kernel - VM rework part 9 - Precursor work for terminal pv_entry removal
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap.c
blobea13f00fecbf2dbe8de5e9e32ec01702e4746afa
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * All rights reserved.
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
43 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
44 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
48 * Manages physical address maps.
51 #include "opt_msgbuf.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/vmspace.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/thread2.h>
76 #include <sys/spinlock2.h>
77 #include <vm/vm_page2.h>
79 #include <machine/cputypes.h>
80 #include <machine/md_var.h>
81 #include <machine/specialreg.h>
82 #include <machine/smp.h>
83 #include <machine/globaldata.h>
84 #include <machine/pcb.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
88 #include <ddb/ddb.h>
90 #include <stdio.h>
91 #include <assert.h>
92 #include <stdlib.h>
93 #include <pthread.h>
95 #define PMAP_KEEP_PDIRS
96 #ifndef PMAP_SHPGPERPROC
97 #define PMAP_SHPGPERPROC 1000
98 #endif
100 #if defined(DIAGNOSTIC)
101 #define PMAP_DIAGNOSTIC
102 #endif
104 #define MINPV 2048
106 #if !defined(PMAP_DIAGNOSTIC)
107 #define PMAP_INLINE __inline
108 #else
109 #define PMAP_INLINE
110 #endif
113 * Get PDEs and PTEs for user/kernel address space
115 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
116 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
118 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & VPTE_V) != 0)
119 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
120 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & VPTE_M) != 0)
121 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & VPTE_A) != 0)
122 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & VPTE_V) != 0)
125 * Given a map and a machine independent protection code,
126 * convert to a vax protection code.
128 #define pte_prot(m, p) \
129 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
130 static uint64_t protection_codes[8];
132 struct pmap kernel_pmap;
134 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
136 static struct vm_object kptobj;
137 static int nkpt;
139 static uint64_t KPDphys; /* phys addr of kernel level 2 */
140 uint64_t KPDPphys; /* phys addr of kernel level 3 */
141 uint64_t KPML4phys; /* phys addr of kernel level 4 */
143 extern int vmm_enabled;
144 extern void *vkernel_stack;
147 * Data for the pv entry allocation mechanism
149 static vm_zone_t pvzone;
150 static struct vm_zone pvzone_store;
151 static vm_pindex_t pv_entry_count = 0;
152 static vm_pindex_t pv_entry_max = 0;
153 static vm_pindex_t pv_entry_high_water = 0;
154 static int pmap_pagedaemon_waken = 0;
155 static struct pv_entry *pvinit;
158 * All those kernel PT submaps that BSD is so fond of
160 pt_entry_t *CMAP1 = NULL, *ptmmap;
161 caddr_t CADDR1 = NULL;
162 static pt_entry_t *msgbufmap;
164 uint64_t KPTphys;
166 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
167 static pv_entry_t get_pv_entry (void);
168 static void x86_64_protection_init (void);
169 static __inline void pmap_clearbit (vm_page_t m, int bit);
171 static void pmap_remove_all (vm_page_t m);
172 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
173 pt_entry_t oldpte, vm_offset_t sva);
174 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
175 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
176 vm_offset_t va);
177 static boolean_t pmap_testbit (vm_page_t m, int bit);
178 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
179 vm_page_t mpte, vm_page_t m, pv_entry_t);
181 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
183 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
184 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
185 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
186 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
188 static int
189 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
191 if (pv1->pv_va < pv2->pv_va)
192 return(-1);
193 if (pv1->pv_va > pv2->pv_va)
194 return(1);
195 return(0);
198 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
199 pv_entry_compare, vm_offset_t, pv_va);
201 static __inline vm_pindex_t
202 pmap_pt_pindex(vm_offset_t va)
204 return va >> PDRSHIFT;
207 static __inline vm_pindex_t
208 pmap_pte_index(vm_offset_t va)
210 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
213 static __inline vm_pindex_t
214 pmap_pde_index(vm_offset_t va)
216 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
219 static __inline vm_pindex_t
220 pmap_pdpe_index(vm_offset_t va)
222 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
225 static __inline vm_pindex_t
226 pmap_pml4e_index(vm_offset_t va)
228 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
231 /* Return a pointer to the PML4 slot that corresponds to a VA */
232 static __inline pml4_entry_t *
233 pmap_pml4e(pmap_t pmap, vm_offset_t va)
235 return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
238 /* Return a pointer to the PDP slot that corresponds to a VA */
239 static __inline pdp_entry_t *
240 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
242 pdp_entry_t *pdpe;
244 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
245 return (&pdpe[pmap_pdpe_index(va)]);
248 /* Return a pointer to the PDP slot that corresponds to a VA */
249 static __inline pdp_entry_t *
250 pmap_pdpe(pmap_t pmap, vm_offset_t va)
252 pml4_entry_t *pml4e;
254 pml4e = pmap_pml4e(pmap, va);
255 if ((*pml4e & VPTE_V) == 0)
256 return NULL;
257 return (pmap_pml4e_to_pdpe(pml4e, va));
260 /* Return a pointer to the PD slot that corresponds to a VA */
261 static __inline pd_entry_t *
262 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
264 pd_entry_t *pde;
266 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
267 return (&pde[pmap_pde_index(va)]);
270 /* Return a pointer to the PD slot that corresponds to a VA */
271 static __inline pd_entry_t *
272 pmap_pde(pmap_t pmap, vm_offset_t va)
274 pdp_entry_t *pdpe;
276 pdpe = pmap_pdpe(pmap, va);
277 if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
278 return NULL;
279 return (pmap_pdpe_to_pde(pdpe, va));
282 /* Return a pointer to the PT slot that corresponds to a VA */
283 static __inline pt_entry_t *
284 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
286 pt_entry_t *pte;
288 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
289 return (&pte[pmap_pte_index(va)]);
293 * Hold pt_m for page table scans to prevent it from getting reused out
294 * from under us across blocking conditions in the body of the loop.
296 static __inline
297 vm_page_t
298 pmap_hold_pt_page(pd_entry_t *pde, vm_offset_t va)
300 pt_entry_t pte;
301 vm_page_t pt_m;
303 pte = (pt_entry_t)*pde;
304 KKASSERT(pte != 0);
305 pt_m = PHYS_TO_VM_PAGE(pte & VPTE_FRAME);
306 vm_page_hold(pt_m);
308 return pt_m;
311 /* Return a pointer to the PT slot that corresponds to a VA */
312 static __inline pt_entry_t *
313 pmap_pte(pmap_t pmap, vm_offset_t va)
315 pd_entry_t *pde;
317 pde = pmap_pde(pmap, va);
318 if (pde == NULL || (*pde & VPTE_V) == 0)
319 return NULL;
320 if ((*pde & VPTE_PS) != 0) /* compat with x86 pmap_pte() */
321 return ((pt_entry_t *)pde);
322 return (pmap_pde_to_pte(pde, va));
325 static PMAP_INLINE pt_entry_t *
326 vtopte(vm_offset_t va)
328 pt_entry_t *x;
329 x = pmap_pte(&kernel_pmap, va);
330 assert(x != NULL);
331 return x;
334 static __inline pd_entry_t *
335 vtopde(vm_offset_t va)
337 pd_entry_t *x;
338 x = pmap_pde(&kernel_pmap, va);
339 assert(x != NULL);
340 return x;
344 * Returns the physical address translation from va for a user address.
345 * (vm_paddr_t)-1 is returned on failure.
347 vm_paddr_t
348 uservtophys(vm_offset_t va)
350 struct vmspace *vm = curproc->p_vmspace;
351 vm_page_t m;
352 vm_paddr_t pa;
353 int error;
354 int busy;
356 /* XXX No idea how to handle this case in a simple way, just abort */
357 if (PAGE_SIZE - (va & PAGE_MASK) < sizeof(u_int))
358 return ((vm_paddr_t)-1);
360 m = vm_fault_page(&vm->vm_map, trunc_page(va),
361 VM_PROT_READ|VM_PROT_WRITE,
362 VM_FAULT_NORMAL,
363 &error, &busy);
364 if (error)
365 return ((vm_paddr_t)-1);
367 pa = VM_PAGE_TO_PHYS(m) | (va & PAGE_MASK);
368 if (busy)
369 vm_page_wakeup(m);
370 else
371 vm_page_unhold(m);
373 return pa;
376 static uint64_t
377 allocpages(vm_paddr_t *firstaddr, int n)
379 uint64_t ret;
381 ret = *firstaddr;
382 /*bzero((void *)ret, n * PAGE_SIZE); not mapped yet */
383 *firstaddr += n * PAGE_SIZE;
384 return (ret);
387 static void
388 create_dmap_vmm(vm_paddr_t *firstaddr)
390 void *stack_addr;
391 int pml4_stack_index;
392 int pdp_stack_index;
393 int pd_stack_index;
394 long i,j;
395 int regs[4];
396 int amd_feature;
398 uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
399 uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
400 uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
402 pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
403 pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
404 pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
405 pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
407 bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
408 bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
409 bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
411 do_cpuid(0x80000001, regs);
412 amd_feature = regs[3];
414 /* Build the mappings for the first 512GB */
415 if (amd_feature & AMDID_PAGE1GB) {
416 /* In pages of 1 GB, if supported */
417 for (i = 0; i < NPDPEPG; i++) {
418 KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
419 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
421 } else {
422 /* In page of 2MB, otherwise */
423 for (i = 0; i < NPDPEPG; i++) {
424 uint64_t KPD_DMAP_phys;
425 pd_entry_t *KPD_DMAP_virt;
427 KPD_DMAP_phys = allocpages(firstaddr, 1);
428 KPD_DMAP_virt =
429 (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
431 bzero(KPD_DMAP_virt, PAGE_SIZE);
433 KPDP_DMAP_virt[i] = KPD_DMAP_phys;
434 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
436 /* For each PD, we have to allocate NPTEPG PT */
437 for (j = 0; j < NPTEPG; j++) {
438 KPD_DMAP_virt[j] = (i << PDPSHIFT) |
439 (j << PDRSHIFT);
440 KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V |
441 VPTE_PS | VPTE_U;
446 /* DMAP for the first 512G */
447 KPML4virt[0] = KPDP_DMAP_phys;
448 KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
450 /* create a 2 MB map of the new stack */
451 pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
452 KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
453 KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
455 pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
456 KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
457 KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
459 pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
460 KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
461 KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
464 static void
465 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
467 int i;
468 pml4_entry_t *KPML4virt;
469 pdp_entry_t *KPDPvirt;
470 pd_entry_t *KPDvirt;
471 pt_entry_t *KPTvirt;
472 int kpml4i = pmap_pml4e_index(ptov_offset);
473 int kpdpi = pmap_pdpe_index(ptov_offset);
474 int kpdi = pmap_pde_index(ptov_offset);
477 * Calculate NKPT - number of kernel page tables. We have to
478 * accomodoate prealloction of the vm_page_array, dump bitmap,
479 * MSGBUF_SIZE, and other stuff. Be generous.
481 * Maxmem is in pages.
483 nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
485 * Allocate pages
487 KPML4phys = allocpages(firstaddr, 1);
488 KPDPphys = allocpages(firstaddr, NKPML4E);
489 KPDphys = allocpages(firstaddr, NKPDPE);
490 KPTphys = allocpages(firstaddr, nkpt);
492 KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
493 KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
494 KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
495 KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
497 bzero(KPML4virt, 1 * PAGE_SIZE);
498 bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
499 bzero(KPDvirt, NKPDPE * PAGE_SIZE);
500 bzero(KPTvirt, nkpt * PAGE_SIZE);
502 /* Now map the page tables at their location within PTmap */
503 for (i = 0; i < nkpt; i++) {
504 KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
505 KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
508 /* And connect up the PD to the PDP */
509 for (i = 0; i < NKPDPE; i++) {
510 KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
511 KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
514 /* And recursively map PML4 to itself in order to get PTmap */
515 KPML4virt[PML4PML4I] = KPML4phys;
516 KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
518 /* Connect the KVA slot up to the PML4 */
519 KPML4virt[kpml4i] = KPDPphys;
520 KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
524 * Typically used to initialize a fictitious page by vm/device_pager.c
526 void
527 pmap_page_init(struct vm_page *m)
529 vm_page_init(m);
530 TAILQ_INIT(&m->md.pv_list);
534 * Bootstrap the system enough to run with virtual memory.
536 * On x86_64 this is called after mapping has already been enabled
537 * and just syncs the pmap module with what has already been done.
538 * [We can't call it easily with mapping off since the kernel is not
539 * mapped with PA == VA, hence we would have to relocate every address
540 * from the linked base (virtual) address "KERNBASE" to the actual
541 * (physical) address starting relative to 0]
543 void
544 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
546 vm_offset_t va;
547 pt_entry_t *pte;
550 * Create an initial set of page tables to run the kernel in.
552 create_pagetables(firstaddr, ptov_offset);
554 /* Create the DMAP for the VMM */
555 if (vmm_enabled) {
556 create_dmap_vmm(firstaddr);
559 virtual_start = KvaStart;
560 virtual_end = KvaEnd;
563 * Initialize protection array.
565 x86_64_protection_init();
568 * The kernel's pmap is statically allocated so we don't have to use
569 * pmap_create, which is unlikely to work correctly at this part of
570 * the boot sequence (XXX and which no longer exists).
572 * The kernel_pmap's pm_pteobj is used only for locking and not
573 * for mmu pages.
575 kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
576 kernel_pmap.pm_count = 1;
577 /* don't allow deactivation */
578 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
579 kernel_pmap.pm_pteobj = NULL; /* see pmap_init */
580 RB_INIT(&kernel_pmap.pm_pvroot);
581 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
584 * Reserve some special page table entries/VA space for temporary
585 * mapping of pages.
587 #define SYSMAP(c, p, v, n) \
588 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
590 va = virtual_start;
591 pte = pmap_pte(&kernel_pmap, va);
593 * CMAP1/CMAP2 are used for zeroing and copying pages.
595 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
597 #if 0 /* JGV */
599 * Crashdump maps.
601 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
602 #endif
605 * ptvmmap is used for reading arbitrary physical pages via
606 * /dev/mem.
608 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
611 * msgbufp is used to map the system message buffer.
612 * XXX msgbufmap is not used.
614 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
615 atop(round_page(MSGBUF_SIZE)))
617 virtual_start = va;
619 *CMAP1 = 0;
620 /* Not ready to do an invltlb yet for VMM*/
621 if (!vmm_enabled)
622 cpu_invltlb();
627 * Initialize the pmap module.
628 * Called by vm_init, to initialize any structures that the pmap
629 * system needs to map virtual memory.
630 * pmap_init has been enhanced to support in a fairly consistant
631 * way, discontiguous physical memory.
633 void
634 pmap_init(void)
636 vm_pindex_t i;
637 vm_pindex_t initial_pvs;
640 * object for kernel page table pages
642 /* JG I think the number can be arbitrary */
643 vm_object_init(&kptobj, 5);
644 kernel_pmap.pm_pteobj = &kptobj;
647 * Allocate memory for random pmap data structures. Includes the
648 * pv_head_table.
650 for (i = 0; i < vm_page_array_size; i++) {
651 vm_page_t m;
653 m = &vm_page_array[i];
654 TAILQ_INIT(&m->md.pv_list);
655 m->md.pv_list_count = 0;
659 * init the pv free list
661 initial_pvs = vm_page_array_size;
662 if (initial_pvs < MINPV)
663 initial_pvs = MINPV;
664 pvzone = &pvzone_store;
665 pvinit = (struct pv_entry *)
666 kmem_alloc(&kernel_map,
667 initial_pvs * sizeof (struct pv_entry),
668 VM_SUBSYS_PVENTRY);
669 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
670 initial_pvs);
673 * Now it is safe to enable pv_table recording.
675 pmap_initialized = TRUE;
679 * Initialize the address space (zone) for the pv_entries. Set a
680 * high water mark so that the system can recover from excessive
681 * numbers of pv entries.
683 void
684 pmap_init2(void)
686 vm_pindex_t shpgperproc = PMAP_SHPGPERPROC;
688 TUNABLE_LONG_FETCH("vm.pmap.shpgperproc", &shpgperproc);
689 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
690 TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &pv_entry_max);
691 pv_entry_high_water = 9 * (pv_entry_max / 10);
692 zinitna(pvzone, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
696 /***************************************************
697 * Low level helper routines.....
698 ***************************************************/
701 * The modification bit is not tracked for any pages in this range. XXX
702 * such pages in this maps should always use pmap_k*() functions and not
703 * be managed anyhow.
705 * XXX User and kernel address spaces are independant for virtual kernels,
706 * this function only applies to the kernel pmap.
709 pmap_track_modified(pmap_t pmap, vm_offset_t va)
711 if (pmap != &kernel_pmap)
712 return 1;
713 if ((va < clean_sva) || (va >= clean_eva))
714 return 1;
715 else
716 return 0;
720 * Extract the physical page address associated with the map/VA pair.
722 * No requirements.
724 vm_paddr_t
725 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
727 vm_paddr_t rtval;
728 pt_entry_t *pte;
729 pd_entry_t pde, *pdep;
731 vm_object_hold(pmap->pm_pteobj);
732 rtval = 0;
733 pdep = pmap_pde(pmap, va);
734 if (pdep != NULL) {
735 pde = *pdep;
736 if (pde) {
737 if ((pde & VPTE_PS) != 0) {
738 /* JGV */
739 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
740 } else {
741 pte = pmap_pde_to_pte(pdep, va);
742 rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
746 if (handlep)
747 *handlep = NULL; /* XXX */
748 vm_object_drop(pmap->pm_pteobj);
750 return rtval;
753 void
754 pmap_extract_done(void *handle)
756 pmap_t pmap;
758 if (handle) {
759 pmap = handle;
760 vm_object_drop(pmap->pm_pteobj);
765 * Similar to extract but checks protections, SMP-friendly short-cut for
766 * vm_fault_page[_quick]().
768 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NEITHER IT NOR ITS TARGET
769 * DATA IS SUITABLE FOR WRITING. Writing can interfere with
770 * pageouts flushes, msync, etc. The hold_count is not enough
771 * to avoid races against pageouts and other flush code doesn't
772 * care about hold_count.
774 vm_page_t
775 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
776 vm_prot_t prot __unused, int *busyp __unused)
778 return(NULL);
782 * Routine: pmap_kextract
783 * Function:
784 * Extract the physical page address associated
785 * kernel virtual address.
787 vm_paddr_t
788 pmap_kextract(vm_offset_t va)
790 pd_entry_t pde;
791 vm_paddr_t pa;
793 KKASSERT(va >= KvaStart && va < KvaEnd);
796 * The DMAP region is not included in [KvaStart, KvaEnd)
798 #if 0
799 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
800 pa = DMAP_TO_PHYS(va);
801 } else {
802 #endif
803 pde = *vtopde(va);
804 if (pde & VPTE_PS) {
805 /* JGV */
806 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
807 } else {
809 * Beware of a concurrent promotion that changes the
810 * PDE at this point! For example, vtopte() must not
811 * be used to access the PTE because it would use the
812 * new PDE. It is, however, safe to use the old PDE
813 * because the page table page is preserved by the
814 * promotion.
816 pa = *pmap_pde_to_pte(&pde, va);
817 pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
819 #if 0
821 #endif
822 return pa;
825 /***************************************************
826 * Low level mapping routines.....
827 ***************************************************/
830 * Enter a mapping into kernel_pmap. Mappings created in this fashion
831 * are not managed. Mappings must be immediately accessible on all cpus.
833 * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
834 * real pmap and handle related races before storing the new vpte. The
835 * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
836 * because the entry may have previously been cleared without an invalidation.
838 void
839 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
841 pt_entry_t *ptep;
842 pt_entry_t npte;
844 KKASSERT(va >= KvaStart && va < KvaEnd);
845 npte = pa | VPTE_RW | VPTE_V | VPTE_U;
846 ptep = vtopte(va);
848 #if 1
849 pmap_inval_pte(ptep, &kernel_pmap, va);
850 #else
851 if (*pte & VPTE_V)
852 pmap_inval_pte(ptep, &kernel_pmap, va);
853 #endif
854 atomic_swap_long(ptep, npte);
858 * Enter an unmanaged KVA mapping for the private use of the current
859 * cpu only.
861 * It is illegal for the mapping to be accessed by other cpus without
862 * proper invalidation.
865 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
867 pt_entry_t *ptep;
868 pt_entry_t npte;
869 int res;
871 KKASSERT(va >= KvaStart && va < KvaEnd);
873 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
874 ptep = vtopte(va);
876 #if 1
877 pmap_inval_pte_quick(ptep, &kernel_pmap, va);
878 res = 1;
879 #else
880 /* FUTURE */
881 res = (*ptep != 0);
882 if (*pte & VPTE_V)
883 pmap_inval_pte(pte, &kernel_pmap, va);
884 #endif
885 atomic_swap_long(ptep, npte);
887 return res;
891 * Invalidation will occur later, ok to be lazy here.
894 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
896 pt_entry_t *ptep;
897 pt_entry_t npte;
898 int res;
900 KKASSERT(va >= KvaStart && va < KvaEnd);
902 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
903 ptep = vtopte(va);
904 #if 1
905 res = 1;
906 #else
907 /* FUTURE */
908 res = (*ptep != 0);
909 #endif
910 atomic_swap_long(ptep, npte);
912 return res;
916 * Remove an unmanaged mapping created with pmap_kenter*().
918 void
919 pmap_kremove(vm_offset_t va)
921 pt_entry_t *ptep;
923 KKASSERT(va >= KvaStart && va < KvaEnd);
925 ptep = vtopte(va);
926 atomic_swap_long(ptep, 0);
927 pmap_inval_pte(ptep, &kernel_pmap, va);
931 * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
932 * only with this cpu.
934 * Unfortunately because we optimize new entries by testing VPTE_V later
935 * on, we actually still have to synchronize with all the cpus. XXX maybe
936 * store a junk value and test against 0 in the other places instead?
938 void
939 pmap_kremove_quick(vm_offset_t va)
941 pt_entry_t *ptep;
943 KKASSERT(va >= KvaStart && va < KvaEnd);
945 ptep = vtopte(va);
946 atomic_swap_long(ptep, 0);
947 pmap_inval_pte(ptep, &kernel_pmap, va); /* NOT _quick */
951 * Invalidation will occur later, ok to be lazy here.
953 void
954 pmap_kremove_noinval(vm_offset_t va)
956 pt_entry_t *ptep;
958 KKASSERT(va >= KvaStart && va < KvaEnd);
960 ptep = vtopte(va);
961 atomic_swap_long(ptep, 0);
965 * Used to map a range of physical addresses into kernel
966 * virtual address space.
968 * For now, VM is already on, we only need to map the
969 * specified memory.
971 vm_offset_t
972 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
974 return PHYS_TO_DMAP(start);
978 * Map a set of unmanaged VM pages into KVM.
980 static __inline void
981 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
983 vm_offset_t end_va;
984 vm_offset_t va;
986 end_va = beg_va + count * PAGE_SIZE;
987 KKASSERT(beg_va >= KvaStart && end_va <= KvaEnd);
989 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
990 pt_entry_t *ptep;
992 ptep = vtopte(va);
993 atomic_swap_long(ptep, VM_PAGE_TO_PHYS(*m) |
994 VPTE_RW | VPTE_V | VPTE_U);
995 ++m;
997 if (doinval)
998 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
999 /* pmap_inval_pte(pte, &kernel_pmap, va); */
1002 void
1003 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1005 _pmap_qenter(beg_va, m, count, 1);
1008 void
1009 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1011 _pmap_qenter(beg_va, m, count, 0);
1015 * Undo the effects of pmap_qenter*().
1017 void
1018 pmap_qremove(vm_offset_t beg_va, int count)
1020 vm_offset_t end_va;
1021 vm_offset_t va;
1023 end_va = beg_va + count * PAGE_SIZE;
1024 KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
1026 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1027 pt_entry_t *ptep;
1029 ptep = vtopte(va);
1030 atomic_swap_long(ptep, 0);
1032 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1036 * Unlike the real pmap code, we can't avoid calling the real-kernel.
1038 void
1039 pmap_qremove_quick(vm_offset_t va, int count)
1041 pmap_qremove(va, count);
1044 void
1045 pmap_qremove_noinval(vm_offset_t va, int count)
1047 pmap_qremove(va, count);
1051 * This routine works like vm_page_lookup() but also blocks as long as the
1052 * page is busy. This routine does not busy the page it returns.
1054 * Unless the caller is managing objects whos pages are in a known state,
1055 * the call should be made with a critical section held so the page's object
1056 * association remains valid on return.
1058 static vm_page_t
1059 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1061 vm_page_t m;
1063 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1064 m = vm_page_lookup_busy_wait(object, pindex, TRUE, "pplookp");
1066 return(m);
1070 * Create a new thread and optionally associate it with a (new) process.
1071 * NOTE! the new thread's cpu may not equal the current cpu.
1073 void
1074 pmap_init_thread(thread_t td)
1076 /* enforce pcb placement */
1077 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1078 td->td_savefpu = &td->td_pcb->pcb_save;
1079 td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1083 * This routine directly affects the fork perf for a process.
1085 void
1086 pmap_init_proc(struct proc *p)
1091 * Unwire a page table which has been removed from the pmap. We own the
1092 * wire_count, so the page cannot go away. The page representing the page
1093 * table is passed in unbusied and must be busied if we cannot trivially
1094 * unwire it.
1096 * XXX NOTE! This code is not usually run because we do not currently
1097 * implement dynamic page table page removal. The page in
1098 * its parent assumes at least 1 wire count, so no call to this
1099 * function ever sees a wire count less than 2.
1101 static int
1102 pmap_unwire_pgtable(pmap_t pmap, vm_offset_t va, vm_page_t m)
1105 * Try to unwire optimally. If non-zero is returned the wire_count
1106 * is 1 and we must busy the page to unwire it.
1108 if (vm_page_unwire_quick(m) == 0)
1109 return 0;
1111 vm_page_busy_wait(m, TRUE, "pmuwpt");
1112 KASSERT(m->queue == PQ_NONE,
1113 ("_pmap_unwire_pgtable: %p->queue != PQ_NONE", m));
1115 if (m->wire_count == 1) {
1117 * Unmap the page table page.
1119 /* pmap_inval_add(info, pmap, -1); */
1121 if (m->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1122 /* PDP page */
1123 pml4_entry_t *pml4;
1124 pml4 = pmap_pml4e(pmap, va);
1125 *pml4 = 0;
1126 } else if (m->pindex >= NUPT_TOTAL) {
1127 /* PD page */
1128 pdp_entry_t *pdp;
1129 pdp = pmap_pdpe(pmap, va);
1130 *pdp = 0;
1131 } else {
1132 /* PT page */
1133 pd_entry_t *pd;
1134 pd = pmap_pde(pmap, va);
1135 *pd = 0;
1138 KKASSERT(pmap->pm_stats.resident_count > 0);
1139 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1141 if (pmap->pm_ptphint == m)
1142 pmap->pm_ptphint = NULL;
1144 if (m->pindex < NUPT_TOTAL) {
1145 /* We just released a PT, unhold the matching PD */
1146 vm_page_t pdpg;
1148 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) &
1149 VPTE_FRAME);
1150 pmap_unwire_pgtable(pmap, va, pdpg);
1152 if (m->pindex >= NUPT_TOTAL &&
1153 m->pindex < (NUPT_TOTAL + NUPD_TOTAL)) {
1154 /* We just released a PD, unhold the matching PDP */
1155 vm_page_t pdppg;
1157 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) &
1158 VPTE_FRAME);
1159 pmap_unwire_pgtable(pmap, va, pdppg);
1163 * This was our last wire, the page had better be unwired
1164 * after we decrement wire_count.
1166 * FUTURE NOTE: shared page directory page could result in
1167 * multiple wire counts.
1169 vm_page_unwire(m, 0);
1170 KKASSERT(m->wire_count == 0);
1171 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1172 vm_page_flash(m);
1173 vm_page_free(m);
1174 return 1;
1175 } else {
1176 /* XXX SMP race to 1 if not holding vmobj */
1177 vm_page_unwire(m, 0);
1178 vm_page_wakeup(m);
1179 return 0;
1184 * After removing a page table entry, this routine is used to
1185 * conditionally free the page, and manage the hold/wire counts.
1187 * If not NULL the caller owns a wire_count on mpte, so it can't disappear.
1188 * If NULL the caller owns a wire_count on what would be the mpte, we must
1189 * look it up.
1191 static int
1192 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1194 vm_pindex_t ptepindex;
1196 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1198 if (mpte == NULL) {
1200 * page table pages in the kernel_pmap are not managed.
1202 if (pmap == &kernel_pmap)
1203 return(0);
1204 ptepindex = pmap_pt_pindex(va);
1205 if (pmap->pm_ptphint &&
1206 (pmap->pm_ptphint->pindex == ptepindex)) {
1207 mpte = pmap->pm_ptphint;
1208 } else {
1209 mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1210 pmap->pm_ptphint = mpte;
1211 vm_page_wakeup(mpte);
1214 return pmap_unwire_pgtable(pmap, va, mpte);
1218 * Initialize pmap0/vmspace0 . Since process 0 never enters user mode we
1219 * just dummy it up so it works well enough for fork().
1221 * In DragonFly, process pmaps may only be used to manipulate user address
1222 * space, never kernel address space.
1224 void
1225 pmap_pinit0(struct pmap *pmap)
1227 pmap_pinit(pmap);
1231 * Initialize a preallocated and zeroed pmap structure,
1232 * such as one in a vmspace structure.
1234 void
1235 pmap_pinit(struct pmap *pmap)
1237 vm_page_t ptdpg;
1240 * No need to allocate page table space yet but we do need a valid
1241 * page directory table.
1243 if (pmap->pm_pml4 == NULL) {
1244 pmap->pm_pml4 = (pml4_entry_t *)
1245 kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1246 VM_SUBSYS_PML4);
1250 * Allocate an object for the ptes
1252 if (pmap->pm_pteobj == NULL)
1253 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL + 1);
1256 * Allocate the page directory page, unless we already have
1257 * one cached. If we used the cached page the wire_count will
1258 * already be set appropriately.
1260 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1261 ptdpg = vm_page_grab(pmap->pm_pteobj,
1262 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL,
1263 VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1264 VM_ALLOC_ZERO);
1265 pmap->pm_pdirm = ptdpg;
1266 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_WRITEABLE);
1267 vm_page_wire(ptdpg);
1268 vm_page_wakeup(ptdpg);
1269 pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1271 pmap->pm_count = 1;
1272 CPUMASK_ASSZERO(pmap->pm_active);
1273 pmap->pm_ptphint = NULL;
1274 RB_INIT(&pmap->pm_pvroot);
1275 spin_init(&pmap->pm_spin, "pmapinit");
1276 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1277 pmap->pm_stats.resident_count = 1;
1278 pmap->pm_stats.wired_count = 1;
1282 * Clean up a pmap structure so it can be physically freed. This routine
1283 * is called by the vmspace dtor function. A great deal of pmap data is
1284 * left passively mapped to improve vmspace management so we have a bit
1285 * of cleanup work to do here.
1287 * No requirements.
1289 void
1290 pmap_puninit(pmap_t pmap)
1292 vm_page_t p;
1294 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1295 if ((p = pmap->pm_pdirm) != NULL) {
1296 KKASSERT(pmap->pm_pml4 != NULL);
1297 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1298 vm_page_busy_wait(p, TRUE, "pgpun");
1299 vm_page_unwire(p, 0);
1300 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1301 vm_page_free(p);
1302 pmap->pm_pdirm = NULL;
1303 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1304 KKASSERT(pmap->pm_stats.wired_count == 0);
1306 if (pmap->pm_pml4) {
1307 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1308 pmap->pm_pml4 = NULL;
1310 if (pmap->pm_pteobj) {
1311 vm_object_deallocate(pmap->pm_pteobj);
1312 pmap->pm_pteobj = NULL;
1317 * This function is now unused (used to add the pmap to the pmap_list)
1319 void
1320 pmap_pinit2(struct pmap *pmap)
1325 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1326 * 0 on failure (if the procedure had to sleep).
1328 * When asked to remove the page directory page itself, we actually just
1329 * leave it cached so we do not have to incur the SMP inval overhead of
1330 * removing the kernel mapping. pmap_puninit() will take care of it.
1332 static int
1333 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1336 * This code optimizes the case of freeing non-busy
1337 * page-table pages. Those pages are zero now, and
1338 * might as well be placed directly into the zero queue.
1340 if (vm_page_busy_try(p, TRUE)) {
1341 vm_page_sleep_busy(p, TRUE, "pmaprl");
1342 return 1;
1346 * Remove the page table page from the processes address space.
1348 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1350 * We are the pml4 table itself.
1352 /* XXX anything to do here? */
1353 } else if (p->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1355 * We are a PDP page.
1356 * We look for the PML4 entry that points to us.
1358 vm_page_t m4;
1359 pml4_entry_t *pml4;
1360 int idx;
1362 m4 = vm_page_lookup(pmap->pm_pteobj,
1363 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
1364 KKASSERT(m4 != NULL);
1365 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1366 idx = (p->pindex - (NUPT_TOTAL + NUPD_TOTAL)) % NPML4EPG;
1367 KKASSERT(pml4[idx] != 0);
1368 if (pml4[idx] == 0)
1369 kprintf("pmap_release: Unmapped PML4\n");
1370 pml4[idx] = 0;
1371 vm_page_unwire_quick(m4);
1372 } else if (p->pindex >= NUPT_TOTAL) {
1374 * We are a PD page.
1375 * We look for the PDP entry that points to us.
1377 vm_page_t m3;
1378 pdp_entry_t *pdp;
1379 int idx;
1381 m3 = vm_page_lookup(pmap->pm_pteobj,
1382 NUPT_TOTAL + NUPD_TOTAL +
1383 (p->pindex - NUPT_TOTAL) / NPDPEPG);
1384 KKASSERT(m3 != NULL);
1385 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1386 idx = (p->pindex - NUPT_TOTAL) % NPDPEPG;
1387 KKASSERT(pdp[idx] != 0);
1388 if (pdp[idx] == 0)
1389 kprintf("pmap_release: Unmapped PDP %d\n", idx);
1390 pdp[idx] = 0;
1391 vm_page_unwire_quick(m3);
1392 } else {
1393 /* We are a PT page.
1394 * We look for the PD entry that points to us.
1396 vm_page_t m2;
1397 pd_entry_t *pd;
1398 int idx;
1400 m2 = vm_page_lookup(pmap->pm_pteobj,
1401 NUPT_TOTAL + p->pindex / NPDEPG);
1402 KKASSERT(m2 != NULL);
1403 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1404 idx = p->pindex % NPDEPG;
1405 if (pd[idx] == 0)
1406 kprintf("pmap_release: Unmapped PD %d\n", idx);
1407 pd[idx] = 0;
1408 vm_page_unwire_quick(m2);
1410 KKASSERT(pmap->pm_stats.resident_count > 0);
1411 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1413 if (p->wire_count > 1) {
1414 panic("pmap_release: freeing held pt page "
1415 "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1416 pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1417 p->pindex, NUPT_TOTAL, NUPD_TOTAL, NUPDP_TOTAL);
1420 if (pmap->pm_ptphint == p)
1421 pmap->pm_ptphint = NULL;
1424 * We leave the top-level page table page cached, wired, and mapped in
1425 * the pmap until the dtor function (pmap_puninit()) gets called.
1426 * However, still clean it up.
1428 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1429 bzero(pmap->pm_pml4, PAGE_SIZE);
1430 vm_page_wakeup(p);
1431 } else {
1432 vm_page_unwire(p, 0);
1433 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1434 vm_page_free(p);
1435 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1437 return 0;
1441 * Locate the requested PT, PD, or PDP page table page.
1443 * Returns a busied page, caller must vm_page_wakeup() when done.
1445 static vm_page_t
1446 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1448 vm_page_t m;
1449 vm_page_t pm;
1450 vm_pindex_t pindex;
1451 pt_entry_t *ptep;
1452 pt_entry_t data;
1455 * Find or fabricate a new pagetable page. A non-zero wire_count
1456 * indicates that the page has already been mapped into its parent.
1458 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1459 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1460 if (m->wire_count != 0)
1461 return m;
1464 * Map the page table page into its parent, giving it 1 wire count.
1466 vm_page_wire(m);
1467 vm_page_unmanage(m);
1468 atomic_add_long(&pmap->pm_stats.resident_count, 1);
1469 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1471 data = VM_PAGE_TO_PHYS(m) |
1472 VPTE_RW | VPTE_V | VPTE_U | VPTE_A | VPTE_M | VPTE_WIRED;
1473 atomic_add_long(&pmap->pm_stats.wired_count, 1);
1475 if (ptepindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1477 * Map PDP into the PML4
1479 pindex = ptepindex - (NUPT_TOTAL + NUPD_TOTAL);
1480 pindex &= (NUPDP_TOTAL - 1);
1481 ptep = (pt_entry_t *)pmap->pm_pml4;
1482 pm = NULL;
1483 } else if (ptepindex >= NUPT_TOTAL) {
1485 * Map PD into its PDP
1487 pindex = (ptepindex - NUPT_TOTAL) >> NPDPEPGSHIFT;
1488 pindex += NUPT_TOTAL + NUPD_TOTAL;
1489 pm = _pmap_allocpte(pmap, pindex);
1490 pindex = (ptepindex - NUPT_TOTAL) & (NPDPEPG - 1);
1491 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1492 } else {
1494 * Map PT into its PD
1496 pindex = ptepindex >> NPDPEPGSHIFT;
1497 pindex += NUPT_TOTAL;
1498 pm = _pmap_allocpte(pmap, pindex);
1499 pindex = ptepindex & (NPTEPG - 1);
1500 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1504 * Install the pte in (pm). (m) prevents races.
1506 ptep += pindex;
1507 data = atomic_swap_long(ptep, data);
1508 if (pm) {
1509 vm_page_wire_quick(pm);
1510 vm_page_wakeup(pm);
1512 pmap->pm_ptphint = pm;
1514 return m;
1518 * Determine the page table page required to access the VA in the pmap
1519 * and allocate it if necessary. Return a held vm_page_t for the page.
1521 * Only used with user pmaps.
1523 static vm_page_t
1524 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1526 vm_pindex_t ptepindex;
1527 vm_page_t m;
1529 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1532 * Calculate pagetable page index, and return the PT page to
1533 * the caller.
1535 ptepindex = pmap_pt_pindex(va);
1536 m = _pmap_allocpte(pmap, ptepindex);
1538 return m;
1541 /***************************************************
1542 * Pmap allocation/deallocation routines.
1543 ***************************************************/
1546 * Release any resources held by the given physical map.
1547 * Called when a pmap initialized by pmap_pinit is being released.
1548 * Should only be called if the map contains no valid mappings.
1550 static int pmap_release_callback(struct vm_page *p, void *data);
1552 void
1553 pmap_release(struct pmap *pmap)
1555 vm_object_t object = pmap->pm_pteobj;
1556 struct rb_vm_page_scan_info info;
1558 KKASSERT(pmap != &kernel_pmap);
1560 #if defined(DIAGNOSTIC)
1561 if (object->ref_count != 1)
1562 panic("pmap_release: pteobj reference count != 1");
1563 #endif
1565 info.pmap = pmap;
1566 info.object = object;
1568 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1569 ("pmap %p still active! %016jx",
1570 pmap,
1571 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1573 vm_object_hold(object);
1574 do {
1575 info.error = 0;
1576 info.mpte = NULL;
1577 info.limit = object->generation;
1579 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1580 pmap_release_callback, &info);
1581 if (info.error == 0 && info.mpte) {
1582 if (pmap_release_free_page(pmap, info.mpte))
1583 info.error = 1;
1585 } while (info.error);
1587 pmap->pm_ptphint = NULL;
1589 KASSERT((pmap->pm_stats.wired_count == (pmap->pm_pdirm != NULL)),
1590 ("pmap_release: dangling count %p %ld",
1591 pmap, pmap->pm_stats.wired_count));
1593 vm_object_drop(object);
1596 static int
1597 pmap_release_callback(struct vm_page *p, void *data)
1599 struct rb_vm_page_scan_info *info = data;
1601 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1602 info->mpte = p;
1603 return(0);
1605 if (pmap_release_free_page(info->pmap, p)) {
1606 info->error = 1;
1607 return(-1);
1609 if (info->object->generation != info->limit) {
1610 info->error = 1;
1611 return(-1);
1613 return(0);
1617 * Grow the number of kernel page table entries, if needed.
1619 * kernel_map must be locked exclusively by the caller.
1621 void
1622 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1624 vm_offset_t addr;
1625 vm_paddr_t paddr;
1626 vm_offset_t ptppaddr;
1627 vm_page_t nkpg;
1628 pd_entry_t *pde, newpdir;
1629 pdp_entry_t newpdp;
1631 addr = kend;
1633 vm_object_hold(&kptobj);
1634 if (kernel_vm_end == 0) {
1635 kernel_vm_end = KvaStart;
1636 nkpt = 0;
1637 while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1638 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1639 nkpt++;
1640 if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1641 kernel_vm_end = vm_map_max(&kernel_map);
1642 break;
1646 addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1647 if (addr - 1 >= vm_map_max(&kernel_map))
1648 addr = vm_map_max(&kernel_map);
1649 while (kernel_vm_end < addr) {
1650 pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1651 if (pde == NULL) {
1652 /* We need a new PDP entry */
1653 nkpg = vm_page_alloc(&kptobj, nkpt,
1654 VM_ALLOC_NORMAL |
1655 VM_ALLOC_SYSTEM |
1656 VM_ALLOC_INTERRUPT);
1657 if (nkpg == NULL) {
1658 panic("pmap_growkernel: no memory to "
1659 "grow kernel");
1661 paddr = VM_PAGE_TO_PHYS(nkpg);
1662 pmap_zero_page(paddr);
1663 newpdp = (pdp_entry_t)(paddr |
1664 VPTE_V | VPTE_RW | VPTE_U |
1665 VPTE_A | VPTE_M | VPTE_WIRED);
1666 *pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1667 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1668 nkpt++;
1669 continue; /* try again */
1671 if ((*pde & VPTE_V) != 0) {
1672 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1673 ~(PAGE_SIZE * NPTEPG - 1);
1674 if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1675 kernel_vm_end = vm_map_max(&kernel_map);
1676 break;
1678 continue;
1682 * This index is bogus, but out of the way
1684 nkpg = vm_page_alloc(&kptobj, nkpt,
1685 VM_ALLOC_NORMAL |
1686 VM_ALLOC_SYSTEM |
1687 VM_ALLOC_INTERRUPT);
1688 if (nkpg == NULL)
1689 panic("pmap_growkernel: no memory to grow kernel");
1691 vm_page_wire(nkpg);
1692 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1693 pmap_zero_page(ptppaddr);
1694 newpdir = (pd_entry_t)(ptppaddr |
1695 VPTE_V | VPTE_RW | VPTE_U |
1696 VPTE_A | VPTE_M | VPTE_WIRED);
1697 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1698 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1699 nkpt++;
1701 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1702 ~(PAGE_SIZE * NPTEPG - 1);
1703 if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1704 kernel_vm_end = vm_map_max(&kernel_map);
1705 break;
1708 vm_object_drop(&kptobj);
1712 * Add a reference to the specified pmap.
1714 * No requirements.
1716 void
1717 pmap_reference(pmap_t pmap)
1719 if (pmap)
1720 atomic_add_int(&pmap->pm_count, 1);
1723 /************************************************************************
1724 * VMSPACE MANAGEMENT *
1725 ************************************************************************
1727 * The VMSPACE management we do in our virtual kernel must be reflected
1728 * in the real kernel. This is accomplished by making vmspace system
1729 * calls to the real kernel.
1731 void
1732 cpu_vmspace_alloc(struct vmspace *vm)
1734 int r;
1735 void *rp;
1736 vpte_t vpte;
1739 * If VMM enable, don't do nothing, we
1740 * are able to use real page tables
1742 if (vmm_enabled)
1743 return;
1745 #define USER_SIZE (VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1747 if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1748 panic("vmspace_create() failed");
1750 rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1751 PROT_READ|PROT_WRITE|PROT_EXEC,
1752 MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1753 MemImageFd, 0);
1754 if (rp == MAP_FAILED)
1755 panic("vmspace_mmap: failed");
1756 vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1757 MADV_NOSYNC, 0);
1758 vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) |
1759 VPTE_RW | VPTE_V | VPTE_U;
1760 r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1761 MADV_SETMAP, vpte);
1762 if (r < 0)
1763 panic("vmspace_mcontrol: failed");
1766 void
1767 cpu_vmspace_free(struct vmspace *vm)
1770 * If VMM enable, don't do nothing, we
1771 * are able to use real page tables
1773 if (vmm_enabled)
1774 return;
1776 if (vmspace_destroy(&vm->vm_pmap) < 0)
1777 panic("vmspace_destroy() failed");
1780 /***************************************************
1781 * page management routines.
1782 ***************************************************/
1785 * free the pv_entry back to the free list. This function may be
1786 * called from an interrupt.
1788 static __inline void
1789 free_pv_entry(pv_entry_t pv)
1791 atomic_add_long(&pv_entry_count, -1);
1792 zfree(pvzone, pv);
1796 * get a new pv_entry, allocating a block from the system
1797 * when needed. This function may be called from an interrupt.
1799 static pv_entry_t
1800 get_pv_entry(void)
1802 atomic_add_long(&pv_entry_count, 1);
1803 if (pv_entry_high_water &&
1804 (pv_entry_count > pv_entry_high_water) &&
1805 atomic_swap_int(&pmap_pagedaemon_waken, 1) == 0) {
1806 wakeup(&vm_pages_needed);
1808 return zalloc(pvzone);
1812 * This routine is very drastic, but can save the system
1813 * in a pinch.
1815 * No requirements.
1817 void
1818 pmap_collect(void)
1820 int i;
1821 vm_page_t m;
1822 static int warningdone=0;
1824 if (pmap_pagedaemon_waken == 0)
1825 return;
1826 pmap_pagedaemon_waken = 0;
1828 if (warningdone < 5) {
1829 kprintf("pmap_collect: collecting pv entries -- "
1830 "suggest increasing PMAP_SHPGPERPROC\n");
1831 warningdone++;
1834 for (i = 0; i < vm_page_array_size; i++) {
1835 m = &vm_page_array[i];
1836 if (m->wire_count || m->hold_count)
1837 continue;
1838 if (vm_page_busy_try(m, TRUE) == 0) {
1839 if (m->wire_count == 0 && m->hold_count == 0) {
1840 pmap_remove_all(m);
1842 vm_page_wakeup(m);
1849 * If it is the first entry on the list, it is actually
1850 * in the header and we must copy the following entry up
1851 * to the header. Otherwise we must search the list for
1852 * the entry. In either case we free the now unused entry.
1854 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1856 static int
1857 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1859 pv_entry_t pv;
1860 int rtval;
1862 vm_page_spin_lock(m);
1863 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, va);
1866 * Note that pv_ptem is NULL if the page table page itself is not
1867 * managed, even if the page being removed IS managed.
1869 rtval = 0;
1870 if (pv) {
1871 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1872 if (TAILQ_EMPTY(&m->md.pv_list))
1873 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1874 m->md.pv_list_count--;
1875 KKASSERT(m->md.pv_list_count >= 0);
1876 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
1877 atomic_add_int(&pmap->pm_generation, 1);
1878 vm_page_spin_unlock(m);
1879 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1880 free_pv_entry(pv);
1881 } else {
1882 vm_page_spin_unlock(m);
1883 kprintf("pmap_remove_entry: could not find "
1884 "pmap=%p m=%p va=%016jx\n",
1885 pmap, m, va);
1887 return rtval;
1891 * Create a pv entry for page at pa for (pmap, va). If the page table page
1892 * holding the VA is managed, mpte will be non-NULL.
1894 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1896 static void
1897 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1898 pv_entry_t pv)
1900 pv->pv_va = va;
1901 pv->pv_pmap = pmap;
1902 pv->pv_ptem = mpte;
1904 m->md.pv_list_count++;
1905 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1906 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pv);
1907 vm_page_flag_set(m, PG_MAPPED);
1908 KKASSERT(pv == NULL);
1912 * pmap_remove_pte: do the things to unmap a page in a process
1914 * Caller holds pmap->pm_pteobj and holds the associated page table
1915 * page busy to prevent races.
1917 static int
1918 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, pt_entry_t oldpte,
1919 vm_offset_t va)
1921 vm_page_t m;
1922 int error;
1924 if (ptq)
1925 oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1927 if (oldpte & VPTE_WIRED)
1928 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1929 KKASSERT(pmap->pm_stats.wired_count >= 0);
1931 #if 0
1933 * Machines that don't support invlpg, also don't support
1934 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1935 * the SMP case.
1937 if (oldpte & PG_G)
1938 cpu_invlpg((void *)va);
1939 #endif
1940 KKASSERT(pmap->pm_stats.resident_count > 0);
1941 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1942 if (oldpte & VPTE_MANAGED) {
1943 m = PHYS_TO_VM_PAGE(oldpte);
1946 * NOTE: pmap_remove_entry() will spin-lock the page
1948 if (oldpte & VPTE_M) {
1949 #if defined(PMAP_DIAGNOSTIC)
1950 if (pmap_nw_modified(oldpte)) {
1951 kprintf("pmap_remove: modified page not "
1952 "writable: va: 0x%lx, pte: 0x%lx\n",
1953 va, oldpte);
1955 #endif
1956 if (pmap_track_modified(pmap, va))
1957 vm_page_dirty(m);
1959 if (oldpte & VPTE_A)
1960 vm_page_flag_set(m, PG_REFERENCED);
1961 error = pmap_remove_entry(pmap, m, va);
1962 } else {
1963 error = pmap_unuse_pt(pmap, va, NULL);
1965 return error;
1969 * pmap_remove_page:
1971 * Remove a single page from a process address space.
1973 * This function may not be called from an interrupt if the pmap is
1974 * not kernel_pmap.
1976 * Caller holds pmap->pm_pteobj
1978 static void
1979 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1981 pt_entry_t *pte;
1983 pte = pmap_pte(pmap, va);
1984 if (pte == NULL)
1985 return;
1986 if ((*pte & VPTE_V) == 0)
1987 return;
1988 pmap_remove_pte(pmap, pte, 0, va);
1992 * Remove the given range of addresses from the specified map.
1994 * It is assumed that the start and end are properly rounded to
1995 * the page size.
1997 * This function may not be called from an interrupt if the pmap is
1998 * not kernel_pmap.
2000 * No requirements.
2002 void
2003 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2005 vm_offset_t va_next;
2006 pml4_entry_t *pml4e;
2007 pdp_entry_t *pdpe;
2008 pd_entry_t ptpaddr, *pde;
2009 pt_entry_t *pte;
2010 vm_page_t pt_m;
2012 if (pmap == NULL)
2013 return;
2015 vm_object_hold(pmap->pm_pteobj);
2016 KKASSERT(pmap->pm_stats.resident_count >= 0);
2017 if (pmap->pm_stats.resident_count == 0) {
2018 vm_object_drop(pmap->pm_pteobj);
2019 return;
2023 * special handling of removing one page. a very
2024 * common operation and easy to short circuit some
2025 * code.
2027 if (sva + PAGE_SIZE == eva) {
2028 pde = pmap_pde(pmap, sva);
2029 if (pde && (*pde & VPTE_PS) == 0) {
2030 pmap_remove_page(pmap, sva);
2031 vm_object_drop(pmap->pm_pteobj);
2032 return;
2036 for (; sva < eva; sva = va_next) {
2037 pml4e = pmap_pml4e(pmap, sva);
2038 if ((*pml4e & VPTE_V) == 0) {
2039 va_next = (sva + NBPML4) & ~PML4MASK;
2040 if (va_next < sva)
2041 va_next = eva;
2042 continue;
2045 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2046 if ((*pdpe & VPTE_V) == 0) {
2047 va_next = (sva + NBPDP) & ~PDPMASK;
2048 if (va_next < sva)
2049 va_next = eva;
2050 continue;
2054 * Calculate index for next page table.
2056 va_next = (sva + NBPDR) & ~PDRMASK;
2057 if (va_next < sva)
2058 va_next = eva;
2060 pde = pmap_pdpe_to_pde(pdpe, sva);
2061 ptpaddr = *pde;
2064 * Weed out invalid mappings.
2066 if (ptpaddr == 0)
2067 continue;
2070 * Check for large page.
2072 if ((ptpaddr & VPTE_PS) != 0) {
2073 /* JG FreeBSD has more complex treatment here */
2074 KKASSERT(*pde != 0);
2075 pmap_inval_pde(pde, pmap, sva);
2076 atomic_add_long(&pmap->pm_stats.resident_count,
2077 -NBPDR / PAGE_SIZE);
2078 continue;
2082 * Limit our scan to either the end of the va represented
2083 * by the current page table page, or to the end of the
2084 * range being removed.
2086 if (va_next > eva)
2087 va_next = eva;
2090 * NOTE: pmap_remove_pte() can block.
2092 pt_m = pmap_hold_pt_page(pde, sva);
2093 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2094 sva += PAGE_SIZE) {
2095 if (*pte) {
2096 if (pmap_remove_pte(pmap, pte, 0, sva))
2097 break;
2100 vm_page_unhold(pt_m);
2102 vm_object_drop(pmap->pm_pteobj);
2106 * Removes this physical page from all physical maps in which it resides.
2107 * Reflects back modify bits to the pager.
2109 * This routine may not be called from an interrupt.
2111 * No requirements.
2113 static void
2114 pmap_remove_all(vm_page_t m)
2116 pt_entry_t *pte, tpte;
2117 pv_entry_t pv;
2118 vm_object_t pmobj;
2119 pmap_t pmap;
2121 #if defined(PMAP_DIAGNOSTIC)
2123 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2124 * pages!
2126 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2127 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2129 #endif
2131 restart:
2132 vm_page_spin_lock(m);
2133 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2134 pmap = pv->pv_pmap;
2135 pmobj = pmap->pm_pteobj;
2138 * Handle reversed lock ordering
2140 if (vm_object_hold_try(pmobj) == 0) {
2141 refcount_acquire(&pmobj->hold_count);
2142 vm_page_spin_unlock(m);
2143 vm_object_lock(pmobj);
2144 vm_page_spin_lock(m);
2145 if (pv != TAILQ_FIRST(&m->md.pv_list) ||
2146 pmap != pv->pv_pmap ||
2147 pmobj != pmap->pm_pteobj) {
2148 vm_page_spin_unlock(m);
2149 vm_object_drop(pmobj);
2150 goto restart;
2154 KKASSERT(pmap->pm_stats.resident_count > 0);
2155 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2157 pte = pmap_pte(pmap, pv->pv_va);
2158 KKASSERT(pte != NULL);
2160 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2161 if (tpte & VPTE_WIRED)
2162 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2163 KKASSERT(pmap->pm_stats.wired_count >= 0);
2165 if (tpte & VPTE_A)
2166 vm_page_flag_set(m, PG_REFERENCED);
2169 * Update the vm_page_t clean and reference bits.
2171 if (tpte & VPTE_M) {
2172 #if defined(PMAP_DIAGNOSTIC)
2173 if (pmap_nw_modified(tpte)) {
2174 kprintf(
2175 "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2176 pv->pv_va, tpte);
2178 #endif
2179 if (pmap_track_modified(pmap, pv->pv_va))
2180 vm_page_dirty(m);
2182 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2183 if (TAILQ_EMPTY(&m->md.pv_list))
2184 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2185 m->md.pv_list_count--;
2186 KKASSERT(m->md.pv_list_count >= 0);
2187 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2188 atomic_add_int(&pmap->pm_generation, 1);
2189 vm_page_spin_unlock(m);
2190 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2191 free_pv_entry(pv);
2193 vm_object_drop(pmobj);
2194 vm_page_spin_lock(m);
2196 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2197 vm_page_spin_unlock(m);
2201 * Removes the page from a particular pmap
2203 void
2204 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2206 pt_entry_t *pte, tpte;
2207 pv_entry_t pv;
2209 vm_object_hold(pmap->pm_pteobj);
2210 again:
2211 vm_page_spin_lock(m);
2212 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2213 if (pv->pv_pmap != pmap)
2214 continue;
2216 KKASSERT(pmap->pm_stats.resident_count > 0);
2217 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2219 pte = pmap_pte(pmap, pv->pv_va);
2220 KKASSERT(pte != NULL);
2222 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2223 if (tpte & VPTE_WIRED)
2224 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2225 KKASSERT(pmap->pm_stats.wired_count >= 0);
2227 if (tpte & VPTE_A)
2228 vm_page_flag_set(m, PG_REFERENCED);
2231 * Update the vm_page_t clean and reference bits.
2233 if (tpte & VPTE_M) {
2234 if (pmap_track_modified(pmap, pv->pv_va))
2235 vm_page_dirty(m);
2237 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2238 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2239 atomic_add_int(&pmap->pm_generation, 1);
2240 m->md.pv_list_count--;
2241 KKASSERT(m->md.pv_list_count >= 0);
2242 if (TAILQ_EMPTY(&m->md.pv_list))
2243 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2244 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2245 vm_page_spin_unlock(m);
2246 free_pv_entry(pv);
2247 goto again;
2249 vm_page_spin_unlock(m);
2250 vm_object_drop(pmap->pm_pteobj);
2254 * Set the physical protection on the specified range of this map
2255 * as requested.
2257 * This function may not be called from an interrupt if the map is
2258 * not the kernel_pmap.
2260 * No requirements.
2262 void
2263 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2265 vm_offset_t va_next;
2266 pml4_entry_t *pml4e;
2267 pdp_entry_t *pdpe;
2268 pd_entry_t ptpaddr, *pde;
2269 pt_entry_t *pte;
2270 vm_page_t pt_m;
2272 if (pmap == NULL)
2273 return;
2275 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
2276 pmap_remove(pmap, sva, eva);
2277 return;
2280 if (prot & VM_PROT_WRITE)
2281 return;
2283 vm_object_hold(pmap->pm_pteobj);
2285 for (; sva < eva; sva = va_next) {
2286 pml4e = pmap_pml4e(pmap, sva);
2287 if ((*pml4e & VPTE_V) == 0) {
2288 va_next = (sva + NBPML4) & ~PML4MASK;
2289 if (va_next < sva)
2290 va_next = eva;
2291 continue;
2294 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2295 if ((*pdpe & VPTE_V) == 0) {
2296 va_next = (sva + NBPDP) & ~PDPMASK;
2297 if (va_next < sva)
2298 va_next = eva;
2299 continue;
2302 va_next = (sva + NBPDR) & ~PDRMASK;
2303 if (va_next < sva)
2304 va_next = eva;
2306 pde = pmap_pdpe_to_pde(pdpe, sva);
2307 ptpaddr = *pde;
2309 #if 0
2311 * Check for large page.
2313 if ((ptpaddr & VPTE_PS) != 0) {
2314 /* JG correct? */
2315 pmap_clean_pde(pde, pmap, sva);
2316 atomic_add_long(&pmap->pm_stats.resident_count,
2317 -NBPDR / PAGE_SIZE);
2318 continue;
2320 #endif
2323 * Weed out invalid mappings. Note: we assume that the page
2324 * directory table is always allocated, and in kernel virtual.
2326 if (ptpaddr == 0)
2327 continue;
2329 if (va_next > eva)
2330 va_next = eva;
2332 pt_m = pmap_hold_pt_page(pde, sva);
2333 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2334 sva += PAGE_SIZE) {
2336 * Clean managed pages and also check the accessed
2337 * bit. Just remove write perms for unmanaged
2338 * pages. Be careful of races, turning off write
2339 * access will force a fault rather then setting
2340 * the modified bit at an unexpected time.
2342 pmap_clean_pte(pte, pmap, sva, NULL);
2344 vm_page_unhold(pt_m);
2346 vm_object_drop(pmap->pm_pteobj);
2350 * Enter a managed page into a pmap. If the page is not wired related pmap
2351 * data can be destroyed at any time for later demand-operation.
2353 * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2354 * specified protection, and wire the mapping if requested.
2356 * NOTE: This routine may not lazy-evaluate or lose information. The
2357 * page must actually be inserted into the given map NOW.
2359 * NOTE: When entering a page at a KVA address, the pmap must be the
2360 * kernel_pmap.
2362 * No requirements.
2364 void
2365 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2366 boolean_t wired, vm_map_entry_t entry __unused)
2368 vm_paddr_t pa;
2369 pv_entry_t pv;
2370 pt_entry_t *pte;
2371 pt_entry_t origpte, newpte;
2372 vm_paddr_t opa;
2373 vm_page_t mpte;
2375 if (pmap == NULL)
2376 return;
2378 va = trunc_page(va);
2380 vm_object_hold(pmap->pm_pteobj);
2383 * Get the page table page. The kernel_pmap's page table pages
2384 * are preallocated and have no associated vm_page_t.
2386 * If not NULL, mpte will be busied and we must vm_page_wakeup()
2387 * to cleanup. There will already be at least one wire count from
2388 * it being mapped into its parent.
2390 if (pmap == &kernel_pmap) {
2391 mpte = NULL;
2392 pte = vtopte(va);
2393 } else {
2394 mpte = pmap_allocpte(pmap, va);
2395 pte = (void *)PHYS_TO_DMAP(mpte->phys_addr);
2396 pte += pmap_pte_index(va);
2400 * Deal with races against the kernel's real MMU by cleaning the
2401 * page, even if we are re-entering the same page.
2403 pa = VM_PAGE_TO_PHYS(m);
2404 origpte = pmap_inval_loadandclear(pte, pmap, va);
2405 /*origpte = pmap_clean_pte(pte, pmap, va, NULL);*/
2406 opa = origpte & VPTE_FRAME;
2408 if (origpte & VPTE_PS)
2409 panic("pmap_enter: attempted pmap_enter on 2MB page");
2411 if ((origpte & (VPTE_MANAGED|VPTE_M)) == (VPTE_MANAGED|VPTE_M)) {
2412 if (pmap_track_modified(pmap, va)) {
2413 vm_page_t om = PHYS_TO_VM_PAGE(opa);
2414 vm_page_dirty(om);
2419 * Mapping has not changed, must be protection or wiring change.
2421 if (origpte && (opa == pa)) {
2423 * Wiring change, just update stats. We don't worry about
2424 * wiring PT pages as they remain resident as long as there
2425 * are valid mappings in them. Hence, if a user page is wired,
2426 * the PT page will be also.
2428 if (wired && ((origpte & VPTE_WIRED) == 0))
2429 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2430 else if (!wired && (origpte & VPTE_WIRED))
2431 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2433 if (origpte & VPTE_MANAGED) {
2434 pa |= VPTE_MANAGED;
2435 KKASSERT(m->flags & PG_MAPPED);
2436 KKASSERT(!(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2437 } else {
2438 KKASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2440 vm_page_spin_lock(m);
2441 goto validate;
2445 * Bump the wire_count for the page table page.
2447 if (mpte)
2448 vm_page_wire_quick(mpte);
2451 * Mapping has changed, invalidate old range and fall through to
2452 * handle validating new mapping. Don't inherit anything from
2453 * oldpte.
2455 if (opa) {
2456 int err;
2457 err = pmap_remove_pte(pmap, NULL, origpte, va);
2458 origpte = 0;
2459 if (err)
2460 panic("pmap_enter: pte vanished, va: 0x%lx", va);
2464 * Enter on the PV list if part of our managed memory. Note that we
2465 * raise IPL while manipulating pv_table since pmap_enter can be
2466 * called at interrupt time.
2468 if (pmap_initialized) {
2469 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2471 * WARNING! We are using m's spin-lock as a
2472 * man's pte lock to interlock against
2473 * pmap_page_protect() operations.
2475 * This is a bad hack (obviously).
2477 pv = get_pv_entry();
2478 vm_page_spin_lock(m);
2479 pmap_insert_entry(pmap, va, mpte, m, pv);
2480 pa |= VPTE_MANAGED;
2481 /* vm_page_spin_unlock(m); */
2482 } else {
2483 vm_page_spin_lock(m);
2485 } else {
2486 vm_page_spin_lock(m);
2490 * Increment counters
2492 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2493 if (wired)
2494 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2496 validate:
2498 * Now validate mapping with desired protection/wiring.
2500 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2501 newpte |= VPTE_A;
2503 if (wired)
2504 newpte |= VPTE_WIRED;
2505 // if (pmap != &kernel_pmap)
2506 newpte |= VPTE_U;
2507 if (newpte & VPTE_RW)
2508 vm_page_flag_set(m, PG_WRITEABLE);
2509 KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2511 origpte = atomic_swap_long(pte, newpte);
2512 if (origpte & VPTE_M) {
2513 kprintf("pmap [M] race @ %016jx\n", va);
2514 atomic_set_long(pte, VPTE_M);
2516 vm_page_spin_unlock(m);
2518 if (mpte)
2519 vm_page_wakeup(mpte);
2520 vm_object_drop(pmap->pm_pteobj);
2524 * Make a temporary mapping for a physical address. This is only intended
2525 * to be used for panic dumps.
2527 * The caller is responsible for calling smp_invltlb().
2529 void *
2530 pmap_kenter_temporary(vm_paddr_t pa, long i)
2532 pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2533 return ((void *)crashdumpmap);
2536 #define MAX_INIT_PT (96)
2539 * This routine preloads the ptes for a given object into the specified pmap.
2540 * This eliminates the blast of soft faults on process startup and
2541 * immediately after an mmap.
2543 * No requirements.
2545 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2547 void
2548 pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
2549 vm_offset_t addr, vm_size_t size, int limit)
2551 vm_prot_t prot = entry->protection;
2552 vm_object_t object = entry->ba.object;
2553 vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
2554 struct rb_vm_page_scan_info info;
2555 struct lwp *lp;
2556 vm_size_t psize;
2559 * We can't preinit if read access isn't set or there is no pmap
2560 * or object.
2562 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2563 return;
2566 * We can't preinit if the pmap is not the current pmap
2568 lp = curthread->td_lwp;
2569 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2570 return;
2573 * Misc additional checks
2575 psize = x86_64_btop(size);
2577 if ((object->type != OBJT_VNODE) ||
2578 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2579 (object->resident_page_count > MAX_INIT_PT))) {
2580 return;
2583 if (psize + pindex > object->size) {
2584 if (object->size < pindex)
2585 return;
2586 psize = object->size - pindex;
2589 if (psize == 0)
2590 return;
2593 * Use a red-black scan to traverse the requested range and load
2594 * any valid pages found into the pmap.
2596 * We cannot safely scan the object's memq unless we are in a
2597 * critical section since interrupts can remove pages from objects.
2599 info.start_pindex = pindex;
2600 info.end_pindex = pindex + psize - 1;
2601 info.limit = limit;
2602 info.mpte = NULL;
2603 info.addr = addr;
2604 info.pmap = pmap;
2605 info.entry = entry;
2607 vm_object_hold_shared(object);
2608 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2609 pmap_object_init_pt_callback, &info);
2610 vm_object_drop(object);
2613 static
2615 pmap_object_init_pt_callback(vm_page_t p, void *data)
2617 struct rb_vm_page_scan_info *info = data;
2618 vm_pindex_t rel_index;
2620 * don't allow an madvise to blow away our really
2621 * free pages allocating pv entries.
2623 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2624 vmstats.v_free_count < vmstats.v_free_reserved) {
2625 return(-1);
2629 * Ignore list markers and ignore pages we cannot instantly
2630 * busy (while holding the object token).
2632 if (p->flags & PG_MARKER)
2633 return 0;
2634 if (vm_page_busy_try(p, TRUE))
2635 return 0;
2636 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2637 (p->flags & PG_FICTITIOUS) == 0) {
2638 if ((p->queue - p->pc) == PQ_CACHE)
2639 vm_page_deactivate(p);
2640 rel_index = p->pindex - info->start_pindex;
2641 pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
2642 VM_PROT_READ, FALSE, info->entry);
2644 vm_page_wakeup(p);
2645 return(0);
2649 * Return TRUE if the pmap is in shape to trivially
2650 * pre-fault the specified address.
2652 * Returns FALSE if it would be non-trivial or if a
2653 * pte is already loaded into the slot.
2655 * No requirements.
2658 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2660 pt_entry_t *pte;
2661 pd_entry_t *pde;
2662 int ret;
2664 vm_object_hold(pmap->pm_pteobj);
2665 pde = pmap_pde(pmap, addr);
2666 if (pde == NULL || *pde == 0) {
2667 ret = 0;
2668 } else {
2669 pte = pmap_pde_to_pte(pde, addr);
2670 ret = (*pte) ? 0 : 1;
2672 vm_object_drop(pmap->pm_pteobj);
2674 return (ret);
2678 * Change the wiring attribute for a map/virtual-address pair.
2680 * The mapping must already exist in the pmap.
2681 * No other requirements.
2683 vm_page_t
2684 pmap_unwire(pmap_t pmap, vm_offset_t va)
2686 pt_entry_t *pte;
2687 vm_paddr_t pa;
2688 vm_page_t m;
2690 if (pmap == NULL)
2691 return NULL;
2693 vm_object_hold(pmap->pm_pteobj);
2694 pte = pmap_pte(pmap, va);
2696 if (pte == NULL || (*pte & VPTE_V) == 0) {
2697 vm_object_drop(pmap->pm_pteobj);
2698 return NULL;
2702 * Wiring is not a hardware characteristic so there is no need to
2703 * invalidate TLB. However, in an SMP environment we must use
2704 * a locked bus cycle to update the pte (if we are not using
2705 * the pmap_inval_*() API that is)... it's ok to do this for simple
2706 * wiring changes.
2708 if (pmap_pte_w(pte))
2709 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2710 /* XXX else return NULL so caller doesn't unwire m ? */
2711 atomic_clear_long(pte, VPTE_WIRED);
2713 pa = *pte & VPTE_FRAME;
2714 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
2716 vm_object_drop(pmap->pm_pteobj);
2718 return m;
2722 * Copy the range specified by src_addr/len
2723 * from the source map to the range dst_addr/len
2724 * in the destination map.
2726 * This routine is only advisory and need not do anything.
2728 void
2729 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2730 vm_size_t len, vm_offset_t src_addr)
2733 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2734 * valid through blocking calls, and that's just not going to
2735 * be the case.
2737 * FIXME!
2739 return;
2743 * pmap_zero_page:
2745 * Zero the specified physical page.
2747 * This function may be called from an interrupt and no locking is
2748 * required.
2750 void
2751 pmap_zero_page(vm_paddr_t phys)
2753 vm_offset_t va = PHYS_TO_DMAP(phys);
2755 bzero((void *)va, PAGE_SIZE);
2759 * pmap_zero_page:
2761 * Zero part of a physical page by mapping it into memory and clearing
2762 * its contents with bzero.
2764 * off and size may not cover an area beyond a single hardware page.
2766 void
2767 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2769 vm_offset_t virt = PHYS_TO_DMAP(phys);
2771 bzero((char *)virt + off, size);
2775 * pmap_copy_page:
2777 * Copy the physical page from the source PA to the target PA.
2778 * This function may be called from an interrupt. No locking
2779 * is required.
2781 void
2782 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2784 vm_offset_t src_virt, dst_virt;
2786 src_virt = PHYS_TO_DMAP(src);
2787 dst_virt = PHYS_TO_DMAP(dst);
2788 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2792 * pmap_copy_page_frag:
2794 * Copy the physical page from the source PA to the target PA.
2795 * This function may be called from an interrupt. No locking
2796 * is required.
2798 void
2799 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2801 vm_offset_t src_virt, dst_virt;
2803 src_virt = PHYS_TO_DMAP(src);
2804 dst_virt = PHYS_TO_DMAP(dst);
2805 bcopy((char *)src_virt + (src & PAGE_MASK),
2806 (char *)dst_virt + (dst & PAGE_MASK),
2807 bytes);
2811 * Remove all pages from specified address space this aids process
2812 * exit speeds. Also, this code is special cased for current
2813 * process only, but can have the more generic (and slightly slower)
2814 * mode enabled. This is much faster than pmap_remove in the case
2815 * of running down an entire address space.
2817 * No other requirements.
2819 void
2820 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2822 pmap_remove(pmap, sva, eva);
2823 #if 0
2824 pt_entry_t *pte, tpte;
2825 pv_entry_t pv, npv;
2826 vm_page_t m;
2827 int save_generation;
2829 if (pmap->pm_pteobj)
2830 vm_object_hold(pmap->pm_pteobj);
2832 pmap_invalidate_range(pmap, sva, eva);
2834 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2835 if (pv->pv_va >= eva || pv->pv_va < sva) {
2836 npv = TAILQ_NEXT(pv, pv_plist);
2837 continue;
2840 KKASSERT(pmap == pv->pv_pmap);
2842 pte = pmap_pte(pmap, pv->pv_va);
2845 * We cannot remove wired pages from a process' mapping
2846 * at this time
2848 if (*pte & VPTE_WIRED) {
2849 npv = TAILQ_NEXT(pv, pv_plist);
2850 continue;
2852 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2854 m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2855 vm_page_spin_lock(m);
2857 KASSERT(m < &vm_page_array[vm_page_array_size],
2858 ("pmap_remove_pages: bad tpte %lx", tpte));
2860 KKASSERT(pmap->pm_stats.resident_count > 0);
2861 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2864 * Update the vm_page_t clean and reference bits.
2866 if (tpte & VPTE_M) {
2867 vm_page_dirty(m);
2870 npv = TAILQ_NEXT(pv, pv_plist);
2871 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2872 atomic_add_int(&pmap->pm_generation, 1);
2873 save_generation = pmap->pm_generation;
2874 m->md.pv_list_count--;
2875 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2876 if (TAILQ_EMPTY(&m->md.pv_list))
2877 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2878 vm_page_spin_unlock(m);
2880 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2881 free_pv_entry(pv);
2884 * Restart the scan if we blocked during the unuse or free
2885 * calls and other removals were made.
2887 if (save_generation != pmap->pm_generation) {
2888 kprintf("Warning: pmap_remove_pages race-A avoided\n");
2889 npv = TAILQ_FIRST(&pmap->pm_pvlist);
2892 if (pmap->pm_pteobj)
2893 vm_object_drop(pmap->pm_pteobj);
2894 pmap_remove(pmap, sva, eva);
2895 #endif
2899 * pmap_testbit tests bits in active mappings of a VM page.
2901 static boolean_t
2902 pmap_testbit(vm_page_t m, int bit)
2904 pv_entry_t pv;
2905 pt_entry_t *pte;
2907 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2908 return FALSE;
2910 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2911 return FALSE;
2913 vm_page_spin_lock(m);
2914 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2916 * if the bit being tested is the modified bit, then
2917 * mark clean_map and ptes as never
2918 * modified.
2920 if (bit & (VPTE_A|VPTE_M)) {
2921 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2922 continue;
2925 #if defined(PMAP_DIAGNOSTIC)
2926 if (pv->pv_pmap == NULL) {
2927 kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2928 continue;
2930 #endif
2931 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2932 if (*pte & bit) {
2933 vm_page_spin_unlock(m);
2934 return TRUE;
2937 vm_page_spin_unlock(m);
2938 return (FALSE);
2942 * This routine is used to clear bits in ptes. Certain bits require special
2943 * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2945 * This routine is only called with certain VPTE_* bit combinations.
2947 static __inline void
2948 pmap_clearbit(vm_page_t m, int bit)
2950 pv_entry_t pv;
2951 pt_entry_t *pte;
2952 pt_entry_t pbits;
2953 vm_object_t pmobj;
2954 pmap_t pmap;
2956 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2957 if (bit == VPTE_RW)
2958 vm_page_flag_clear(m, PG_WRITEABLE);
2959 return;
2963 * Loop over all current mappings setting/clearing as appropos If
2964 * setting RO do we need to clear the VAC?
2966 restart:
2967 vm_page_spin_lock(m);
2968 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2970 * Need the pmap object lock(?)
2972 pmap = pv->pv_pmap;
2973 pmobj = pmap->pm_pteobj;
2975 if (vm_object_hold_try(pmobj) == 0) {
2976 refcount_acquire(&pmobj->hold_count);
2977 vm_page_spin_unlock(m);
2978 vm_object_lock(pmobj);
2979 vm_object_drop(pmobj);
2980 goto restart;
2984 * don't write protect pager mappings
2986 if (bit == VPTE_RW) {
2987 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va)) {
2988 vm_object_drop(pmobj);
2989 continue;
2993 #if defined(PMAP_DIAGNOSTIC)
2994 if (pv->pv_pmap == NULL) {
2995 kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2996 vm_object_drop(pmobj);
2997 continue;
2999 #endif
3002 * Careful here. We can use a locked bus instruction to
3003 * clear VPTE_A or VPTE_M safely but we need to synchronize
3004 * with the target cpus when we mess with VPTE_RW.
3006 * On virtual kernels we must force a new fault-on-write
3007 * in the real kernel if we clear the Modify bit ourselves,
3008 * otherwise the real kernel will not get a new fault and
3009 * will never set our Modify bit again.
3011 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3012 if (*pte & bit) {
3013 if (bit == VPTE_RW) {
3015 * We must also clear VPTE_M when clearing
3016 * VPTE_RW and synchronize its state to
3017 * the page.
3019 pbits = pmap_clean_pte(pte, pv->pv_pmap,
3020 pv->pv_va, m);
3021 } else if (bit == VPTE_M) {
3023 * We must invalidate the real-kernel pte
3024 * when clearing VPTE_M bit to force the
3025 * real-kernel to take a new fault to re-set
3026 * VPTE_M.
3028 atomic_clear_long(pte, VPTE_M);
3029 if (*pte & VPTE_RW) {
3030 pmap_invalidate_range(pv->pv_pmap,
3031 pv->pv_va,
3032 pv->pv_va + PAGE_SIZE);
3034 } else if ((bit & (VPTE_RW|VPTE_M)) ==
3035 (VPTE_RW|VPTE_M)) {
3037 * We've been asked to clear W & M, I guess
3038 * the caller doesn't want us to update
3039 * the dirty status of the VM page.
3041 pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va, m);
3042 panic("shouldn't be called");
3043 } else {
3045 * We've been asked to clear bits that do
3046 * not interact with hardware.
3048 atomic_clear_long(pte, bit);
3051 vm_object_drop(pmobj);
3053 if (bit == VPTE_RW)
3054 vm_page_flag_clear(m, PG_WRITEABLE);
3055 vm_page_spin_unlock(m);
3059 * Lower the permission for all mappings to a given page.
3061 * No other requirements.
3063 void
3064 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3066 if ((prot & VM_PROT_WRITE) == 0) {
3067 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3068 pmap_clearbit(m, VPTE_RW);
3069 } else {
3070 pmap_remove_all(m);
3075 vm_paddr_t
3076 pmap_phys_address(vm_pindex_t ppn)
3078 return (x86_64_ptob(ppn));
3082 * Return a count of reference bits for a page, clearing those bits.
3083 * It is not necessary for every reference bit to be cleared, but it
3084 * is necessary that 0 only be returned when there are truly no
3085 * reference bits set.
3087 * XXX: The exact number of bits to check and clear is a matter that
3088 * should be tested and standardized at some point in the future for
3089 * optimal aging of shared pages.
3091 * No other requirements.
3094 pmap_ts_referenced(vm_page_t m)
3096 pv_entry_t pv, pvf, pvn;
3097 pt_entry_t *pte;
3098 int rtval = 0;
3100 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3101 return (rtval);
3103 vm_page_spin_lock(m);
3104 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3105 pvf = pv;
3106 do {
3107 pvn = TAILQ_NEXT(pv, pv_list);
3108 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3109 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3111 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3112 continue;
3114 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3116 if (pte && (*pte & VPTE_A)) {
3117 atomic_clear_long(pte, VPTE_A);
3118 rtval++;
3119 if (rtval > 4) {
3120 break;
3123 } while ((pv = pvn) != NULL && pv != pvf);
3125 vm_page_spin_unlock(m);
3127 return (rtval);
3131 * Return whether or not the specified physical page was modified
3132 * in any physical maps.
3134 * No other requirements.
3136 boolean_t
3137 pmap_is_modified(vm_page_t m)
3139 boolean_t res;
3141 res = pmap_testbit(m, VPTE_M);
3143 return (res);
3147 * Clear the modify bits on the specified physical page. For the vkernel
3148 * we really need to clean the page, which clears VPTE_RW and VPTE_M, in
3149 * order to ensure that we take a fault on the next write to the page.
3150 * Otherwise the page may become dirty without us knowing it.
3152 * No other requirements.
3154 void
3155 pmap_clear_modify(vm_page_t m)
3157 pmap_clearbit(m, VPTE_RW);
3161 * Clear the reference bit on the specified physical page.
3163 * No other requirements.
3165 void
3166 pmap_clear_reference(vm_page_t m)
3168 pmap_clearbit(m, VPTE_A);
3172 * Miscellaneous support routines follow
3174 static void
3175 x86_64_protection_init(void)
3177 uint64_t *kp;
3178 int prot;
3180 kp = protection_codes;
3181 for (prot = 0; prot < 8; prot++) {
3182 if (prot & VM_PROT_READ)
3183 *kp |= 0; /* R */
3184 if (prot & VM_PROT_WRITE)
3185 *kp |= VPTE_RW; /* R+W */
3186 if (prot && (prot & VM_PROT_EXECUTE) == 0)
3187 *kp |= VPTE_NX; /* NX - !executable */
3188 ++kp;
3193 * Sets the memory attribute for the specified page.
3195 void
3196 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3198 /* This is a vkernel, do nothing */
3202 * Change the PAT attribute on an existing kernel memory map. Caller
3203 * must ensure that the virtual memory in question is not accessed
3204 * during the adjustment.
3206 void
3207 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3209 /* This is a vkernel, do nothing */
3213 * Perform the pmap work for mincore
3215 * No other requirements.
3218 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3220 pt_entry_t *ptep, pte;
3221 vm_page_t m;
3222 int val = 0;
3224 vm_object_hold(pmap->pm_pteobj);
3225 ptep = pmap_pte(pmap, addr);
3227 if (ptep && (pte = *ptep) != 0) {
3228 vm_paddr_t pa;
3230 val = MINCORE_INCORE;
3231 if ((pte & VPTE_MANAGED) == 0)
3232 goto done;
3234 pa = pte & VPTE_FRAME;
3236 m = PHYS_TO_VM_PAGE(pa);
3239 * Modified by us
3241 if (pte & VPTE_M)
3242 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3244 * Modified by someone
3246 else if (m->dirty || pmap_is_modified(m))
3247 val |= MINCORE_MODIFIED_OTHER;
3249 * Referenced by us
3251 if (pte & VPTE_A)
3252 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3255 * Referenced by someone
3257 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3258 val |= MINCORE_REFERENCED_OTHER;
3259 vm_page_flag_set(m, PG_REFERENCED);
3262 done:
3263 vm_object_drop(pmap->pm_pteobj);
3265 return val;
3269 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3270 * vmspace will be ref'd and the old one will be deref'd.
3272 * Caller must hold vmspace->vm_map.token for oldvm and newvm
3274 void
3275 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3277 struct vmspace *oldvm;
3278 struct lwp *lp;
3280 oldvm = p->p_vmspace;
3281 if (oldvm != newvm) {
3282 if (adjrefs)
3283 vmspace_ref(newvm);
3284 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3285 p->p_vmspace = newvm;
3286 KKASSERT(p->p_nthreads == 1);
3287 lp = RB_ROOT(&p->p_lwp_tree);
3288 pmap_setlwpvm(lp, newvm);
3289 if (adjrefs)
3290 vmspace_rel(oldvm);
3295 * Set the vmspace for a LWP. The vmspace is almost universally set the
3296 * same as the process vmspace, but virtual kernels need to swap out contexts
3297 * on a per-lwp basis.
3299 void
3300 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3302 struct vmspace *oldvm;
3303 struct pmap *pmap;
3305 oldvm = lp->lwp_vmspace;
3306 if (oldvm != newvm) {
3307 crit_enter();
3308 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3309 lp->lwp_vmspace = newvm;
3310 if (curthread->td_lwp == lp) {
3311 pmap = vmspace_pmap(newvm);
3312 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3313 if (pmap->pm_active_lock & CPULOCK_EXCL)
3314 pmap_interlock_wait(newvm);
3315 #if defined(SWTCH_OPTIM_STATS)
3316 tlb_flush_count++;
3317 #endif
3318 pmap = vmspace_pmap(oldvm);
3319 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3320 mycpu->gd_cpuid);
3322 crit_exit();
3327 * The swtch code tried to switch in a heavy weight process whos pmap
3328 * is locked by another cpu. We have to wait for the lock to clear before
3329 * the pmap can be used.
3331 void
3332 pmap_interlock_wait (struct vmspace *vm)
3334 pmap_t pmap = vmspace_pmap(vm);
3336 if (pmap->pm_active_lock & CPULOCK_EXCL) {
3337 crit_enter();
3338 while (pmap->pm_active_lock & CPULOCK_EXCL) {
3339 cpu_ccfence();
3340 pthread_yield();
3342 crit_exit();
3346 vm_offset_t
3347 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3350 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3351 return addr;
3354 addr = roundup2(addr, NBPDR);
3355 return addr;
3359 * Used by kmalloc/kfree, page already exists at va
3361 vm_page_t
3362 pmap_kvtom(vm_offset_t va)
3364 vpte_t *ptep;
3366 KKASSERT(va >= KvaStart && va < KvaEnd);
3367 ptep = vtopte(va);
3368 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3371 void
3372 pmap_object_init(vm_object_t object)
3374 /* empty */
3377 void
3378 pmap_object_free(vm_object_t object)
3380 /* empty */
3383 void
3384 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3386 pmap_t pmap = pginfo->pmap;
3387 vm_offset_t sva = pginfo->beg_addr;
3388 vm_offset_t eva = pginfo->end_addr;
3389 vm_offset_t va_next;
3390 pml4_entry_t *pml4e;
3391 pdp_entry_t *pdpe;
3392 pd_entry_t ptpaddr, *pde;
3393 pt_entry_t *pte;
3394 vm_page_t pt_m;
3395 int stop = 0;
3397 vm_object_hold(pmap->pm_pteobj);
3399 for (; sva < eva; sva = va_next) {
3400 if (stop)
3401 break;
3403 pml4e = pmap_pml4e(pmap, sva);
3404 if ((*pml4e & VPTE_V) == 0) {
3405 va_next = (sva + NBPML4) & ~PML4MASK;
3406 if (va_next < sva)
3407 va_next = eva;
3408 continue;
3411 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3412 if ((*pdpe & VPTE_V) == 0) {
3413 va_next = (sva + NBPDP) & ~PDPMASK;
3414 if (va_next < sva)
3415 va_next = eva;
3416 continue;
3419 va_next = (sva + NBPDR) & ~PDRMASK;
3420 if (va_next < sva)
3421 va_next = eva;
3423 pde = pmap_pdpe_to_pde(pdpe, sva);
3424 ptpaddr = *pde;
3426 #if 0
3428 * Check for large page (ignore).
3430 if ((ptpaddr & VPTE_PS) != 0) {
3431 #if 0
3432 pmap_clean_pde(pde, pmap, sva);
3433 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3434 #endif
3435 continue;
3437 #endif
3440 * Weed out invalid mappings. Note: we assume that the page
3441 * directory table is always allocated, and in kernel virtual.
3443 if (ptpaddr == 0)
3444 continue;
3446 if (va_next > eva)
3447 va_next = eva;
3449 pt_m = pmap_hold_pt_page(pde, sva);
3450 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3451 sva += PAGE_SIZE) {
3452 vm_page_t m;
3454 if (stop)
3455 break;
3456 if ((*pte & VPTE_MANAGED) == 0)
3457 continue;
3459 m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3460 if (vm_page_busy_try(m, TRUE) == 0) {
3461 if (pginfo->callback(pginfo, sva, m) < 0)
3462 stop = 1;
3465 vm_page_unhold(pt_m);
3467 vm_object_drop(pmap->pm_pteobj);