vkernel64 - Enable function name resolution in DDB.
[dragonfly.git] / sys / vm / vm_swapcache.c
blob9379b1c9b459362fe82f4fdfa81108f4bc215d2e
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Implement the swapcache daemon. When enabled swap is assumed to be
39 * configured on a fast storage device such as a SSD. Swap is assigned
40 * to clean vnode-backed pages in the inactive queue, clustered by object
41 * if possible, and written out. The swap assignment sticks around even
42 * after the underlying pages have been recycled.
44 * The daemon manages write bandwidth based on sysctl settings to control
45 * wear on the SSD.
47 * The vnode strategy code will check for the swap assignments and divert
48 * reads to the swap device when the data is present in the swapcache.
50 * This operates on both regular files and the block device vnodes used by
51 * filesystems to manage meta-data.
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_pager.h>
74 #include <vm/swap_pager.h>
75 #include <vm/vm_extern.h>
77 #include <sys/thread2.h>
78 #include <vm/vm_page2.h>
80 #define INACTIVE_LIST (&vm_page_queues[PQ_INACTIVE].pl)
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static void vm_swapcache_writing(vm_page_t marker);
86 static void vm_swapcache_cleaning(vm_object_t marker);
87 struct thread *swapcached_thread;
89 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
91 int vm_swapcache_read_enable;
92 int vm_swapcache_inactive_heuristic;
93 static int vm_swapcache_sleep;
94 static int vm_swapcache_maxlaunder = 256;
95 static int vm_swapcache_data_enable = 0;
96 static int vm_swapcache_meta_enable = 0;
97 static int vm_swapcache_maxswappct = 75;
98 static int vm_swapcache_hysteresis;
99 static int vm_swapcache_use_chflags = 1; /* require chflags cache */
100 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
101 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
102 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
103 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
104 static int64_t vm_swapcache_write_count;
105 static int64_t vm_swapcache_maxfilesize;
107 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
108 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
110 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
111 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
113 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
115 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
117 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
119 CTLFLAG_RW, &vm_swapcache_hysteresis, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
121 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
123 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
124 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
125 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
126 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
127 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
128 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
129 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
130 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
131 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
132 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
134 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
136 #define SWAPMAX(adj) \
137 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
140 * vm_swapcached is the high level pageout daemon.
142 * No requirements.
144 static void
145 vm_swapcached_thread(void)
147 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
148 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
149 struct vm_page page_marker;
150 struct vm_object object_marker;
153 * Thread setup
155 curthread->td_flags |= TDF_SYSTHREAD;
157 lwkt_gettoken(&vm_token);
158 crit_enter();
161 * Initialize our marker for the inactive scan (SWAPC_WRITING)
163 bzero(&page_marker, sizeof(page_marker));
164 page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
165 page_marker.queue = PQ_INACTIVE;
166 page_marker.wire_count = 1;
167 TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
168 vm_swapcache_hysteresis = vmstats.v_inactive_target / 2;
169 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
172 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
174 bzero(&object_marker, sizeof(object_marker));
175 object_marker.type = OBJT_MARKER;
176 lwkt_gettoken(&vmobj_token);
177 TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
178 lwkt_reltoken(&vmobj_token);
180 for (;;) {
182 * Check every 5 seconds when not enabled or if no swap
183 * is present.
185 if ((vm_swapcache_data_enable == 0 &&
186 vm_swapcache_meta_enable == 0) ||
187 vm_swap_max == 0) {
188 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
189 continue;
193 * Polling rate when enabled is approximately 10 hz.
195 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
198 * State hysteresis. Generate write activity up to 75% of
199 * swap, then clean out swap assignments down to 70%, then
200 * repeat.
202 if (state == SWAPC_WRITING) {
203 if (vm_swap_cache_use > SWAPMAX(0))
204 state = SWAPC_CLEANING;
205 } else {
206 if (vm_swap_cache_use < SWAPMAX(-5))
207 state = SWAPC_WRITING;
211 * We are allowed to continue accumulating burst value
212 * in either state. Allow the user to set curburst > maxburst
213 * for the initial load-in.
215 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
216 vm_swapcache_curburst += vm_swapcache_accrate / 10;
217 if (vm_swapcache_curburst > vm_swapcache_maxburst)
218 vm_swapcache_curburst = vm_swapcache_maxburst;
222 * We don't want to nickle-and-dime the scan as that will
223 * create unnecessary fragmentation. The minimum burst
224 * is one-seconds worth of accumulation.
226 if (state == SWAPC_WRITING) {
227 if (vm_swapcache_curburst >= vm_swapcache_accrate) {
228 if (burst == SWAPB_BURSTING) {
229 vm_swapcache_writing(&page_marker);
230 if (vm_swapcache_curburst <= 0)
231 burst = SWAPB_RECOVERING;
232 } else if (vm_swapcache_curburst >
233 vm_swapcache_minburst) {
234 vm_swapcache_writing(&page_marker);
235 burst = SWAPB_BURSTING;
238 } else {
239 vm_swapcache_cleaning(&object_marker);
244 * Cleanup (NOT REACHED)
246 TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
247 crit_exit();
248 lwkt_reltoken(&vm_token);
250 lwkt_gettoken(&vmobj_token);
251 TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
252 lwkt_reltoken(&vmobj_token);
255 static struct kproc_desc swpc_kp = {
256 "swapcached",
257 vm_swapcached_thread,
258 &swapcached_thread
260 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
263 * The caller must hold vm_token.
265 static void
266 vm_swapcache_writing(vm_page_t marker)
268 vm_object_t object;
269 struct vnode *vp;
270 vm_page_t m;
271 int count;
272 int isblkdev;
275 * Deal with an overflow of the heuristic counter or if the user
276 * manually changes the hysteresis.
278 * Try to avoid small incremental pageouts by waiting for enough
279 * pages to buildup in the inactive queue to hopefully get a good
280 * burst in. This heuristic is bumped by the VM system and reset
281 * when our scan hits the end of the queue.
283 if (vm_swapcache_inactive_heuristic < -vm_swapcache_hysteresis)
284 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
285 if (vm_swapcache_inactive_heuristic < 0)
286 return;
289 * Scan the inactive queue from our marker to locate
290 * suitable pages to push to the swap cache.
292 * We are looking for clean vnode-backed pages.
294 * NOTE: PG_SWAPPED pages in particular are not part of
295 * our count because once the cache stabilizes we
296 * can end up with a very high datarate of VM pages
297 * cycling from it.
299 m = marker;
300 count = vm_swapcache_maxlaunder;
302 while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
303 if (m->flags & (PG_MARKER | PG_SWAPPED)) {
304 ++count;
305 continue;
307 if (vm_swapcache_curburst < 0)
308 break;
309 if (vm_swapcache_test(m))
310 continue;
311 object = m->object;
312 vp = object->handle;
313 if (vp == NULL)
314 continue;
316 switch(vp->v_type) {
317 case VREG:
319 * If data_enable is 0 do not try to swapcache data.
320 * If use_chflags is set then only swapcache data for
321 * VSWAPCACHE marked vnodes, otherwise any vnode.
323 if (vm_swapcache_data_enable == 0 ||
324 ((vp->v_flag & VSWAPCACHE) == 0 &&
325 vm_swapcache_use_chflags)) {
326 continue;
328 if (vm_swapcache_maxfilesize &&
329 object->size >
330 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
331 continue;
333 isblkdev = 0;
334 break;
335 case VCHR:
337 * The PG_NOTMETA flag only applies to pages
338 * associated with block devices.
340 if (m->flags & PG_NOTMETA)
341 continue;
342 if (vm_swapcache_meta_enable == 0)
343 continue;
344 isblkdev = 1;
345 break;
346 default:
347 continue;
351 * Ok, move the marker and soft-busy the page.
353 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
354 TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
357 * Assign swap and initiate I/O.
359 * (adjust for the --count which also occurs in the loop)
361 count -= vm_swapcached_flush(m, isblkdev) - 1;
364 * Setup for next loop using marker.
366 m = marker;
370 * Cleanup marker position. If we hit the end of the
371 * list the marker is placed at the tail. Newly deactivated
372 * pages will be placed after it.
374 * Earlier inactive pages that were dirty and become clean
375 * are typically moved to the end of PQ_INACTIVE by virtue
376 * of vfs_vmio_release() when they become unwired from the
377 * buffer cache.
379 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
380 if (m) {
381 TAILQ_INSERT_BEFORE(m, marker, pageq);
382 } else {
383 TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
384 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
389 * Flush the specified page using the swap_pager.
391 * Try to collect surrounding pages, including pages which may
392 * have already been assigned swap. Try to cluster within a
393 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
394 * to match what swap_pager_putpages() can do.
396 * We also want to try to match against the buffer cache blocksize
397 * but we don't really know what it is here. Since the buffer cache
398 * wires and unwires pages in groups the fact that we skip wired pages
399 * should be sufficient.
401 * Returns a count of pages we might have flushed (minimum 1)
403 * The caller must hold vm_token.
405 static
407 vm_swapcached_flush(vm_page_t m, int isblkdev)
409 vm_object_t object;
410 vm_page_t marray[SWAP_META_PAGES];
411 vm_pindex_t basei;
412 int rtvals[SWAP_META_PAGES];
413 int x;
414 int i;
415 int j;
416 int count;
418 vm_page_io_start(m);
419 vm_page_protect(m, VM_PROT_READ);
420 object = m->object;
423 * Try to cluster around (m), keeping in mind that the swap pager
424 * can only do SMAP_META_PAGES worth of continguous write.
426 x = (int)m->pindex & SWAP_META_MASK;
427 marray[x] = m;
428 basei = m->pindex;
430 for (i = x - 1; i >= 0; --i) {
431 m = vm_page_lookup(object, basei - x + i);
432 if (m == NULL)
433 break;
434 if (vm_swapcache_test(m))
435 break;
436 if (isblkdev && (m->flags & PG_NOTMETA))
437 break;
438 vm_page_io_start(m);
439 vm_page_protect(m, VM_PROT_READ);
440 if (m->queue - m->pc == PQ_CACHE) {
441 vm_page_unqueue_nowakeup(m);
442 vm_page_deactivate(m);
444 marray[i] = m;
446 ++i;
448 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
449 m = vm_page_lookup(object, basei - x + j);
450 if (m == NULL)
451 break;
452 if (vm_swapcache_test(m))
453 break;
454 if (isblkdev && (m->flags & PG_NOTMETA))
455 break;
456 vm_page_io_start(m);
457 vm_page_protect(m, VM_PROT_READ);
458 if (m->queue - m->pc == PQ_CACHE) {
459 vm_page_unqueue_nowakeup(m);
460 vm_page_deactivate(m);
462 marray[j] = m;
465 count = j - i;
466 vm_object_pip_add(object, count);
467 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
468 vm_swapcache_write_count += count * PAGE_SIZE;
469 vm_swapcache_curburst -= count * PAGE_SIZE;
471 while (i < j) {
472 if (rtvals[i] != VM_PAGER_PEND) {
473 vm_page_io_finish(marray[i]);
474 vm_object_pip_wakeup(object);
476 ++i;
478 return(count);
482 * Test whether a VM page is suitable for writing to the swapcache.
483 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
485 * Returns 0 on success, 1 on failure
487 * The caller must hold vm_token.
489 static int
490 vm_swapcache_test(vm_page_t m)
492 vm_object_t object;
494 if (m->flags & (PG_BUSY | PG_UNMANAGED))
495 return(1);
496 if (m->busy || m->hold_count || m->wire_count)
497 return(1);
498 if (m->valid != VM_PAGE_BITS_ALL)
499 return(1);
500 if (m->dirty & m->valid)
501 return(1);
502 if ((object = m->object) == NULL)
503 return(1);
504 if (object->type != OBJT_VNODE ||
505 (object->flags & OBJ_DEAD)) {
506 return(1);
508 vm_page_test_dirty(m);
509 if (m->dirty & m->valid)
510 return(1);
511 return(0);
515 * Cleaning pass
517 * The caller must hold vm_token.
519 static
520 void
521 vm_swapcache_cleaning(vm_object_t marker)
523 vm_object_t object;
524 struct vnode *vp;
525 int count;
526 int n;
528 object = marker;
529 count = vm_swapcache_maxlaunder;
532 * Look for vnode objects
534 lwkt_gettoken(&vm_token);
535 lwkt_gettoken(&vmobj_token);
537 while ((object = TAILQ_NEXT(object, object_list)) != NULL && count--) {
538 if (object->type != OBJT_VNODE)
539 continue;
540 if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
541 continue;
542 if ((vp = object->handle) == NULL)
543 continue;
544 if (vp->v_type != VREG && vp->v_type != VCHR)
545 continue;
548 * Adjust iterator.
550 if (marker->backing_object != object)
551 marker->size = 0;
554 * Move the marker so we can work on the VM object
556 TAILQ_REMOVE(&vm_object_list, marker, object_list);
557 TAILQ_INSERT_AFTER(&vm_object_list, object,
558 marker, object_list);
561 * Look for swblocks starting at our iterator.
563 * The swap_pager_condfree() function attempts to free
564 * swap space starting at the specified index. The index
565 * will be updated on return. The function will return
566 * a scan factor (NOT the number of blocks freed).
568 * If it must cut its scan of the object short due to an
569 * excessive number of swblocks, or is able to free the
570 * requested number of blocks, it will return n >= count
571 * and we break and pick it back up on a future attempt.
573 n = swap_pager_condfree(object, &marker->size, count);
574 count -= n;
575 if (count < 0)
576 break;
579 * Setup for loop.
581 marker->size = 0;
582 object = marker;
586 * Adjust marker so we continue the scan from where we left off.
587 * When we reach the end we start back at the beginning.
589 TAILQ_REMOVE(&vm_object_list, marker, object_list);
590 if (object)
591 TAILQ_INSERT_BEFORE(object, marker, object_list);
592 else
593 TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
594 marker->backing_object = object;
596 lwkt_reltoken(&vmobj_token);
597 lwkt_reltoken(&vm_token);