2867 #endif
2871 * Indicate that a clean VM page requires a filesystem commit and cannot
2872 * be reused. Used by tmpfs.
2874 void
2875 vm_page_need_commit(vm_page_t m)
2877 vm_page_flag_set(m, PG_NEED_COMMIT);
2878 vm_object_set_writeable_dirty(m->object);
2881 void
2882 vm_page_clear_commit(vm_page_t m)
2884 vm_page_flag_clear(m, PG_NEED_COMMIT);
2888 * Grab a page, blocking if it is busy and allocating a page if necessary.
2889 * A busy page is returned or NULL. The page may or may not be valid and
2890 * might not be on a queue (the caller is responsible for the disposition of
2891 * the page).
2893 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2894 * page will be zero'd and marked valid.
2896 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2897 * valid even if it already exists.
2899 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2900 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2901 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2903 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2904 * always returned if we had blocked.
2906 * This routine may not be called from an interrupt.
2908 * No other requirements.
2910 vm_page_t
2911 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2913 vm_page_t m;
2914 int error;
2915 int shared = 1;
2917 KKASSERT(allocflags &
2918 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2919 vm_object_hold_shared(object);
2920 for (;;) {
2921 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2922 if (error) {
2923 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2924 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2925 m = NULL;
2926 break;
2928 /* retry */
2929 } else if (m == NULL) {
2930 if (shared) {
2931 vm_object_upgrade(object);
2932 shared = 0;
2934 if (allocflags & VM_ALLOC_RETRY)
2935 allocflags |= VM_ALLOC_NULL_OK;
2936 m = vm_page_alloc(object, pindex,
2937 allocflags & ~VM_ALLOC_RETRY);
2938 if (m)
2939 break;
2940 vm_wait(0);
2941 if ((allocflags & VM_ALLOC_RETRY) == 0)
2942 goto failed;
2943 } else {
2944 /* m found */
2945 break;
2950 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2952 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2953 * valid even if already valid.
2955 * NOTE! We have removed all of the PG_ZERO optimizations and also
2956 * removed the idle zeroing code. These optimizations actually
2957 * slow things down on modern cpus because the zerod area is
2958 * likely uncached, placing a memory-access burden on the
2959 * accesors taking the fault.
2961 * By always zeroing the page in-line with the fault, no
2962 * dynamic ram reads are needed and the caches are hot, ready
2963 * for userland to access the memory.
2965 if (m->valid == 0) {
2966 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2967 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2968 m->valid = VM_PAGE_BITS_ALL;
2970 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2971 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2972 m->valid = VM_PAGE_BITS_ALL;
2974 failed:
2975 vm_object_drop(object);
2976 return(m);
2980 * Mapping function for valid bits or for dirty bits in
2981 * a page. May not block.
2983 * Inputs are required to range within a page.
2985 * No requirements.
2986 * Non blocking.
2989 vm_page_bits(int base, int size)
2991 int first_bit;
2992 int last_bit;
2994 KASSERT(
2995 base + size <= PAGE_SIZE,
2996 ("vm_page_bits: illegal base/size %d/%d", base, size)
2999 if (size == 0) /* handle degenerate case */
3000 return(0);
3002 first_bit = base >> DEV_BSHIFT;
3003 last_bit = (base + size - 1) >> DEV_BSHIFT;
3005 return ((2 << last_bit) - (1 << first_bit));
3009 * Sets portions of a page valid and clean. The arguments are expected
3010 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3011 * of any partial chunks touched by the range. The invalid portion of
3012 * such chunks will be zero'd.
3014 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3015 * align base to DEV_BSIZE so as not to mark clean a partially
3016 * truncated device block. Otherwise the dirty page status might be
3017 * lost.
3019 * This routine may not block.
3021 * (base + size) must be less then or equal to PAGE_SIZE.
3023 static void
3024 _vm_page_zero_valid(vm_page_t m, int base, int size)
3026 int frag;
3027 int endoff;
3029 if (size == 0) /* handle degenerate case */
3030 return;
3033 * If the base is not DEV_BSIZE aligned and the valid
3034 * bit is clear, we have to zero out a portion of the
3035 * first block.
3038 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3039 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3041 pmap_zero_page_area(
3042 VM_PAGE_TO_PHYS(m),
3043 frag,
3044 base - frag
3049 * If the ending offset is not DEV_BSIZE aligned and the
3050 * valid bit is clear, we have to zero out a portion of
3051 * the last block.
3054 endoff = base + size;
3056 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3057 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3059 pmap_zero_page_area(
3060 VM_PAGE_TO_PHYS(m),
3061 endoff,
3062 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3068 * Set valid, clear dirty bits. If validating the entire
3069 * page we can safely clear the pmap modify bit. We also
3070 * use this opportunity to clear the PG_NOSYNC flag. If a process
3071 * takes a write fault on a MAP_NOSYNC memory area the flag will
3072 * be set again.
3074 * We set valid bits inclusive of any overlap, but we can only
3075 * clear dirty bits for DEV_BSIZE chunks that are fully within
3076 * the range.
3078 * Page must be busied?
3079 * No other requirements.
3081 void
3082 vm_page_set_valid(vm_page_t m, int base, int size)
3084 _vm_page_zero_valid(m, base, size);
3085 m->valid |= vm_page_bits(base, size);
3090 * Set valid bits and clear dirty bits.
3092 * Page must be busied by caller.
3094 * NOTE: This function does not clear the pmap modified bit.
3095 * Also note that e.g. NFS may use a byte-granular base
3096 * and size.
3098 * No other requirements.
3100 void
3101 vm_page_set_validclean(vm_page_t m, int base, int size)
3103 int pagebits;
3105 _vm_page_zero_valid(m, base, size);
3106 pagebits = vm_page_bits(base, size);
3107 m->valid |= pagebits;
3108 m->dirty &= ~pagebits;
3109 if (base == 0 && size == PAGE_SIZE) {
3110 /*pmap_clear_modify(m);*/
3111 vm_page_flag_clear(m, PG_NOSYNC);
3116 * Set valid & dirty. Used by buwrite()
3118 * Page must be busied by caller.
3120 void
3121 vm_page_set_validdirty(vm_page_t m, int base, int size)
3123 int pagebits;
3125 pagebits = vm_page_bits(base, size);
3126 m->valid |= pagebits;
3127 m->dirty |= pagebits;
3128 if (m->object)
3129 vm_object_set_writeable_dirty(m->object);
3133 * Clear dirty bits.
3135 * NOTE: This function does not clear the pmap modified bit.
3136 * Also note that e.g. NFS may use a byte-granular base
3137 * and size.
3139 * Page must be busied?
3140 * No other requirements.
3142 void
3143 vm_page_clear_dirty(vm_page_t m, int base, int size)
3145 m->dirty &= ~vm_page_bits(base, size);
3146 if (base == 0 && size == PAGE_SIZE) {
3147 /*pmap_clear_modify(m);*/
3148 vm_page_flag_clear(m, PG_NOSYNC);
3153 * Make the page all-dirty.
3155 * Also make sure the related object and vnode reflect the fact that the
3156 * object may now contain a dirty page.
3158 * Page must be busied?
3159 * No other requirements.
3161 void
3162 vm_page_dirty(vm_page_t m)
3164 #ifdef INVARIANTS
3165 int pqtype = m->queue - m->pc;
3166 #endif
3167 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3168 ("vm_page_dirty: page in free/cache queue!"));
3169 if (m->dirty != VM_PAGE_BITS_ALL) {
3170 m->dirty = VM_PAGE_BITS_ALL;
3171 if (m->object)
3172 vm_object_set_writeable_dirty(m->object);
3177 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3178 * valid and dirty bits for the effected areas are cleared.
3180 * Page must be busied?
3181 * Does not block.
3182 * No other requirements.
3184 void
3185 vm_page_set_invalid(vm_page_t m, int base, int size)
3187 int bits;
3189 bits = vm_page_bits(base, size);
3190 m->valid &= ~bits;
3191 m->dirty &= ~bits;
3192 atomic_add_int(&m->object->generation, 1);
3196 * The kernel assumes that the invalid portions of a page contain
3197 * garbage, but such pages can be mapped into memory by user code.
3198 * When this occurs, we must zero out the non-valid portions of the
3199 * page so user code sees what it expects.
3201 * Pages are most often semi-valid when the end of a file is mapped
3202 * into memory and the file's size is not page aligned.
3204 * Page must be busied?
3205 * No other requirements.
3207 void
3208 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3210 int b;
3211 int i;
3214 * Scan the valid bits looking for invalid sections that
3215 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3216 * valid bit may be set ) have already been zerod by
3217 * vm_page_set_validclean().
3219 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3220 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3221 (m->valid & (1 << i))
3223 if (i > b) {
3224 pmap_zero_page_area(
3225 VM_PAGE_TO_PHYS(m),
3226 b << DEV_BSHIFT,
3227 (i - b) << DEV_BSHIFT
3230 b = i + 1;
3235 * setvalid is TRUE when we can safely set the zero'd areas
3236 * as being valid. We can do this if there are no cache consistency
3237 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3239 if (setvalid)
3240 m->valid = VM_PAGE_BITS_ALL;
3244 * Is a (partial) page valid? Note that the case where size == 0
3245 * will return FALSE in the degenerate case where the page is entirely
3246 * invalid, and TRUE otherwise.
3248 * Does not block.
3249 * No other requirements.
3252 vm_page_is_valid(vm_page_t m, int base, int size)
3254 int bits = vm_page_bits(base, size);
3256 if (m->valid && ((m->valid & bits) == bits))
3257 return 1;
3258 else
3259 return 0;
3263 * update dirty bits from pmap/mmu. May not block.
3265 * Caller must hold the page busy
3267 void
3268 vm_page_test_dirty(vm_page_t m)
3270 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3271 vm_page_dirty(m);
3275 #include "opt_ddb.h"
3276 #ifdef DDB
3277 #include <ddb/ddb.h>
3279 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3281 db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3282 db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3283 db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3284 db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3285 db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3286 db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3287 db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3288 db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3289 db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3290 db_printf("vmstats.v_inactive_target: %ld\n",
3291 vmstats.v_inactive_target);
3294 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3296 int i;
3297 db_printf("PQ_FREE:");
3298 for (i = 0; i < PQ_L2_SIZE; i++) {
3299 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3301 db_printf("\n");
3303 db_printf("PQ_CACHE:");
3304 for(i = 0; i < PQ_L2_SIZE; i++) {
3305 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3307 db_printf("\n");
3309 db_printf("PQ_ACTIVE:");
3310 for(i = 0; i < PQ_L2_SIZE; i++) {
3311 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3313 db_printf("\n");
3315 db_printf("PQ_INACTIVE:");
3316 for(i = 0; i < PQ_L2_SIZE; i++) {
3317 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3319 db_printf("\n");
3321 #endif /* DDB */