kernel - Fix TRIM bugs in UFS
[dragonfly.git] / contrib / gcc-4.7 / gcc / expr.c
blob4c248e061550b83a33983f4bb684568ca7619804
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "common/common-target.h"
53 #include "timevar.h"
54 #include "df.h"
55 #include "diagnostic.h"
56 #include "ssaexpand.h"
57 #include "target-globals.h"
58 #include "params.h"
60 /* Decide whether a function's arguments should be processed
61 from first to last or from last to first.
63 They should if the stack and args grow in opposite directions, but
64 only if we have push insns. */
66 #ifdef PUSH_ROUNDING
68 #ifndef PUSH_ARGS_REVERSED
69 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
70 #define PUSH_ARGS_REVERSED /* If it's last to first. */
71 #endif
72 #endif
74 #endif
76 #ifndef STACK_PUSH_CODE
77 #ifdef STACK_GROWS_DOWNWARD
78 #define STACK_PUSH_CODE PRE_DEC
79 #else
80 #define STACK_PUSH_CODE PRE_INC
81 #endif
82 #endif
85 /* If this is nonzero, we do not bother generating VOLATILE
86 around volatile memory references, and we are willing to
87 output indirect addresses. If cse is to follow, we reject
88 indirect addresses so a useful potential cse is generated;
89 if it is used only once, instruction combination will produce
90 the same indirect address eventually. */
91 int cse_not_expected;
93 /* This structure is used by move_by_pieces to describe the move to
94 be performed. */
95 struct move_by_pieces_d
97 rtx to;
98 rtx to_addr;
99 int autinc_to;
100 int explicit_inc_to;
101 rtx from;
102 rtx from_addr;
103 int autinc_from;
104 int explicit_inc_from;
105 unsigned HOST_WIDE_INT len;
106 HOST_WIDE_INT offset;
107 int reverse;
110 /* This structure is used by store_by_pieces to describe the clear to
111 be performed. */
113 struct store_by_pieces_d
115 rtx to;
116 rtx to_addr;
117 int autinc_to;
118 int explicit_inc_to;
119 unsigned HOST_WIDE_INT len;
120 HOST_WIDE_INT offset;
121 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
122 void *constfundata;
123 int reverse;
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
145 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
146 enum machine_mode,
147 tree, tree, alias_set_type, bool);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
151 static int is_aligning_offset (const_tree, const_tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (sepops, rtx, enum machine_mode);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* This macro is used to determine whether move_by_pieces should be called
164 to perform a structure copy. */
165 #ifndef MOVE_BY_PIECES_P
166 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
167 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
168 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
169 #endif
171 /* This macro is used to determine whether clear_by_pieces should be
172 called to clear storage. */
173 #ifndef CLEAR_BY_PIECES_P
174 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
175 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
176 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
177 #endif
179 /* This macro is used to determine whether store_by_pieces should be
180 called to "memset" storage with byte values other than zero. */
181 #ifndef SET_BY_PIECES_P
182 #define SET_BY_PIECES_P(SIZE, ALIGN) \
183 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
184 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
185 #endif
187 /* This macro is used to determine whether store_by_pieces should be
188 called to "memcpy" storage when the source is a constant string. */
189 #ifndef STORE_BY_PIECES_P
190 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
191 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
192 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
193 #endif
195 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
197 #ifndef SLOW_UNALIGNED_ACCESS
198 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
199 #endif
201 /* This is run to set up which modes can be used
202 directly in memory and to initialize the block move optab. It is run
203 at the beginning of compilation and when the target is reinitialized. */
205 void
206 init_expr_target (void)
208 rtx insn, pat;
209 enum machine_mode mode;
210 int num_clobbers;
211 rtx mem, mem1;
212 rtx reg;
214 /* Try indexing by frame ptr and try by stack ptr.
215 It is known that on the Convex the stack ptr isn't a valid index.
216 With luck, one or the other is valid on any machine. */
217 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
218 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
220 /* A scratch register we can modify in-place below to avoid
221 useless RTL allocations. */
222 reg = gen_rtx_REG (VOIDmode, -1);
224 insn = rtx_alloc (INSN);
225 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
226 PATTERN (insn) = pat;
228 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
229 mode = (enum machine_mode) ((int) mode + 1))
231 int regno;
233 direct_load[(int) mode] = direct_store[(int) mode] = 0;
234 PUT_MODE (mem, mode);
235 PUT_MODE (mem1, mode);
236 PUT_MODE (reg, mode);
238 /* See if there is some register that can be used in this mode and
239 directly loaded or stored from memory. */
241 if (mode != VOIDmode && mode != BLKmode)
242 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
243 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
244 regno++)
246 if (! HARD_REGNO_MODE_OK (regno, mode))
247 continue;
249 SET_REGNO (reg, regno);
251 SET_SRC (pat) = mem;
252 SET_DEST (pat) = reg;
253 if (recog (pat, insn, &num_clobbers) >= 0)
254 direct_load[(int) mode] = 1;
256 SET_SRC (pat) = mem1;
257 SET_DEST (pat) = reg;
258 if (recog (pat, insn, &num_clobbers) >= 0)
259 direct_load[(int) mode] = 1;
261 SET_SRC (pat) = reg;
262 SET_DEST (pat) = mem;
263 if (recog (pat, insn, &num_clobbers) >= 0)
264 direct_store[(int) mode] = 1;
266 SET_SRC (pat) = reg;
267 SET_DEST (pat) = mem1;
268 if (recog (pat, insn, &num_clobbers) >= 0)
269 direct_store[(int) mode] = 1;
273 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
275 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
276 mode = GET_MODE_WIDER_MODE (mode))
278 enum machine_mode srcmode;
279 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
280 srcmode = GET_MODE_WIDER_MODE (srcmode))
282 enum insn_code ic;
284 ic = can_extend_p (mode, srcmode, 0);
285 if (ic == CODE_FOR_nothing)
286 continue;
288 PUT_MODE (mem, srcmode);
290 if (insn_operand_matches (ic, 1, mem))
291 float_extend_from_mem[mode][srcmode] = true;
296 /* This is run at the start of compiling a function. */
298 void
299 init_expr (void)
301 memset (&crtl->expr, 0, sizeof (crtl->expr));
304 /* Copy data from FROM to TO, where the machine modes are not the same.
305 Both modes may be integer, or both may be floating, or both may be
306 fixed-point.
307 UNSIGNEDP should be nonzero if FROM is an unsigned type.
308 This causes zero-extension instead of sign-extension. */
310 void
311 convert_move (rtx to, rtx from, int unsignedp)
313 enum machine_mode to_mode = GET_MODE (to);
314 enum machine_mode from_mode = GET_MODE (from);
315 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
316 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
317 enum insn_code code;
318 rtx libcall;
320 /* rtx code for making an equivalent value. */
321 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
322 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
325 gcc_assert (to_real == from_real);
326 gcc_assert (to_mode != BLKmode);
327 gcc_assert (from_mode != BLKmode);
329 /* If the source and destination are already the same, then there's
330 nothing to do. */
331 if (to == from)
332 return;
334 /* If FROM is a SUBREG that indicates that we have already done at least
335 the required extension, strip it. We don't handle such SUBREGs as
336 TO here. */
338 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
339 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
340 >= GET_MODE_PRECISION (to_mode))
341 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
342 from = gen_lowpart (to_mode, from), from_mode = to_mode;
344 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
346 if (to_mode == from_mode
347 || (from_mode == VOIDmode && CONSTANT_P (from)))
349 emit_move_insn (to, from);
350 return;
353 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
355 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
357 if (VECTOR_MODE_P (to_mode))
358 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
359 else
360 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
362 emit_move_insn (to, from);
363 return;
366 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
368 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
369 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
370 return;
373 if (to_real)
375 rtx value, insns;
376 convert_optab tab;
378 gcc_assert ((GET_MODE_PRECISION (from_mode)
379 != GET_MODE_PRECISION (to_mode))
380 || (DECIMAL_FLOAT_MODE_P (from_mode)
381 != DECIMAL_FLOAT_MODE_P (to_mode)));
383 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
384 /* Conversion between decimal float and binary float, same size. */
385 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
386 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
387 tab = sext_optab;
388 else
389 tab = trunc_optab;
391 /* Try converting directly if the insn is supported. */
393 code = convert_optab_handler (tab, to_mode, from_mode);
394 if (code != CODE_FOR_nothing)
396 emit_unop_insn (code, to, from,
397 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
398 return;
401 /* Otherwise use a libcall. */
402 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
404 /* Is this conversion implemented yet? */
405 gcc_assert (libcall);
407 start_sequence ();
408 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
409 1, from, from_mode);
410 insns = get_insns ();
411 end_sequence ();
412 emit_libcall_block (insns, to, value,
413 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
414 from)
415 : gen_rtx_FLOAT_EXTEND (to_mode, from));
416 return;
419 /* Handle pointer conversion. */ /* SPEE 900220. */
420 /* Targets are expected to provide conversion insns between PxImode and
421 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
422 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
424 enum machine_mode full_mode
425 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
427 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
428 != CODE_FOR_nothing);
430 if (full_mode != from_mode)
431 from = convert_to_mode (full_mode, from, unsignedp);
432 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
433 to, from, UNKNOWN);
434 return;
436 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
438 rtx new_from;
439 enum machine_mode full_mode
440 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
442 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
443 != CODE_FOR_nothing);
445 if (to_mode == full_mode)
447 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
448 from_mode),
449 to, from, UNKNOWN);
450 return;
453 new_from = gen_reg_rtx (full_mode);
454 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
455 new_from, from, UNKNOWN);
457 /* else proceed to integer conversions below. */
458 from_mode = full_mode;
459 from = new_from;
462 /* Make sure both are fixed-point modes or both are not. */
463 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
464 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
465 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
467 /* If we widen from_mode to to_mode and they are in the same class,
468 we won't saturate the result.
469 Otherwise, always saturate the result to play safe. */
470 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
471 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
472 expand_fixed_convert (to, from, 0, 0);
473 else
474 expand_fixed_convert (to, from, 0, 1);
475 return;
478 /* Now both modes are integers. */
480 /* Handle expanding beyond a word. */
481 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
482 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
484 rtx insns;
485 rtx lowpart;
486 rtx fill_value;
487 rtx lowfrom;
488 int i;
489 enum machine_mode lowpart_mode;
490 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
492 /* Try converting directly if the insn is supported. */
493 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
494 != CODE_FOR_nothing)
496 /* If FROM is a SUBREG, put it into a register. Do this
497 so that we always generate the same set of insns for
498 better cse'ing; if an intermediate assignment occurred,
499 we won't be doing the operation directly on the SUBREG. */
500 if (optimize > 0 && GET_CODE (from) == SUBREG)
501 from = force_reg (from_mode, from);
502 emit_unop_insn (code, to, from, equiv_code);
503 return;
505 /* Next, try converting via full word. */
506 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
507 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
508 != CODE_FOR_nothing))
510 rtx word_to = gen_reg_rtx (word_mode);
511 if (REG_P (to))
513 if (reg_overlap_mentioned_p (to, from))
514 from = force_reg (from_mode, from);
515 emit_clobber (to);
517 convert_move (word_to, from, unsignedp);
518 emit_unop_insn (code, to, word_to, equiv_code);
519 return;
522 /* No special multiword conversion insn; do it by hand. */
523 start_sequence ();
525 /* Since we will turn this into a no conflict block, we must ensure
526 that the source does not overlap the target. */
528 if (reg_overlap_mentioned_p (to, from))
529 from = force_reg (from_mode, from);
531 /* Get a copy of FROM widened to a word, if necessary. */
532 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
533 lowpart_mode = word_mode;
534 else
535 lowpart_mode = from_mode;
537 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
539 lowpart = gen_lowpart (lowpart_mode, to);
540 emit_move_insn (lowpart, lowfrom);
542 /* Compute the value to put in each remaining word. */
543 if (unsignedp)
544 fill_value = const0_rtx;
545 else
546 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
547 LT, lowfrom, const0_rtx,
548 VOIDmode, 0, -1);
550 /* Fill the remaining words. */
551 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
553 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
554 rtx subword = operand_subword (to, index, 1, to_mode);
556 gcc_assert (subword);
558 if (fill_value != subword)
559 emit_move_insn (subword, fill_value);
562 insns = get_insns ();
563 end_sequence ();
565 emit_insn (insns);
566 return;
569 /* Truncating multi-word to a word or less. */
570 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
571 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
573 if (!((MEM_P (from)
574 && ! MEM_VOLATILE_P (from)
575 && direct_load[(int) to_mode]
576 && ! mode_dependent_address_p (XEXP (from, 0)))
577 || REG_P (from)
578 || GET_CODE (from) == SUBREG))
579 from = force_reg (from_mode, from);
580 convert_move (to, gen_lowpart (word_mode, from), 0);
581 return;
584 /* Now follow all the conversions between integers
585 no more than a word long. */
587 /* For truncation, usually we can just refer to FROM in a narrower mode. */
588 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
589 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
605 /* Handle extension. */
606 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
615 else
617 enum machine_mode intermediate;
618 rtx tmp;
619 int shift_amount;
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
628 && (can_extend_p (intermediate, from_mode, unsignedp)
629 != CODE_FOR_nothing))
631 convert_move (to, convert_to_mode (intermediate, from,
632 unsignedp), unsignedp);
633 return;
636 /* No suitable intermediate mode.
637 Generate what we need with shifts. */
638 shift_amount = (GET_MODE_PRECISION (to_mode)
639 - GET_MODE_PRECISION (from_mode));
640 from = gen_lowpart (to_mode, force_reg (from_mode, from));
641 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
642 to, unsignedp);
643 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
644 to, unsignedp);
645 if (tmp != to)
646 emit_move_insn (to, tmp);
647 return;
651 /* Support special truncate insns for certain modes. */
652 if (convert_optab_handler (trunc_optab, to_mode,
653 from_mode) != CODE_FOR_nothing)
655 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
656 to, from, UNKNOWN);
657 return;
660 /* Handle truncation of volatile memrefs, and so on;
661 the things that couldn't be truncated directly,
662 and for which there was no special instruction.
664 ??? Code above formerly short-circuited this, for most integer
665 mode pairs, with a force_reg in from_mode followed by a recursive
666 call to this routine. Appears always to have been wrong. */
667 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
669 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
670 emit_move_insn (to, temp);
671 return;
674 /* Mode combination is not recognized. */
675 gcc_unreachable ();
678 /* Return an rtx for a value that would result
679 from converting X to mode MODE.
680 Both X and MODE may be floating, or both integer.
681 UNSIGNEDP is nonzero if X is an unsigned value.
682 This can be done by referring to a part of X in place
683 or by copying to a new temporary with conversion. */
686 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
688 return convert_modes (mode, VOIDmode, x, unsignedp);
691 /* Return an rtx for a value that would result
692 from converting X from mode OLDMODE to mode MODE.
693 Both modes may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
696 This can be done by referring to a part of X in place
697 or by copying to a new temporary with conversion.
699 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
704 rtx temp;
706 /* If FROM is a SUBREG that indicates that we have already done at least
707 the required extension, strip it. */
709 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
710 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
711 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
712 x = gen_lowpart (mode, x);
714 if (GET_MODE (x) != VOIDmode)
715 oldmode = GET_MODE (x);
717 if (mode == oldmode)
718 return x;
720 /* There is one case that we must handle specially: If we are converting
721 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
722 we are to interpret the constant as unsigned, gen_lowpart will do
723 the wrong if the constant appears negative. What we want to do is
724 make the high-order word of the constant zero, not all ones. */
726 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
727 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
728 && CONST_INT_P (x) && INTVAL (x) < 0)
730 double_int val = uhwi_to_double_int (INTVAL (x));
732 /* We need to zero extend VAL. */
733 if (oldmode != VOIDmode)
734 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
736 return immed_double_int_const (val, mode);
739 /* We can do this with a gen_lowpart if both desired and current modes
740 are integer, and this is either a constant integer, a register, or a
741 non-volatile MEM. Except for the constant case where MODE is no
742 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
744 if ((CONST_INT_P (x)
745 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
746 || (GET_MODE_CLASS (mode) == MODE_INT
747 && GET_MODE_CLASS (oldmode) == MODE_INT
748 && (GET_CODE (x) == CONST_DOUBLE
749 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
750 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
751 && direct_load[(int) mode])
752 || (REG_P (x)
753 && (! HARD_REGISTER_P (x)
754 || HARD_REGNO_MODE_OK (REGNO (x), mode))
755 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
756 GET_MODE (x))))))))
758 /* ?? If we don't know OLDMODE, we have to assume here that
759 X does not need sign- or zero-extension. This may not be
760 the case, but it's the best we can do. */
761 if (CONST_INT_P (x) && oldmode != VOIDmode
762 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
764 HOST_WIDE_INT val = INTVAL (x);
766 /* We must sign or zero-extend in this case. Start by
767 zero-extending, then sign extend if we need to. */
768 val &= GET_MODE_MASK (oldmode);
769 if (! unsignedp
770 && val_signbit_known_set_p (oldmode, val))
771 val |= ~GET_MODE_MASK (oldmode);
773 return gen_int_mode (val, mode);
776 return gen_lowpart (mode, x);
779 /* Converting from integer constant into mode is always equivalent to an
780 subreg operation. */
781 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
783 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
784 return simplify_gen_subreg (mode, x, oldmode, 0);
787 temp = gen_reg_rtx (mode);
788 convert_move (temp, x, unsignedp);
789 return temp;
792 /* Return the largest alignment we can use for doing a move (or store)
793 of MAX_PIECES. ALIGN is the largest alignment we could use. */
795 static unsigned int
796 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
798 enum machine_mode tmode;
800 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
801 if (align >= GET_MODE_ALIGNMENT (tmode))
802 align = GET_MODE_ALIGNMENT (tmode);
803 else
805 enum machine_mode tmode, xmode;
807 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
808 tmode != VOIDmode;
809 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
810 if (GET_MODE_SIZE (tmode) > max_pieces
811 || SLOW_UNALIGNED_ACCESS (tmode, align))
812 break;
814 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
817 return align;
820 /* Return the widest integer mode no wider than SIZE. If no such mode
821 can be found, return VOIDmode. */
823 static enum machine_mode
824 widest_int_mode_for_size (unsigned int size)
826 enum machine_mode tmode, mode = VOIDmode;
828 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
829 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
830 if (GET_MODE_SIZE (tmode) < size)
831 mode = tmode;
833 return mode;
836 /* STORE_MAX_PIECES is the number of bytes at a time that we can
837 store efficiently. Due to internal GCC limitations, this is
838 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
839 for an immediate constant. */
841 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
843 /* Determine whether the LEN bytes can be moved by using several move
844 instructions. Return nonzero if a call to move_by_pieces should
845 succeed. */
848 can_move_by_pieces (unsigned HOST_WIDE_INT len,
849 unsigned int align ATTRIBUTE_UNUSED)
851 return MOVE_BY_PIECES_P (len, align);
854 /* Generate several move instructions to copy LEN bytes from block FROM to
855 block TO. (These are MEM rtx's with BLKmode).
857 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
858 used to push FROM to the stack.
860 ALIGN is maximum stack alignment we can assume.
862 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
863 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
864 stpcpy. */
867 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
868 unsigned int align, int endp)
870 struct move_by_pieces_d data;
871 enum machine_mode to_addr_mode, from_addr_mode
872 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum insn_code icode;
877 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
879 data.offset = 0;
880 data.from_addr = from_addr;
881 if (to)
883 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr_mode = VOIDmode;
895 to_addr = NULL_RTX;
896 data.to = NULL_RTX;
897 data.autinc_to = 1;
898 #ifdef STACK_GROWS_DOWNWARD
899 data.reverse = 1;
900 #else
901 data.reverse = 0;
902 #endif
904 data.to_addr = to_addr;
905 data.from = from;
906 data.autinc_from
907 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
908 || GET_CODE (from_addr) == POST_INC
909 || GET_CODE (from_addr) == POST_DEC);
911 data.explicit_inc_from = 0;
912 data.explicit_inc_to = 0;
913 if (data.reverse) data.offset = len;
914 data.len = len;
916 /* If copying requires more than two move insns,
917 copy addresses to registers (to make displacements shorter)
918 and use post-increment if available. */
919 if (!(data.autinc_from && data.autinc_to)
920 && move_by_pieces_ninsns (len, align, max_size) > 2)
922 /* Find the mode of the largest move...
923 MODE might not be used depending on the definitions of the
924 USE_* macros below. */
925 enum machine_mode mode ATTRIBUTE_UNUSED
926 = widest_int_mode_for_size (max_size);
928 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
930 data.from_addr = copy_to_mode_reg (from_addr_mode,
931 plus_constant (from_addr, len));
932 data.autinc_from = 1;
933 data.explicit_inc_from = -1;
935 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
937 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
938 data.autinc_from = 1;
939 data.explicit_inc_from = 1;
941 if (!data.autinc_from && CONSTANT_P (from_addr))
942 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
943 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
945 data.to_addr = copy_to_mode_reg (to_addr_mode,
946 plus_constant (to_addr, len));
947 data.autinc_to = 1;
948 data.explicit_inc_to = -1;
950 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
952 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
953 data.autinc_to = 1;
954 data.explicit_inc_to = 1;
956 if (!data.autinc_to && CONSTANT_P (to_addr))
957 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
960 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
962 /* First move what we can in the largest integer mode, then go to
963 successively smaller modes. */
965 while (max_size > 1)
967 enum machine_mode mode = widest_int_mode_for_size (max_size);
969 if (mode == VOIDmode)
970 break;
972 icode = optab_handler (mov_optab, mode);
973 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
974 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
976 max_size = GET_MODE_SIZE (mode);
979 /* The code above should have handled everything. */
980 gcc_assert (!data.len);
982 if (endp)
984 rtx to1;
986 gcc_assert (!data.reverse);
987 if (data.autinc_to)
989 if (endp == 2)
991 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
992 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
993 else
994 data.to_addr = copy_to_mode_reg (to_addr_mode,
995 plus_constant (data.to_addr,
996 -1));
998 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
999 data.offset);
1001 else
1003 if (endp == 2)
1004 --data.offset;
1005 to1 = adjust_address (data.to, QImode, data.offset);
1007 return to1;
1009 else
1010 return data.to;
1013 /* Return number of insns required to move L bytes by pieces.
1014 ALIGN (in bits) is maximum alignment we can assume. */
1016 unsigned HOST_WIDE_INT
1017 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1018 unsigned int max_size)
1020 unsigned HOST_WIDE_INT n_insns = 0;
1022 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1024 while (max_size > 1)
1026 enum machine_mode mode;
1027 enum insn_code icode;
1029 mode = widest_int_mode_for_size (max_size);
1031 if (mode == VOIDmode)
1032 break;
1034 icode = optab_handler (mov_optab, mode);
1035 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1036 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1038 max_size = GET_MODE_SIZE (mode);
1041 gcc_assert (!l);
1042 return n_insns;
1045 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1046 with move instructions for mode MODE. GENFUN is the gen_... function
1047 to make a move insn for that mode. DATA has all the other info. */
1049 static void
1050 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1051 struct move_by_pieces_d *data)
1053 unsigned int size = GET_MODE_SIZE (mode);
1054 rtx to1 = NULL_RTX, from1;
1056 while (data->len >= size)
1058 if (data->reverse)
1059 data->offset -= size;
1061 if (data->to)
1063 if (data->autinc_to)
1064 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1065 data->offset);
1066 else
1067 to1 = adjust_address (data->to, mode, data->offset);
1070 if (data->autinc_from)
1071 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1072 data->offset);
1073 else
1074 from1 = adjust_address (data->from, mode, data->offset);
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1077 emit_insn (gen_add2_insn (data->to_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1080 emit_insn (gen_add2_insn (data->from_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1083 if (data->to)
1084 emit_insn ((*genfun) (to1, from1));
1085 else
1087 #ifdef PUSH_ROUNDING
1088 emit_single_push_insn (mode, from1, NULL);
1089 #else
1090 gcc_unreachable ();
1091 #endif
1094 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1095 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1096 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1097 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1099 if (! data->reverse)
1100 data->offset += size;
1102 data->len -= size;
1106 /* Emit code to move a block Y to a block X. This may be done with
1107 string-move instructions, with multiple scalar move instructions,
1108 or with a library call.
1110 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1111 SIZE is an rtx that says how long they are.
1112 ALIGN is the maximum alignment we can assume they have.
1113 METHOD describes what kind of copy this is, and what mechanisms may be used.
1115 Return the address of the new block, if memcpy is called and returns it,
1116 0 otherwise. */
1119 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1120 unsigned int expected_align, HOST_WIDE_INT expected_size)
1122 bool may_use_call;
1123 rtx retval = 0;
1124 unsigned int align;
1126 gcc_assert (size);
1127 if (CONST_INT_P (size)
1128 && INTVAL (size) == 0)
1129 return 0;
1131 switch (method)
1133 case BLOCK_OP_NORMAL:
1134 case BLOCK_OP_TAILCALL:
1135 may_use_call = true;
1136 break;
1138 case BLOCK_OP_CALL_PARM:
1139 may_use_call = block_move_libcall_safe_for_call_parm ();
1141 /* Make inhibit_defer_pop nonzero around the library call
1142 to force it to pop the arguments right away. */
1143 NO_DEFER_POP;
1144 break;
1146 case BLOCK_OP_NO_LIBCALL:
1147 may_use_call = false;
1148 break;
1150 default:
1151 gcc_unreachable ();
1154 gcc_assert (MEM_P (x) && MEM_P (y));
1155 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1156 gcc_assert (align >= BITS_PER_UNIT);
1158 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1159 block copy is more efficient for other large modes, e.g. DCmode. */
1160 x = adjust_address (x, BLKmode, 0);
1161 y = adjust_address (y, BLKmode, 0);
1163 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1164 can be incorrect is coming from __builtin_memcpy. */
1165 if (CONST_INT_P (size))
1167 x = shallow_copy_rtx (x);
1168 y = shallow_copy_rtx (y);
1169 set_mem_size (x, INTVAL (size));
1170 set_mem_size (y, INTVAL (size));
1173 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1174 move_by_pieces (x, y, INTVAL (size), align, 0);
1175 else if (emit_block_move_via_movmem (x, y, size, align,
1176 expected_align, expected_size))
1178 else if (may_use_call
1179 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1180 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1182 /* Since x and y are passed to a libcall, mark the corresponding
1183 tree EXPR as addressable. */
1184 tree y_expr = MEM_EXPR (y);
1185 tree x_expr = MEM_EXPR (x);
1186 if (y_expr)
1187 mark_addressable (y_expr);
1188 if (x_expr)
1189 mark_addressable (x_expr);
1190 retval = emit_block_move_via_libcall (x, y, size,
1191 method == BLOCK_OP_TAILCALL);
1194 else
1195 emit_block_move_via_loop (x, y, size, align);
1197 if (method == BLOCK_OP_CALL_PARM)
1198 OK_DEFER_POP;
1200 return retval;
1204 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1206 return emit_block_move_hints (x, y, size, method, 0, -1);
1209 /* A subroutine of emit_block_move. Returns true if calling the
1210 block move libcall will not clobber any parameters which may have
1211 already been placed on the stack. */
1213 static bool
1214 block_move_libcall_safe_for_call_parm (void)
1216 #if defined (REG_PARM_STACK_SPACE)
1217 tree fn;
1218 #endif
1220 /* If arguments are pushed on the stack, then they're safe. */
1221 if (PUSH_ARGS)
1222 return true;
1224 /* If registers go on the stack anyway, any argument is sure to clobber
1225 an outgoing argument. */
1226 #if defined (REG_PARM_STACK_SPACE)
1227 fn = emit_block_move_libcall_fn (false);
1228 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1229 depend on its argument. */
1230 (void) fn;
1231 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1232 && REG_PARM_STACK_SPACE (fn) != 0)
1233 return false;
1234 #endif
1236 /* If any argument goes in memory, then it might clobber an outgoing
1237 argument. */
1239 CUMULATIVE_ARGS args_so_far_v;
1240 cumulative_args_t args_so_far;
1241 tree fn, arg;
1243 fn = emit_block_move_libcall_fn (false);
1244 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1245 args_so_far = pack_cumulative_args (&args_so_far_v);
1247 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1248 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1250 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1251 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1252 NULL_TREE, true);
1253 if (!tmp || !REG_P (tmp))
1254 return false;
1255 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1256 return false;
1257 targetm.calls.function_arg_advance (args_so_far, mode,
1258 NULL_TREE, true);
1261 return true;
1264 /* A subroutine of emit_block_move. Expand a movmem pattern;
1265 return true if successful. */
1267 static bool
1268 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1269 unsigned int expected_align, HOST_WIDE_INT expected_size)
1271 int save_volatile_ok = volatile_ok;
1272 enum machine_mode mode;
1274 if (expected_align < align)
1275 expected_align = align;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1289 if (code != CODE_FOR_nothing
1290 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1291 here because if SIZE is less than the mode mask, as it is
1292 returned by the macro, it will definitely be less than the
1293 actual mode mask. */
1294 && ((CONST_INT_P (size)
1295 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1296 <= (GET_MODE_MASK (mode) >> 1)))
1297 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1299 struct expand_operand ops[6];
1300 unsigned int nops;
1302 /* ??? When called via emit_block_move_for_call, it'd be
1303 nice if there were some way to inform the backend, so
1304 that it doesn't fail the expansion because it thinks
1305 emitting the libcall would be more efficient. */
1306 nops = insn_data[(int) code].n_generator_args;
1307 gcc_assert (nops == 4 || nops == 6);
1309 create_fixed_operand (&ops[0], x);
1310 create_fixed_operand (&ops[1], y);
1311 /* The check above guarantees that this size conversion is valid. */
1312 create_convert_operand_to (&ops[2], size, mode, true);
1313 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1314 if (nops == 6)
1316 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1317 create_integer_operand (&ops[5], expected_size);
1319 if (maybe_expand_insn (code, nops, ops))
1321 volatile_ok = save_volatile_ok;
1322 return true;
1327 volatile_ok = save_volatile_ok;
1328 return false;
1331 /* A subroutine of emit_block_move. Expand a call to memcpy.
1332 Return the return value from memcpy, 0 otherwise. */
1335 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1337 rtx dst_addr, src_addr;
1338 tree call_expr, fn, src_tree, dst_tree, size_tree;
1339 enum machine_mode size_mode;
1340 rtx retval;
1342 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1343 pseudos. We can then place those new pseudos into a VAR_DECL and
1344 use them later. */
1346 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1347 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1349 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1350 src_addr = convert_memory_address (ptr_mode, src_addr);
1352 dst_tree = make_tree (ptr_type_node, dst_addr);
1353 src_tree = make_tree (ptr_type_node, src_addr);
1355 size_mode = TYPE_MODE (sizetype);
1357 size = convert_to_mode (size_mode, size, 1);
1358 size = copy_to_mode_reg (size_mode, size);
1360 /* It is incorrect to use the libcall calling conventions to call
1361 memcpy in this context. This could be a user call to memcpy and
1362 the user may wish to examine the return value from memcpy. For
1363 targets where libcalls and normal calls have different conventions
1364 for returning pointers, we could end up generating incorrect code. */
1366 size_tree = make_tree (sizetype, size);
1368 fn = emit_block_move_libcall_fn (true);
1369 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1370 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1372 retval = expand_normal (call_expr);
1374 return retval;
1377 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1378 for the function we use for block copies. The first time FOR_CALL
1379 is true, we call assemble_external. */
1381 static GTY(()) tree block_move_fn;
1383 void
1384 init_block_move_fn (const char *asmspec)
1386 if (!block_move_fn)
1388 tree args, fn;
1390 fn = get_identifier ("memcpy");
1391 args = build_function_type_list (ptr_type_node, ptr_type_node,
1392 const_ptr_type_node, sizetype,
1393 NULL_TREE);
1395 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1396 DECL_EXTERNAL (fn) = 1;
1397 TREE_PUBLIC (fn) = 1;
1398 DECL_ARTIFICIAL (fn) = 1;
1399 TREE_NOTHROW (fn) = 1;
1400 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1401 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1403 block_move_fn = fn;
1406 if (asmspec)
1407 set_user_assembler_name (block_move_fn, asmspec);
1410 static tree
1411 emit_block_move_libcall_fn (int for_call)
1413 static bool emitted_extern;
1415 if (!block_move_fn)
1416 init_block_move_fn (NULL);
1418 if (for_call && !emitted_extern)
1420 emitted_extern = true;
1421 make_decl_rtl (block_move_fn);
1422 assemble_external (block_move_fn);
1425 return block_move_fn;
1428 /* A subroutine of emit_block_move. Copy the data via an explicit
1429 loop. This is used only when libcalls are forbidden. */
1430 /* ??? It'd be nice to copy in hunks larger than QImode. */
1432 static void
1433 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1434 unsigned int align ATTRIBUTE_UNUSED)
1436 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1437 enum machine_mode x_addr_mode
1438 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1439 enum machine_mode y_addr_mode
1440 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1441 enum machine_mode iter_mode;
1443 iter_mode = GET_MODE (size);
1444 if (iter_mode == VOIDmode)
1445 iter_mode = word_mode;
1447 top_label = gen_label_rtx ();
1448 cmp_label = gen_label_rtx ();
1449 iter = gen_reg_rtx (iter_mode);
1451 emit_move_insn (iter, const0_rtx);
1453 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1454 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1455 do_pending_stack_adjust ();
1457 emit_jump (cmp_label);
1458 emit_label (top_label);
1460 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1461 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1463 if (x_addr_mode != y_addr_mode)
1464 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1465 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1467 x = change_address (x, QImode, x_addr);
1468 y = change_address (y, QImode, y_addr);
1470 emit_move_insn (x, y);
1472 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1473 true, OPTAB_LIB_WIDEN);
1474 if (tmp != iter)
1475 emit_move_insn (iter, tmp);
1477 emit_label (cmp_label);
1479 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1480 true, top_label);
1483 /* Copy all or part of a value X into registers starting at REGNO.
1484 The number of registers to be filled is NREGS. */
1486 void
1487 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1489 int i;
1490 #ifdef HAVE_load_multiple
1491 rtx pat;
1492 rtx last;
1493 #endif
1495 if (nregs == 0)
1496 return;
1498 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1499 x = validize_mem (force_const_mem (mode, x));
1501 /* See if the machine can do this with a load multiple insn. */
1502 #ifdef HAVE_load_multiple
1503 if (HAVE_load_multiple)
1505 last = get_last_insn ();
1506 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1507 GEN_INT (nregs));
1508 if (pat)
1510 emit_insn (pat);
1511 return;
1513 else
1514 delete_insns_since (last);
1516 #endif
1518 for (i = 0; i < nregs; i++)
1519 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1520 operand_subword_force (x, i, mode));
1523 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1524 The number of registers to be filled is NREGS. */
1526 void
1527 move_block_from_reg (int regno, rtx x, int nregs)
1529 int i;
1531 if (nregs == 0)
1532 return;
1534 /* See if the machine can do this with a store multiple insn. */
1535 #ifdef HAVE_store_multiple
1536 if (HAVE_store_multiple)
1538 rtx last = get_last_insn ();
1539 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1540 GEN_INT (nregs));
1541 if (pat)
1543 emit_insn (pat);
1544 return;
1546 else
1547 delete_insns_since (last);
1549 #endif
1551 for (i = 0; i < nregs; i++)
1553 rtx tem = operand_subword (x, i, 1, BLKmode);
1555 gcc_assert (tem);
1557 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1561 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1562 ORIG, where ORIG is a non-consecutive group of registers represented by
1563 a PARALLEL. The clone is identical to the original except in that the
1564 original set of registers is replaced by a new set of pseudo registers.
1565 The new set has the same modes as the original set. */
1568 gen_group_rtx (rtx orig)
1570 int i, length;
1571 rtx *tmps;
1573 gcc_assert (GET_CODE (orig) == PARALLEL);
1575 length = XVECLEN (orig, 0);
1576 tmps = XALLOCAVEC (rtx, length);
1578 /* Skip a NULL entry in first slot. */
1579 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1581 if (i)
1582 tmps[0] = 0;
1584 for (; i < length; i++)
1586 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1587 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1589 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1592 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1595 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1596 except that values are placed in TMPS[i], and must later be moved
1597 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1599 static void
1600 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1602 rtx src;
1603 int start, i;
1604 enum machine_mode m = GET_MODE (orig_src);
1606 gcc_assert (GET_CODE (dst) == PARALLEL);
1608 if (m != VOIDmode
1609 && !SCALAR_INT_MODE_P (m)
1610 && !MEM_P (orig_src)
1611 && GET_CODE (orig_src) != CONCAT)
1613 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1614 if (imode == BLKmode)
1615 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1616 else
1617 src = gen_reg_rtx (imode);
1618 if (imode != BLKmode)
1619 src = gen_lowpart (GET_MODE (orig_src), src);
1620 emit_move_insn (src, orig_src);
1621 /* ...and back again. */
1622 if (imode != BLKmode)
1623 src = gen_lowpart (imode, src);
1624 emit_group_load_1 (tmps, dst, src, type, ssize);
1625 return;
1628 /* Check for a NULL entry, used to indicate that the parameter goes
1629 both on the stack and in registers. */
1630 if (XEXP (XVECEXP (dst, 0, 0), 0))
1631 start = 0;
1632 else
1633 start = 1;
1635 /* Process the pieces. */
1636 for (i = start; i < XVECLEN (dst, 0); i++)
1638 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1639 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1640 unsigned int bytelen = GET_MODE_SIZE (mode);
1641 int shift = 0;
1643 /* Handle trailing fragments that run over the size of the struct. */
1644 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1646 /* Arrange to shift the fragment to where it belongs.
1647 extract_bit_field loads to the lsb of the reg. */
1648 if (
1649 #ifdef BLOCK_REG_PADDING
1650 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1651 == (BYTES_BIG_ENDIAN ? upward : downward)
1652 #else
1653 BYTES_BIG_ENDIAN
1654 #endif
1656 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1657 bytelen = ssize - bytepos;
1658 gcc_assert (bytelen > 0);
1661 /* If we won't be loading directly from memory, protect the real source
1662 from strange tricks we might play; but make sure that the source can
1663 be loaded directly into the destination. */
1664 src = orig_src;
1665 if (!MEM_P (orig_src)
1666 && (!CONSTANT_P (orig_src)
1667 || (GET_MODE (orig_src) != mode
1668 && GET_MODE (orig_src) != VOIDmode)))
1670 if (GET_MODE (orig_src) == VOIDmode)
1671 src = gen_reg_rtx (mode);
1672 else
1673 src = gen_reg_rtx (GET_MODE (orig_src));
1675 emit_move_insn (src, orig_src);
1678 /* Optimize the access just a bit. */
1679 if (MEM_P (src)
1680 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1681 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1682 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1683 && bytelen == GET_MODE_SIZE (mode))
1685 tmps[i] = gen_reg_rtx (mode);
1686 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1688 else if (COMPLEX_MODE_P (mode)
1689 && GET_MODE (src) == mode
1690 && bytelen == GET_MODE_SIZE (mode))
1691 /* Let emit_move_complex do the bulk of the work. */
1692 tmps[i] = src;
1693 else if (GET_CODE (src) == CONCAT)
1695 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1696 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1698 if ((bytepos == 0 && bytelen == slen0)
1699 || (bytepos != 0 && bytepos + bytelen <= slen))
1701 /* The following assumes that the concatenated objects all
1702 have the same size. In this case, a simple calculation
1703 can be used to determine the object and the bit field
1704 to be extracted. */
1705 tmps[i] = XEXP (src, bytepos / slen0);
1706 if (! CONSTANT_P (tmps[i])
1707 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1708 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1709 (bytepos % slen0) * BITS_PER_UNIT,
1710 1, false, NULL_RTX, mode, mode);
1712 else
1714 rtx mem;
1716 gcc_assert (!bytepos);
1717 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1718 emit_move_insn (mem, src);
1719 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1720 0, 1, false, NULL_RTX, mode, mode);
1723 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1724 SIMD register, which is currently broken. While we get GCC
1725 to emit proper RTL for these cases, let's dump to memory. */
1726 else if (VECTOR_MODE_P (GET_MODE (dst))
1727 && REG_P (src))
1729 int slen = GET_MODE_SIZE (GET_MODE (src));
1730 rtx mem;
1732 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1733 emit_move_insn (mem, src);
1734 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1736 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1737 && XVECLEN (dst, 0) > 1)
1738 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1739 else if (CONSTANT_P (src))
1741 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1743 if (len == ssize)
1744 tmps[i] = src;
1745 else
1747 rtx first, second;
1749 gcc_assert (2 * len == ssize);
1750 split_double (src, &first, &second);
1751 if (i)
1752 tmps[i] = second;
1753 else
1754 tmps[i] = first;
1757 else if (REG_P (src) && GET_MODE (src) == mode)
1758 tmps[i] = src;
1759 else
1760 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1761 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1762 mode, mode);
1764 if (shift)
1765 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1766 shift, tmps[i], 0);
1770 /* Emit code to move a block SRC of type TYPE to a block DST,
1771 where DST is non-consecutive registers represented by a PARALLEL.
1772 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1773 if not known. */
1775 void
1776 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1778 rtx *tmps;
1779 int i;
1781 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1782 emit_group_load_1 (tmps, dst, src, type, ssize);
1784 /* Copy the extracted pieces into the proper (probable) hard regs. */
1785 for (i = 0; i < XVECLEN (dst, 0); i++)
1787 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1788 if (d == NULL)
1789 continue;
1790 emit_move_insn (d, tmps[i]);
1794 /* Similar, but load SRC into new pseudos in a format that looks like
1795 PARALLEL. This can later be fed to emit_group_move to get things
1796 in the right place. */
1799 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1801 rtvec vec;
1802 int i;
1804 vec = rtvec_alloc (XVECLEN (parallel, 0));
1805 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1807 /* Convert the vector to look just like the original PARALLEL, except
1808 with the computed values. */
1809 for (i = 0; i < XVECLEN (parallel, 0); i++)
1811 rtx e = XVECEXP (parallel, 0, i);
1812 rtx d = XEXP (e, 0);
1814 if (d)
1816 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1817 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1819 RTVEC_ELT (vec, i) = e;
1822 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1825 /* Emit code to move a block SRC to block DST, where SRC and DST are
1826 non-consecutive groups of registers, each represented by a PARALLEL. */
1828 void
1829 emit_group_move (rtx dst, rtx src)
1831 int i;
1833 gcc_assert (GET_CODE (src) == PARALLEL
1834 && GET_CODE (dst) == PARALLEL
1835 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1837 /* Skip first entry if NULL. */
1838 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1839 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1840 XEXP (XVECEXP (src, 0, i), 0));
1843 /* Move a group of registers represented by a PARALLEL into pseudos. */
1846 emit_group_move_into_temps (rtx src)
1848 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1849 int i;
1851 for (i = 0; i < XVECLEN (src, 0); i++)
1853 rtx e = XVECEXP (src, 0, i);
1854 rtx d = XEXP (e, 0);
1856 if (d)
1857 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1858 RTVEC_ELT (vec, i) = e;
1861 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1864 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1865 where SRC is non-consecutive registers represented by a PARALLEL.
1866 SSIZE represents the total size of block ORIG_DST, or -1 if not
1867 known. */
1869 void
1870 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1872 rtx *tmps, dst;
1873 int start, finish, i;
1874 enum machine_mode m = GET_MODE (orig_dst);
1876 gcc_assert (GET_CODE (src) == PARALLEL);
1878 if (!SCALAR_INT_MODE_P (m)
1879 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1881 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1882 if (imode == BLKmode)
1883 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1884 else
1885 dst = gen_reg_rtx (imode);
1886 emit_group_store (dst, src, type, ssize);
1887 if (imode != BLKmode)
1888 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1889 emit_move_insn (orig_dst, dst);
1890 return;
1893 /* Check for a NULL entry, used to indicate that the parameter goes
1894 both on the stack and in registers. */
1895 if (XEXP (XVECEXP (src, 0, 0), 0))
1896 start = 0;
1897 else
1898 start = 1;
1899 finish = XVECLEN (src, 0);
1901 tmps = XALLOCAVEC (rtx, finish);
1903 /* Copy the (probable) hard regs into pseudos. */
1904 for (i = start; i < finish; i++)
1906 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1907 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1909 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1910 emit_move_insn (tmps[i], reg);
1912 else
1913 tmps[i] = reg;
1916 /* If we won't be storing directly into memory, protect the real destination
1917 from strange tricks we might play. */
1918 dst = orig_dst;
1919 if (GET_CODE (dst) == PARALLEL)
1921 rtx temp;
1923 /* We can get a PARALLEL dst if there is a conditional expression in
1924 a return statement. In that case, the dst and src are the same,
1925 so no action is necessary. */
1926 if (rtx_equal_p (dst, src))
1927 return;
1929 /* It is unclear if we can ever reach here, but we may as well handle
1930 it. Allocate a temporary, and split this into a store/load to/from
1931 the temporary. */
1933 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1934 emit_group_store (temp, src, type, ssize);
1935 emit_group_load (dst, temp, type, ssize);
1936 return;
1938 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1940 enum machine_mode outer = GET_MODE (dst);
1941 enum machine_mode inner;
1942 HOST_WIDE_INT bytepos;
1943 bool done = false;
1944 rtx temp;
1946 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1947 dst = gen_reg_rtx (outer);
1949 /* Make life a bit easier for combine. */
1950 /* If the first element of the vector is the low part
1951 of the destination mode, use a paradoxical subreg to
1952 initialize the destination. */
1953 if (start < finish)
1955 inner = GET_MODE (tmps[start]);
1956 bytepos = subreg_lowpart_offset (inner, outer);
1957 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1959 temp = simplify_gen_subreg (outer, tmps[start],
1960 inner, 0);
1961 if (temp)
1963 emit_move_insn (dst, temp);
1964 done = true;
1965 start++;
1970 /* If the first element wasn't the low part, try the last. */
1971 if (!done
1972 && start < finish - 1)
1974 inner = GET_MODE (tmps[finish - 1]);
1975 bytepos = subreg_lowpart_offset (inner, outer);
1976 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1978 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1979 inner, 0);
1980 if (temp)
1982 emit_move_insn (dst, temp);
1983 done = true;
1984 finish--;
1989 /* Otherwise, simply initialize the result to zero. */
1990 if (!done)
1991 emit_move_insn (dst, CONST0_RTX (outer));
1994 /* Process the pieces. */
1995 for (i = start; i < finish; i++)
1997 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1998 enum machine_mode mode = GET_MODE (tmps[i]);
1999 unsigned int bytelen = GET_MODE_SIZE (mode);
2000 unsigned int adj_bytelen = bytelen;
2001 rtx dest = dst;
2003 /* Handle trailing fragments that run over the size of the struct. */
2004 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2005 adj_bytelen = ssize - bytepos;
2007 if (GET_CODE (dst) == CONCAT)
2009 if (bytepos + adj_bytelen
2010 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2011 dest = XEXP (dst, 0);
2012 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2015 dest = XEXP (dst, 1);
2017 else
2019 enum machine_mode dest_mode = GET_MODE (dest);
2020 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2022 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2024 if (GET_MODE_ALIGNMENT (dest_mode)
2025 >= GET_MODE_ALIGNMENT (tmp_mode))
2027 dest = assign_stack_temp (dest_mode,
2028 GET_MODE_SIZE (dest_mode),
2030 emit_move_insn (adjust_address (dest,
2031 tmp_mode,
2032 bytepos),
2033 tmps[i]);
2034 dst = dest;
2036 else
2038 dest = assign_stack_temp (tmp_mode,
2039 GET_MODE_SIZE (tmp_mode),
2041 emit_move_insn (dest, tmps[i]);
2042 dst = adjust_address (dest, dest_mode, bytepos);
2044 break;
2048 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2050 /* store_bit_field always takes its value from the lsb.
2051 Move the fragment to the lsb if it's not already there. */
2052 if (
2053 #ifdef BLOCK_REG_PADDING
2054 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2055 == (BYTES_BIG_ENDIAN ? upward : downward)
2056 #else
2057 BYTES_BIG_ENDIAN
2058 #endif
2061 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2062 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2063 shift, tmps[i], 0);
2065 bytelen = adj_bytelen;
2068 /* Optimize the access just a bit. */
2069 if (MEM_P (dest)
2070 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2071 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2072 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2073 && bytelen == GET_MODE_SIZE (mode))
2074 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2075 else
2076 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2077 0, 0, mode, tmps[i]);
2080 /* Copy from the pseudo into the (probable) hard reg. */
2081 if (orig_dst != dst)
2082 emit_move_insn (orig_dst, dst);
2085 /* Generate code to copy a BLKmode object of TYPE out of a
2086 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2087 is null, a stack temporary is created. TGTBLK is returned.
2089 The purpose of this routine is to handle functions that return
2090 BLKmode structures in registers. Some machines (the PA for example)
2091 want to return all small structures in registers regardless of the
2092 structure's alignment. */
2095 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2097 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2098 rtx src = NULL, dst = NULL;
2099 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2100 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2101 enum machine_mode copy_mode;
2103 if (tgtblk == 0)
2105 tgtblk = assign_temp (build_qualified_type (type,
2106 (TYPE_QUALS (type)
2107 | TYPE_QUAL_CONST)),
2108 0, 1, 1);
2109 preserve_temp_slots (tgtblk);
2112 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2113 into a new pseudo which is a full word. */
2115 if (GET_MODE (srcreg) != BLKmode
2116 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2117 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2119 /* If the structure doesn't take up a whole number of words, see whether
2120 SRCREG is padded on the left or on the right. If it's on the left,
2121 set PADDING_CORRECTION to the number of bits to skip.
2123 In most ABIs, the structure will be returned at the least end of
2124 the register, which translates to right padding on little-endian
2125 targets and left padding on big-endian targets. The opposite
2126 holds if the structure is returned at the most significant
2127 end of the register. */
2128 if (bytes % UNITS_PER_WORD != 0
2129 && (targetm.calls.return_in_msb (type)
2130 ? !BYTES_BIG_ENDIAN
2131 : BYTES_BIG_ENDIAN))
2132 padding_correction
2133 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2135 /* Copy the structure BITSIZE bits at a time. If the target lives in
2136 memory, take care of not reading/writing past its end by selecting
2137 a copy mode suited to BITSIZE. This should always be possible given
2138 how it is computed.
2140 We could probably emit more efficient code for machines which do not use
2141 strict alignment, but it doesn't seem worth the effort at the current
2142 time. */
2144 copy_mode = word_mode;
2145 if (MEM_P (tgtblk))
2147 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2148 if (mem_mode != BLKmode)
2149 copy_mode = mem_mode;
2152 for (bitpos = 0, xbitpos = padding_correction;
2153 bitpos < bytes * BITS_PER_UNIT;
2154 bitpos += bitsize, xbitpos += bitsize)
2156 /* We need a new source operand each time xbitpos is on a
2157 word boundary and when xbitpos == padding_correction
2158 (the first time through). */
2159 if (xbitpos % BITS_PER_WORD == 0
2160 || xbitpos == padding_correction)
2161 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2162 GET_MODE (srcreg));
2164 /* We need a new destination operand each time bitpos is on
2165 a word boundary. */
2166 if (bitpos % BITS_PER_WORD == 0)
2167 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2169 /* Use xbitpos for the source extraction (right justified) and
2170 bitpos for the destination store (left justified). */
2171 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2172 extract_bit_field (src, bitsize,
2173 xbitpos % BITS_PER_WORD, 1, false,
2174 NULL_RTX, copy_mode, copy_mode));
2177 return tgtblk;
2180 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2181 register if it contains any data, otherwise return null.
2183 This is used on targets that return BLKmode values in registers. */
2186 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2188 int i, n_regs;
2189 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2190 unsigned int bitsize;
2191 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2192 enum machine_mode dst_mode;
2194 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2196 x = expand_normal (src);
2198 bytes = int_size_in_bytes (TREE_TYPE (src));
2199 if (bytes == 0)
2200 return NULL_RTX;
2202 /* If the structure doesn't take up a whole number of words, see
2203 whether the register value should be padded on the left or on
2204 the right. Set PADDING_CORRECTION to the number of padding
2205 bits needed on the left side.
2207 In most ABIs, the structure will be returned at the least end of
2208 the register, which translates to right padding on little-endian
2209 targets and left padding on big-endian targets. The opposite
2210 holds if the structure is returned at the most significant
2211 end of the register. */
2212 if (bytes % UNITS_PER_WORD != 0
2213 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2214 ? !BYTES_BIG_ENDIAN
2215 : BYTES_BIG_ENDIAN))
2216 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2217 * BITS_PER_UNIT));
2219 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2220 dst_words = XALLOCAVEC (rtx, n_regs);
2221 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2223 /* Copy the structure BITSIZE bits at a time. */
2224 for (bitpos = 0, xbitpos = padding_correction;
2225 bitpos < bytes * BITS_PER_UNIT;
2226 bitpos += bitsize, xbitpos += bitsize)
2228 /* We need a new destination pseudo each time xbitpos is
2229 on a word boundary and when xbitpos == padding_correction
2230 (the first time through). */
2231 if (xbitpos % BITS_PER_WORD == 0
2232 || xbitpos == padding_correction)
2234 /* Generate an appropriate register. */
2235 dst_word = gen_reg_rtx (word_mode);
2236 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2238 /* Clear the destination before we move anything into it. */
2239 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2242 /* We need a new source operand each time bitpos is on a word
2243 boundary. */
2244 if (bitpos % BITS_PER_WORD == 0)
2245 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2247 /* Use bitpos for the source extraction (left justified) and
2248 xbitpos for the destination store (right justified). */
2249 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2250 0, 0, word_mode,
2251 extract_bit_field (src_word, bitsize,
2252 bitpos % BITS_PER_WORD, 1, false,
2253 NULL_RTX, word_mode, word_mode));
2256 if (mode == BLKmode)
2258 /* Find the smallest integer mode large enough to hold the
2259 entire structure. */
2260 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2261 mode != VOIDmode;
2262 mode = GET_MODE_WIDER_MODE (mode))
2263 /* Have we found a large enough mode? */
2264 if (GET_MODE_SIZE (mode) >= bytes)
2265 break;
2267 /* A suitable mode should have been found. */
2268 gcc_assert (mode != VOIDmode);
2271 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2272 dst_mode = word_mode;
2273 else
2274 dst_mode = mode;
2275 dst = gen_reg_rtx (dst_mode);
2277 for (i = 0; i < n_regs; i++)
2278 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2280 if (mode != dst_mode)
2281 dst = gen_lowpart (mode, dst);
2283 return dst;
2286 /* Add a USE expression for REG to the (possibly empty) list pointed
2287 to by CALL_FUSAGE. REG must denote a hard register. */
2289 void
2290 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2292 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2294 *call_fusage
2295 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2298 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2299 starting at REGNO. All of these registers must be hard registers. */
2301 void
2302 use_regs (rtx *call_fusage, int regno, int nregs)
2304 int i;
2306 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2308 for (i = 0; i < nregs; i++)
2309 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2312 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2313 PARALLEL REGS. This is for calls that pass values in multiple
2314 non-contiguous locations. The Irix 6 ABI has examples of this. */
2316 void
2317 use_group_regs (rtx *call_fusage, rtx regs)
2319 int i;
2321 for (i = 0; i < XVECLEN (regs, 0); i++)
2323 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2325 /* A NULL entry means the parameter goes both on the stack and in
2326 registers. This can also be a MEM for targets that pass values
2327 partially on the stack and partially in registers. */
2328 if (reg != 0 && REG_P (reg))
2329 use_reg (call_fusage, reg);
2333 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2334 assigment and the code of the expresion on the RHS is CODE. Return
2335 NULL otherwise. */
2337 static gimple
2338 get_def_for_expr (tree name, enum tree_code code)
2340 gimple def_stmt;
2342 if (TREE_CODE (name) != SSA_NAME)
2343 return NULL;
2345 def_stmt = get_gimple_for_ssa_name (name);
2346 if (!def_stmt
2347 || gimple_assign_rhs_code (def_stmt) != code)
2348 return NULL;
2350 return def_stmt;
2354 /* Determine whether the LEN bytes generated by CONSTFUN can be
2355 stored to memory using several move instructions. CONSTFUNDATA is
2356 a pointer which will be passed as argument in every CONSTFUN call.
2357 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2358 a memset operation and false if it's a copy of a constant string.
2359 Return nonzero if a call to store_by_pieces should succeed. */
2362 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2363 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2364 void *constfundata, unsigned int align, bool memsetp)
2366 unsigned HOST_WIDE_INT l;
2367 unsigned int max_size;
2368 HOST_WIDE_INT offset = 0;
2369 enum machine_mode mode;
2370 enum insn_code icode;
2371 int reverse;
2372 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2373 rtx cst ATTRIBUTE_UNUSED;
2375 if (len == 0)
2376 return 1;
2378 if (! (memsetp
2379 ? SET_BY_PIECES_P (len, align)
2380 : STORE_BY_PIECES_P (len, align)))
2381 return 0;
2383 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2385 /* We would first store what we can in the largest integer mode, then go to
2386 successively smaller modes. */
2388 for (reverse = 0;
2389 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2390 reverse++)
2392 l = len;
2393 max_size = STORE_MAX_PIECES + 1;
2394 while (max_size > 1)
2396 mode = widest_int_mode_for_size (max_size);
2398 if (mode == VOIDmode)
2399 break;
2401 icode = optab_handler (mov_optab, mode);
2402 if (icode != CODE_FOR_nothing
2403 && align >= GET_MODE_ALIGNMENT (mode))
2405 unsigned int size = GET_MODE_SIZE (mode);
2407 while (l >= size)
2409 if (reverse)
2410 offset -= size;
2412 cst = (*constfun) (constfundata, offset, mode);
2413 if (!targetm.legitimate_constant_p (mode, cst))
2414 return 0;
2416 if (!reverse)
2417 offset += size;
2419 l -= size;
2423 max_size = GET_MODE_SIZE (mode);
2426 /* The code above should have handled everything. */
2427 gcc_assert (!l);
2430 return 1;
2433 /* Generate several move instructions to store LEN bytes generated by
2434 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2435 pointer which will be passed as argument in every CONSTFUN call.
2436 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2437 a memset operation and false if it's a copy of a constant string.
2438 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2439 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2440 stpcpy. */
2443 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2444 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2445 void *constfundata, unsigned int align, bool memsetp, int endp)
2447 enum machine_mode to_addr_mode
2448 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2449 struct store_by_pieces_d data;
2451 if (len == 0)
2453 gcc_assert (endp != 2);
2454 return to;
2457 gcc_assert (memsetp
2458 ? SET_BY_PIECES_P (len, align)
2459 : STORE_BY_PIECES_P (len, align));
2460 data.constfun = constfun;
2461 data.constfundata = constfundata;
2462 data.len = len;
2463 data.to = to;
2464 store_by_pieces_1 (&data, align);
2465 if (endp)
2467 rtx to1;
2469 gcc_assert (!data.reverse);
2470 if (data.autinc_to)
2472 if (endp == 2)
2474 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2475 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2476 else
2477 data.to_addr = copy_to_mode_reg (to_addr_mode,
2478 plus_constant (data.to_addr,
2479 -1));
2481 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2482 data.offset);
2484 else
2486 if (endp == 2)
2487 --data.offset;
2488 to1 = adjust_address (data.to, QImode, data.offset);
2490 return to1;
2492 else
2493 return data.to;
2496 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2497 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2499 static void
2500 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2502 struct store_by_pieces_d data;
2504 if (len == 0)
2505 return;
2507 data.constfun = clear_by_pieces_1;
2508 data.constfundata = NULL;
2509 data.len = len;
2510 data.to = to;
2511 store_by_pieces_1 (&data, align);
2514 /* Callback routine for clear_by_pieces.
2515 Return const0_rtx unconditionally. */
2517 static rtx
2518 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2519 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2520 enum machine_mode mode ATTRIBUTE_UNUSED)
2522 return const0_rtx;
2525 /* Subroutine of clear_by_pieces and store_by_pieces.
2526 Generate several move instructions to store LEN bytes of block TO. (A MEM
2527 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2529 static void
2530 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2531 unsigned int align ATTRIBUTE_UNUSED)
2533 enum machine_mode to_addr_mode
2534 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2535 rtx to_addr = XEXP (data->to, 0);
2536 unsigned int max_size = STORE_MAX_PIECES + 1;
2537 enum insn_code icode;
2539 data->offset = 0;
2540 data->to_addr = to_addr;
2541 data->autinc_to
2542 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2543 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2545 data->explicit_inc_to = 0;
2546 data->reverse
2547 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2548 if (data->reverse)
2549 data->offset = data->len;
2551 /* If storing requires more than two move insns,
2552 copy addresses to registers (to make displacements shorter)
2553 and use post-increment if available. */
2554 if (!data->autinc_to
2555 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2557 /* Determine the main mode we'll be using.
2558 MODE might not be used depending on the definitions of the
2559 USE_* macros below. */
2560 enum machine_mode mode ATTRIBUTE_UNUSED
2561 = widest_int_mode_for_size (max_size);
2563 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2565 data->to_addr = copy_to_mode_reg (to_addr_mode,
2566 plus_constant (to_addr, data->len));
2567 data->autinc_to = 1;
2568 data->explicit_inc_to = -1;
2571 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2572 && ! data->autinc_to)
2574 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2575 data->autinc_to = 1;
2576 data->explicit_inc_to = 1;
2579 if ( !data->autinc_to && CONSTANT_P (to_addr))
2580 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2583 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2585 /* First store what we can in the largest integer mode, then go to
2586 successively smaller modes. */
2588 while (max_size > 1)
2590 enum machine_mode mode = widest_int_mode_for_size (max_size);
2592 if (mode == VOIDmode)
2593 break;
2595 icode = optab_handler (mov_optab, mode);
2596 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2597 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2599 max_size = GET_MODE_SIZE (mode);
2602 /* The code above should have handled everything. */
2603 gcc_assert (!data->len);
2606 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2607 with move instructions for mode MODE. GENFUN is the gen_... function
2608 to make a move insn for that mode. DATA has all the other info. */
2610 static void
2611 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2612 struct store_by_pieces_d *data)
2614 unsigned int size = GET_MODE_SIZE (mode);
2615 rtx to1, cst;
2617 while (data->len >= size)
2619 if (data->reverse)
2620 data->offset -= size;
2622 if (data->autinc_to)
2623 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2624 data->offset);
2625 else
2626 to1 = adjust_address (data->to, mode, data->offset);
2628 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2629 emit_insn (gen_add2_insn (data->to_addr,
2630 GEN_INT (-(HOST_WIDE_INT) size)));
2632 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2633 emit_insn ((*genfun) (to1, cst));
2635 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2636 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2638 if (! data->reverse)
2639 data->offset += size;
2641 data->len -= size;
2645 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2646 its length in bytes. */
2649 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2650 unsigned int expected_align, HOST_WIDE_INT expected_size)
2652 enum machine_mode mode = GET_MODE (object);
2653 unsigned int align;
2655 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2657 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2658 just move a zero. Otherwise, do this a piece at a time. */
2659 if (mode != BLKmode
2660 && CONST_INT_P (size)
2661 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2663 rtx zero = CONST0_RTX (mode);
2664 if (zero != NULL)
2666 emit_move_insn (object, zero);
2667 return NULL;
2670 if (COMPLEX_MODE_P (mode))
2672 zero = CONST0_RTX (GET_MODE_INNER (mode));
2673 if (zero != NULL)
2675 write_complex_part (object, zero, 0);
2676 write_complex_part (object, zero, 1);
2677 return NULL;
2682 if (size == const0_rtx)
2683 return NULL;
2685 align = MEM_ALIGN (object);
2687 if (CONST_INT_P (size)
2688 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2689 clear_by_pieces (object, INTVAL (size), align);
2690 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2691 expected_align, expected_size))
2693 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2694 return set_storage_via_libcall (object, size, const0_rtx,
2695 method == BLOCK_OP_TAILCALL);
2696 else
2697 gcc_unreachable ();
2699 return NULL;
2703 clear_storage (rtx object, rtx size, enum block_op_methods method)
2705 return clear_storage_hints (object, size, method, 0, -1);
2709 /* A subroutine of clear_storage. Expand a call to memset.
2710 Return the return value of memset, 0 otherwise. */
2713 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2715 tree call_expr, fn, object_tree, size_tree, val_tree;
2716 enum machine_mode size_mode;
2717 rtx retval;
2719 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2720 place those into new pseudos into a VAR_DECL and use them later. */
2722 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2724 size_mode = TYPE_MODE (sizetype);
2725 size = convert_to_mode (size_mode, size, 1);
2726 size = copy_to_mode_reg (size_mode, size);
2728 /* It is incorrect to use the libcall calling conventions to call
2729 memset in this context. This could be a user call to memset and
2730 the user may wish to examine the return value from memset. For
2731 targets where libcalls and normal calls have different conventions
2732 for returning pointers, we could end up generating incorrect code. */
2734 object_tree = make_tree (ptr_type_node, object);
2735 if (!CONST_INT_P (val))
2736 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2737 size_tree = make_tree (sizetype, size);
2738 val_tree = make_tree (integer_type_node, val);
2740 fn = clear_storage_libcall_fn (true);
2741 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2742 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2744 retval = expand_normal (call_expr);
2746 return retval;
2749 /* A subroutine of set_storage_via_libcall. Create the tree node
2750 for the function we use for block clears. The first time FOR_CALL
2751 is true, we call assemble_external. */
2753 tree block_clear_fn;
2755 void
2756 init_block_clear_fn (const char *asmspec)
2758 if (!block_clear_fn)
2760 tree fn, args;
2762 fn = get_identifier ("memset");
2763 args = build_function_type_list (ptr_type_node, ptr_type_node,
2764 integer_type_node, sizetype,
2765 NULL_TREE);
2767 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2768 DECL_EXTERNAL (fn) = 1;
2769 TREE_PUBLIC (fn) = 1;
2770 DECL_ARTIFICIAL (fn) = 1;
2771 TREE_NOTHROW (fn) = 1;
2772 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2773 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2775 block_clear_fn = fn;
2778 if (asmspec)
2779 set_user_assembler_name (block_clear_fn, asmspec);
2782 static tree
2783 clear_storage_libcall_fn (int for_call)
2785 static bool emitted_extern;
2787 if (!block_clear_fn)
2788 init_block_clear_fn (NULL);
2790 if (for_call && !emitted_extern)
2792 emitted_extern = true;
2793 make_decl_rtl (block_clear_fn);
2794 assemble_external (block_clear_fn);
2797 return block_clear_fn;
2800 /* Expand a setmem pattern; return true if successful. */
2802 bool
2803 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2804 unsigned int expected_align, HOST_WIDE_INT expected_size)
2806 /* Try the most limited insn first, because there's no point
2807 including more than one in the machine description unless
2808 the more limited one has some advantage. */
2810 enum machine_mode mode;
2812 if (expected_align < align)
2813 expected_align = align;
2815 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2816 mode = GET_MODE_WIDER_MODE (mode))
2818 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2820 if (code != CODE_FOR_nothing
2821 /* We don't need MODE to be narrower than
2822 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2823 the mode mask, as it is returned by the macro, it will
2824 definitely be less than the actual mode mask. */
2825 && ((CONST_INT_P (size)
2826 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2827 <= (GET_MODE_MASK (mode) >> 1)))
2828 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2830 struct expand_operand ops[6];
2831 unsigned int nops;
2833 nops = insn_data[(int) code].n_generator_args;
2834 gcc_assert (nops == 4 || nops == 6);
2836 create_fixed_operand (&ops[0], object);
2837 /* The check above guarantees that this size conversion is valid. */
2838 create_convert_operand_to (&ops[1], size, mode, true);
2839 create_convert_operand_from (&ops[2], val, byte_mode, true);
2840 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2841 if (nops == 6)
2843 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2844 create_integer_operand (&ops[5], expected_size);
2846 if (maybe_expand_insn (code, nops, ops))
2847 return true;
2851 return false;
2855 /* Write to one of the components of the complex value CPLX. Write VAL to
2856 the real part if IMAG_P is false, and the imaginary part if its true. */
2858 static void
2859 write_complex_part (rtx cplx, rtx val, bool imag_p)
2861 enum machine_mode cmode;
2862 enum machine_mode imode;
2863 unsigned ibitsize;
2865 if (GET_CODE (cplx) == CONCAT)
2867 emit_move_insn (XEXP (cplx, imag_p), val);
2868 return;
2871 cmode = GET_MODE (cplx);
2872 imode = GET_MODE_INNER (cmode);
2873 ibitsize = GET_MODE_BITSIZE (imode);
2875 /* For MEMs simplify_gen_subreg may generate an invalid new address
2876 because, e.g., the original address is considered mode-dependent
2877 by the target, which restricts simplify_subreg from invoking
2878 adjust_address_nv. Instead of preparing fallback support for an
2879 invalid address, we call adjust_address_nv directly. */
2880 if (MEM_P (cplx))
2882 emit_move_insn (adjust_address_nv (cplx, imode,
2883 imag_p ? GET_MODE_SIZE (imode) : 0),
2884 val);
2885 return;
2888 /* If the sub-object is at least word sized, then we know that subregging
2889 will work. This special case is important, since store_bit_field
2890 wants to operate on integer modes, and there's rarely an OImode to
2891 correspond to TCmode. */
2892 if (ibitsize >= BITS_PER_WORD
2893 /* For hard regs we have exact predicates. Assume we can split
2894 the original object if it spans an even number of hard regs.
2895 This special case is important for SCmode on 64-bit platforms
2896 where the natural size of floating-point regs is 32-bit. */
2897 || (REG_P (cplx)
2898 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2899 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2901 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2902 imag_p ? GET_MODE_SIZE (imode) : 0);
2903 if (part)
2905 emit_move_insn (part, val);
2906 return;
2908 else
2909 /* simplify_gen_subreg may fail for sub-word MEMs. */
2910 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2913 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
2916 /* Extract one of the components of the complex value CPLX. Extract the
2917 real part if IMAG_P is false, and the imaginary part if it's true. */
2919 static rtx
2920 read_complex_part (rtx cplx, bool imag_p)
2922 enum machine_mode cmode, imode;
2923 unsigned ibitsize;
2925 if (GET_CODE (cplx) == CONCAT)
2926 return XEXP (cplx, imag_p);
2928 cmode = GET_MODE (cplx);
2929 imode = GET_MODE_INNER (cmode);
2930 ibitsize = GET_MODE_BITSIZE (imode);
2932 /* Special case reads from complex constants that got spilled to memory. */
2933 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2935 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2936 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2938 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2939 if (CONSTANT_CLASS_P (part))
2940 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2944 /* For MEMs simplify_gen_subreg may generate an invalid new address
2945 because, e.g., the original address is considered mode-dependent
2946 by the target, which restricts simplify_subreg from invoking
2947 adjust_address_nv. Instead of preparing fallback support for an
2948 invalid address, we call adjust_address_nv directly. */
2949 if (MEM_P (cplx))
2950 return adjust_address_nv (cplx, imode,
2951 imag_p ? GET_MODE_SIZE (imode) : 0);
2953 /* If the sub-object is at least word sized, then we know that subregging
2954 will work. This special case is important, since extract_bit_field
2955 wants to operate on integer modes, and there's rarely an OImode to
2956 correspond to TCmode. */
2957 if (ibitsize >= BITS_PER_WORD
2958 /* For hard regs we have exact predicates. Assume we can split
2959 the original object if it spans an even number of hard regs.
2960 This special case is important for SCmode on 64-bit platforms
2961 where the natural size of floating-point regs is 32-bit. */
2962 || (REG_P (cplx)
2963 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2964 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2966 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2967 imag_p ? GET_MODE_SIZE (imode) : 0);
2968 if (ret)
2969 return ret;
2970 else
2971 /* simplify_gen_subreg may fail for sub-word MEMs. */
2972 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2975 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2976 true, false, NULL_RTX, imode, imode);
2979 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2980 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2981 represented in NEW_MODE. If FORCE is true, this will never happen, as
2982 we'll force-create a SUBREG if needed. */
2984 static rtx
2985 emit_move_change_mode (enum machine_mode new_mode,
2986 enum machine_mode old_mode, rtx x, bool force)
2988 rtx ret;
2990 if (push_operand (x, GET_MODE (x)))
2992 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2993 MEM_COPY_ATTRIBUTES (ret, x);
2995 else if (MEM_P (x))
2997 /* We don't have to worry about changing the address since the
2998 size in bytes is supposed to be the same. */
2999 if (reload_in_progress)
3001 /* Copy the MEM to change the mode and move any
3002 substitutions from the old MEM to the new one. */
3003 ret = adjust_address_nv (x, new_mode, 0);
3004 copy_replacements (x, ret);
3006 else
3007 ret = adjust_address (x, new_mode, 0);
3009 else
3011 /* Note that we do want simplify_subreg's behavior of validating
3012 that the new mode is ok for a hard register. If we were to use
3013 simplify_gen_subreg, we would create the subreg, but would
3014 probably run into the target not being able to implement it. */
3015 /* Except, of course, when FORCE is true, when this is exactly what
3016 we want. Which is needed for CCmodes on some targets. */
3017 if (force)
3018 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3019 else
3020 ret = simplify_subreg (new_mode, x, old_mode, 0);
3023 return ret;
3026 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3027 an integer mode of the same size as MODE. Returns the instruction
3028 emitted, or NULL if such a move could not be generated. */
3030 static rtx
3031 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3033 enum machine_mode imode;
3034 enum insn_code code;
3036 /* There must exist a mode of the exact size we require. */
3037 imode = int_mode_for_mode (mode);
3038 if (imode == BLKmode)
3039 return NULL_RTX;
3041 /* The target must support moves in this mode. */
3042 code = optab_handler (mov_optab, imode);
3043 if (code == CODE_FOR_nothing)
3044 return NULL_RTX;
3046 x = emit_move_change_mode (imode, mode, x, force);
3047 if (x == NULL_RTX)
3048 return NULL_RTX;
3049 y = emit_move_change_mode (imode, mode, y, force);
3050 if (y == NULL_RTX)
3051 return NULL_RTX;
3052 return emit_insn (GEN_FCN (code) (x, y));
3055 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3056 Return an equivalent MEM that does not use an auto-increment. */
3058 static rtx
3059 emit_move_resolve_push (enum machine_mode mode, rtx x)
3061 enum rtx_code code = GET_CODE (XEXP (x, 0));
3062 HOST_WIDE_INT adjust;
3063 rtx temp;
3065 adjust = GET_MODE_SIZE (mode);
3066 #ifdef PUSH_ROUNDING
3067 adjust = PUSH_ROUNDING (adjust);
3068 #endif
3069 if (code == PRE_DEC || code == POST_DEC)
3070 adjust = -adjust;
3071 else if (code == PRE_MODIFY || code == POST_MODIFY)
3073 rtx expr = XEXP (XEXP (x, 0), 1);
3074 HOST_WIDE_INT val;
3076 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3077 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3078 val = INTVAL (XEXP (expr, 1));
3079 if (GET_CODE (expr) == MINUS)
3080 val = -val;
3081 gcc_assert (adjust == val || adjust == -val);
3082 adjust = val;
3085 /* Do not use anti_adjust_stack, since we don't want to update
3086 stack_pointer_delta. */
3087 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3088 GEN_INT (adjust), stack_pointer_rtx,
3089 0, OPTAB_LIB_WIDEN);
3090 if (temp != stack_pointer_rtx)
3091 emit_move_insn (stack_pointer_rtx, temp);
3093 switch (code)
3095 case PRE_INC:
3096 case PRE_DEC:
3097 case PRE_MODIFY:
3098 temp = stack_pointer_rtx;
3099 break;
3100 case POST_INC:
3101 case POST_DEC:
3102 case POST_MODIFY:
3103 temp = plus_constant (stack_pointer_rtx, -adjust);
3104 break;
3105 default:
3106 gcc_unreachable ();
3109 return replace_equiv_address (x, temp);
3112 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3113 X is known to satisfy push_operand, and MODE is known to be complex.
3114 Returns the last instruction emitted. */
3117 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3119 enum machine_mode submode = GET_MODE_INNER (mode);
3120 bool imag_first;
3122 #ifdef PUSH_ROUNDING
3123 unsigned int submodesize = GET_MODE_SIZE (submode);
3125 /* In case we output to the stack, but the size is smaller than the
3126 machine can push exactly, we need to use move instructions. */
3127 if (PUSH_ROUNDING (submodesize) != submodesize)
3129 x = emit_move_resolve_push (mode, x);
3130 return emit_move_insn (x, y);
3132 #endif
3134 /* Note that the real part always precedes the imag part in memory
3135 regardless of machine's endianness. */
3136 switch (GET_CODE (XEXP (x, 0)))
3138 case PRE_DEC:
3139 case POST_DEC:
3140 imag_first = true;
3141 break;
3142 case PRE_INC:
3143 case POST_INC:
3144 imag_first = false;
3145 break;
3146 default:
3147 gcc_unreachable ();
3150 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3151 read_complex_part (y, imag_first));
3152 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3153 read_complex_part (y, !imag_first));
3156 /* A subroutine of emit_move_complex. Perform the move from Y to X
3157 via two moves of the parts. Returns the last instruction emitted. */
3160 emit_move_complex_parts (rtx x, rtx y)
3162 /* Show the output dies here. This is necessary for SUBREGs
3163 of pseudos since we cannot track their lifetimes correctly;
3164 hard regs shouldn't appear here except as return values. */
3165 if (!reload_completed && !reload_in_progress
3166 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3167 emit_clobber (x);
3169 write_complex_part (x, read_complex_part (y, false), false);
3170 write_complex_part (x, read_complex_part (y, true), true);
3172 return get_last_insn ();
3175 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3176 MODE is known to be complex. Returns the last instruction emitted. */
3178 static rtx
3179 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3181 bool try_int;
3183 /* Need to take special care for pushes, to maintain proper ordering
3184 of the data, and possibly extra padding. */
3185 if (push_operand (x, mode))
3186 return emit_move_complex_push (mode, x, y);
3188 /* See if we can coerce the target into moving both values at once. */
3190 /* Move floating point as parts. */
3191 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3192 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3193 try_int = false;
3194 /* Not possible if the values are inherently not adjacent. */
3195 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3196 try_int = false;
3197 /* Is possible if both are registers (or subregs of registers). */
3198 else if (register_operand (x, mode) && register_operand (y, mode))
3199 try_int = true;
3200 /* If one of the operands is a memory, and alignment constraints
3201 are friendly enough, we may be able to do combined memory operations.
3202 We do not attempt this if Y is a constant because that combination is
3203 usually better with the by-parts thing below. */
3204 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3205 && (!STRICT_ALIGNMENT
3206 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3207 try_int = true;
3208 else
3209 try_int = false;
3211 if (try_int)
3213 rtx ret;
3215 /* For memory to memory moves, optimal behavior can be had with the
3216 existing block move logic. */
3217 if (MEM_P (x) && MEM_P (y))
3219 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3220 BLOCK_OP_NO_LIBCALL);
3221 return get_last_insn ();
3224 ret = emit_move_via_integer (mode, x, y, true);
3225 if (ret)
3226 return ret;
3229 return emit_move_complex_parts (x, y);
3232 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3233 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3235 static rtx
3236 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3238 rtx ret;
3240 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3241 if (mode != CCmode)
3243 enum insn_code code = optab_handler (mov_optab, CCmode);
3244 if (code != CODE_FOR_nothing)
3246 x = emit_move_change_mode (CCmode, mode, x, true);
3247 y = emit_move_change_mode (CCmode, mode, y, true);
3248 return emit_insn (GEN_FCN (code) (x, y));
3252 /* Otherwise, find the MODE_INT mode of the same width. */
3253 ret = emit_move_via_integer (mode, x, y, false);
3254 gcc_assert (ret != NULL);
3255 return ret;
3258 /* Return true if word I of OP lies entirely in the
3259 undefined bits of a paradoxical subreg. */
3261 static bool
3262 undefined_operand_subword_p (const_rtx op, int i)
3264 enum machine_mode innermode, innermostmode;
3265 int offset;
3266 if (GET_CODE (op) != SUBREG)
3267 return false;
3268 innermode = GET_MODE (op);
3269 innermostmode = GET_MODE (SUBREG_REG (op));
3270 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3271 /* The SUBREG_BYTE represents offset, as if the value were stored in
3272 memory, except for a paradoxical subreg where we define
3273 SUBREG_BYTE to be 0; undo this exception as in
3274 simplify_subreg. */
3275 if (SUBREG_BYTE (op) == 0
3276 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3278 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3279 if (WORDS_BIG_ENDIAN)
3280 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3281 if (BYTES_BIG_ENDIAN)
3282 offset += difference % UNITS_PER_WORD;
3284 if (offset >= GET_MODE_SIZE (innermostmode)
3285 || offset <= -GET_MODE_SIZE (word_mode))
3286 return true;
3287 return false;
3290 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3291 MODE is any multi-word or full-word mode that lacks a move_insn
3292 pattern. Note that you will get better code if you define such
3293 patterns, even if they must turn into multiple assembler instructions. */
3295 static rtx
3296 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3298 rtx last_insn = 0;
3299 rtx seq, inner;
3300 bool need_clobber;
3301 int i;
3303 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3305 /* If X is a push on the stack, do the push now and replace
3306 X with a reference to the stack pointer. */
3307 if (push_operand (x, mode))
3308 x = emit_move_resolve_push (mode, x);
3310 /* If we are in reload, see if either operand is a MEM whose address
3311 is scheduled for replacement. */
3312 if (reload_in_progress && MEM_P (x)
3313 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3314 x = replace_equiv_address_nv (x, inner);
3315 if (reload_in_progress && MEM_P (y)
3316 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3317 y = replace_equiv_address_nv (y, inner);
3319 start_sequence ();
3321 need_clobber = false;
3322 for (i = 0;
3323 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3324 i++)
3326 rtx xpart = operand_subword (x, i, 1, mode);
3327 rtx ypart;
3329 /* Do not generate code for a move if it would come entirely
3330 from the undefined bits of a paradoxical subreg. */
3331 if (undefined_operand_subword_p (y, i))
3332 continue;
3334 ypart = operand_subword (y, i, 1, mode);
3336 /* If we can't get a part of Y, put Y into memory if it is a
3337 constant. Otherwise, force it into a register. Then we must
3338 be able to get a part of Y. */
3339 if (ypart == 0 && CONSTANT_P (y))
3341 y = use_anchored_address (force_const_mem (mode, y));
3342 ypart = operand_subword (y, i, 1, mode);
3344 else if (ypart == 0)
3345 ypart = operand_subword_force (y, i, mode);
3347 gcc_assert (xpart && ypart);
3349 need_clobber |= (GET_CODE (xpart) == SUBREG);
3351 last_insn = emit_move_insn (xpart, ypart);
3354 seq = get_insns ();
3355 end_sequence ();
3357 /* Show the output dies here. This is necessary for SUBREGs
3358 of pseudos since we cannot track their lifetimes correctly;
3359 hard regs shouldn't appear here except as return values.
3360 We never want to emit such a clobber after reload. */
3361 if (x != y
3362 && ! (reload_in_progress || reload_completed)
3363 && need_clobber != 0)
3364 emit_clobber (x);
3366 emit_insn (seq);
3368 return last_insn;
3371 /* Low level part of emit_move_insn.
3372 Called just like emit_move_insn, but assumes X and Y
3373 are basically valid. */
3376 emit_move_insn_1 (rtx x, rtx y)
3378 enum machine_mode mode = GET_MODE (x);
3379 enum insn_code code;
3381 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3383 code = optab_handler (mov_optab, mode);
3384 if (code != CODE_FOR_nothing)
3385 return emit_insn (GEN_FCN (code) (x, y));
3387 /* Expand complex moves by moving real part and imag part. */
3388 if (COMPLEX_MODE_P (mode))
3389 return emit_move_complex (mode, x, y);
3391 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3392 || ALL_FIXED_POINT_MODE_P (mode))
3394 rtx result = emit_move_via_integer (mode, x, y, true);
3396 /* If we can't find an integer mode, use multi words. */
3397 if (result)
3398 return result;
3399 else
3400 return emit_move_multi_word (mode, x, y);
3403 if (GET_MODE_CLASS (mode) == MODE_CC)
3404 return emit_move_ccmode (mode, x, y);
3406 /* Try using a move pattern for the corresponding integer mode. This is
3407 only safe when simplify_subreg can convert MODE constants into integer
3408 constants. At present, it can only do this reliably if the value
3409 fits within a HOST_WIDE_INT. */
3410 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3412 rtx ret = emit_move_via_integer (mode, x, y, false);
3413 if (ret)
3414 return ret;
3417 return emit_move_multi_word (mode, x, y);
3420 /* Generate code to copy Y into X.
3421 Both Y and X must have the same mode, except that
3422 Y can be a constant with VOIDmode.
3423 This mode cannot be BLKmode; use emit_block_move for that.
3425 Return the last instruction emitted. */
3428 emit_move_insn (rtx x, rtx y)
3430 enum machine_mode mode = GET_MODE (x);
3431 rtx y_cst = NULL_RTX;
3432 rtx last_insn, set;
3434 gcc_assert (mode != BLKmode
3435 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3437 if (CONSTANT_P (y))
3439 if (optimize
3440 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3441 && (last_insn = compress_float_constant (x, y)))
3442 return last_insn;
3444 y_cst = y;
3446 if (!targetm.legitimate_constant_p (mode, y))
3448 y = force_const_mem (mode, y);
3450 /* If the target's cannot_force_const_mem prevented the spill,
3451 assume that the target's move expanders will also take care
3452 of the non-legitimate constant. */
3453 if (!y)
3454 y = y_cst;
3455 else
3456 y = use_anchored_address (y);
3460 /* If X or Y are memory references, verify that their addresses are valid
3461 for the machine. */
3462 if (MEM_P (x)
3463 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3464 MEM_ADDR_SPACE (x))
3465 && ! push_operand (x, GET_MODE (x))))
3466 x = validize_mem (x);
3468 if (MEM_P (y)
3469 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3470 MEM_ADDR_SPACE (y)))
3471 y = validize_mem (y);
3473 gcc_assert (mode != BLKmode);
3475 last_insn = emit_move_insn_1 (x, y);
3477 if (y_cst && REG_P (x)
3478 && (set = single_set (last_insn)) != NULL_RTX
3479 && SET_DEST (set) == x
3480 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3481 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3483 return last_insn;
3486 /* If Y is representable exactly in a narrower mode, and the target can
3487 perform the extension directly from constant or memory, then emit the
3488 move as an extension. */
3490 static rtx
3491 compress_float_constant (rtx x, rtx y)
3493 enum machine_mode dstmode = GET_MODE (x);
3494 enum machine_mode orig_srcmode = GET_MODE (y);
3495 enum machine_mode srcmode;
3496 REAL_VALUE_TYPE r;
3497 int oldcost, newcost;
3498 bool speed = optimize_insn_for_speed_p ();
3500 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3502 if (targetm.legitimate_constant_p (dstmode, y))
3503 oldcost = set_src_cost (y, speed);
3504 else
3505 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3507 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3508 srcmode != orig_srcmode;
3509 srcmode = GET_MODE_WIDER_MODE (srcmode))
3511 enum insn_code ic;
3512 rtx trunc_y, last_insn;
3514 /* Skip if the target can't extend this way. */
3515 ic = can_extend_p (dstmode, srcmode, 0);
3516 if (ic == CODE_FOR_nothing)
3517 continue;
3519 /* Skip if the narrowed value isn't exact. */
3520 if (! exact_real_truncate (srcmode, &r))
3521 continue;
3523 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3525 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3527 /* Skip if the target needs extra instructions to perform
3528 the extension. */
3529 if (!insn_operand_matches (ic, 1, trunc_y))
3530 continue;
3531 /* This is valid, but may not be cheaper than the original. */
3532 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3533 speed);
3534 if (oldcost < newcost)
3535 continue;
3537 else if (float_extend_from_mem[dstmode][srcmode])
3539 trunc_y = force_const_mem (srcmode, trunc_y);
3540 /* This is valid, but may not be cheaper than the original. */
3541 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3542 speed);
3543 if (oldcost < newcost)
3544 continue;
3545 trunc_y = validize_mem (trunc_y);
3547 else
3548 continue;
3550 /* For CSE's benefit, force the compressed constant pool entry
3551 into a new pseudo. This constant may be used in different modes,
3552 and if not, combine will put things back together for us. */
3553 trunc_y = force_reg (srcmode, trunc_y);
3554 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3555 last_insn = get_last_insn ();
3557 if (REG_P (x))
3558 set_unique_reg_note (last_insn, REG_EQUAL, y);
3560 return last_insn;
3563 return NULL_RTX;
3566 /* Pushing data onto the stack. */
3568 /* Push a block of length SIZE (perhaps variable)
3569 and return an rtx to address the beginning of the block.
3570 The value may be virtual_outgoing_args_rtx.
3572 EXTRA is the number of bytes of padding to push in addition to SIZE.
3573 BELOW nonzero means this padding comes at low addresses;
3574 otherwise, the padding comes at high addresses. */
3577 push_block (rtx size, int extra, int below)
3579 rtx temp;
3581 size = convert_modes (Pmode, ptr_mode, size, 1);
3582 if (CONSTANT_P (size))
3583 anti_adjust_stack (plus_constant (size, extra));
3584 else if (REG_P (size) && extra == 0)
3585 anti_adjust_stack (size);
3586 else
3588 temp = copy_to_mode_reg (Pmode, size);
3589 if (extra != 0)
3590 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3591 temp, 0, OPTAB_LIB_WIDEN);
3592 anti_adjust_stack (temp);
3595 #ifndef STACK_GROWS_DOWNWARD
3596 if (0)
3597 #else
3598 if (1)
3599 #endif
3601 temp = virtual_outgoing_args_rtx;
3602 if (extra != 0 && below)
3603 temp = plus_constant (temp, extra);
3605 else
3607 if (CONST_INT_P (size))
3608 temp = plus_constant (virtual_outgoing_args_rtx,
3609 -INTVAL (size) - (below ? 0 : extra));
3610 else if (extra != 0 && !below)
3611 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3612 negate_rtx (Pmode, plus_constant (size, extra)));
3613 else
3614 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3615 negate_rtx (Pmode, size));
3618 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3621 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3623 static rtx
3624 mem_autoinc_base (rtx mem)
3626 if (MEM_P (mem))
3628 rtx addr = XEXP (mem, 0);
3629 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3630 return XEXP (addr, 0);
3632 return NULL;
3635 /* A utility routine used here, in reload, and in try_split. The insns
3636 after PREV up to and including LAST are known to adjust the stack,
3637 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3638 placing notes as appropriate. PREV may be NULL, indicating the
3639 entire insn sequence prior to LAST should be scanned.
3641 The set of allowed stack pointer modifications is small:
3642 (1) One or more auto-inc style memory references (aka pushes),
3643 (2) One or more addition/subtraction with the SP as destination,
3644 (3) A single move insn with the SP as destination,
3645 (4) A call_pop insn,
3646 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3648 Insns in the sequence that do not modify the SP are ignored,
3649 except for noreturn calls.
3651 The return value is the amount of adjustment that can be trivially
3652 verified, via immediate operand or auto-inc. If the adjustment
3653 cannot be trivially extracted, the return value is INT_MIN. */
3655 HOST_WIDE_INT
3656 find_args_size_adjust (rtx insn)
3658 rtx dest, set, pat;
3659 int i;
3661 pat = PATTERN (insn);
3662 set = NULL;
3664 /* Look for a call_pop pattern. */
3665 if (CALL_P (insn))
3667 /* We have to allow non-call_pop patterns for the case
3668 of emit_single_push_insn of a TLS address. */
3669 if (GET_CODE (pat) != PARALLEL)
3670 return 0;
3672 /* All call_pop have a stack pointer adjust in the parallel.
3673 The call itself is always first, and the stack adjust is
3674 usually last, so search from the end. */
3675 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3677 set = XVECEXP (pat, 0, i);
3678 if (GET_CODE (set) != SET)
3679 continue;
3680 dest = SET_DEST (set);
3681 if (dest == stack_pointer_rtx)
3682 break;
3684 /* We'd better have found the stack pointer adjust. */
3685 if (i == 0)
3686 return 0;
3687 /* Fall through to process the extracted SET and DEST
3688 as if it was a standalone insn. */
3690 else if (GET_CODE (pat) == SET)
3691 set = pat;
3692 else if ((set = single_set (insn)) != NULL)
3694 else if (GET_CODE (pat) == PARALLEL)
3696 /* ??? Some older ports use a parallel with a stack adjust
3697 and a store for a PUSH_ROUNDING pattern, rather than a
3698 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3699 /* ??? See h8300 and m68k, pushqi1. */
3700 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3702 set = XVECEXP (pat, 0, i);
3703 if (GET_CODE (set) != SET)
3704 continue;
3705 dest = SET_DEST (set);
3706 if (dest == stack_pointer_rtx)
3707 break;
3709 /* We do not expect an auto-inc of the sp in the parallel. */
3710 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3711 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3712 != stack_pointer_rtx);
3714 if (i < 0)
3715 return 0;
3717 else
3718 return 0;
3720 dest = SET_DEST (set);
3722 /* Look for direct modifications of the stack pointer. */
3723 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3725 /* Look for a trivial adjustment, otherwise assume nothing. */
3726 /* Note that the SPU restore_stack_block pattern refers to
3727 the stack pointer in V4SImode. Consider that non-trivial. */
3728 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3729 && GET_CODE (SET_SRC (set)) == PLUS
3730 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3731 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3732 return INTVAL (XEXP (SET_SRC (set), 1));
3733 /* ??? Reload can generate no-op moves, which will be cleaned
3734 up later. Recognize it and continue searching. */
3735 else if (rtx_equal_p (dest, SET_SRC (set)))
3736 return 0;
3737 else
3738 return HOST_WIDE_INT_MIN;
3740 else
3742 rtx mem, addr;
3744 /* Otherwise only think about autoinc patterns. */
3745 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3747 mem = dest;
3748 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3749 != stack_pointer_rtx);
3751 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3752 mem = SET_SRC (set);
3753 else
3754 return 0;
3756 addr = XEXP (mem, 0);
3757 switch (GET_CODE (addr))
3759 case PRE_INC:
3760 case POST_INC:
3761 return GET_MODE_SIZE (GET_MODE (mem));
3762 case PRE_DEC:
3763 case POST_DEC:
3764 return -GET_MODE_SIZE (GET_MODE (mem));
3765 case PRE_MODIFY:
3766 case POST_MODIFY:
3767 addr = XEXP (addr, 1);
3768 gcc_assert (GET_CODE (addr) == PLUS);
3769 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3770 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3771 return INTVAL (XEXP (addr, 1));
3772 default:
3773 gcc_unreachable ();
3779 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3781 int args_size = end_args_size;
3782 bool saw_unknown = false;
3783 rtx insn;
3785 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3787 HOST_WIDE_INT this_delta;
3789 if (!NONDEBUG_INSN_P (insn))
3790 continue;
3792 this_delta = find_args_size_adjust (insn);
3793 if (this_delta == 0)
3795 if (!CALL_P (insn)
3796 || ACCUMULATE_OUTGOING_ARGS
3797 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3798 continue;
3801 gcc_assert (!saw_unknown);
3802 if (this_delta == HOST_WIDE_INT_MIN)
3803 saw_unknown = true;
3805 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3806 #ifdef STACK_GROWS_DOWNWARD
3807 this_delta = -this_delta;
3808 #endif
3809 args_size -= this_delta;
3812 return saw_unknown ? INT_MIN : args_size;
3815 #ifdef PUSH_ROUNDING
3816 /* Emit single push insn. */
3818 static void
3819 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3821 rtx dest_addr;
3822 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3823 rtx dest;
3824 enum insn_code icode;
3826 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3827 /* If there is push pattern, use it. Otherwise try old way of throwing
3828 MEM representing push operation to move expander. */
3829 icode = optab_handler (push_optab, mode);
3830 if (icode != CODE_FOR_nothing)
3832 struct expand_operand ops[1];
3834 create_input_operand (&ops[0], x, mode);
3835 if (maybe_expand_insn (icode, 1, ops))
3836 return;
3838 if (GET_MODE_SIZE (mode) == rounded_size)
3839 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3840 /* If we are to pad downward, adjust the stack pointer first and
3841 then store X into the stack location using an offset. This is
3842 because emit_move_insn does not know how to pad; it does not have
3843 access to type. */
3844 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3846 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3847 HOST_WIDE_INT offset;
3849 emit_move_insn (stack_pointer_rtx,
3850 expand_binop (Pmode,
3851 #ifdef STACK_GROWS_DOWNWARD
3852 sub_optab,
3853 #else
3854 add_optab,
3855 #endif
3856 stack_pointer_rtx,
3857 GEN_INT (rounded_size),
3858 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3860 offset = (HOST_WIDE_INT) padding_size;
3861 #ifdef STACK_GROWS_DOWNWARD
3862 if (STACK_PUSH_CODE == POST_DEC)
3863 /* We have already decremented the stack pointer, so get the
3864 previous value. */
3865 offset += (HOST_WIDE_INT) rounded_size;
3866 #else
3867 if (STACK_PUSH_CODE == POST_INC)
3868 /* We have already incremented the stack pointer, so get the
3869 previous value. */
3870 offset -= (HOST_WIDE_INT) rounded_size;
3871 #endif
3872 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3874 else
3876 #ifdef STACK_GROWS_DOWNWARD
3877 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3878 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3879 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3880 #else
3881 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3882 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3883 GEN_INT (rounded_size));
3884 #endif
3885 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3888 dest = gen_rtx_MEM (mode, dest_addr);
3890 if (type != 0)
3892 set_mem_attributes (dest, type, 1);
3894 if (flag_optimize_sibling_calls)
3895 /* Function incoming arguments may overlap with sibling call
3896 outgoing arguments and we cannot allow reordering of reads
3897 from function arguments with stores to outgoing arguments
3898 of sibling calls. */
3899 set_mem_alias_set (dest, 0);
3901 emit_move_insn (dest, x);
3904 /* Emit and annotate a single push insn. */
3906 static void
3907 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3909 int delta, old_delta = stack_pointer_delta;
3910 rtx prev = get_last_insn ();
3911 rtx last;
3913 emit_single_push_insn_1 (mode, x, type);
3915 last = get_last_insn ();
3917 /* Notice the common case where we emitted exactly one insn. */
3918 if (PREV_INSN (last) == prev)
3920 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
3921 return;
3924 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
3925 gcc_assert (delta == INT_MIN || delta == old_delta);
3927 #endif
3929 /* Generate code to push X onto the stack, assuming it has mode MODE and
3930 type TYPE.
3931 MODE is redundant except when X is a CONST_INT (since they don't
3932 carry mode info).
3933 SIZE is an rtx for the size of data to be copied (in bytes),
3934 needed only if X is BLKmode.
3936 ALIGN (in bits) is maximum alignment we can assume.
3938 If PARTIAL and REG are both nonzero, then copy that many of the first
3939 bytes of X into registers starting with REG, and push the rest of X.
3940 The amount of space pushed is decreased by PARTIAL bytes.
3941 REG must be a hard register in this case.
3942 If REG is zero but PARTIAL is not, take any all others actions for an
3943 argument partially in registers, but do not actually load any
3944 registers.
3946 EXTRA is the amount in bytes of extra space to leave next to this arg.
3947 This is ignored if an argument block has already been allocated.
3949 On a machine that lacks real push insns, ARGS_ADDR is the address of
3950 the bottom of the argument block for this call. We use indexing off there
3951 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3952 argument block has not been preallocated.
3954 ARGS_SO_FAR is the size of args previously pushed for this call.
3956 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3957 for arguments passed in registers. If nonzero, it will be the number
3958 of bytes required. */
3960 void
3961 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3962 unsigned int align, int partial, rtx reg, int extra,
3963 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3964 rtx alignment_pad)
3966 rtx xinner;
3967 enum direction stack_direction
3968 #ifdef STACK_GROWS_DOWNWARD
3969 = downward;
3970 #else
3971 = upward;
3972 #endif
3974 /* Decide where to pad the argument: `downward' for below,
3975 `upward' for above, or `none' for don't pad it.
3976 Default is below for small data on big-endian machines; else above. */
3977 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3979 /* Invert direction if stack is post-decrement.
3980 FIXME: why? */
3981 if (STACK_PUSH_CODE == POST_DEC)
3982 if (where_pad != none)
3983 where_pad = (where_pad == downward ? upward : downward);
3985 xinner = x;
3987 if (mode == BLKmode
3988 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3990 /* Copy a block into the stack, entirely or partially. */
3992 rtx temp;
3993 int used;
3994 int offset;
3995 int skip;
3997 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3998 used = partial - offset;
4000 if (mode != BLKmode)
4002 /* A value is to be stored in an insufficiently aligned
4003 stack slot; copy via a suitably aligned slot if
4004 necessary. */
4005 size = GEN_INT (GET_MODE_SIZE (mode));
4006 if (!MEM_P (xinner))
4008 temp = assign_temp (type, 0, 1, 1);
4009 emit_move_insn (temp, xinner);
4010 xinner = temp;
4014 gcc_assert (size);
4016 /* USED is now the # of bytes we need not copy to the stack
4017 because registers will take care of them. */
4019 if (partial != 0)
4020 xinner = adjust_address (xinner, BLKmode, used);
4022 /* If the partial register-part of the arg counts in its stack size,
4023 skip the part of stack space corresponding to the registers.
4024 Otherwise, start copying to the beginning of the stack space,
4025 by setting SKIP to 0. */
4026 skip = (reg_parm_stack_space == 0) ? 0 : used;
4028 #ifdef PUSH_ROUNDING
4029 /* Do it with several push insns if that doesn't take lots of insns
4030 and if there is no difficulty with push insns that skip bytes
4031 on the stack for alignment purposes. */
4032 if (args_addr == 0
4033 && PUSH_ARGS
4034 && CONST_INT_P (size)
4035 && skip == 0
4036 && MEM_ALIGN (xinner) >= align
4037 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4038 /* Here we avoid the case of a structure whose weak alignment
4039 forces many pushes of a small amount of data,
4040 and such small pushes do rounding that causes trouble. */
4041 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4042 || align >= BIGGEST_ALIGNMENT
4043 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4044 == (align / BITS_PER_UNIT)))
4045 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4047 /* Push padding now if padding above and stack grows down,
4048 or if padding below and stack grows up.
4049 But if space already allocated, this has already been done. */
4050 if (extra && args_addr == 0
4051 && where_pad != none && where_pad != stack_direction)
4052 anti_adjust_stack (GEN_INT (extra));
4054 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4056 else
4057 #endif /* PUSH_ROUNDING */
4059 rtx target;
4061 /* Otherwise make space on the stack and copy the data
4062 to the address of that space. */
4064 /* Deduct words put into registers from the size we must copy. */
4065 if (partial != 0)
4067 if (CONST_INT_P (size))
4068 size = GEN_INT (INTVAL (size) - used);
4069 else
4070 size = expand_binop (GET_MODE (size), sub_optab, size,
4071 GEN_INT (used), NULL_RTX, 0,
4072 OPTAB_LIB_WIDEN);
4075 /* Get the address of the stack space.
4076 In this case, we do not deal with EXTRA separately.
4077 A single stack adjust will do. */
4078 if (! args_addr)
4080 temp = push_block (size, extra, where_pad == downward);
4081 extra = 0;
4083 else if (CONST_INT_P (args_so_far))
4084 temp = memory_address (BLKmode,
4085 plus_constant (args_addr,
4086 skip + INTVAL (args_so_far)));
4087 else
4088 temp = memory_address (BLKmode,
4089 plus_constant (gen_rtx_PLUS (Pmode,
4090 args_addr,
4091 args_so_far),
4092 skip));
4094 if (!ACCUMULATE_OUTGOING_ARGS)
4096 /* If the source is referenced relative to the stack pointer,
4097 copy it to another register to stabilize it. We do not need
4098 to do this if we know that we won't be changing sp. */
4100 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4101 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4102 temp = copy_to_reg (temp);
4105 target = gen_rtx_MEM (BLKmode, temp);
4107 /* We do *not* set_mem_attributes here, because incoming arguments
4108 may overlap with sibling call outgoing arguments and we cannot
4109 allow reordering of reads from function arguments with stores
4110 to outgoing arguments of sibling calls. We do, however, want
4111 to record the alignment of the stack slot. */
4112 /* ALIGN may well be better aligned than TYPE, e.g. due to
4113 PARM_BOUNDARY. Assume the caller isn't lying. */
4114 set_mem_align (target, align);
4116 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4119 else if (partial > 0)
4121 /* Scalar partly in registers. */
4123 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4124 int i;
4125 int not_stack;
4126 /* # bytes of start of argument
4127 that we must make space for but need not store. */
4128 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4129 int args_offset = INTVAL (args_so_far);
4130 int skip;
4132 /* Push padding now if padding above and stack grows down,
4133 or if padding below and stack grows up.
4134 But if space already allocated, this has already been done. */
4135 if (extra && args_addr == 0
4136 && where_pad != none && where_pad != stack_direction)
4137 anti_adjust_stack (GEN_INT (extra));
4139 /* If we make space by pushing it, we might as well push
4140 the real data. Otherwise, we can leave OFFSET nonzero
4141 and leave the space uninitialized. */
4142 if (args_addr == 0)
4143 offset = 0;
4145 /* Now NOT_STACK gets the number of words that we don't need to
4146 allocate on the stack. Convert OFFSET to words too. */
4147 not_stack = (partial - offset) / UNITS_PER_WORD;
4148 offset /= UNITS_PER_WORD;
4150 /* If the partial register-part of the arg counts in its stack size,
4151 skip the part of stack space corresponding to the registers.
4152 Otherwise, start copying to the beginning of the stack space,
4153 by setting SKIP to 0. */
4154 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4156 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4157 x = validize_mem (force_const_mem (mode, x));
4159 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4160 SUBREGs of such registers are not allowed. */
4161 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4162 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4163 x = copy_to_reg (x);
4165 /* Loop over all the words allocated on the stack for this arg. */
4166 /* We can do it by words, because any scalar bigger than a word
4167 has a size a multiple of a word. */
4168 #ifndef PUSH_ARGS_REVERSED
4169 for (i = not_stack; i < size; i++)
4170 #else
4171 for (i = size - 1; i >= not_stack; i--)
4172 #endif
4173 if (i >= not_stack + offset)
4174 emit_push_insn (operand_subword_force (x, i, mode),
4175 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4176 0, args_addr,
4177 GEN_INT (args_offset + ((i - not_stack + skip)
4178 * UNITS_PER_WORD)),
4179 reg_parm_stack_space, alignment_pad);
4181 else
4183 rtx addr;
4184 rtx dest;
4186 /* Push padding now if padding above and stack grows down,
4187 or if padding below and stack grows up.
4188 But if space already allocated, this has already been done. */
4189 if (extra && args_addr == 0
4190 && where_pad != none && where_pad != stack_direction)
4191 anti_adjust_stack (GEN_INT (extra));
4193 #ifdef PUSH_ROUNDING
4194 if (args_addr == 0 && PUSH_ARGS)
4195 emit_single_push_insn (mode, x, type);
4196 else
4197 #endif
4199 if (CONST_INT_P (args_so_far))
4200 addr
4201 = memory_address (mode,
4202 plus_constant (args_addr,
4203 INTVAL (args_so_far)));
4204 else
4205 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4206 args_so_far));
4207 dest = gen_rtx_MEM (mode, addr);
4209 /* We do *not* set_mem_attributes here, because incoming arguments
4210 may overlap with sibling call outgoing arguments and we cannot
4211 allow reordering of reads from function arguments with stores
4212 to outgoing arguments of sibling calls. We do, however, want
4213 to record the alignment of the stack slot. */
4214 /* ALIGN may well be better aligned than TYPE, e.g. due to
4215 PARM_BOUNDARY. Assume the caller isn't lying. */
4216 set_mem_align (dest, align);
4218 emit_move_insn (dest, x);
4222 /* If part should go in registers, copy that part
4223 into the appropriate registers. Do this now, at the end,
4224 since mem-to-mem copies above may do function calls. */
4225 if (partial > 0 && reg != 0)
4227 /* Handle calls that pass values in multiple non-contiguous locations.
4228 The Irix 6 ABI has examples of this. */
4229 if (GET_CODE (reg) == PARALLEL)
4230 emit_group_load (reg, x, type, -1);
4231 else
4233 gcc_assert (partial % UNITS_PER_WORD == 0);
4234 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4238 if (extra && args_addr == 0 && where_pad == stack_direction)
4239 anti_adjust_stack (GEN_INT (extra));
4241 if (alignment_pad && args_addr == 0)
4242 anti_adjust_stack (alignment_pad);
4245 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4246 operations. */
4248 static rtx
4249 get_subtarget (rtx x)
4251 return (optimize
4252 || x == 0
4253 /* Only registers can be subtargets. */
4254 || !REG_P (x)
4255 /* Don't use hard regs to avoid extending their life. */
4256 || REGNO (x) < FIRST_PSEUDO_REGISTER
4257 ? 0 : x);
4260 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4261 FIELD is a bitfield. Returns true if the optimization was successful,
4262 and there's nothing else to do. */
4264 static bool
4265 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4266 unsigned HOST_WIDE_INT bitpos,
4267 unsigned HOST_WIDE_INT bitregion_start,
4268 unsigned HOST_WIDE_INT bitregion_end,
4269 enum machine_mode mode1, rtx str_rtx,
4270 tree to, tree src)
4272 enum machine_mode str_mode = GET_MODE (str_rtx);
4273 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4274 tree op0, op1;
4275 rtx value, result;
4276 optab binop;
4277 gimple srcstmt;
4278 enum tree_code code;
4280 if (mode1 != VOIDmode
4281 || bitsize >= BITS_PER_WORD
4282 || str_bitsize > BITS_PER_WORD
4283 || TREE_SIDE_EFFECTS (to)
4284 || TREE_THIS_VOLATILE (to))
4285 return false;
4287 STRIP_NOPS (src);
4288 if (TREE_CODE (src) != SSA_NAME)
4289 return false;
4290 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4291 return false;
4293 srcstmt = get_gimple_for_ssa_name (src);
4294 if (!srcstmt
4295 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4296 return false;
4298 code = gimple_assign_rhs_code (srcstmt);
4300 op0 = gimple_assign_rhs1 (srcstmt);
4302 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4303 to find its initialization. Hopefully the initialization will
4304 be from a bitfield load. */
4305 if (TREE_CODE (op0) == SSA_NAME)
4307 gimple op0stmt = get_gimple_for_ssa_name (op0);
4309 /* We want to eventually have OP0 be the same as TO, which
4310 should be a bitfield. */
4311 if (!op0stmt
4312 || !is_gimple_assign (op0stmt)
4313 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4314 return false;
4315 op0 = gimple_assign_rhs1 (op0stmt);
4318 op1 = gimple_assign_rhs2 (srcstmt);
4320 if (!operand_equal_p (to, op0, 0))
4321 return false;
4323 if (MEM_P (str_rtx))
4325 unsigned HOST_WIDE_INT offset1;
4327 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4328 str_mode = word_mode;
4329 str_mode = get_best_mode (bitsize, bitpos,
4330 bitregion_start, bitregion_end,
4331 MEM_ALIGN (str_rtx), str_mode, 0);
4332 if (str_mode == VOIDmode)
4333 return false;
4334 str_bitsize = GET_MODE_BITSIZE (str_mode);
4336 offset1 = bitpos;
4337 bitpos %= str_bitsize;
4338 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4339 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4341 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4342 return false;
4344 /* If the bit field covers the whole REG/MEM, store_field
4345 will likely generate better code. */
4346 if (bitsize >= str_bitsize)
4347 return false;
4349 /* We can't handle fields split across multiple entities. */
4350 if (bitpos + bitsize > str_bitsize)
4351 return false;
4353 if (BYTES_BIG_ENDIAN)
4354 bitpos = str_bitsize - bitpos - bitsize;
4356 switch (code)
4358 case PLUS_EXPR:
4359 case MINUS_EXPR:
4360 /* For now, just optimize the case of the topmost bitfield
4361 where we don't need to do any masking and also
4362 1 bit bitfields where xor can be used.
4363 We might win by one instruction for the other bitfields
4364 too if insv/extv instructions aren't used, so that
4365 can be added later. */
4366 if (bitpos + bitsize != str_bitsize
4367 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4368 break;
4370 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4371 value = convert_modes (str_mode,
4372 TYPE_MODE (TREE_TYPE (op1)), value,
4373 TYPE_UNSIGNED (TREE_TYPE (op1)));
4375 /* We may be accessing data outside the field, which means
4376 we can alias adjacent data. */
4377 if (MEM_P (str_rtx))
4379 str_rtx = shallow_copy_rtx (str_rtx);
4380 set_mem_alias_set (str_rtx, 0);
4381 set_mem_expr (str_rtx, 0);
4384 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4385 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4387 value = expand_and (str_mode, value, const1_rtx, NULL);
4388 binop = xor_optab;
4390 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4391 bitpos, NULL_RTX, 1);
4392 result = expand_binop (str_mode, binop, str_rtx,
4393 value, str_rtx, 1, OPTAB_WIDEN);
4394 if (result != str_rtx)
4395 emit_move_insn (str_rtx, result);
4396 return true;
4398 case BIT_IOR_EXPR:
4399 case BIT_XOR_EXPR:
4400 if (TREE_CODE (op1) != INTEGER_CST)
4401 break;
4402 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4403 value = convert_modes (GET_MODE (str_rtx),
4404 TYPE_MODE (TREE_TYPE (op1)), value,
4405 TYPE_UNSIGNED (TREE_TYPE (op1)));
4407 /* We may be accessing data outside the field, which means
4408 we can alias adjacent data. */
4409 if (MEM_P (str_rtx))
4411 str_rtx = shallow_copy_rtx (str_rtx);
4412 set_mem_alias_set (str_rtx, 0);
4413 set_mem_expr (str_rtx, 0);
4416 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4417 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4419 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4420 - 1);
4421 value = expand_and (GET_MODE (str_rtx), value, mask,
4422 NULL_RTX);
4424 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4425 bitpos, NULL_RTX, 1);
4426 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4427 value, str_rtx, 1, OPTAB_WIDEN);
4428 if (result != str_rtx)
4429 emit_move_insn (str_rtx, result);
4430 return true;
4432 default:
4433 break;
4436 return false;
4439 /* In the C++ memory model, consecutive bit fields in a structure are
4440 considered one memory location.
4442 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4443 returns the bit range of consecutive bits in which this COMPONENT_REF
4444 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4445 and *OFFSET may be adjusted in the process.
4447 If the access does not need to be restricted, 0 is returned in both
4448 *BITSTART and *BITEND. */
4450 static void
4451 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4452 unsigned HOST_WIDE_INT *bitend,
4453 tree exp,
4454 HOST_WIDE_INT *bitpos,
4455 tree *offset)
4457 HOST_WIDE_INT bitoffset;
4458 tree field, repr;
4460 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4462 field = TREE_OPERAND (exp, 1);
4463 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4464 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4465 need to limit the range we can access. */
4466 if (!repr)
4468 *bitstart = *bitend = 0;
4469 return;
4472 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4473 part of a larger bit field, then the representative does not serve any
4474 useful purpose. This can occur in Ada. */
4475 if (handled_component_p (TREE_OPERAND (exp, 0)))
4477 enum machine_mode rmode;
4478 HOST_WIDE_INT rbitsize, rbitpos;
4479 tree roffset;
4480 int unsignedp;
4481 int volatilep = 0;
4482 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4483 &roffset, &rmode, &unsignedp, &volatilep, false);
4484 if ((rbitpos % BITS_PER_UNIT) != 0)
4486 *bitstart = *bitend = 0;
4487 return;
4491 /* Compute the adjustment to bitpos from the offset of the field
4492 relative to the representative. DECL_FIELD_OFFSET of field and
4493 repr are the same by construction if they are not constants,
4494 see finish_bitfield_layout. */
4495 if (host_integerp (DECL_FIELD_OFFSET (field), 1)
4496 && host_integerp (DECL_FIELD_OFFSET (repr), 1))
4497 bitoffset = (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
4498 - tree_low_cst (DECL_FIELD_OFFSET (repr), 1)) * BITS_PER_UNIT;
4499 else
4500 bitoffset = 0;
4501 bitoffset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
4502 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
4504 /* If the adjustment is larger than bitpos, we would have a negative bit
4505 position for the lower bound and this may wreak havoc later. This can
4506 occur only if we have a non-null offset, so adjust offset and bitpos
4507 to make the lower bound non-negative. */
4508 if (bitoffset > *bitpos)
4510 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4512 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4513 gcc_assert (*offset != NULL_TREE);
4515 *bitpos += adjust;
4516 *offset
4517 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4518 *bitstart = 0;
4520 else
4521 *bitstart = *bitpos - bitoffset;
4523 *bitend = *bitstart + tree_low_cst (DECL_SIZE (repr), 1) - 1;
4526 /* Returns true if the MEM_REF REF refers to an object that does not
4527 reside in memory and has non-BLKmode. */
4529 static bool
4530 mem_ref_refers_to_non_mem_p (tree ref)
4532 tree base = TREE_OPERAND (ref, 0);
4533 if (TREE_CODE (base) != ADDR_EXPR)
4534 return false;
4535 base = TREE_OPERAND (base, 0);
4536 return (DECL_P (base)
4537 && !TREE_ADDRESSABLE (base)
4538 && DECL_MODE (base) != BLKmode
4539 && DECL_RTL_SET_P (base)
4540 && !MEM_P (DECL_RTL (base)));
4543 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4544 is true, try generating a nontemporal store. */
4546 void
4547 expand_assignment (tree to, tree from, bool nontemporal)
4549 rtx to_rtx = 0;
4550 rtx result;
4551 enum machine_mode mode;
4552 unsigned int align;
4553 enum insn_code icode;
4555 /* Don't crash if the lhs of the assignment was erroneous. */
4556 if (TREE_CODE (to) == ERROR_MARK)
4558 expand_normal (from);
4559 return;
4562 /* Optimize away no-op moves without side-effects. */
4563 if (operand_equal_p (to, from, 0))
4564 return;
4566 /* Handle misaligned stores. */
4567 mode = TYPE_MODE (TREE_TYPE (to));
4568 if ((TREE_CODE (to) == MEM_REF
4569 || TREE_CODE (to) == TARGET_MEM_REF)
4570 && mode != BLKmode
4571 && !mem_ref_refers_to_non_mem_p (to)
4572 && ((align = get_object_or_type_alignment (to))
4573 < GET_MODE_ALIGNMENT (mode))
4574 && ((icode = optab_handler (movmisalign_optab, mode))
4575 != CODE_FOR_nothing))
4577 addr_space_t as
4578 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4579 struct expand_operand ops[2];
4580 enum machine_mode address_mode;
4581 rtx reg, op0, mem;
4583 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4584 reg = force_not_mem (reg);
4586 if (TREE_CODE (to) == MEM_REF)
4588 tree base = TREE_OPERAND (to, 0);
4589 address_mode = targetm.addr_space.address_mode (as);
4590 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4591 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4592 if (!integer_zerop (TREE_OPERAND (to, 1)))
4594 rtx off
4595 = immed_double_int_const (mem_ref_offset (to), address_mode);
4596 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4598 op0 = memory_address_addr_space (mode, op0, as);
4599 mem = gen_rtx_MEM (mode, op0);
4600 set_mem_attributes (mem, to, 0);
4601 set_mem_addr_space (mem, as);
4603 else if (TREE_CODE (to) == TARGET_MEM_REF)
4605 struct mem_address addr;
4606 get_address_description (to, &addr);
4607 op0 = addr_for_mem_ref (&addr, as, true);
4608 op0 = memory_address_addr_space (mode, op0, as);
4609 mem = gen_rtx_MEM (mode, op0);
4610 set_mem_attributes (mem, to, 0);
4611 set_mem_addr_space (mem, as);
4613 else
4614 gcc_unreachable ();
4615 if (TREE_THIS_VOLATILE (to))
4616 MEM_VOLATILE_P (mem) = 1;
4618 create_fixed_operand (&ops[0], mem);
4619 create_input_operand (&ops[1], reg, mode);
4620 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4621 silently be omitted. */
4622 expand_insn (icode, 2, ops);
4623 return;
4626 /* Assignment of a structure component needs special treatment
4627 if the structure component's rtx is not simply a MEM.
4628 Assignment of an array element at a constant index, and assignment of
4629 an array element in an unaligned packed structure field, has the same
4630 problem. Same for (partially) storing into a non-memory object. */
4631 if (handled_component_p (to)
4632 || (TREE_CODE (to) == MEM_REF
4633 && mem_ref_refers_to_non_mem_p (to))
4634 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4636 enum machine_mode mode1;
4637 HOST_WIDE_INT bitsize, bitpos;
4638 unsigned HOST_WIDE_INT bitregion_start = 0;
4639 unsigned HOST_WIDE_INT bitregion_end = 0;
4640 tree offset;
4641 int unsignedp;
4642 int volatilep = 0;
4643 tree tem;
4644 bool misalignp;
4645 rtx mem = NULL_RTX;
4647 push_temp_slots ();
4648 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4649 &unsignedp, &volatilep, true);
4651 if (TREE_CODE (to) == COMPONENT_REF
4652 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4653 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4655 /* If we are going to use store_bit_field and extract_bit_field,
4656 make sure to_rtx will be safe for multiple use. */
4657 mode = TYPE_MODE (TREE_TYPE (tem));
4658 if (TREE_CODE (tem) == MEM_REF
4659 && mode != BLKmode
4660 && ((align = get_object_or_type_alignment (tem))
4661 < GET_MODE_ALIGNMENT (mode))
4662 && ((icode = optab_handler (movmisalign_optab, mode))
4663 != CODE_FOR_nothing))
4665 enum machine_mode address_mode;
4666 rtx op0;
4667 struct expand_operand ops[2];
4668 addr_space_t as = TYPE_ADDR_SPACE
4669 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (tem, 0))));
4670 tree base = TREE_OPERAND (tem, 0);
4672 misalignp = true;
4673 to_rtx = gen_reg_rtx (mode);
4675 address_mode = targetm.addr_space.address_mode (as);
4676 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4677 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4678 if (!integer_zerop (TREE_OPERAND (tem, 1)))
4680 rtx off = immed_double_int_const (mem_ref_offset (tem),
4681 address_mode);
4682 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4684 op0 = memory_address_addr_space (mode, op0, as);
4685 mem = gen_rtx_MEM (mode, op0);
4686 set_mem_attributes (mem, tem, 0);
4687 set_mem_addr_space (mem, as);
4688 if (TREE_THIS_VOLATILE (tem))
4689 MEM_VOLATILE_P (mem) = 1;
4691 /* If the misaligned store doesn't overwrite all bits, perform
4692 rmw cycle on MEM. */
4693 if (bitsize != GET_MODE_BITSIZE (mode))
4695 create_input_operand (&ops[0], to_rtx, mode);
4696 create_fixed_operand (&ops[1], mem);
4697 /* The movmisalign<mode> pattern cannot fail, else the assignment
4698 would silently be omitted. */
4699 expand_insn (icode, 2, ops);
4701 mem = copy_rtx (mem);
4704 else
4706 misalignp = false;
4707 to_rtx = expand_normal (tem);
4710 /* If the bitfield is volatile, we want to access it in the
4711 field's mode, not the computed mode.
4712 If a MEM has VOIDmode (external with incomplete type),
4713 use BLKmode for it instead. */
4714 if (MEM_P (to_rtx))
4716 if (volatilep && flag_strict_volatile_bitfields > 0)
4717 to_rtx = adjust_address (to_rtx, mode1, 0);
4718 else if (GET_MODE (to_rtx) == VOIDmode)
4719 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4722 if (offset != 0)
4724 enum machine_mode address_mode;
4725 rtx offset_rtx;
4727 if (!MEM_P (to_rtx))
4729 /* We can get constant negative offsets into arrays with broken
4730 user code. Translate this to a trap instead of ICEing. */
4731 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4732 expand_builtin_trap ();
4733 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4736 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4737 address_mode
4738 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4739 if (GET_MODE (offset_rtx) != address_mode)
4740 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4742 /* A constant address in TO_RTX can have VOIDmode, we must not try
4743 to call force_reg for that case. Avoid that case. */
4744 if (MEM_P (to_rtx)
4745 && GET_MODE (to_rtx) == BLKmode
4746 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4747 && bitsize > 0
4748 && (bitpos % bitsize) == 0
4749 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4750 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4752 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4753 bitpos = 0;
4756 to_rtx = offset_address (to_rtx, offset_rtx,
4757 highest_pow2_factor_for_target (to,
4758 offset));
4761 /* No action is needed if the target is not a memory and the field
4762 lies completely outside that target. This can occur if the source
4763 code contains an out-of-bounds access to a small array. */
4764 if (!MEM_P (to_rtx)
4765 && GET_MODE (to_rtx) != BLKmode
4766 && (unsigned HOST_WIDE_INT) bitpos
4767 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4769 expand_normal (from);
4770 result = NULL;
4772 /* Handle expand_expr of a complex value returning a CONCAT. */
4773 else if (GET_CODE (to_rtx) == CONCAT)
4775 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4776 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4777 && bitpos == 0
4778 && bitsize == mode_bitsize)
4779 result = store_expr (from, to_rtx, false, nontemporal);
4780 else if (bitsize == mode_bitsize / 2
4781 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4782 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4783 nontemporal);
4784 else if (bitpos + bitsize <= mode_bitsize / 2)
4785 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4786 bitregion_start, bitregion_end,
4787 mode1, from, TREE_TYPE (tem),
4788 get_alias_set (to), nontemporal);
4789 else if (bitpos >= mode_bitsize / 2)
4790 result = store_field (XEXP (to_rtx, 1), bitsize,
4791 bitpos - mode_bitsize / 2,
4792 bitregion_start, bitregion_end,
4793 mode1, from,
4794 TREE_TYPE (tem), get_alias_set (to),
4795 nontemporal);
4796 else if (bitpos == 0 && bitsize == mode_bitsize)
4798 rtx from_rtx;
4799 result = expand_normal (from);
4800 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4801 TYPE_MODE (TREE_TYPE (from)), 0);
4802 emit_move_insn (XEXP (to_rtx, 0),
4803 read_complex_part (from_rtx, false));
4804 emit_move_insn (XEXP (to_rtx, 1),
4805 read_complex_part (from_rtx, true));
4807 else
4809 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4810 GET_MODE_SIZE (GET_MODE (to_rtx)),
4812 write_complex_part (temp, XEXP (to_rtx, 0), false);
4813 write_complex_part (temp, XEXP (to_rtx, 1), true);
4814 result = store_field (temp, bitsize, bitpos,
4815 bitregion_start, bitregion_end,
4816 mode1, from,
4817 TREE_TYPE (tem), get_alias_set (to),
4818 nontemporal);
4819 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4820 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4823 else
4825 if (MEM_P (to_rtx))
4827 /* If the field is at offset zero, we could have been given the
4828 DECL_RTX of the parent struct. Don't munge it. */
4829 to_rtx = shallow_copy_rtx (to_rtx);
4831 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4833 /* Deal with volatile and readonly fields. The former is only
4834 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4835 if (volatilep)
4836 MEM_VOLATILE_P (to_rtx) = 1;
4837 if (component_uses_parent_alias_set (to))
4838 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4841 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4842 bitregion_start, bitregion_end,
4843 mode1,
4844 to_rtx, to, from))
4845 result = NULL;
4846 else
4847 result = store_field (to_rtx, bitsize, bitpos,
4848 bitregion_start, bitregion_end,
4849 mode1, from,
4850 TREE_TYPE (tem), get_alias_set (to),
4851 nontemporal);
4854 if (misalignp)
4856 struct expand_operand ops[2];
4858 create_fixed_operand (&ops[0], mem);
4859 create_input_operand (&ops[1], to_rtx, mode);
4860 /* The movmisalign<mode> pattern cannot fail, else the assignment
4861 would silently be omitted. */
4862 expand_insn (icode, 2, ops);
4865 if (result)
4866 preserve_temp_slots (result);
4867 free_temp_slots ();
4868 pop_temp_slots ();
4869 return;
4872 /* If the rhs is a function call and its value is not an aggregate,
4873 call the function before we start to compute the lhs.
4874 This is needed for correct code for cases such as
4875 val = setjmp (buf) on machines where reference to val
4876 requires loading up part of an address in a separate insn.
4878 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4879 since it might be a promoted variable where the zero- or sign- extension
4880 needs to be done. Handling this in the normal way is safe because no
4881 computation is done before the call. The same is true for SSA names. */
4882 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4883 && COMPLETE_TYPE_P (TREE_TYPE (from))
4884 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4885 && ! (((TREE_CODE (to) == VAR_DECL
4886 || TREE_CODE (to) == PARM_DECL
4887 || TREE_CODE (to) == RESULT_DECL)
4888 && REG_P (DECL_RTL (to)))
4889 || TREE_CODE (to) == SSA_NAME))
4891 rtx value;
4893 push_temp_slots ();
4894 value = expand_normal (from);
4895 if (to_rtx == 0)
4896 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4898 /* Handle calls that return values in multiple non-contiguous locations.
4899 The Irix 6 ABI has examples of this. */
4900 if (GET_CODE (to_rtx) == PARALLEL)
4901 emit_group_load (to_rtx, value, TREE_TYPE (from),
4902 int_size_in_bytes (TREE_TYPE (from)));
4903 else if (GET_MODE (to_rtx) == BLKmode)
4904 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4905 else
4907 if (POINTER_TYPE_P (TREE_TYPE (to)))
4908 value = convert_memory_address_addr_space
4909 (GET_MODE (to_rtx), value,
4910 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4912 emit_move_insn (to_rtx, value);
4914 preserve_temp_slots (to_rtx);
4915 free_temp_slots ();
4916 pop_temp_slots ();
4917 return;
4920 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4921 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4923 /* Don't move directly into a return register. */
4924 if (TREE_CODE (to) == RESULT_DECL
4925 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4927 rtx temp;
4929 push_temp_slots ();
4930 if (REG_P (to_rtx) && TYPE_MODE (TREE_TYPE (from)) == BLKmode)
4931 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
4932 else
4933 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4935 if (GET_CODE (to_rtx) == PARALLEL)
4936 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4937 int_size_in_bytes (TREE_TYPE (from)));
4938 else if (temp)
4939 emit_move_insn (to_rtx, temp);
4941 preserve_temp_slots (to_rtx);
4942 free_temp_slots ();
4943 pop_temp_slots ();
4944 return;
4947 /* In case we are returning the contents of an object which overlaps
4948 the place the value is being stored, use a safe function when copying
4949 a value through a pointer into a structure value return block. */
4950 if (TREE_CODE (to) == RESULT_DECL
4951 && TREE_CODE (from) == INDIRECT_REF
4952 && ADDR_SPACE_GENERIC_P
4953 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4954 && refs_may_alias_p (to, from)
4955 && cfun->returns_struct
4956 && !cfun->returns_pcc_struct)
4958 rtx from_rtx, size;
4960 push_temp_slots ();
4961 size = expr_size (from);
4962 from_rtx = expand_normal (from);
4964 emit_library_call (memmove_libfunc, LCT_NORMAL,
4965 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4966 XEXP (from_rtx, 0), Pmode,
4967 convert_to_mode (TYPE_MODE (sizetype),
4968 size, TYPE_UNSIGNED (sizetype)),
4969 TYPE_MODE (sizetype));
4971 preserve_temp_slots (to_rtx);
4972 free_temp_slots ();
4973 pop_temp_slots ();
4974 return;
4977 /* Compute FROM and store the value in the rtx we got. */
4979 push_temp_slots ();
4980 result = store_expr (from, to_rtx, 0, nontemporal);
4981 preserve_temp_slots (result);
4982 free_temp_slots ();
4983 pop_temp_slots ();
4984 return;
4987 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4988 succeeded, false otherwise. */
4990 bool
4991 emit_storent_insn (rtx to, rtx from)
4993 struct expand_operand ops[2];
4994 enum machine_mode mode = GET_MODE (to);
4995 enum insn_code code = optab_handler (storent_optab, mode);
4997 if (code == CODE_FOR_nothing)
4998 return false;
5000 create_fixed_operand (&ops[0], to);
5001 create_input_operand (&ops[1], from, mode);
5002 return maybe_expand_insn (code, 2, ops);
5005 /* Generate code for computing expression EXP,
5006 and storing the value into TARGET.
5008 If the mode is BLKmode then we may return TARGET itself.
5009 It turns out that in BLKmode it doesn't cause a problem.
5010 because C has no operators that could combine two different
5011 assignments into the same BLKmode object with different values
5012 with no sequence point. Will other languages need this to
5013 be more thorough?
5015 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5016 stack, and block moves may need to be treated specially.
5018 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5021 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5023 rtx temp;
5024 rtx alt_rtl = NULL_RTX;
5025 location_t loc = EXPR_LOCATION (exp);
5027 if (VOID_TYPE_P (TREE_TYPE (exp)))
5029 /* C++ can generate ?: expressions with a throw expression in one
5030 branch and an rvalue in the other. Here, we resolve attempts to
5031 store the throw expression's nonexistent result. */
5032 gcc_assert (!call_param_p);
5033 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5034 return NULL_RTX;
5036 if (TREE_CODE (exp) == COMPOUND_EXPR)
5038 /* Perform first part of compound expression, then assign from second
5039 part. */
5040 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5041 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5042 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5043 nontemporal);
5045 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5047 /* For conditional expression, get safe form of the target. Then
5048 test the condition, doing the appropriate assignment on either
5049 side. This avoids the creation of unnecessary temporaries.
5050 For non-BLKmode, it is more efficient not to do this. */
5052 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
5054 do_pending_stack_adjust ();
5055 NO_DEFER_POP;
5056 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5057 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5058 nontemporal);
5059 emit_jump_insn (gen_jump (lab2));
5060 emit_barrier ();
5061 emit_label (lab1);
5062 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5063 nontemporal);
5064 emit_label (lab2);
5065 OK_DEFER_POP;
5067 return NULL_RTX;
5069 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5070 /* If this is a scalar in a register that is stored in a wider mode
5071 than the declared mode, compute the result into its declared mode
5072 and then convert to the wider mode. Our value is the computed
5073 expression. */
5075 rtx inner_target = 0;
5077 /* We can do the conversion inside EXP, which will often result
5078 in some optimizations. Do the conversion in two steps: first
5079 change the signedness, if needed, then the extend. But don't
5080 do this if the type of EXP is a subtype of something else
5081 since then the conversion might involve more than just
5082 converting modes. */
5083 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5084 && TREE_TYPE (TREE_TYPE (exp)) == 0
5085 && GET_MODE_PRECISION (GET_MODE (target))
5086 == TYPE_PRECISION (TREE_TYPE (exp)))
5088 if (TYPE_UNSIGNED (TREE_TYPE (exp))
5089 != SUBREG_PROMOTED_UNSIGNED_P (target))
5091 /* Some types, e.g. Fortran's logical*4, won't have a signed
5092 version, so use the mode instead. */
5093 tree ntype
5094 = (signed_or_unsigned_type_for
5095 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
5096 if (ntype == NULL)
5097 ntype = lang_hooks.types.type_for_mode
5098 (TYPE_MODE (TREE_TYPE (exp)),
5099 SUBREG_PROMOTED_UNSIGNED_P (target));
5101 exp = fold_convert_loc (loc, ntype, exp);
5104 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5105 (GET_MODE (SUBREG_REG (target)),
5106 SUBREG_PROMOTED_UNSIGNED_P (target)),
5107 exp);
5109 inner_target = SUBREG_REG (target);
5112 temp = expand_expr (exp, inner_target, VOIDmode,
5113 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5115 /* If TEMP is a VOIDmode constant, use convert_modes to make
5116 sure that we properly convert it. */
5117 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5119 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5120 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
5121 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5122 GET_MODE (target), temp,
5123 SUBREG_PROMOTED_UNSIGNED_P (target));
5126 convert_move (SUBREG_REG (target), temp,
5127 SUBREG_PROMOTED_UNSIGNED_P (target));
5129 return NULL_RTX;
5131 else if ((TREE_CODE (exp) == STRING_CST
5132 || (TREE_CODE (exp) == MEM_REF
5133 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5134 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5135 == STRING_CST
5136 && integer_zerop (TREE_OPERAND (exp, 1))))
5137 && !nontemporal && !call_param_p
5138 && MEM_P (target))
5140 /* Optimize initialization of an array with a STRING_CST. */
5141 HOST_WIDE_INT exp_len, str_copy_len;
5142 rtx dest_mem;
5143 tree str = TREE_CODE (exp) == STRING_CST
5144 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5146 exp_len = int_expr_size (exp);
5147 if (exp_len <= 0)
5148 goto normal_expr;
5150 if (TREE_STRING_LENGTH (str) <= 0)
5151 goto normal_expr;
5153 str_copy_len = strlen (TREE_STRING_POINTER (str));
5154 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5155 goto normal_expr;
5157 str_copy_len = TREE_STRING_LENGTH (str);
5158 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5159 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5161 str_copy_len += STORE_MAX_PIECES - 1;
5162 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5164 str_copy_len = MIN (str_copy_len, exp_len);
5165 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5166 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5167 MEM_ALIGN (target), false))
5168 goto normal_expr;
5170 dest_mem = target;
5172 dest_mem = store_by_pieces (dest_mem,
5173 str_copy_len, builtin_strncpy_read_str,
5174 CONST_CAST (char *,
5175 TREE_STRING_POINTER (str)),
5176 MEM_ALIGN (target), false,
5177 exp_len > str_copy_len ? 1 : 0);
5178 if (exp_len > str_copy_len)
5179 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5180 GEN_INT (exp_len - str_copy_len),
5181 BLOCK_OP_NORMAL);
5182 return NULL_RTX;
5184 else
5186 rtx tmp_target;
5188 normal_expr:
5189 /* If we want to use a nontemporal store, force the value to
5190 register first. */
5191 tmp_target = nontemporal ? NULL_RTX : target;
5192 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5193 (call_param_p
5194 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5195 &alt_rtl);
5198 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5199 the same as that of TARGET, adjust the constant. This is needed, for
5200 example, in case it is a CONST_DOUBLE and we want only a word-sized
5201 value. */
5202 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5203 && TREE_CODE (exp) != ERROR_MARK
5204 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5205 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5206 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5208 /* If value was not generated in the target, store it there.
5209 Convert the value to TARGET's type first if necessary and emit the
5210 pending incrementations that have been queued when expanding EXP.
5211 Note that we cannot emit the whole queue blindly because this will
5212 effectively disable the POST_INC optimization later.
5214 If TEMP and TARGET compare equal according to rtx_equal_p, but
5215 one or both of them are volatile memory refs, we have to distinguish
5216 two cases:
5217 - expand_expr has used TARGET. In this case, we must not generate
5218 another copy. This can be detected by TARGET being equal according
5219 to == .
5220 - expand_expr has not used TARGET - that means that the source just
5221 happens to have the same RTX form. Since temp will have been created
5222 by expand_expr, it will compare unequal according to == .
5223 We must generate a copy in this case, to reach the correct number
5224 of volatile memory references. */
5226 if ((! rtx_equal_p (temp, target)
5227 || (temp != target && (side_effects_p (temp)
5228 || side_effects_p (target))))
5229 && TREE_CODE (exp) != ERROR_MARK
5230 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5231 but TARGET is not valid memory reference, TEMP will differ
5232 from TARGET although it is really the same location. */
5233 && !(alt_rtl
5234 && rtx_equal_p (alt_rtl, target)
5235 && !side_effects_p (alt_rtl)
5236 && !side_effects_p (target))
5237 /* If there's nothing to copy, don't bother. Don't call
5238 expr_size unless necessary, because some front-ends (C++)
5239 expr_size-hook must not be given objects that are not
5240 supposed to be bit-copied or bit-initialized. */
5241 && expr_size (exp) != const0_rtx)
5243 if (GET_MODE (temp) != GET_MODE (target)
5244 && GET_MODE (temp) != VOIDmode)
5246 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5247 if (GET_MODE (target) == BLKmode
5248 && GET_MODE (temp) == BLKmode)
5249 emit_block_move (target, temp, expr_size (exp),
5250 (call_param_p
5251 ? BLOCK_OP_CALL_PARM
5252 : BLOCK_OP_NORMAL));
5253 else if (GET_MODE (target) == BLKmode)
5254 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5255 0, 0, 0, GET_MODE (temp), temp);
5256 else
5257 convert_move (target, temp, unsignedp);
5260 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5262 /* Handle copying a string constant into an array. The string
5263 constant may be shorter than the array. So copy just the string's
5264 actual length, and clear the rest. First get the size of the data
5265 type of the string, which is actually the size of the target. */
5266 rtx size = expr_size (exp);
5268 if (CONST_INT_P (size)
5269 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5270 emit_block_move (target, temp, size,
5271 (call_param_p
5272 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5273 else
5275 enum machine_mode pointer_mode
5276 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5277 enum machine_mode address_mode
5278 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
5280 /* Compute the size of the data to copy from the string. */
5281 tree copy_size
5282 = size_binop_loc (loc, MIN_EXPR,
5283 make_tree (sizetype, size),
5284 size_int (TREE_STRING_LENGTH (exp)));
5285 rtx copy_size_rtx
5286 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5287 (call_param_p
5288 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5289 rtx label = 0;
5291 /* Copy that much. */
5292 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5293 TYPE_UNSIGNED (sizetype));
5294 emit_block_move (target, temp, copy_size_rtx,
5295 (call_param_p
5296 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5298 /* Figure out how much is left in TARGET that we have to clear.
5299 Do all calculations in pointer_mode. */
5300 if (CONST_INT_P (copy_size_rtx))
5302 size = plus_constant (size, -INTVAL (copy_size_rtx));
5303 target = adjust_address (target, BLKmode,
5304 INTVAL (copy_size_rtx));
5306 else
5308 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5309 copy_size_rtx, NULL_RTX, 0,
5310 OPTAB_LIB_WIDEN);
5312 if (GET_MODE (copy_size_rtx) != address_mode)
5313 copy_size_rtx = convert_to_mode (address_mode,
5314 copy_size_rtx,
5315 TYPE_UNSIGNED (sizetype));
5317 target = offset_address (target, copy_size_rtx,
5318 highest_pow2_factor (copy_size));
5319 label = gen_label_rtx ();
5320 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5321 GET_MODE (size), 0, label);
5324 if (size != const0_rtx)
5325 clear_storage (target, size, BLOCK_OP_NORMAL);
5327 if (label)
5328 emit_label (label);
5331 /* Handle calls that return values in multiple non-contiguous locations.
5332 The Irix 6 ABI has examples of this. */
5333 else if (GET_CODE (target) == PARALLEL)
5334 emit_group_load (target, temp, TREE_TYPE (exp),
5335 int_size_in_bytes (TREE_TYPE (exp)));
5336 else if (GET_MODE (temp) == BLKmode)
5337 emit_block_move (target, temp, expr_size (exp),
5338 (call_param_p
5339 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5340 else if (nontemporal
5341 && emit_storent_insn (target, temp))
5342 /* If we managed to emit a nontemporal store, there is nothing else to
5343 do. */
5345 else
5347 temp = force_operand (temp, target);
5348 if (temp != target)
5349 emit_move_insn (target, temp);
5353 return NULL_RTX;
5356 /* Return true if field F of structure TYPE is a flexible array. */
5358 static bool
5359 flexible_array_member_p (const_tree f, const_tree type)
5361 const_tree tf;
5363 tf = TREE_TYPE (f);
5364 return (DECL_CHAIN (f) == NULL
5365 && TREE_CODE (tf) == ARRAY_TYPE
5366 && TYPE_DOMAIN (tf)
5367 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5368 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5369 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5370 && int_size_in_bytes (type) >= 0);
5373 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5374 must have in order for it to completely initialize a value of type TYPE.
5375 Return -1 if the number isn't known.
5377 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5379 static HOST_WIDE_INT
5380 count_type_elements (const_tree type, bool for_ctor_p)
5382 switch (TREE_CODE (type))
5384 case ARRAY_TYPE:
5386 tree nelts;
5388 nelts = array_type_nelts (type);
5389 if (nelts && host_integerp (nelts, 1))
5391 unsigned HOST_WIDE_INT n;
5393 n = tree_low_cst (nelts, 1) + 1;
5394 if (n == 0 || for_ctor_p)
5395 return n;
5396 else
5397 return n * count_type_elements (TREE_TYPE (type), false);
5399 return for_ctor_p ? -1 : 1;
5402 case RECORD_TYPE:
5404 unsigned HOST_WIDE_INT n;
5405 tree f;
5407 n = 0;
5408 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5409 if (TREE_CODE (f) == FIELD_DECL)
5411 if (!for_ctor_p)
5412 n += count_type_elements (TREE_TYPE (f), false);
5413 else if (!flexible_array_member_p (f, type))
5414 /* Don't count flexible arrays, which are not supposed
5415 to be initialized. */
5416 n += 1;
5419 return n;
5422 case UNION_TYPE:
5423 case QUAL_UNION_TYPE:
5425 tree f;
5426 HOST_WIDE_INT n, m;
5428 gcc_assert (!for_ctor_p);
5429 /* Estimate the number of scalars in each field and pick the
5430 maximum. Other estimates would do instead; the idea is simply
5431 to make sure that the estimate is not sensitive to the ordering
5432 of the fields. */
5433 n = 1;
5434 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5435 if (TREE_CODE (f) == FIELD_DECL)
5437 m = count_type_elements (TREE_TYPE (f), false);
5438 /* If the field doesn't span the whole union, add an extra
5439 scalar for the rest. */
5440 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5441 TYPE_SIZE (type)) != 1)
5442 m++;
5443 if (n < m)
5444 n = m;
5446 return n;
5449 case COMPLEX_TYPE:
5450 return 2;
5452 case VECTOR_TYPE:
5453 return TYPE_VECTOR_SUBPARTS (type);
5455 case INTEGER_TYPE:
5456 case REAL_TYPE:
5457 case FIXED_POINT_TYPE:
5458 case ENUMERAL_TYPE:
5459 case BOOLEAN_TYPE:
5460 case POINTER_TYPE:
5461 case OFFSET_TYPE:
5462 case REFERENCE_TYPE:
5463 case NULLPTR_TYPE:
5464 return 1;
5466 case ERROR_MARK:
5467 return 0;
5469 case VOID_TYPE:
5470 case METHOD_TYPE:
5471 case FUNCTION_TYPE:
5472 case LANG_TYPE:
5473 default:
5474 gcc_unreachable ();
5478 /* Helper for categorize_ctor_elements. Identical interface. */
5480 static bool
5481 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5482 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5484 unsigned HOST_WIDE_INT idx;
5485 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5486 tree value, purpose, elt_type;
5488 /* Whether CTOR is a valid constant initializer, in accordance with what
5489 initializer_constant_valid_p does. If inferred from the constructor
5490 elements, true until proven otherwise. */
5491 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5492 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5494 nz_elts = 0;
5495 init_elts = 0;
5496 num_fields = 0;
5497 elt_type = NULL_TREE;
5499 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5501 HOST_WIDE_INT mult = 1;
5503 if (TREE_CODE (purpose) == RANGE_EXPR)
5505 tree lo_index = TREE_OPERAND (purpose, 0);
5506 tree hi_index = TREE_OPERAND (purpose, 1);
5508 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
5509 mult = (tree_low_cst (hi_index, 1)
5510 - tree_low_cst (lo_index, 1) + 1);
5512 num_fields += mult;
5513 elt_type = TREE_TYPE (value);
5515 switch (TREE_CODE (value))
5517 case CONSTRUCTOR:
5519 HOST_WIDE_INT nz = 0, ic = 0;
5521 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5522 p_complete);
5524 nz_elts += mult * nz;
5525 init_elts += mult * ic;
5527 if (const_from_elts_p && const_p)
5528 const_p = const_elt_p;
5530 break;
5532 case INTEGER_CST:
5533 case REAL_CST:
5534 case FIXED_CST:
5535 if (!initializer_zerop (value))
5536 nz_elts += mult;
5537 init_elts += mult;
5538 break;
5540 case STRING_CST:
5541 nz_elts += mult * TREE_STRING_LENGTH (value);
5542 init_elts += mult * TREE_STRING_LENGTH (value);
5543 break;
5545 case COMPLEX_CST:
5546 if (!initializer_zerop (TREE_REALPART (value)))
5547 nz_elts += mult;
5548 if (!initializer_zerop (TREE_IMAGPART (value)))
5549 nz_elts += mult;
5550 init_elts += mult;
5551 break;
5553 case VECTOR_CST:
5555 tree v;
5556 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
5558 if (!initializer_zerop (TREE_VALUE (v)))
5559 nz_elts += mult;
5560 init_elts += mult;
5563 break;
5565 default:
5567 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5568 nz_elts += mult * tc;
5569 init_elts += mult * tc;
5571 if (const_from_elts_p && const_p)
5572 const_p = initializer_constant_valid_p (value, elt_type)
5573 != NULL_TREE;
5575 break;
5579 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5580 num_fields, elt_type))
5581 *p_complete = false;
5583 *p_nz_elts += nz_elts;
5584 *p_init_elts += init_elts;
5586 return const_p;
5589 /* Examine CTOR to discover:
5590 * how many scalar fields are set to nonzero values,
5591 and place it in *P_NZ_ELTS;
5592 * how many scalar fields in total are in CTOR,
5593 and place it in *P_ELT_COUNT.
5594 * whether the constructor is complete -- in the sense that every
5595 meaningful byte is explicitly given a value --
5596 and place it in *P_COMPLETE.
5598 Return whether or not CTOR is a valid static constant initializer, the same
5599 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5601 bool
5602 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5603 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5605 *p_nz_elts = 0;
5606 *p_init_elts = 0;
5607 *p_complete = true;
5609 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5612 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5613 of which had type LAST_TYPE. Each element was itself a complete
5614 initializer, in the sense that every meaningful byte was explicitly
5615 given a value. Return true if the same is true for the constructor
5616 as a whole. */
5618 bool
5619 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5620 const_tree last_type)
5622 if (TREE_CODE (type) == UNION_TYPE
5623 || TREE_CODE (type) == QUAL_UNION_TYPE)
5625 if (num_elts == 0)
5626 return false;
5628 gcc_assert (num_elts == 1 && last_type);
5630 /* ??? We could look at each element of the union, and find the
5631 largest element. Which would avoid comparing the size of the
5632 initialized element against any tail padding in the union.
5633 Doesn't seem worth the effort... */
5634 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5637 return count_type_elements (type, true) == num_elts;
5640 /* Return 1 if EXP contains mostly (3/4) zeros. */
5642 static int
5643 mostly_zeros_p (const_tree exp)
5645 if (TREE_CODE (exp) == CONSTRUCTOR)
5647 HOST_WIDE_INT nz_elts, init_elts;
5648 bool complete_p;
5650 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5651 return !complete_p || nz_elts < init_elts / 4;
5654 return initializer_zerop (exp);
5657 /* Return 1 if EXP contains all zeros. */
5659 static int
5660 all_zeros_p (const_tree exp)
5662 if (TREE_CODE (exp) == CONSTRUCTOR)
5664 HOST_WIDE_INT nz_elts, init_elts;
5665 bool complete_p;
5667 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5668 return nz_elts == 0;
5671 return initializer_zerop (exp);
5674 /* Helper function for store_constructor.
5675 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5676 TYPE is the type of the CONSTRUCTOR, not the element type.
5677 CLEARED is as for store_constructor.
5678 ALIAS_SET is the alias set to use for any stores.
5680 This provides a recursive shortcut back to store_constructor when it isn't
5681 necessary to go through store_field. This is so that we can pass through
5682 the cleared field to let store_constructor know that we may not have to
5683 clear a substructure if the outer structure has already been cleared. */
5685 static void
5686 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5687 HOST_WIDE_INT bitpos, enum machine_mode mode,
5688 tree exp, tree type, int cleared,
5689 alias_set_type alias_set)
5691 if (TREE_CODE (exp) == CONSTRUCTOR
5692 /* We can only call store_constructor recursively if the size and
5693 bit position are on a byte boundary. */
5694 && bitpos % BITS_PER_UNIT == 0
5695 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5696 /* If we have a nonzero bitpos for a register target, then we just
5697 let store_field do the bitfield handling. This is unlikely to
5698 generate unnecessary clear instructions anyways. */
5699 && (bitpos == 0 || MEM_P (target)))
5701 if (MEM_P (target))
5702 target
5703 = adjust_address (target,
5704 GET_MODE (target) == BLKmode
5705 || 0 != (bitpos
5706 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5707 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5710 /* Update the alias set, if required. */
5711 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5712 && MEM_ALIAS_SET (target) != 0)
5714 target = copy_rtx (target);
5715 set_mem_alias_set (target, alias_set);
5718 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5720 else
5721 store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
5722 false);
5725 /* Store the value of constructor EXP into the rtx TARGET.
5726 TARGET is either a REG or a MEM; we know it cannot conflict, since
5727 safe_from_p has been called.
5728 CLEARED is true if TARGET is known to have been zero'd.
5729 SIZE is the number of bytes of TARGET we are allowed to modify: this
5730 may not be the same as the size of EXP if we are assigning to a field
5731 which has been packed to exclude padding bits. */
5733 static void
5734 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5736 tree type = TREE_TYPE (exp);
5737 #ifdef WORD_REGISTER_OPERATIONS
5738 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5739 #endif
5741 switch (TREE_CODE (type))
5743 case RECORD_TYPE:
5744 case UNION_TYPE:
5745 case QUAL_UNION_TYPE:
5747 unsigned HOST_WIDE_INT idx;
5748 tree field, value;
5750 /* If size is zero or the target is already cleared, do nothing. */
5751 if (size == 0 || cleared)
5752 cleared = 1;
5753 /* We either clear the aggregate or indicate the value is dead. */
5754 else if ((TREE_CODE (type) == UNION_TYPE
5755 || TREE_CODE (type) == QUAL_UNION_TYPE)
5756 && ! CONSTRUCTOR_ELTS (exp))
5757 /* If the constructor is empty, clear the union. */
5759 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5760 cleared = 1;
5763 /* If we are building a static constructor into a register,
5764 set the initial value as zero so we can fold the value into
5765 a constant. But if more than one register is involved,
5766 this probably loses. */
5767 else if (REG_P (target) && TREE_STATIC (exp)
5768 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5770 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5771 cleared = 1;
5774 /* If the constructor has fewer fields than the structure or
5775 if we are initializing the structure to mostly zeros, clear
5776 the whole structure first. Don't do this if TARGET is a
5777 register whose mode size isn't equal to SIZE since
5778 clear_storage can't handle this case. */
5779 else if (size > 0
5780 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5781 != fields_length (type))
5782 || mostly_zeros_p (exp))
5783 && (!REG_P (target)
5784 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5785 == size)))
5787 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5788 cleared = 1;
5791 if (REG_P (target) && !cleared)
5792 emit_clobber (target);
5794 /* Store each element of the constructor into the
5795 corresponding field of TARGET. */
5796 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5798 enum machine_mode mode;
5799 HOST_WIDE_INT bitsize;
5800 HOST_WIDE_INT bitpos = 0;
5801 tree offset;
5802 rtx to_rtx = target;
5804 /* Just ignore missing fields. We cleared the whole
5805 structure, above, if any fields are missing. */
5806 if (field == 0)
5807 continue;
5809 if (cleared && initializer_zerop (value))
5810 continue;
5812 if (host_integerp (DECL_SIZE (field), 1))
5813 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5814 else
5815 bitsize = -1;
5817 mode = DECL_MODE (field);
5818 if (DECL_BIT_FIELD (field))
5819 mode = VOIDmode;
5821 offset = DECL_FIELD_OFFSET (field);
5822 if (host_integerp (offset, 0)
5823 && host_integerp (bit_position (field), 0))
5825 bitpos = int_bit_position (field);
5826 offset = 0;
5828 else
5829 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5831 if (offset)
5833 enum machine_mode address_mode;
5834 rtx offset_rtx;
5836 offset
5837 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5838 make_tree (TREE_TYPE (exp),
5839 target));
5841 offset_rtx = expand_normal (offset);
5842 gcc_assert (MEM_P (to_rtx));
5844 address_mode
5845 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5846 if (GET_MODE (offset_rtx) != address_mode)
5847 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5849 to_rtx = offset_address (to_rtx, offset_rtx,
5850 highest_pow2_factor (offset));
5853 #ifdef WORD_REGISTER_OPERATIONS
5854 /* If this initializes a field that is smaller than a
5855 word, at the start of a word, try to widen it to a full
5856 word. This special case allows us to output C++ member
5857 function initializations in a form that the optimizers
5858 can understand. */
5859 if (REG_P (target)
5860 && bitsize < BITS_PER_WORD
5861 && bitpos % BITS_PER_WORD == 0
5862 && GET_MODE_CLASS (mode) == MODE_INT
5863 && TREE_CODE (value) == INTEGER_CST
5864 && exp_size >= 0
5865 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5867 tree type = TREE_TYPE (value);
5869 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5871 type = lang_hooks.types.type_for_size
5872 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5873 value = fold_convert (type, value);
5876 if (BYTES_BIG_ENDIAN)
5877 value
5878 = fold_build2 (LSHIFT_EXPR, type, value,
5879 build_int_cst (type,
5880 BITS_PER_WORD - bitsize));
5881 bitsize = BITS_PER_WORD;
5882 mode = word_mode;
5884 #endif
5886 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5887 && DECL_NONADDRESSABLE_P (field))
5889 to_rtx = copy_rtx (to_rtx);
5890 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5893 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5894 value, type, cleared,
5895 get_alias_set (TREE_TYPE (field)));
5897 break;
5899 case ARRAY_TYPE:
5901 tree value, index;
5902 unsigned HOST_WIDE_INT i;
5903 int need_to_clear;
5904 tree domain;
5905 tree elttype = TREE_TYPE (type);
5906 int const_bounds_p;
5907 HOST_WIDE_INT minelt = 0;
5908 HOST_WIDE_INT maxelt = 0;
5910 domain = TYPE_DOMAIN (type);
5911 const_bounds_p = (TYPE_MIN_VALUE (domain)
5912 && TYPE_MAX_VALUE (domain)
5913 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5914 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5916 /* If we have constant bounds for the range of the type, get them. */
5917 if (const_bounds_p)
5919 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5920 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5923 /* If the constructor has fewer elements than the array, clear
5924 the whole array first. Similarly if this is static
5925 constructor of a non-BLKmode object. */
5926 if (cleared)
5927 need_to_clear = 0;
5928 else if (REG_P (target) && TREE_STATIC (exp))
5929 need_to_clear = 1;
5930 else
5932 unsigned HOST_WIDE_INT idx;
5933 tree index, value;
5934 HOST_WIDE_INT count = 0, zero_count = 0;
5935 need_to_clear = ! const_bounds_p;
5937 /* This loop is a more accurate version of the loop in
5938 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5939 is also needed to check for missing elements. */
5940 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5942 HOST_WIDE_INT this_node_count;
5944 if (need_to_clear)
5945 break;
5947 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5949 tree lo_index = TREE_OPERAND (index, 0);
5950 tree hi_index = TREE_OPERAND (index, 1);
5952 if (! host_integerp (lo_index, 1)
5953 || ! host_integerp (hi_index, 1))
5955 need_to_clear = 1;
5956 break;
5959 this_node_count = (tree_low_cst (hi_index, 1)
5960 - tree_low_cst (lo_index, 1) + 1);
5962 else
5963 this_node_count = 1;
5965 count += this_node_count;
5966 if (mostly_zeros_p (value))
5967 zero_count += this_node_count;
5970 /* Clear the entire array first if there are any missing
5971 elements, or if the incidence of zero elements is >=
5972 75%. */
5973 if (! need_to_clear
5974 && (count < maxelt - minelt + 1
5975 || 4 * zero_count >= 3 * count))
5976 need_to_clear = 1;
5979 if (need_to_clear && size > 0)
5981 if (REG_P (target))
5982 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5983 else
5984 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5985 cleared = 1;
5988 if (!cleared && REG_P (target))
5989 /* Inform later passes that the old value is dead. */
5990 emit_clobber (target);
5992 /* Store each element of the constructor into the
5993 corresponding element of TARGET, determined by counting the
5994 elements. */
5995 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5997 enum machine_mode mode;
5998 HOST_WIDE_INT bitsize;
5999 HOST_WIDE_INT bitpos;
6000 rtx xtarget = target;
6002 if (cleared && initializer_zerop (value))
6003 continue;
6005 mode = TYPE_MODE (elttype);
6006 if (mode == BLKmode)
6007 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
6008 ? tree_low_cst (TYPE_SIZE (elttype), 1)
6009 : -1);
6010 else
6011 bitsize = GET_MODE_BITSIZE (mode);
6013 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6015 tree lo_index = TREE_OPERAND (index, 0);
6016 tree hi_index = TREE_OPERAND (index, 1);
6017 rtx index_r, pos_rtx;
6018 HOST_WIDE_INT lo, hi, count;
6019 tree position;
6021 /* If the range is constant and "small", unroll the loop. */
6022 if (const_bounds_p
6023 && host_integerp (lo_index, 0)
6024 && host_integerp (hi_index, 0)
6025 && (lo = tree_low_cst (lo_index, 0),
6026 hi = tree_low_cst (hi_index, 0),
6027 count = hi - lo + 1,
6028 (!MEM_P (target)
6029 || count <= 2
6030 || (host_integerp (TYPE_SIZE (elttype), 1)
6031 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
6032 <= 40 * 8)))))
6034 lo -= minelt; hi -= minelt;
6035 for (; lo <= hi; lo++)
6037 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
6039 if (MEM_P (target)
6040 && !MEM_KEEP_ALIAS_SET_P (target)
6041 && TREE_CODE (type) == ARRAY_TYPE
6042 && TYPE_NONALIASED_COMPONENT (type))
6044 target = copy_rtx (target);
6045 MEM_KEEP_ALIAS_SET_P (target) = 1;
6048 store_constructor_field
6049 (target, bitsize, bitpos, mode, value, type, cleared,
6050 get_alias_set (elttype));
6053 else
6055 rtx loop_start = gen_label_rtx ();
6056 rtx loop_end = gen_label_rtx ();
6057 tree exit_cond;
6059 expand_normal (hi_index);
6061 index = build_decl (EXPR_LOCATION (exp),
6062 VAR_DECL, NULL_TREE, domain);
6063 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6064 SET_DECL_RTL (index, index_r);
6065 store_expr (lo_index, index_r, 0, false);
6067 /* Build the head of the loop. */
6068 do_pending_stack_adjust ();
6069 emit_label (loop_start);
6071 /* Assign value to element index. */
6072 position =
6073 fold_convert (ssizetype,
6074 fold_build2 (MINUS_EXPR,
6075 TREE_TYPE (index),
6076 index,
6077 TYPE_MIN_VALUE (domain)));
6079 position =
6080 size_binop (MULT_EXPR, position,
6081 fold_convert (ssizetype,
6082 TYPE_SIZE_UNIT (elttype)));
6084 pos_rtx = expand_normal (position);
6085 xtarget = offset_address (target, pos_rtx,
6086 highest_pow2_factor (position));
6087 xtarget = adjust_address (xtarget, mode, 0);
6088 if (TREE_CODE (value) == CONSTRUCTOR)
6089 store_constructor (value, xtarget, cleared,
6090 bitsize / BITS_PER_UNIT);
6091 else
6092 store_expr (value, xtarget, 0, false);
6094 /* Generate a conditional jump to exit the loop. */
6095 exit_cond = build2 (LT_EXPR, integer_type_node,
6096 index, hi_index);
6097 jumpif (exit_cond, loop_end, -1);
6099 /* Update the loop counter, and jump to the head of
6100 the loop. */
6101 expand_assignment (index,
6102 build2 (PLUS_EXPR, TREE_TYPE (index),
6103 index, integer_one_node),
6104 false);
6106 emit_jump (loop_start);
6108 /* Build the end of the loop. */
6109 emit_label (loop_end);
6112 else if ((index != 0 && ! host_integerp (index, 0))
6113 || ! host_integerp (TYPE_SIZE (elttype), 1))
6115 tree position;
6117 if (index == 0)
6118 index = ssize_int (1);
6120 if (minelt)
6121 index = fold_convert (ssizetype,
6122 fold_build2 (MINUS_EXPR,
6123 TREE_TYPE (index),
6124 index,
6125 TYPE_MIN_VALUE (domain)));
6127 position =
6128 size_binop (MULT_EXPR, index,
6129 fold_convert (ssizetype,
6130 TYPE_SIZE_UNIT (elttype)));
6131 xtarget = offset_address (target,
6132 expand_normal (position),
6133 highest_pow2_factor (position));
6134 xtarget = adjust_address (xtarget, mode, 0);
6135 store_expr (value, xtarget, 0, false);
6137 else
6139 if (index != 0)
6140 bitpos = ((tree_low_cst (index, 0) - minelt)
6141 * tree_low_cst (TYPE_SIZE (elttype), 1));
6142 else
6143 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
6145 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6146 && TREE_CODE (type) == ARRAY_TYPE
6147 && TYPE_NONALIASED_COMPONENT (type))
6149 target = copy_rtx (target);
6150 MEM_KEEP_ALIAS_SET_P (target) = 1;
6152 store_constructor_field (target, bitsize, bitpos, mode, value,
6153 type, cleared, get_alias_set (elttype));
6156 break;
6159 case VECTOR_TYPE:
6161 unsigned HOST_WIDE_INT idx;
6162 constructor_elt *ce;
6163 int i;
6164 int need_to_clear;
6165 int icode = 0;
6166 tree elttype = TREE_TYPE (type);
6167 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
6168 enum machine_mode eltmode = TYPE_MODE (elttype);
6169 HOST_WIDE_INT bitsize;
6170 HOST_WIDE_INT bitpos;
6171 rtvec vector = NULL;
6172 unsigned n_elts;
6173 alias_set_type alias;
6175 gcc_assert (eltmode != BLKmode);
6177 n_elts = TYPE_VECTOR_SUBPARTS (type);
6178 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6180 enum machine_mode mode = GET_MODE (target);
6182 icode = (int) optab_handler (vec_init_optab, mode);
6183 if (icode != CODE_FOR_nothing)
6185 unsigned int i;
6187 vector = rtvec_alloc (n_elts);
6188 for (i = 0; i < n_elts; i++)
6189 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6193 /* If the constructor has fewer elements than the vector,
6194 clear the whole array first. Similarly if this is static
6195 constructor of a non-BLKmode object. */
6196 if (cleared)
6197 need_to_clear = 0;
6198 else if (REG_P (target) && TREE_STATIC (exp))
6199 need_to_clear = 1;
6200 else
6202 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6203 tree value;
6205 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6207 int n_elts_here = tree_low_cst
6208 (int_const_binop (TRUNC_DIV_EXPR,
6209 TYPE_SIZE (TREE_TYPE (value)),
6210 TYPE_SIZE (elttype)), 1);
6212 count += n_elts_here;
6213 if (mostly_zeros_p (value))
6214 zero_count += n_elts_here;
6217 /* Clear the entire vector first if there are any missing elements,
6218 or if the incidence of zero elements is >= 75%. */
6219 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6222 if (need_to_clear && size > 0 && !vector)
6224 if (REG_P (target))
6225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6226 else
6227 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6228 cleared = 1;
6231 /* Inform later passes that the old value is dead. */
6232 if (!cleared && !vector && REG_P (target))
6233 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6235 if (MEM_P (target))
6236 alias = MEM_ALIAS_SET (target);
6237 else
6238 alias = get_alias_set (elttype);
6240 /* Store each element of the constructor into the corresponding
6241 element of TARGET, determined by counting the elements. */
6242 for (idx = 0, i = 0;
6243 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6244 idx++, i += bitsize / elt_size)
6246 HOST_WIDE_INT eltpos;
6247 tree value = ce->value;
6249 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
6250 if (cleared && initializer_zerop (value))
6251 continue;
6253 if (ce->index)
6254 eltpos = tree_low_cst (ce->index, 1);
6255 else
6256 eltpos = i;
6258 if (vector)
6260 /* Vector CONSTRUCTORs should only be built from smaller
6261 vectors in the case of BLKmode vectors. */
6262 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6263 RTVEC_ELT (vector, eltpos)
6264 = expand_normal (value);
6266 else
6268 enum machine_mode value_mode =
6269 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6270 ? TYPE_MODE (TREE_TYPE (value))
6271 : eltmode;
6272 bitpos = eltpos * elt_size;
6273 store_constructor_field (target, bitsize, bitpos,
6274 value_mode, value, type,
6275 cleared, alias);
6279 if (vector)
6280 emit_insn (GEN_FCN (icode)
6281 (target,
6282 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6283 break;
6286 default:
6287 gcc_unreachable ();
6291 /* Store the value of EXP (an expression tree)
6292 into a subfield of TARGET which has mode MODE and occupies
6293 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6294 If MODE is VOIDmode, it means that we are storing into a bit-field.
6296 BITREGION_START is bitpos of the first bitfield in this region.
6297 BITREGION_END is the bitpos of the ending bitfield in this region.
6298 These two fields are 0, if the C++ memory model does not apply,
6299 or we are not interested in keeping track of bitfield regions.
6301 Always return const0_rtx unless we have something particular to
6302 return.
6304 TYPE is the type of the underlying object,
6306 ALIAS_SET is the alias set for the destination. This value will
6307 (in general) be different from that for TARGET, since TARGET is a
6308 reference to the containing structure.
6310 If NONTEMPORAL is true, try generating a nontemporal store. */
6312 static rtx
6313 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6314 unsigned HOST_WIDE_INT bitregion_start,
6315 unsigned HOST_WIDE_INT bitregion_end,
6316 enum machine_mode mode, tree exp, tree type,
6317 alias_set_type alias_set, bool nontemporal)
6319 if (TREE_CODE (exp) == ERROR_MARK)
6320 return const0_rtx;
6322 /* If we have nothing to store, do nothing unless the expression has
6323 side-effects. */
6324 if (bitsize == 0)
6325 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6327 /* If we are storing into an unaligned field of an aligned union that is
6328 in a register, we may have the mode of TARGET being an integer mode but
6329 MODE == BLKmode. In that case, get an aligned object whose size and
6330 alignment are the same as TARGET and store TARGET into it (we can avoid
6331 the store if the field being stored is the entire width of TARGET). Then
6332 call ourselves recursively to store the field into a BLKmode version of
6333 that object. Finally, load from the object into TARGET. This is not
6334 very efficient in general, but should only be slightly more expensive
6335 than the otherwise-required unaligned accesses. Perhaps this can be
6336 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6337 twice, once with emit_move_insn and once via store_field. */
6339 if (mode == BLKmode
6340 && (REG_P (target) || GET_CODE (target) == SUBREG))
6342 rtx object = assign_temp (type, 0, 1, 1);
6343 rtx blk_object = adjust_address (object, BLKmode, 0);
6345 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
6346 emit_move_insn (object, target);
6348 store_field (blk_object, bitsize, bitpos,
6349 bitregion_start, bitregion_end,
6350 mode, exp, type, MEM_ALIAS_SET (blk_object), nontemporal);
6352 emit_move_insn (target, object);
6354 /* We want to return the BLKmode version of the data. */
6355 return blk_object;
6358 if (GET_CODE (target) == CONCAT)
6360 /* We're storing into a struct containing a single __complex. */
6362 gcc_assert (!bitpos);
6363 return store_expr (exp, target, 0, nontemporal);
6366 /* If the structure is in a register or if the component
6367 is a bit field, we cannot use addressing to access it.
6368 Use bit-field techniques or SUBREG to store in it. */
6370 if (mode == VOIDmode
6371 || (mode != BLKmode && ! direct_store[(int) mode]
6372 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6373 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6374 || REG_P (target)
6375 || GET_CODE (target) == SUBREG
6376 /* If the field isn't aligned enough to store as an ordinary memref,
6377 store it as a bit field. */
6378 || (mode != BLKmode
6379 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6380 || bitpos % GET_MODE_ALIGNMENT (mode))
6381 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6382 || (bitpos % BITS_PER_UNIT != 0)))
6383 || (bitsize >= 0 && mode != BLKmode
6384 && GET_MODE_BITSIZE (mode) > bitsize)
6385 /* If the RHS and field are a constant size and the size of the
6386 RHS isn't the same size as the bitfield, we must use bitfield
6387 operations. */
6388 || (bitsize >= 0
6389 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6390 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6391 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6392 decl we must use bitfield operations. */
6393 || (bitsize >= 0
6394 && TREE_CODE (exp) == MEM_REF
6395 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6396 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6397 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6398 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6400 rtx temp;
6401 gimple nop_def;
6403 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6404 implies a mask operation. If the precision is the same size as
6405 the field we're storing into, that mask is redundant. This is
6406 particularly common with bit field assignments generated by the
6407 C front end. */
6408 nop_def = get_def_for_expr (exp, NOP_EXPR);
6409 if (nop_def)
6411 tree type = TREE_TYPE (exp);
6412 if (INTEGRAL_TYPE_P (type)
6413 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6414 && bitsize == TYPE_PRECISION (type))
6416 tree op = gimple_assign_rhs1 (nop_def);
6417 type = TREE_TYPE (op);
6418 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6419 exp = op;
6423 temp = expand_normal (exp);
6425 /* If BITSIZE is narrower than the size of the type of EXP
6426 we will be narrowing TEMP. Normally, what's wanted are the
6427 low-order bits. However, if EXP's type is a record and this is
6428 big-endian machine, we want the upper BITSIZE bits. */
6429 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6430 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6431 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6432 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6433 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6434 NULL_RTX, 1);
6436 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
6437 MODE. */
6438 if (mode != VOIDmode && mode != BLKmode
6439 && mode != TYPE_MODE (TREE_TYPE (exp)))
6440 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6442 /* If the modes of TEMP and TARGET are both BLKmode, both
6443 must be in memory and BITPOS must be aligned on a byte
6444 boundary. If so, we simply do a block copy. Likewise
6445 for a BLKmode-like TARGET. */
6446 if (GET_MODE (temp) == BLKmode
6447 && (GET_MODE (target) == BLKmode
6448 || (MEM_P (target)
6449 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6450 && (bitpos % BITS_PER_UNIT) == 0
6451 && (bitsize % BITS_PER_UNIT) == 0)))
6453 gcc_assert (MEM_P (target) && MEM_P (temp)
6454 && (bitpos % BITS_PER_UNIT) == 0);
6456 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6457 emit_block_move (target, temp,
6458 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6459 / BITS_PER_UNIT),
6460 BLOCK_OP_NORMAL);
6462 return const0_rtx;
6465 /* Store the value in the bitfield. */
6466 store_bit_field (target, bitsize, bitpos,
6467 bitregion_start, bitregion_end,
6468 mode, temp);
6470 return const0_rtx;
6472 else
6474 /* Now build a reference to just the desired component. */
6475 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6477 if (to_rtx == target)
6478 to_rtx = copy_rtx (to_rtx);
6480 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6481 set_mem_alias_set (to_rtx, alias_set);
6483 return store_expr (exp, to_rtx, 0, nontemporal);
6487 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6488 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6489 codes and find the ultimate containing object, which we return.
6491 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6492 bit position, and *PUNSIGNEDP to the signedness of the field.
6493 If the position of the field is variable, we store a tree
6494 giving the variable offset (in units) in *POFFSET.
6495 This offset is in addition to the bit position.
6496 If the position is not variable, we store 0 in *POFFSET.
6498 If any of the extraction expressions is volatile,
6499 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6501 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6502 Otherwise, it is a mode that can be used to access the field.
6504 If the field describes a variable-sized object, *PMODE is set to
6505 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6506 this case, but the address of the object can be found.
6508 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6509 look through nodes that serve as markers of a greater alignment than
6510 the one that can be deduced from the expression. These nodes make it
6511 possible for front-ends to prevent temporaries from being created by
6512 the middle-end on alignment considerations. For that purpose, the
6513 normal operating mode at high-level is to always pass FALSE so that
6514 the ultimate containing object is really returned; moreover, the
6515 associated predicate handled_component_p will always return TRUE
6516 on these nodes, thus indicating that they are essentially handled
6517 by get_inner_reference. TRUE should only be passed when the caller
6518 is scanning the expression in order to build another representation
6519 and specifically knows how to handle these nodes; as such, this is
6520 the normal operating mode in the RTL expanders. */
6522 tree
6523 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6524 HOST_WIDE_INT *pbitpos, tree *poffset,
6525 enum machine_mode *pmode, int *punsignedp,
6526 int *pvolatilep, bool keep_aligning)
6528 tree size_tree = 0;
6529 enum machine_mode mode = VOIDmode;
6530 bool blkmode_bitfield = false;
6531 tree offset = size_zero_node;
6532 double_int bit_offset = double_int_zero;
6534 /* First get the mode, signedness, and size. We do this from just the
6535 outermost expression. */
6536 *pbitsize = -1;
6537 if (TREE_CODE (exp) == COMPONENT_REF)
6539 tree field = TREE_OPERAND (exp, 1);
6540 size_tree = DECL_SIZE (field);
6541 if (!DECL_BIT_FIELD (field))
6542 mode = DECL_MODE (field);
6543 else if (DECL_MODE (field) == BLKmode)
6544 blkmode_bitfield = true;
6545 else if (TREE_THIS_VOLATILE (exp)
6546 && flag_strict_volatile_bitfields > 0)
6547 /* Volatile bitfields should be accessed in the mode of the
6548 field's type, not the mode computed based on the bit
6549 size. */
6550 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6552 *punsignedp = DECL_UNSIGNED (field);
6554 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6556 size_tree = TREE_OPERAND (exp, 1);
6557 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6558 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6560 /* For vector types, with the correct size of access, use the mode of
6561 inner type. */
6562 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6563 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6564 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6565 mode = TYPE_MODE (TREE_TYPE (exp));
6567 else
6569 mode = TYPE_MODE (TREE_TYPE (exp));
6570 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6572 if (mode == BLKmode)
6573 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6574 else
6575 *pbitsize = GET_MODE_BITSIZE (mode);
6578 if (size_tree != 0)
6580 if (! host_integerp (size_tree, 1))
6581 mode = BLKmode, *pbitsize = -1;
6582 else
6583 *pbitsize = tree_low_cst (size_tree, 1);
6586 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6587 and find the ultimate containing object. */
6588 while (1)
6590 switch (TREE_CODE (exp))
6592 case BIT_FIELD_REF:
6593 bit_offset
6594 = double_int_add (bit_offset,
6595 tree_to_double_int (TREE_OPERAND (exp, 2)));
6596 break;
6598 case COMPONENT_REF:
6600 tree field = TREE_OPERAND (exp, 1);
6601 tree this_offset = component_ref_field_offset (exp);
6603 /* If this field hasn't been filled in yet, don't go past it.
6604 This should only happen when folding expressions made during
6605 type construction. */
6606 if (this_offset == 0)
6607 break;
6609 offset = size_binop (PLUS_EXPR, offset, this_offset);
6610 bit_offset = double_int_add (bit_offset,
6611 tree_to_double_int
6612 (DECL_FIELD_BIT_OFFSET (field)));
6614 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6616 break;
6618 case ARRAY_REF:
6619 case ARRAY_RANGE_REF:
6621 tree index = TREE_OPERAND (exp, 1);
6622 tree low_bound = array_ref_low_bound (exp);
6623 tree unit_size = array_ref_element_size (exp);
6625 /* We assume all arrays have sizes that are a multiple of a byte.
6626 First subtract the lower bound, if any, in the type of the
6627 index, then convert to sizetype and multiply by the size of
6628 the array element. */
6629 if (! integer_zerop (low_bound))
6630 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6631 index, low_bound);
6633 offset = size_binop (PLUS_EXPR, offset,
6634 size_binop (MULT_EXPR,
6635 fold_convert (sizetype, index),
6636 unit_size));
6638 break;
6640 case REALPART_EXPR:
6641 break;
6643 case IMAGPART_EXPR:
6644 bit_offset = double_int_add (bit_offset,
6645 uhwi_to_double_int (*pbitsize));
6646 break;
6648 case VIEW_CONVERT_EXPR:
6649 if (keep_aligning && STRICT_ALIGNMENT
6650 && (TYPE_ALIGN (TREE_TYPE (exp))
6651 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6652 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6653 < BIGGEST_ALIGNMENT)
6654 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6655 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6656 goto done;
6657 break;
6659 case MEM_REF:
6660 /* Hand back the decl for MEM[&decl, off]. */
6661 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6663 tree off = TREE_OPERAND (exp, 1);
6664 if (!integer_zerop (off))
6666 double_int boff, coff = mem_ref_offset (exp);
6667 boff = double_int_lshift (coff,
6668 BITS_PER_UNIT == 8
6669 ? 3 : exact_log2 (BITS_PER_UNIT),
6670 HOST_BITS_PER_DOUBLE_INT, true);
6671 bit_offset = double_int_add (bit_offset, boff);
6673 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6675 goto done;
6677 default:
6678 goto done;
6681 /* If any reference in the chain is volatile, the effect is volatile. */
6682 if (TREE_THIS_VOLATILE (exp))
6683 *pvolatilep = 1;
6685 exp = TREE_OPERAND (exp, 0);
6687 done:
6689 /* If OFFSET is constant, see if we can return the whole thing as a
6690 constant bit position. Make sure to handle overflow during
6691 this conversion. */
6692 if (TREE_CODE (offset) == INTEGER_CST)
6694 double_int tem = tree_to_double_int (offset);
6695 tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
6696 tem = double_int_lshift (tem,
6697 BITS_PER_UNIT == 8
6698 ? 3 : exact_log2 (BITS_PER_UNIT),
6699 HOST_BITS_PER_DOUBLE_INT, true);
6700 tem = double_int_add (tem, bit_offset);
6701 if (double_int_fits_in_shwi_p (tem))
6703 *pbitpos = double_int_to_shwi (tem);
6704 *poffset = offset = NULL_TREE;
6708 /* Otherwise, split it up. */
6709 if (offset)
6711 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6712 if (double_int_negative_p (bit_offset))
6714 double_int mask
6715 = double_int_mask (BITS_PER_UNIT == 8
6716 ? 3 : exact_log2 (BITS_PER_UNIT));
6717 double_int tem = double_int_and_not (bit_offset, mask);
6718 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6719 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6720 bit_offset = double_int_sub (bit_offset, tem);
6721 tem = double_int_rshift (tem,
6722 BITS_PER_UNIT == 8
6723 ? 3 : exact_log2 (BITS_PER_UNIT),
6724 HOST_BITS_PER_DOUBLE_INT, true);
6725 offset = size_binop (PLUS_EXPR, offset,
6726 double_int_to_tree (sizetype, tem));
6729 *pbitpos = double_int_to_shwi (bit_offset);
6730 *poffset = offset;
6733 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6734 if (mode == VOIDmode
6735 && blkmode_bitfield
6736 && (*pbitpos % BITS_PER_UNIT) == 0
6737 && (*pbitsize % BITS_PER_UNIT) == 0)
6738 *pmode = BLKmode;
6739 else
6740 *pmode = mode;
6742 return exp;
6745 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6746 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6747 EXP is marked as PACKED. */
6749 bool
6750 contains_packed_reference (const_tree exp)
6752 bool packed_p = false;
6754 while (1)
6756 switch (TREE_CODE (exp))
6758 case COMPONENT_REF:
6760 tree field = TREE_OPERAND (exp, 1);
6761 packed_p = DECL_PACKED (field)
6762 || TYPE_PACKED (TREE_TYPE (field))
6763 || TYPE_PACKED (TREE_TYPE (exp));
6764 if (packed_p)
6765 goto done;
6767 break;
6769 case BIT_FIELD_REF:
6770 case ARRAY_REF:
6771 case ARRAY_RANGE_REF:
6772 case REALPART_EXPR:
6773 case IMAGPART_EXPR:
6774 case VIEW_CONVERT_EXPR:
6775 break;
6777 default:
6778 goto done;
6780 exp = TREE_OPERAND (exp, 0);
6782 done:
6783 return packed_p;
6786 /* Return a tree of sizetype representing the size, in bytes, of the element
6787 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6789 tree
6790 array_ref_element_size (tree exp)
6792 tree aligned_size = TREE_OPERAND (exp, 3);
6793 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6794 location_t loc = EXPR_LOCATION (exp);
6796 /* If a size was specified in the ARRAY_REF, it's the size measured
6797 in alignment units of the element type. So multiply by that value. */
6798 if (aligned_size)
6800 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6801 sizetype from another type of the same width and signedness. */
6802 if (TREE_TYPE (aligned_size) != sizetype)
6803 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6804 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6805 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6808 /* Otherwise, take the size from that of the element type. Substitute
6809 any PLACEHOLDER_EXPR that we have. */
6810 else
6811 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6814 /* Return a tree representing the lower bound of the array mentioned in
6815 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6817 tree
6818 array_ref_low_bound (tree exp)
6820 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6822 /* If a lower bound is specified in EXP, use it. */
6823 if (TREE_OPERAND (exp, 2))
6824 return TREE_OPERAND (exp, 2);
6826 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6827 substituting for a PLACEHOLDER_EXPR as needed. */
6828 if (domain_type && TYPE_MIN_VALUE (domain_type))
6829 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6831 /* Otherwise, return a zero of the appropriate type. */
6832 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6835 /* Return a tree representing the upper bound of the array mentioned in
6836 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6838 tree
6839 array_ref_up_bound (tree exp)
6841 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6843 /* If there is a domain type and it has an upper bound, use it, substituting
6844 for a PLACEHOLDER_EXPR as needed. */
6845 if (domain_type && TYPE_MAX_VALUE (domain_type))
6846 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6848 /* Otherwise fail. */
6849 return NULL_TREE;
6852 /* Return a tree representing the offset, in bytes, of the field referenced
6853 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6855 tree
6856 component_ref_field_offset (tree exp)
6858 tree aligned_offset = TREE_OPERAND (exp, 2);
6859 tree field = TREE_OPERAND (exp, 1);
6860 location_t loc = EXPR_LOCATION (exp);
6862 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6863 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6864 value. */
6865 if (aligned_offset)
6867 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6868 sizetype from another type of the same width and signedness. */
6869 if (TREE_TYPE (aligned_offset) != sizetype)
6870 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6871 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6872 size_int (DECL_OFFSET_ALIGN (field)
6873 / BITS_PER_UNIT));
6876 /* Otherwise, take the offset from that of the field. Substitute
6877 any PLACEHOLDER_EXPR that we have. */
6878 else
6879 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6882 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6884 static unsigned HOST_WIDE_INT
6885 target_align (const_tree target)
6887 /* We might have a chain of nested references with intermediate misaligning
6888 bitfields components, so need to recurse to find out. */
6890 unsigned HOST_WIDE_INT this_align, outer_align;
6892 switch (TREE_CODE (target))
6894 case BIT_FIELD_REF:
6895 return 1;
6897 case COMPONENT_REF:
6898 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6899 outer_align = target_align (TREE_OPERAND (target, 0));
6900 return MIN (this_align, outer_align);
6902 case ARRAY_REF:
6903 case ARRAY_RANGE_REF:
6904 this_align = TYPE_ALIGN (TREE_TYPE (target));
6905 outer_align = target_align (TREE_OPERAND (target, 0));
6906 return MIN (this_align, outer_align);
6908 CASE_CONVERT:
6909 case NON_LVALUE_EXPR:
6910 case VIEW_CONVERT_EXPR:
6911 this_align = TYPE_ALIGN (TREE_TYPE (target));
6912 outer_align = target_align (TREE_OPERAND (target, 0));
6913 return MAX (this_align, outer_align);
6915 default:
6916 return TYPE_ALIGN (TREE_TYPE (target));
6921 /* Given an rtx VALUE that may contain additions and multiplications, return
6922 an equivalent value that just refers to a register, memory, or constant.
6923 This is done by generating instructions to perform the arithmetic and
6924 returning a pseudo-register containing the value.
6926 The returned value may be a REG, SUBREG, MEM or constant. */
6929 force_operand (rtx value, rtx target)
6931 rtx op1, op2;
6932 /* Use subtarget as the target for operand 0 of a binary operation. */
6933 rtx subtarget = get_subtarget (target);
6934 enum rtx_code code = GET_CODE (value);
6936 /* Check for subreg applied to an expression produced by loop optimizer. */
6937 if (code == SUBREG
6938 && !REG_P (SUBREG_REG (value))
6939 && !MEM_P (SUBREG_REG (value)))
6941 value
6942 = simplify_gen_subreg (GET_MODE (value),
6943 force_reg (GET_MODE (SUBREG_REG (value)),
6944 force_operand (SUBREG_REG (value),
6945 NULL_RTX)),
6946 GET_MODE (SUBREG_REG (value)),
6947 SUBREG_BYTE (value));
6948 code = GET_CODE (value);
6951 /* Check for a PIC address load. */
6952 if ((code == PLUS || code == MINUS)
6953 && XEXP (value, 0) == pic_offset_table_rtx
6954 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6955 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6956 || GET_CODE (XEXP (value, 1)) == CONST))
6958 if (!subtarget)
6959 subtarget = gen_reg_rtx (GET_MODE (value));
6960 emit_move_insn (subtarget, value);
6961 return subtarget;
6964 if (ARITHMETIC_P (value))
6966 op2 = XEXP (value, 1);
6967 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6968 subtarget = 0;
6969 if (code == MINUS && CONST_INT_P (op2))
6971 code = PLUS;
6972 op2 = negate_rtx (GET_MODE (value), op2);
6975 /* Check for an addition with OP2 a constant integer and our first
6976 operand a PLUS of a virtual register and something else. In that
6977 case, we want to emit the sum of the virtual register and the
6978 constant first and then add the other value. This allows virtual
6979 register instantiation to simply modify the constant rather than
6980 creating another one around this addition. */
6981 if (code == PLUS && CONST_INT_P (op2)
6982 && GET_CODE (XEXP (value, 0)) == PLUS
6983 && REG_P (XEXP (XEXP (value, 0), 0))
6984 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6985 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6987 rtx temp = expand_simple_binop (GET_MODE (value), code,
6988 XEXP (XEXP (value, 0), 0), op2,
6989 subtarget, 0, OPTAB_LIB_WIDEN);
6990 return expand_simple_binop (GET_MODE (value), code, temp,
6991 force_operand (XEXP (XEXP (value,
6992 0), 1), 0),
6993 target, 0, OPTAB_LIB_WIDEN);
6996 op1 = force_operand (XEXP (value, 0), subtarget);
6997 op2 = force_operand (op2, NULL_RTX);
6998 switch (code)
7000 case MULT:
7001 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7002 case DIV:
7003 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7004 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7005 target, 1, OPTAB_LIB_WIDEN);
7006 else
7007 return expand_divmod (0,
7008 FLOAT_MODE_P (GET_MODE (value))
7009 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7010 GET_MODE (value), op1, op2, target, 0);
7011 case MOD:
7012 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7013 target, 0);
7014 case UDIV:
7015 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7016 target, 1);
7017 case UMOD:
7018 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7019 target, 1);
7020 case ASHIFTRT:
7021 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7022 target, 0, OPTAB_LIB_WIDEN);
7023 default:
7024 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7025 target, 1, OPTAB_LIB_WIDEN);
7028 if (UNARY_P (value))
7030 if (!target)
7031 target = gen_reg_rtx (GET_MODE (value));
7032 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7033 switch (code)
7035 case ZERO_EXTEND:
7036 case SIGN_EXTEND:
7037 case TRUNCATE:
7038 case FLOAT_EXTEND:
7039 case FLOAT_TRUNCATE:
7040 convert_move (target, op1, code == ZERO_EXTEND);
7041 return target;
7043 case FIX:
7044 case UNSIGNED_FIX:
7045 expand_fix (target, op1, code == UNSIGNED_FIX);
7046 return target;
7048 case FLOAT:
7049 case UNSIGNED_FLOAT:
7050 expand_float (target, op1, code == UNSIGNED_FLOAT);
7051 return target;
7053 default:
7054 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7058 #ifdef INSN_SCHEDULING
7059 /* On machines that have insn scheduling, we want all memory reference to be
7060 explicit, so we need to deal with such paradoxical SUBREGs. */
7061 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7062 value
7063 = simplify_gen_subreg (GET_MODE (value),
7064 force_reg (GET_MODE (SUBREG_REG (value)),
7065 force_operand (SUBREG_REG (value),
7066 NULL_RTX)),
7067 GET_MODE (SUBREG_REG (value)),
7068 SUBREG_BYTE (value));
7069 #endif
7071 return value;
7074 /* Subroutine of expand_expr: return nonzero iff there is no way that
7075 EXP can reference X, which is being modified. TOP_P is nonzero if this
7076 call is going to be used to determine whether we need a temporary
7077 for EXP, as opposed to a recursive call to this function.
7079 It is always safe for this routine to return zero since it merely
7080 searches for optimization opportunities. */
7083 safe_from_p (const_rtx x, tree exp, int top_p)
7085 rtx exp_rtl = 0;
7086 int i, nops;
7088 if (x == 0
7089 /* If EXP has varying size, we MUST use a target since we currently
7090 have no way of allocating temporaries of variable size
7091 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7092 So we assume here that something at a higher level has prevented a
7093 clash. This is somewhat bogus, but the best we can do. Only
7094 do this when X is BLKmode and when we are at the top level. */
7095 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7096 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7097 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7098 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7099 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7100 != INTEGER_CST)
7101 && GET_MODE (x) == BLKmode)
7102 /* If X is in the outgoing argument area, it is always safe. */
7103 || (MEM_P (x)
7104 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7105 || (GET_CODE (XEXP (x, 0)) == PLUS
7106 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7107 return 1;
7109 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7110 find the underlying pseudo. */
7111 if (GET_CODE (x) == SUBREG)
7113 x = SUBREG_REG (x);
7114 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7115 return 0;
7118 /* Now look at our tree code and possibly recurse. */
7119 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7121 case tcc_declaration:
7122 exp_rtl = DECL_RTL_IF_SET (exp);
7123 break;
7125 case tcc_constant:
7126 return 1;
7128 case tcc_exceptional:
7129 if (TREE_CODE (exp) == TREE_LIST)
7131 while (1)
7133 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7134 return 0;
7135 exp = TREE_CHAIN (exp);
7136 if (!exp)
7137 return 1;
7138 if (TREE_CODE (exp) != TREE_LIST)
7139 return safe_from_p (x, exp, 0);
7142 else if (TREE_CODE (exp) == CONSTRUCTOR)
7144 constructor_elt *ce;
7145 unsigned HOST_WIDE_INT idx;
7147 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
7148 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7149 || !safe_from_p (x, ce->value, 0))
7150 return 0;
7151 return 1;
7153 else if (TREE_CODE (exp) == ERROR_MARK)
7154 return 1; /* An already-visited SAVE_EXPR? */
7155 else
7156 return 0;
7158 case tcc_statement:
7159 /* The only case we look at here is the DECL_INITIAL inside a
7160 DECL_EXPR. */
7161 return (TREE_CODE (exp) != DECL_EXPR
7162 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7163 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7164 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7166 case tcc_binary:
7167 case tcc_comparison:
7168 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7169 return 0;
7170 /* Fall through. */
7172 case tcc_unary:
7173 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7175 case tcc_expression:
7176 case tcc_reference:
7177 case tcc_vl_exp:
7178 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7179 the expression. If it is set, we conflict iff we are that rtx or
7180 both are in memory. Otherwise, we check all operands of the
7181 expression recursively. */
7183 switch (TREE_CODE (exp))
7185 case ADDR_EXPR:
7186 /* If the operand is static or we are static, we can't conflict.
7187 Likewise if we don't conflict with the operand at all. */
7188 if (staticp (TREE_OPERAND (exp, 0))
7189 || TREE_STATIC (exp)
7190 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7191 return 1;
7193 /* Otherwise, the only way this can conflict is if we are taking
7194 the address of a DECL a that address if part of X, which is
7195 very rare. */
7196 exp = TREE_OPERAND (exp, 0);
7197 if (DECL_P (exp))
7199 if (!DECL_RTL_SET_P (exp)
7200 || !MEM_P (DECL_RTL (exp)))
7201 return 0;
7202 else
7203 exp_rtl = XEXP (DECL_RTL (exp), 0);
7205 break;
7207 case MEM_REF:
7208 if (MEM_P (x)
7209 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7210 get_alias_set (exp)))
7211 return 0;
7212 break;
7214 case CALL_EXPR:
7215 /* Assume that the call will clobber all hard registers and
7216 all of memory. */
7217 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7218 || MEM_P (x))
7219 return 0;
7220 break;
7222 case WITH_CLEANUP_EXPR:
7223 case CLEANUP_POINT_EXPR:
7224 /* Lowered by gimplify.c. */
7225 gcc_unreachable ();
7227 case SAVE_EXPR:
7228 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7230 default:
7231 break;
7234 /* If we have an rtx, we do not need to scan our operands. */
7235 if (exp_rtl)
7236 break;
7238 nops = TREE_OPERAND_LENGTH (exp);
7239 for (i = 0; i < nops; i++)
7240 if (TREE_OPERAND (exp, i) != 0
7241 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7242 return 0;
7244 break;
7246 case tcc_type:
7247 /* Should never get a type here. */
7248 gcc_unreachable ();
7251 /* If we have an rtl, find any enclosed object. Then see if we conflict
7252 with it. */
7253 if (exp_rtl)
7255 if (GET_CODE (exp_rtl) == SUBREG)
7257 exp_rtl = SUBREG_REG (exp_rtl);
7258 if (REG_P (exp_rtl)
7259 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7260 return 0;
7263 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7264 are memory and they conflict. */
7265 return ! (rtx_equal_p (x, exp_rtl)
7266 || (MEM_P (x) && MEM_P (exp_rtl)
7267 && true_dependence (exp_rtl, VOIDmode, x)));
7270 /* If we reach here, it is safe. */
7271 return 1;
7275 /* Return the highest power of two that EXP is known to be a multiple of.
7276 This is used in updating alignment of MEMs in array references. */
7278 unsigned HOST_WIDE_INT
7279 highest_pow2_factor (const_tree exp)
7281 unsigned HOST_WIDE_INT c0, c1;
7283 switch (TREE_CODE (exp))
7285 case INTEGER_CST:
7286 /* We can find the lowest bit that's a one. If the low
7287 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7288 We need to handle this case since we can find it in a COND_EXPR,
7289 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7290 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7291 later ICE. */
7292 if (TREE_OVERFLOW (exp))
7293 return BIGGEST_ALIGNMENT;
7294 else
7296 /* Note: tree_low_cst is intentionally not used here,
7297 we don't care about the upper bits. */
7298 c0 = TREE_INT_CST_LOW (exp);
7299 c0 &= -c0;
7300 return c0 ? c0 : BIGGEST_ALIGNMENT;
7302 break;
7304 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
7305 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7306 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7307 return MIN (c0, c1);
7309 case MULT_EXPR:
7310 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7311 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7312 return c0 * c1;
7314 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
7315 case CEIL_DIV_EXPR:
7316 if (integer_pow2p (TREE_OPERAND (exp, 1))
7317 && host_integerp (TREE_OPERAND (exp, 1), 1))
7319 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7320 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
7321 return MAX (1, c0 / c1);
7323 break;
7325 case BIT_AND_EXPR:
7326 /* The highest power of two of a bit-and expression is the maximum of
7327 that of its operands. We typically get here for a complex LHS and
7328 a constant negative power of two on the RHS to force an explicit
7329 alignment, so don't bother looking at the LHS. */
7330 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7332 CASE_CONVERT:
7333 case SAVE_EXPR:
7334 return highest_pow2_factor (TREE_OPERAND (exp, 0));
7336 case COMPOUND_EXPR:
7337 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7339 case COND_EXPR:
7340 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7341 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
7342 return MIN (c0, c1);
7344 default:
7345 break;
7348 return 1;
7351 /* Similar, except that the alignment requirements of TARGET are
7352 taken into account. Assume it is at least as aligned as its
7353 type, unless it is a COMPONENT_REF in which case the layout of
7354 the structure gives the alignment. */
7356 static unsigned HOST_WIDE_INT
7357 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7359 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7360 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7362 return MAX (factor, talign);
7365 /* Subroutine of expand_expr. Expand the two operands of a binary
7366 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7367 The value may be stored in TARGET if TARGET is nonzero. The
7368 MODIFIER argument is as documented by expand_expr. */
7370 static void
7371 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7372 enum expand_modifier modifier)
7374 if (! safe_from_p (target, exp1, 1))
7375 target = 0;
7376 if (operand_equal_p (exp0, exp1, 0))
7378 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7379 *op1 = copy_rtx (*op0);
7381 else
7383 /* If we need to preserve evaluation order, copy exp0 into its own
7384 temporary variable so that it can't be clobbered by exp1. */
7385 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7386 exp0 = save_expr (exp0);
7387 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7388 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7393 /* Return a MEM that contains constant EXP. DEFER is as for
7394 output_constant_def and MODIFIER is as for expand_expr. */
7396 static rtx
7397 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7399 rtx mem;
7401 mem = output_constant_def (exp, defer);
7402 if (modifier != EXPAND_INITIALIZER)
7403 mem = use_anchored_address (mem);
7404 return mem;
7407 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7408 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7410 static rtx
7411 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7412 enum expand_modifier modifier, addr_space_t as)
7414 rtx result, subtarget;
7415 tree inner, offset;
7416 HOST_WIDE_INT bitsize, bitpos;
7417 int volatilep, unsignedp;
7418 enum machine_mode mode1;
7420 /* If we are taking the address of a constant and are at the top level,
7421 we have to use output_constant_def since we can't call force_const_mem
7422 at top level. */
7423 /* ??? This should be considered a front-end bug. We should not be
7424 generating ADDR_EXPR of something that isn't an LVALUE. The only
7425 exception here is STRING_CST. */
7426 if (CONSTANT_CLASS_P (exp))
7428 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7429 if (modifier < EXPAND_SUM)
7430 result = force_operand (result, target);
7431 return result;
7434 /* Everything must be something allowed by is_gimple_addressable. */
7435 switch (TREE_CODE (exp))
7437 case INDIRECT_REF:
7438 /* This case will happen via recursion for &a->b. */
7439 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7441 case MEM_REF:
7443 tree tem = TREE_OPERAND (exp, 0);
7444 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7445 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7446 return expand_expr (tem, target, tmode, modifier);
7449 case CONST_DECL:
7450 /* Expand the initializer like constants above. */
7451 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7452 0, modifier), 0);
7453 if (modifier < EXPAND_SUM)
7454 result = force_operand (result, target);
7455 return result;
7457 case REALPART_EXPR:
7458 /* The real part of the complex number is always first, therefore
7459 the address is the same as the address of the parent object. */
7460 offset = 0;
7461 bitpos = 0;
7462 inner = TREE_OPERAND (exp, 0);
7463 break;
7465 case IMAGPART_EXPR:
7466 /* The imaginary part of the complex number is always second.
7467 The expression is therefore always offset by the size of the
7468 scalar type. */
7469 offset = 0;
7470 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7471 inner = TREE_OPERAND (exp, 0);
7472 break;
7474 default:
7475 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7476 expand_expr, as that can have various side effects; LABEL_DECLs for
7477 example, may not have their DECL_RTL set yet. Expand the rtl of
7478 CONSTRUCTORs too, which should yield a memory reference for the
7479 constructor's contents. Assume language specific tree nodes can
7480 be expanded in some interesting way. */
7481 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7482 if (DECL_P (exp)
7483 || TREE_CODE (exp) == CONSTRUCTOR
7484 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7486 result = expand_expr (exp, target, tmode,
7487 modifier == EXPAND_INITIALIZER
7488 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7490 /* If the DECL isn't in memory, then the DECL wasn't properly
7491 marked TREE_ADDRESSABLE, which will be either a front-end
7492 or a tree optimizer bug. */
7494 if (TREE_ADDRESSABLE (exp)
7495 && ! MEM_P (result)
7496 && ! targetm.calls.allocate_stack_slots_for_args())
7498 error ("local frame unavailable (naked function?)");
7499 return result;
7501 else
7502 gcc_assert (MEM_P (result));
7503 result = XEXP (result, 0);
7505 /* ??? Is this needed anymore? */
7506 if (DECL_P (exp) && !TREE_USED (exp) == 0)
7508 assemble_external (exp);
7509 TREE_USED (exp) = 1;
7512 if (modifier != EXPAND_INITIALIZER
7513 && modifier != EXPAND_CONST_ADDRESS
7514 && modifier != EXPAND_SUM)
7515 result = force_operand (result, target);
7516 return result;
7519 /* Pass FALSE as the last argument to get_inner_reference although
7520 we are expanding to RTL. The rationale is that we know how to
7521 handle "aligning nodes" here: we can just bypass them because
7522 they won't change the final object whose address will be returned
7523 (they actually exist only for that purpose). */
7524 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7525 &mode1, &unsignedp, &volatilep, false);
7526 break;
7529 /* We must have made progress. */
7530 gcc_assert (inner != exp);
7532 subtarget = offset || bitpos ? NULL_RTX : target;
7533 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7534 inner alignment, force the inner to be sufficiently aligned. */
7535 if (CONSTANT_CLASS_P (inner)
7536 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7538 inner = copy_node (inner);
7539 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7540 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7541 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7543 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7545 if (offset)
7547 rtx tmp;
7549 if (modifier != EXPAND_NORMAL)
7550 result = force_operand (result, NULL);
7551 tmp = expand_expr (offset, NULL_RTX, tmode,
7552 modifier == EXPAND_INITIALIZER
7553 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7555 result = convert_memory_address_addr_space (tmode, result, as);
7556 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7558 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7559 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7560 else
7562 subtarget = bitpos ? NULL_RTX : target;
7563 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7564 1, OPTAB_LIB_WIDEN);
7568 if (bitpos)
7570 /* Someone beforehand should have rejected taking the address
7571 of such an object. */
7572 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7574 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7575 if (modifier < EXPAND_SUM)
7576 result = force_operand (result, target);
7579 return result;
7582 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7583 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7585 static rtx
7586 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7587 enum expand_modifier modifier)
7589 addr_space_t as = ADDR_SPACE_GENERIC;
7590 enum machine_mode address_mode = Pmode;
7591 enum machine_mode pointer_mode = ptr_mode;
7592 enum machine_mode rmode;
7593 rtx result;
7595 /* Target mode of VOIDmode says "whatever's natural". */
7596 if (tmode == VOIDmode)
7597 tmode = TYPE_MODE (TREE_TYPE (exp));
7599 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7601 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7602 address_mode = targetm.addr_space.address_mode (as);
7603 pointer_mode = targetm.addr_space.pointer_mode (as);
7606 /* We can get called with some Weird Things if the user does silliness
7607 like "(short) &a". In that case, convert_memory_address won't do
7608 the right thing, so ignore the given target mode. */
7609 if (tmode != address_mode && tmode != pointer_mode)
7610 tmode = address_mode;
7612 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7613 tmode, modifier, as);
7615 /* Despite expand_expr claims concerning ignoring TMODE when not
7616 strictly convenient, stuff breaks if we don't honor it. Note
7617 that combined with the above, we only do this for pointer modes. */
7618 rmode = GET_MODE (result);
7619 if (rmode == VOIDmode)
7620 rmode = tmode;
7621 if (rmode != tmode)
7622 result = convert_memory_address_addr_space (tmode, result, as);
7624 return result;
7627 /* Generate code for computing CONSTRUCTOR EXP.
7628 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7629 is TRUE, instead of creating a temporary variable in memory
7630 NULL is returned and the caller needs to handle it differently. */
7632 static rtx
7633 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7634 bool avoid_temp_mem)
7636 tree type = TREE_TYPE (exp);
7637 enum machine_mode mode = TYPE_MODE (type);
7639 /* Try to avoid creating a temporary at all. This is possible
7640 if all of the initializer is zero.
7641 FIXME: try to handle all [0..255] initializers we can handle
7642 with memset. */
7643 if (TREE_STATIC (exp)
7644 && !TREE_ADDRESSABLE (exp)
7645 && target != 0 && mode == BLKmode
7646 && all_zeros_p (exp))
7648 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7649 return target;
7652 /* All elts simple constants => refer to a constant in memory. But
7653 if this is a non-BLKmode mode, let it store a field at a time
7654 since that should make a CONST_INT or CONST_DOUBLE when we
7655 fold. Likewise, if we have a target we can use, it is best to
7656 store directly into the target unless the type is large enough
7657 that memcpy will be used. If we are making an initializer and
7658 all operands are constant, put it in memory as well.
7660 FIXME: Avoid trying to fill vector constructors piece-meal.
7661 Output them with output_constant_def below unless we're sure
7662 they're zeros. This should go away when vector initializers
7663 are treated like VECTOR_CST instead of arrays. */
7664 if ((TREE_STATIC (exp)
7665 && ((mode == BLKmode
7666 && ! (target != 0 && safe_from_p (target, exp, 1)))
7667 || TREE_ADDRESSABLE (exp)
7668 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7669 && (! MOVE_BY_PIECES_P
7670 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7671 TYPE_ALIGN (type)))
7672 && ! mostly_zeros_p (exp))))
7673 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7674 && TREE_CONSTANT (exp)))
7676 rtx constructor;
7678 if (avoid_temp_mem)
7679 return NULL_RTX;
7681 constructor = expand_expr_constant (exp, 1, modifier);
7683 if (modifier != EXPAND_CONST_ADDRESS
7684 && modifier != EXPAND_INITIALIZER
7685 && modifier != EXPAND_SUM)
7686 constructor = validize_mem (constructor);
7688 return constructor;
7691 /* Handle calls that pass values in multiple non-contiguous
7692 locations. The Irix 6 ABI has examples of this. */
7693 if (target == 0 || ! safe_from_p (target, exp, 1)
7694 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7696 if (avoid_temp_mem)
7697 return NULL_RTX;
7699 target
7700 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7701 | (TREE_READONLY (exp)
7702 * TYPE_QUAL_CONST))),
7703 0, TREE_ADDRESSABLE (exp), 1);
7706 store_constructor (exp, target, 0, int_expr_size (exp));
7707 return target;
7711 /* expand_expr: generate code for computing expression EXP.
7712 An rtx for the computed value is returned. The value is never null.
7713 In the case of a void EXP, const0_rtx is returned.
7715 The value may be stored in TARGET if TARGET is nonzero.
7716 TARGET is just a suggestion; callers must assume that
7717 the rtx returned may not be the same as TARGET.
7719 If TARGET is CONST0_RTX, it means that the value will be ignored.
7721 If TMODE is not VOIDmode, it suggests generating the
7722 result in mode TMODE. But this is done only when convenient.
7723 Otherwise, TMODE is ignored and the value generated in its natural mode.
7724 TMODE is just a suggestion; callers must assume that
7725 the rtx returned may not have mode TMODE.
7727 Note that TARGET may have neither TMODE nor MODE. In that case, it
7728 probably will not be used.
7730 If MODIFIER is EXPAND_SUM then when EXP is an addition
7731 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7732 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7733 products as above, or REG or MEM, or constant.
7734 Ordinarily in such cases we would output mul or add instructions
7735 and then return a pseudo reg containing the sum.
7737 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7738 it also marks a label as absolutely required (it can't be dead).
7739 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7740 This is used for outputting expressions used in initializers.
7742 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7743 with a constant address even if that address is not normally legitimate.
7744 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7746 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7747 a call parameter. Such targets require special care as we haven't yet
7748 marked TARGET so that it's safe from being trashed by libcalls. We
7749 don't want to use TARGET for anything but the final result;
7750 Intermediate values must go elsewhere. Additionally, calls to
7751 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7753 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7754 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7755 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7756 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7757 recursively. */
7760 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7761 enum expand_modifier modifier, rtx *alt_rtl)
7763 rtx ret;
7765 /* Handle ERROR_MARK before anybody tries to access its type. */
7766 if (TREE_CODE (exp) == ERROR_MARK
7767 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7769 ret = CONST0_RTX (tmode);
7770 return ret ? ret : const0_rtx;
7773 /* If this is an expression of some kind and it has an associated line
7774 number, then emit the line number before expanding the expression.
7776 We need to save and restore the file and line information so that
7777 errors discovered during expansion are emitted with the right
7778 information. It would be better of the diagnostic routines
7779 used the file/line information embedded in the tree nodes rather
7780 than globals. */
7781 if (cfun && EXPR_HAS_LOCATION (exp))
7783 location_t saved_location = input_location;
7784 location_t saved_curr_loc = get_curr_insn_source_location ();
7785 tree saved_block = get_curr_insn_block ();
7786 input_location = EXPR_LOCATION (exp);
7787 set_curr_insn_source_location (input_location);
7789 /* Record where the insns produced belong. */
7790 set_curr_insn_block (TREE_BLOCK (exp));
7792 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7794 input_location = saved_location;
7795 set_curr_insn_block (saved_block);
7796 set_curr_insn_source_location (saved_curr_loc);
7798 else
7800 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7803 return ret;
7807 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7808 enum expand_modifier modifier)
7810 rtx op0, op1, op2, temp;
7811 tree type;
7812 int unsignedp;
7813 enum machine_mode mode;
7814 enum tree_code code = ops->code;
7815 optab this_optab;
7816 rtx subtarget, original_target;
7817 int ignore;
7818 bool reduce_bit_field;
7819 location_t loc = ops->location;
7820 tree treeop0, treeop1, treeop2;
7821 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7822 ? reduce_to_bit_field_precision ((expr), \
7823 target, \
7824 type) \
7825 : (expr))
7827 type = ops->type;
7828 mode = TYPE_MODE (type);
7829 unsignedp = TYPE_UNSIGNED (type);
7831 treeop0 = ops->op0;
7832 treeop1 = ops->op1;
7833 treeop2 = ops->op2;
7835 /* We should be called only on simple (binary or unary) expressions,
7836 exactly those that are valid in gimple expressions that aren't
7837 GIMPLE_SINGLE_RHS (or invalid). */
7838 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7839 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7840 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7842 ignore = (target == const0_rtx
7843 || ((CONVERT_EXPR_CODE_P (code)
7844 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7845 && TREE_CODE (type) == VOID_TYPE));
7847 /* We should be called only if we need the result. */
7848 gcc_assert (!ignore);
7850 /* An operation in what may be a bit-field type needs the
7851 result to be reduced to the precision of the bit-field type,
7852 which is narrower than that of the type's mode. */
7853 reduce_bit_field = (INTEGRAL_TYPE_P (type)
7854 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7856 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7857 target = 0;
7859 /* Use subtarget as the target for operand 0 of a binary operation. */
7860 subtarget = get_subtarget (target);
7861 original_target = target;
7863 switch (code)
7865 case NON_LVALUE_EXPR:
7866 case PAREN_EXPR:
7867 CASE_CONVERT:
7868 if (treeop0 == error_mark_node)
7869 return const0_rtx;
7871 if (TREE_CODE (type) == UNION_TYPE)
7873 tree valtype = TREE_TYPE (treeop0);
7875 /* If both input and output are BLKmode, this conversion isn't doing
7876 anything except possibly changing memory attribute. */
7877 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7879 rtx result = expand_expr (treeop0, target, tmode,
7880 modifier);
7882 result = copy_rtx (result);
7883 set_mem_attributes (result, type, 0);
7884 return result;
7887 if (target == 0)
7889 if (TYPE_MODE (type) != BLKmode)
7890 target = gen_reg_rtx (TYPE_MODE (type));
7891 else
7892 target = assign_temp (type, 0, 1, 1);
7895 if (MEM_P (target))
7896 /* Store data into beginning of memory target. */
7897 store_expr (treeop0,
7898 adjust_address (target, TYPE_MODE (valtype), 0),
7899 modifier == EXPAND_STACK_PARM,
7900 false);
7902 else
7904 gcc_assert (REG_P (target));
7906 /* Store this field into a union of the proper type. */
7907 store_field (target,
7908 MIN ((int_size_in_bytes (TREE_TYPE
7909 (treeop0))
7910 * BITS_PER_UNIT),
7911 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7912 0, 0, 0, TYPE_MODE (valtype), treeop0,
7913 type, 0, false);
7916 /* Return the entire union. */
7917 return target;
7920 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7922 op0 = expand_expr (treeop0, target, VOIDmode,
7923 modifier);
7925 /* If the signedness of the conversion differs and OP0 is
7926 a promoted SUBREG, clear that indication since we now
7927 have to do the proper extension. */
7928 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7929 && GET_CODE (op0) == SUBREG)
7930 SUBREG_PROMOTED_VAR_P (op0) = 0;
7932 return REDUCE_BIT_FIELD (op0);
7935 op0 = expand_expr (treeop0, NULL_RTX, mode,
7936 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7937 if (GET_MODE (op0) == mode)
7940 /* If OP0 is a constant, just convert it into the proper mode. */
7941 else if (CONSTANT_P (op0))
7943 tree inner_type = TREE_TYPE (treeop0);
7944 enum machine_mode inner_mode = GET_MODE (op0);
7946 if (inner_mode == VOIDmode)
7947 inner_mode = TYPE_MODE (inner_type);
7949 if (modifier == EXPAND_INITIALIZER)
7950 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7951 subreg_lowpart_offset (mode,
7952 inner_mode));
7953 else
7954 op0= convert_modes (mode, inner_mode, op0,
7955 TYPE_UNSIGNED (inner_type));
7958 else if (modifier == EXPAND_INITIALIZER)
7959 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7961 else if (target == 0)
7962 op0 = convert_to_mode (mode, op0,
7963 TYPE_UNSIGNED (TREE_TYPE
7964 (treeop0)));
7965 else
7967 convert_move (target, op0,
7968 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7969 op0 = target;
7972 return REDUCE_BIT_FIELD (op0);
7974 case ADDR_SPACE_CONVERT_EXPR:
7976 tree treeop0_type = TREE_TYPE (treeop0);
7977 addr_space_t as_to;
7978 addr_space_t as_from;
7980 gcc_assert (POINTER_TYPE_P (type));
7981 gcc_assert (POINTER_TYPE_P (treeop0_type));
7983 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7984 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7986 /* Conversions between pointers to the same address space should
7987 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7988 gcc_assert (as_to != as_from);
7990 /* Ask target code to handle conversion between pointers
7991 to overlapping address spaces. */
7992 if (targetm.addr_space.subset_p (as_to, as_from)
7993 || targetm.addr_space.subset_p (as_from, as_to))
7995 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7996 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7997 gcc_assert (op0);
7998 return op0;
8001 /* For disjoint address spaces, converting anything but
8002 a null pointer invokes undefined behaviour. We simply
8003 always return a null pointer here. */
8004 return CONST0_RTX (mode);
8007 case POINTER_PLUS_EXPR:
8008 /* Even though the sizetype mode and the pointer's mode can be different
8009 expand is able to handle this correctly and get the correct result out
8010 of the PLUS_EXPR code. */
8011 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8012 if sizetype precision is smaller than pointer precision. */
8013 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8014 treeop1 = fold_convert_loc (loc, type,
8015 fold_convert_loc (loc, ssizetype,
8016 treeop1));
8017 case PLUS_EXPR:
8018 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8019 something else, make sure we add the register to the constant and
8020 then to the other thing. This case can occur during strength
8021 reduction and doing it this way will produce better code if the
8022 frame pointer or argument pointer is eliminated.
8024 fold-const.c will ensure that the constant is always in the inner
8025 PLUS_EXPR, so the only case we need to do anything about is if
8026 sp, ap, or fp is our second argument, in which case we must swap
8027 the innermost first argument and our second argument. */
8029 if (TREE_CODE (treeop0) == PLUS_EXPR
8030 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8031 && TREE_CODE (treeop1) == VAR_DECL
8032 && (DECL_RTL (treeop1) == frame_pointer_rtx
8033 || DECL_RTL (treeop1) == stack_pointer_rtx
8034 || DECL_RTL (treeop1) == arg_pointer_rtx))
8036 tree t = treeop1;
8038 treeop1 = TREE_OPERAND (treeop0, 0);
8039 TREE_OPERAND (treeop0, 0) = t;
8042 /* If the result is to be ptr_mode and we are adding an integer to
8043 something, we might be forming a constant. So try to use
8044 plus_constant. If it produces a sum and we can't accept it,
8045 use force_operand. This allows P = &ARR[const] to generate
8046 efficient code on machines where a SYMBOL_REF is not a valid
8047 address.
8049 If this is an EXPAND_SUM call, always return the sum. */
8050 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8051 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8053 if (modifier == EXPAND_STACK_PARM)
8054 target = 0;
8055 if (TREE_CODE (treeop0) == INTEGER_CST
8056 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8057 && TREE_CONSTANT (treeop1))
8059 rtx constant_part;
8061 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8062 EXPAND_SUM);
8063 /* Use immed_double_const to ensure that the constant is
8064 truncated according to the mode of OP1, then sign extended
8065 to a HOST_WIDE_INT. Using the constant directly can result
8066 in non-canonical RTL in a 64x32 cross compile. */
8067 constant_part
8068 = immed_double_const (TREE_INT_CST_LOW (treeop0),
8069 (HOST_WIDE_INT) 0,
8070 TYPE_MODE (TREE_TYPE (treeop1)));
8071 op1 = plus_constant (op1, INTVAL (constant_part));
8072 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8073 op1 = force_operand (op1, target);
8074 return REDUCE_BIT_FIELD (op1);
8077 else if (TREE_CODE (treeop1) == INTEGER_CST
8078 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8079 && TREE_CONSTANT (treeop0))
8081 rtx constant_part;
8083 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8084 (modifier == EXPAND_INITIALIZER
8085 ? EXPAND_INITIALIZER : EXPAND_SUM));
8086 if (! CONSTANT_P (op0))
8088 op1 = expand_expr (treeop1, NULL_RTX,
8089 VOIDmode, modifier);
8090 /* Return a PLUS if modifier says it's OK. */
8091 if (modifier == EXPAND_SUM
8092 || modifier == EXPAND_INITIALIZER)
8093 return simplify_gen_binary (PLUS, mode, op0, op1);
8094 goto binop2;
8096 /* Use immed_double_const to ensure that the constant is
8097 truncated according to the mode of OP1, then sign extended
8098 to a HOST_WIDE_INT. Using the constant directly can result
8099 in non-canonical RTL in a 64x32 cross compile. */
8100 constant_part
8101 = immed_double_const (TREE_INT_CST_LOW (treeop1),
8102 (HOST_WIDE_INT) 0,
8103 TYPE_MODE (TREE_TYPE (treeop0)));
8104 op0 = plus_constant (op0, INTVAL (constant_part));
8105 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8106 op0 = force_operand (op0, target);
8107 return REDUCE_BIT_FIELD (op0);
8111 /* Use TER to expand pointer addition of a negated value
8112 as pointer subtraction. */
8113 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8114 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8115 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8116 && TREE_CODE (treeop1) == SSA_NAME
8117 && TYPE_MODE (TREE_TYPE (treeop0))
8118 == TYPE_MODE (TREE_TYPE (treeop1)))
8120 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8121 if (def)
8123 treeop1 = gimple_assign_rhs1 (def);
8124 code = MINUS_EXPR;
8125 goto do_minus;
8129 /* No sense saving up arithmetic to be done
8130 if it's all in the wrong mode to form part of an address.
8131 And force_operand won't know whether to sign-extend or
8132 zero-extend. */
8133 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8134 || mode != ptr_mode)
8136 expand_operands (treeop0, treeop1,
8137 subtarget, &op0, &op1, EXPAND_NORMAL);
8138 if (op0 == const0_rtx)
8139 return op1;
8140 if (op1 == const0_rtx)
8141 return op0;
8142 goto binop2;
8145 expand_operands (treeop0, treeop1,
8146 subtarget, &op0, &op1, modifier);
8147 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8149 case MINUS_EXPR:
8150 do_minus:
8151 /* For initializers, we are allowed to return a MINUS of two
8152 symbolic constants. Here we handle all cases when both operands
8153 are constant. */
8154 /* Handle difference of two symbolic constants,
8155 for the sake of an initializer. */
8156 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8157 && really_constant_p (treeop0)
8158 && really_constant_p (treeop1))
8160 expand_operands (treeop0, treeop1,
8161 NULL_RTX, &op0, &op1, modifier);
8163 /* If the last operand is a CONST_INT, use plus_constant of
8164 the negated constant. Else make the MINUS. */
8165 if (CONST_INT_P (op1))
8166 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8167 else
8168 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8171 /* No sense saving up arithmetic to be done
8172 if it's all in the wrong mode to form part of an address.
8173 And force_operand won't know whether to sign-extend or
8174 zero-extend. */
8175 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8176 || mode != ptr_mode)
8177 goto binop;
8179 expand_operands (treeop0, treeop1,
8180 subtarget, &op0, &op1, modifier);
8182 /* Convert A - const to A + (-const). */
8183 if (CONST_INT_P (op1))
8185 op1 = negate_rtx (mode, op1);
8186 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8189 goto binop2;
8191 case WIDEN_MULT_PLUS_EXPR:
8192 case WIDEN_MULT_MINUS_EXPR:
8193 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8194 op2 = expand_normal (treeop2);
8195 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8196 target, unsignedp);
8197 return target;
8199 case WIDEN_MULT_EXPR:
8200 /* If first operand is constant, swap them.
8201 Thus the following special case checks need only
8202 check the second operand. */
8203 if (TREE_CODE (treeop0) == INTEGER_CST)
8205 tree t1 = treeop0;
8206 treeop0 = treeop1;
8207 treeop1 = t1;
8210 /* First, check if we have a multiplication of one signed and one
8211 unsigned operand. */
8212 if (TREE_CODE (treeop1) != INTEGER_CST
8213 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8214 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8216 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8217 this_optab = usmul_widen_optab;
8218 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8219 != CODE_FOR_nothing)
8221 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8222 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8223 EXPAND_NORMAL);
8224 else
8225 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8226 EXPAND_NORMAL);
8227 goto binop3;
8230 /* Check for a multiplication with matching signedness. */
8231 else if ((TREE_CODE (treeop1) == INTEGER_CST
8232 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8233 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8234 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8236 tree op0type = TREE_TYPE (treeop0);
8237 enum machine_mode innermode = TYPE_MODE (op0type);
8238 bool zextend_p = TYPE_UNSIGNED (op0type);
8239 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8240 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8242 if (TREE_CODE (treeop0) != INTEGER_CST)
8244 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8245 != CODE_FOR_nothing)
8247 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8248 EXPAND_NORMAL);
8249 temp = expand_widening_mult (mode, op0, op1, target,
8250 unsignedp, this_optab);
8251 return REDUCE_BIT_FIELD (temp);
8253 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8254 != CODE_FOR_nothing
8255 && innermode == word_mode)
8257 rtx htem, hipart;
8258 op0 = expand_normal (treeop0);
8259 if (TREE_CODE (treeop1) == INTEGER_CST)
8260 op1 = convert_modes (innermode, mode,
8261 expand_normal (treeop1), unsignedp);
8262 else
8263 op1 = expand_normal (treeop1);
8264 temp = expand_binop (mode, other_optab, op0, op1, target,
8265 unsignedp, OPTAB_LIB_WIDEN);
8266 hipart = gen_highpart (innermode, temp);
8267 htem = expand_mult_highpart_adjust (innermode, hipart,
8268 op0, op1, hipart,
8269 zextend_p);
8270 if (htem != hipart)
8271 emit_move_insn (hipart, htem);
8272 return REDUCE_BIT_FIELD (temp);
8276 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8277 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8278 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8279 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8281 case FMA_EXPR:
8283 optab opt = fma_optab;
8284 gimple def0, def2;
8286 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8287 call. */
8288 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8290 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8291 tree call_expr;
8293 gcc_assert (fn != NULL_TREE);
8294 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8295 return expand_builtin (call_expr, target, subtarget, mode, false);
8298 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8299 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8301 op0 = op2 = NULL;
8303 if (def0 && def2
8304 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8306 opt = fnms_optab;
8307 op0 = expand_normal (gimple_assign_rhs1 (def0));
8308 op2 = expand_normal (gimple_assign_rhs1 (def2));
8310 else if (def0
8311 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8313 opt = fnma_optab;
8314 op0 = expand_normal (gimple_assign_rhs1 (def0));
8316 else if (def2
8317 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8319 opt = fms_optab;
8320 op2 = expand_normal (gimple_assign_rhs1 (def2));
8323 if (op0 == NULL)
8324 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8325 if (op2 == NULL)
8326 op2 = expand_normal (treeop2);
8327 op1 = expand_normal (treeop1);
8329 return expand_ternary_op (TYPE_MODE (type), opt,
8330 op0, op1, op2, target, 0);
8333 case MULT_EXPR:
8334 /* If this is a fixed-point operation, then we cannot use the code
8335 below because "expand_mult" doesn't support sat/no-sat fixed-point
8336 multiplications. */
8337 if (ALL_FIXED_POINT_MODE_P (mode))
8338 goto binop;
8340 /* If first operand is constant, swap them.
8341 Thus the following special case checks need only
8342 check the second operand. */
8343 if (TREE_CODE (treeop0) == INTEGER_CST)
8345 tree t1 = treeop0;
8346 treeop0 = treeop1;
8347 treeop1 = t1;
8350 /* Attempt to return something suitable for generating an
8351 indexed address, for machines that support that. */
8353 if (modifier == EXPAND_SUM && mode == ptr_mode
8354 && host_integerp (treeop1, 0))
8356 tree exp1 = treeop1;
8358 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8359 EXPAND_SUM);
8361 if (!REG_P (op0))
8362 op0 = force_operand (op0, NULL_RTX);
8363 if (!REG_P (op0))
8364 op0 = copy_to_mode_reg (mode, op0);
8366 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8367 gen_int_mode (tree_low_cst (exp1, 0),
8368 TYPE_MODE (TREE_TYPE (exp1)))));
8371 if (modifier == EXPAND_STACK_PARM)
8372 target = 0;
8374 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8375 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8377 case TRUNC_DIV_EXPR:
8378 case FLOOR_DIV_EXPR:
8379 case CEIL_DIV_EXPR:
8380 case ROUND_DIV_EXPR:
8381 case EXACT_DIV_EXPR:
8382 /* If this is a fixed-point operation, then we cannot use the code
8383 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8384 divisions. */
8385 if (ALL_FIXED_POINT_MODE_P (mode))
8386 goto binop;
8388 if (modifier == EXPAND_STACK_PARM)
8389 target = 0;
8390 /* Possible optimization: compute the dividend with EXPAND_SUM
8391 then if the divisor is constant can optimize the case
8392 where some terms of the dividend have coeffs divisible by it. */
8393 expand_operands (treeop0, treeop1,
8394 subtarget, &op0, &op1, EXPAND_NORMAL);
8395 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8397 case RDIV_EXPR:
8398 goto binop;
8400 case TRUNC_MOD_EXPR:
8401 case FLOOR_MOD_EXPR:
8402 case CEIL_MOD_EXPR:
8403 case ROUND_MOD_EXPR:
8404 if (modifier == EXPAND_STACK_PARM)
8405 target = 0;
8406 expand_operands (treeop0, treeop1,
8407 subtarget, &op0, &op1, EXPAND_NORMAL);
8408 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8410 case FIXED_CONVERT_EXPR:
8411 op0 = expand_normal (treeop0);
8412 if (target == 0 || modifier == EXPAND_STACK_PARM)
8413 target = gen_reg_rtx (mode);
8415 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8416 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8417 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8418 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8419 else
8420 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8421 return target;
8423 case FIX_TRUNC_EXPR:
8424 op0 = expand_normal (treeop0);
8425 if (target == 0 || modifier == EXPAND_STACK_PARM)
8426 target = gen_reg_rtx (mode);
8427 expand_fix (target, op0, unsignedp);
8428 return target;
8430 case FLOAT_EXPR:
8431 op0 = expand_normal (treeop0);
8432 if (target == 0 || modifier == EXPAND_STACK_PARM)
8433 target = gen_reg_rtx (mode);
8434 /* expand_float can't figure out what to do if FROM has VOIDmode.
8435 So give it the correct mode. With -O, cse will optimize this. */
8436 if (GET_MODE (op0) == VOIDmode)
8437 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8438 op0);
8439 expand_float (target, op0,
8440 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8441 return target;
8443 case NEGATE_EXPR:
8444 op0 = expand_expr (treeop0, subtarget,
8445 VOIDmode, EXPAND_NORMAL);
8446 if (modifier == EXPAND_STACK_PARM)
8447 target = 0;
8448 temp = expand_unop (mode,
8449 optab_for_tree_code (NEGATE_EXPR, type,
8450 optab_default),
8451 op0, target, 0);
8452 gcc_assert (temp);
8453 return REDUCE_BIT_FIELD (temp);
8455 case ABS_EXPR:
8456 op0 = expand_expr (treeop0, subtarget,
8457 VOIDmode, EXPAND_NORMAL);
8458 if (modifier == EXPAND_STACK_PARM)
8459 target = 0;
8461 /* ABS_EXPR is not valid for complex arguments. */
8462 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8463 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8465 /* Unsigned abs is simply the operand. Testing here means we don't
8466 risk generating incorrect code below. */
8467 if (TYPE_UNSIGNED (type))
8468 return op0;
8470 return expand_abs (mode, op0, target, unsignedp,
8471 safe_from_p (target, treeop0, 1));
8473 case MAX_EXPR:
8474 case MIN_EXPR:
8475 target = original_target;
8476 if (target == 0
8477 || modifier == EXPAND_STACK_PARM
8478 || (MEM_P (target) && MEM_VOLATILE_P (target))
8479 || GET_MODE (target) != mode
8480 || (REG_P (target)
8481 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8482 target = gen_reg_rtx (mode);
8483 expand_operands (treeop0, treeop1,
8484 target, &op0, &op1, EXPAND_NORMAL);
8486 /* First try to do it with a special MIN or MAX instruction.
8487 If that does not win, use a conditional jump to select the proper
8488 value. */
8489 this_optab = optab_for_tree_code (code, type, optab_default);
8490 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8491 OPTAB_WIDEN);
8492 if (temp != 0)
8493 return temp;
8495 /* At this point, a MEM target is no longer useful; we will get better
8496 code without it. */
8498 if (! REG_P (target))
8499 target = gen_reg_rtx (mode);
8501 /* If op1 was placed in target, swap op0 and op1. */
8502 if (target != op0 && target == op1)
8504 temp = op0;
8505 op0 = op1;
8506 op1 = temp;
8509 /* We generate better code and avoid problems with op1 mentioning
8510 target by forcing op1 into a pseudo if it isn't a constant. */
8511 if (! CONSTANT_P (op1))
8512 op1 = force_reg (mode, op1);
8515 enum rtx_code comparison_code;
8516 rtx cmpop1 = op1;
8518 if (code == MAX_EXPR)
8519 comparison_code = unsignedp ? GEU : GE;
8520 else
8521 comparison_code = unsignedp ? LEU : LE;
8523 /* Canonicalize to comparisons against 0. */
8524 if (op1 == const1_rtx)
8526 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8527 or (a != 0 ? a : 1) for unsigned.
8528 For MIN we are safe converting (a <= 1 ? a : 1)
8529 into (a <= 0 ? a : 1) */
8530 cmpop1 = const0_rtx;
8531 if (code == MAX_EXPR)
8532 comparison_code = unsignedp ? NE : GT;
8534 if (op1 == constm1_rtx && !unsignedp)
8536 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8537 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8538 cmpop1 = const0_rtx;
8539 if (code == MIN_EXPR)
8540 comparison_code = LT;
8542 #ifdef HAVE_conditional_move
8543 /* Use a conditional move if possible. */
8544 if (can_conditionally_move_p (mode))
8546 rtx insn;
8548 /* ??? Same problem as in expmed.c: emit_conditional_move
8549 forces a stack adjustment via compare_from_rtx, and we
8550 lose the stack adjustment if the sequence we are about
8551 to create is discarded. */
8552 do_pending_stack_adjust ();
8554 start_sequence ();
8556 /* Try to emit the conditional move. */
8557 insn = emit_conditional_move (target, comparison_code,
8558 op0, cmpop1, mode,
8559 op0, op1, mode,
8560 unsignedp);
8562 /* If we could do the conditional move, emit the sequence,
8563 and return. */
8564 if (insn)
8566 rtx seq = get_insns ();
8567 end_sequence ();
8568 emit_insn (seq);
8569 return target;
8572 /* Otherwise discard the sequence and fall back to code with
8573 branches. */
8574 end_sequence ();
8576 #endif
8577 if (target != op0)
8578 emit_move_insn (target, op0);
8580 temp = gen_label_rtx ();
8581 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8582 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8583 -1);
8585 emit_move_insn (target, op1);
8586 emit_label (temp);
8587 return target;
8589 case BIT_NOT_EXPR:
8590 op0 = expand_expr (treeop0, subtarget,
8591 VOIDmode, EXPAND_NORMAL);
8592 if (modifier == EXPAND_STACK_PARM)
8593 target = 0;
8594 /* In case we have to reduce the result to bitfield precision
8595 for unsigned bitfield expand this as XOR with a proper constant
8596 instead. */
8597 if (reduce_bit_field && TYPE_UNSIGNED (type))
8598 temp = expand_binop (mode, xor_optab, op0,
8599 immed_double_int_const
8600 (double_int_mask (TYPE_PRECISION (type)), mode),
8601 target, 1, OPTAB_LIB_WIDEN);
8602 else
8603 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8604 gcc_assert (temp);
8605 return temp;
8607 /* ??? Can optimize bitwise operations with one arg constant.
8608 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8609 and (a bitwise1 b) bitwise2 b (etc)
8610 but that is probably not worth while. */
8612 case BIT_AND_EXPR:
8613 case BIT_IOR_EXPR:
8614 case BIT_XOR_EXPR:
8615 goto binop;
8617 case LROTATE_EXPR:
8618 case RROTATE_EXPR:
8619 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8620 || (GET_MODE_PRECISION (TYPE_MODE (type))
8621 == TYPE_PRECISION (type)));
8622 /* fall through */
8624 case LSHIFT_EXPR:
8625 case RSHIFT_EXPR:
8626 /* If this is a fixed-point operation, then we cannot use the code
8627 below because "expand_shift" doesn't support sat/no-sat fixed-point
8628 shifts. */
8629 if (ALL_FIXED_POINT_MODE_P (mode))
8630 goto binop;
8632 if (! safe_from_p (subtarget, treeop1, 1))
8633 subtarget = 0;
8634 if (modifier == EXPAND_STACK_PARM)
8635 target = 0;
8636 op0 = expand_expr (treeop0, subtarget,
8637 VOIDmode, EXPAND_NORMAL);
8638 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8639 unsignedp);
8640 if (code == LSHIFT_EXPR)
8641 temp = REDUCE_BIT_FIELD (temp);
8642 return temp;
8644 /* Could determine the answer when only additive constants differ. Also,
8645 the addition of one can be handled by changing the condition. */
8646 case LT_EXPR:
8647 case LE_EXPR:
8648 case GT_EXPR:
8649 case GE_EXPR:
8650 case EQ_EXPR:
8651 case NE_EXPR:
8652 case UNORDERED_EXPR:
8653 case ORDERED_EXPR:
8654 case UNLT_EXPR:
8655 case UNLE_EXPR:
8656 case UNGT_EXPR:
8657 case UNGE_EXPR:
8658 case UNEQ_EXPR:
8659 case LTGT_EXPR:
8660 temp = do_store_flag (ops,
8661 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8662 tmode != VOIDmode ? tmode : mode);
8663 if (temp)
8664 return temp;
8666 /* Use a compare and a jump for BLKmode comparisons, or for function
8667 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8669 if ((target == 0
8670 || modifier == EXPAND_STACK_PARM
8671 || ! safe_from_p (target, treeop0, 1)
8672 || ! safe_from_p (target, treeop1, 1)
8673 /* Make sure we don't have a hard reg (such as function's return
8674 value) live across basic blocks, if not optimizing. */
8675 || (!optimize && REG_P (target)
8676 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8677 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8679 emit_move_insn (target, const0_rtx);
8681 op1 = gen_label_rtx ();
8682 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8684 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8685 emit_move_insn (target, constm1_rtx);
8686 else
8687 emit_move_insn (target, const1_rtx);
8689 emit_label (op1);
8690 return target;
8692 case COMPLEX_EXPR:
8693 /* Get the rtx code of the operands. */
8694 op0 = expand_normal (treeop0);
8695 op1 = expand_normal (treeop1);
8697 if (!target)
8698 target = gen_reg_rtx (TYPE_MODE (type));
8699 else
8700 /* If target overlaps with op1, then either we need to force
8701 op1 into a pseudo (if target also overlaps with op0),
8702 or write the complex parts in reverse order. */
8703 switch (GET_CODE (target))
8705 case CONCAT:
8706 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
8708 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
8710 complex_expr_force_op1:
8711 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
8712 emit_move_insn (temp, op1);
8713 op1 = temp;
8714 break;
8716 complex_expr_swap_order:
8717 /* Move the imaginary (op1) and real (op0) parts to their
8718 location. */
8719 write_complex_part (target, op1, true);
8720 write_complex_part (target, op0, false);
8722 return target;
8724 break;
8725 case MEM:
8726 temp = adjust_address_nv (target,
8727 GET_MODE_INNER (GET_MODE (target)), 0);
8728 if (reg_overlap_mentioned_p (temp, op1))
8730 enum machine_mode imode = GET_MODE_INNER (GET_MODE (target));
8731 temp = adjust_address_nv (target, imode,
8732 GET_MODE_SIZE (imode));
8733 if (reg_overlap_mentioned_p (temp, op0))
8734 goto complex_expr_force_op1;
8735 goto complex_expr_swap_order;
8737 break;
8738 default:
8739 if (reg_overlap_mentioned_p (target, op1))
8741 if (reg_overlap_mentioned_p (target, op0))
8742 goto complex_expr_force_op1;
8743 goto complex_expr_swap_order;
8745 break;
8748 /* Move the real (op0) and imaginary (op1) parts to their location. */
8749 write_complex_part (target, op0, false);
8750 write_complex_part (target, op1, true);
8752 return target;
8754 case WIDEN_SUM_EXPR:
8756 tree oprnd0 = treeop0;
8757 tree oprnd1 = treeop1;
8759 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8760 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8761 target, unsignedp);
8762 return target;
8765 case REDUC_MAX_EXPR:
8766 case REDUC_MIN_EXPR:
8767 case REDUC_PLUS_EXPR:
8769 op0 = expand_normal (treeop0);
8770 this_optab = optab_for_tree_code (code, type, optab_default);
8771 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8772 gcc_assert (temp);
8773 return temp;
8776 case VEC_LSHIFT_EXPR:
8777 case VEC_RSHIFT_EXPR:
8779 target = expand_vec_shift_expr (ops, target);
8780 return target;
8783 case VEC_UNPACK_HI_EXPR:
8784 case VEC_UNPACK_LO_EXPR:
8786 op0 = expand_normal (treeop0);
8787 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8788 target, unsignedp);
8789 gcc_assert (temp);
8790 return temp;
8793 case VEC_UNPACK_FLOAT_HI_EXPR:
8794 case VEC_UNPACK_FLOAT_LO_EXPR:
8796 op0 = expand_normal (treeop0);
8797 /* The signedness is determined from input operand. */
8798 temp = expand_widen_pattern_expr
8799 (ops, op0, NULL_RTX, NULL_RTX,
8800 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8802 gcc_assert (temp);
8803 return temp;
8806 case VEC_WIDEN_MULT_HI_EXPR:
8807 case VEC_WIDEN_MULT_LO_EXPR:
8809 tree oprnd0 = treeop0;
8810 tree oprnd1 = treeop1;
8812 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8813 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8814 target, unsignedp);
8815 gcc_assert (target);
8816 return target;
8819 case VEC_WIDEN_LSHIFT_HI_EXPR:
8820 case VEC_WIDEN_LSHIFT_LO_EXPR:
8822 tree oprnd0 = treeop0;
8823 tree oprnd1 = treeop1;
8825 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8826 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8827 target, unsignedp);
8828 gcc_assert (target);
8829 return target;
8832 case VEC_PACK_TRUNC_EXPR:
8833 case VEC_PACK_SAT_EXPR:
8834 case VEC_PACK_FIX_TRUNC_EXPR:
8835 mode = TYPE_MODE (TREE_TYPE (treeop0));
8836 goto binop;
8838 case VEC_PERM_EXPR:
8839 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
8840 op2 = expand_normal (treeop2);
8842 /* Careful here: if the target doesn't support integral vector modes,
8843 a constant selection vector could wind up smooshed into a normal
8844 integral constant. */
8845 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
8847 tree sel_type = TREE_TYPE (treeop2);
8848 enum machine_mode vmode
8849 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
8850 TYPE_VECTOR_SUBPARTS (sel_type));
8851 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
8852 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
8853 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
8855 else
8856 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
8858 temp = expand_vec_perm (mode, op0, op1, op2, target);
8859 gcc_assert (temp);
8860 return temp;
8862 case DOT_PROD_EXPR:
8864 tree oprnd0 = treeop0;
8865 tree oprnd1 = treeop1;
8866 tree oprnd2 = treeop2;
8867 rtx op2;
8869 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8870 op2 = expand_normal (oprnd2);
8871 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8872 target, unsignedp);
8873 return target;
8876 case REALIGN_LOAD_EXPR:
8878 tree oprnd0 = treeop0;
8879 tree oprnd1 = treeop1;
8880 tree oprnd2 = treeop2;
8881 rtx op2;
8883 this_optab = optab_for_tree_code (code, type, optab_default);
8884 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8885 op2 = expand_normal (oprnd2);
8886 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8887 target, unsignedp);
8888 gcc_assert (temp);
8889 return temp;
8892 case COND_EXPR:
8893 /* A COND_EXPR with its type being VOID_TYPE represents a
8894 conditional jump and is handled in
8895 expand_gimple_cond_expr. */
8896 gcc_assert (!VOID_TYPE_P (type));
8898 /* Note that COND_EXPRs whose type is a structure or union
8899 are required to be constructed to contain assignments of
8900 a temporary variable, so that we can evaluate them here
8901 for side effect only. If type is void, we must do likewise. */
8903 gcc_assert (!TREE_ADDRESSABLE (type)
8904 && !ignore
8905 && TREE_TYPE (treeop1) != void_type_node
8906 && TREE_TYPE (treeop2) != void_type_node);
8908 /* If we are not to produce a result, we have no target. Otherwise,
8909 if a target was specified use it; it will not be used as an
8910 intermediate target unless it is safe. If no target, use a
8911 temporary. */
8913 if (modifier != EXPAND_STACK_PARM
8914 && original_target
8915 && safe_from_p (original_target, treeop0, 1)
8916 && GET_MODE (original_target) == mode
8917 #ifdef HAVE_conditional_move
8918 && (! can_conditionally_move_p (mode)
8919 || REG_P (original_target))
8920 #endif
8921 && !MEM_P (original_target))
8922 temp = original_target;
8923 else
8924 temp = assign_temp (type, 0, 0, 1);
8926 do_pending_stack_adjust ();
8927 NO_DEFER_POP;
8928 op0 = gen_label_rtx ();
8929 op1 = gen_label_rtx ();
8930 jumpifnot (treeop0, op0, -1);
8931 store_expr (treeop1, temp,
8932 modifier == EXPAND_STACK_PARM,
8933 false);
8935 emit_jump_insn (gen_jump (op1));
8936 emit_barrier ();
8937 emit_label (op0);
8938 store_expr (treeop2, temp,
8939 modifier == EXPAND_STACK_PARM,
8940 false);
8942 emit_label (op1);
8943 OK_DEFER_POP;
8944 return temp;
8946 case VEC_COND_EXPR:
8947 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
8948 return target;
8950 default:
8951 gcc_unreachable ();
8954 /* Here to do an ordinary binary operator. */
8955 binop:
8956 expand_operands (treeop0, treeop1,
8957 subtarget, &op0, &op1, EXPAND_NORMAL);
8958 binop2:
8959 this_optab = optab_for_tree_code (code, type, optab_default);
8960 binop3:
8961 if (modifier == EXPAND_STACK_PARM)
8962 target = 0;
8963 temp = expand_binop (mode, this_optab, op0, op1, target,
8964 unsignedp, OPTAB_LIB_WIDEN);
8965 gcc_assert (temp);
8966 /* Bitwise operations do not need bitfield reduction as we expect their
8967 operands being properly truncated. */
8968 if (code == BIT_XOR_EXPR
8969 || code == BIT_AND_EXPR
8970 || code == BIT_IOR_EXPR)
8971 return temp;
8972 return REDUCE_BIT_FIELD (temp);
8974 #undef REDUCE_BIT_FIELD
8977 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8978 enum expand_modifier modifier, rtx *alt_rtl)
8980 rtx op0, op1, temp, decl_rtl;
8981 tree type;
8982 int unsignedp;
8983 enum machine_mode mode;
8984 enum tree_code code = TREE_CODE (exp);
8985 rtx subtarget, original_target;
8986 int ignore;
8987 tree context;
8988 bool reduce_bit_field;
8989 location_t loc = EXPR_LOCATION (exp);
8990 struct separate_ops ops;
8991 tree treeop0, treeop1, treeop2;
8992 tree ssa_name = NULL_TREE;
8993 gimple g;
8995 type = TREE_TYPE (exp);
8996 mode = TYPE_MODE (type);
8997 unsignedp = TYPE_UNSIGNED (type);
8999 treeop0 = treeop1 = treeop2 = NULL_TREE;
9000 if (!VL_EXP_CLASS_P (exp))
9001 switch (TREE_CODE_LENGTH (code))
9003 default:
9004 case 3: treeop2 = TREE_OPERAND (exp, 2);
9005 case 2: treeop1 = TREE_OPERAND (exp, 1);
9006 case 1: treeop0 = TREE_OPERAND (exp, 0);
9007 case 0: break;
9009 ops.code = code;
9010 ops.type = type;
9011 ops.op0 = treeop0;
9012 ops.op1 = treeop1;
9013 ops.op2 = treeop2;
9014 ops.location = loc;
9016 ignore = (target == const0_rtx
9017 || ((CONVERT_EXPR_CODE_P (code)
9018 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9019 && TREE_CODE (type) == VOID_TYPE));
9021 /* An operation in what may be a bit-field type needs the
9022 result to be reduced to the precision of the bit-field type,
9023 which is narrower than that of the type's mode. */
9024 reduce_bit_field = (!ignore
9025 && INTEGRAL_TYPE_P (type)
9026 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9028 /* If we are going to ignore this result, we need only do something
9029 if there is a side-effect somewhere in the expression. If there
9030 is, short-circuit the most common cases here. Note that we must
9031 not call expand_expr with anything but const0_rtx in case this
9032 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9034 if (ignore)
9036 if (! TREE_SIDE_EFFECTS (exp))
9037 return const0_rtx;
9039 /* Ensure we reference a volatile object even if value is ignored, but
9040 don't do this if all we are doing is taking its address. */
9041 if (TREE_THIS_VOLATILE (exp)
9042 && TREE_CODE (exp) != FUNCTION_DECL
9043 && mode != VOIDmode && mode != BLKmode
9044 && modifier != EXPAND_CONST_ADDRESS)
9046 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9047 if (MEM_P (temp))
9048 copy_to_reg (temp);
9049 return const0_rtx;
9052 if (TREE_CODE_CLASS (code) == tcc_unary
9053 || code == COMPONENT_REF || code == INDIRECT_REF)
9054 return expand_expr (treeop0, const0_rtx, VOIDmode,
9055 modifier);
9057 else if (TREE_CODE_CLASS (code) == tcc_binary
9058 || TREE_CODE_CLASS (code) == tcc_comparison
9059 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9061 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9062 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9063 return const0_rtx;
9065 else if (code == BIT_FIELD_REF)
9067 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9068 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9069 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
9070 return const0_rtx;
9073 target = 0;
9076 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9077 target = 0;
9079 /* Use subtarget as the target for operand 0 of a binary operation. */
9080 subtarget = get_subtarget (target);
9081 original_target = target;
9083 switch (code)
9085 case LABEL_DECL:
9087 tree function = decl_function_context (exp);
9089 temp = label_rtx (exp);
9090 temp = gen_rtx_LABEL_REF (Pmode, temp);
9092 if (function != current_function_decl
9093 && function != 0)
9094 LABEL_REF_NONLOCAL_P (temp) = 1;
9096 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9097 return temp;
9100 case SSA_NAME:
9101 /* ??? ivopts calls expander, without any preparation from
9102 out-of-ssa. So fake instructions as if this was an access to the
9103 base variable. This unnecessarily allocates a pseudo, see how we can
9104 reuse it, if partition base vars have it set already. */
9105 if (!currently_expanding_to_rtl)
9106 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
9107 NULL);
9109 g = get_gimple_for_ssa_name (exp);
9110 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9111 if (g == NULL
9112 && modifier == EXPAND_INITIALIZER
9113 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9114 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9115 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9116 g = SSA_NAME_DEF_STMT (exp);
9117 if (g)
9118 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
9119 modifier, NULL);
9121 ssa_name = exp;
9122 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9123 exp = SSA_NAME_VAR (ssa_name);
9124 goto expand_decl_rtl;
9126 case PARM_DECL:
9127 case VAR_DECL:
9128 /* If a static var's type was incomplete when the decl was written,
9129 but the type is complete now, lay out the decl now. */
9130 if (DECL_SIZE (exp) == 0
9131 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9132 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9133 layout_decl (exp, 0);
9135 /* ... fall through ... */
9137 case FUNCTION_DECL:
9138 case RESULT_DECL:
9139 decl_rtl = DECL_RTL (exp);
9140 expand_decl_rtl:
9141 gcc_assert (decl_rtl);
9142 decl_rtl = copy_rtx (decl_rtl);
9143 /* Record writes to register variables. */
9144 if (modifier == EXPAND_WRITE
9145 && REG_P (decl_rtl)
9146 && HARD_REGISTER_P (decl_rtl))
9147 add_to_hard_reg_set (&crtl->asm_clobbers,
9148 GET_MODE (decl_rtl), REGNO (decl_rtl));
9150 /* Ensure variable marked as used even if it doesn't go through
9151 a parser. If it hasn't be used yet, write out an external
9152 definition. */
9153 if (! TREE_USED (exp))
9155 assemble_external (exp);
9156 TREE_USED (exp) = 1;
9159 /* Show we haven't gotten RTL for this yet. */
9160 temp = 0;
9162 /* Variables inherited from containing functions should have
9163 been lowered by this point. */
9164 context = decl_function_context (exp);
9165 gcc_assert (!context
9166 || context == current_function_decl
9167 || TREE_STATIC (exp)
9168 || DECL_EXTERNAL (exp)
9169 /* ??? C++ creates functions that are not TREE_STATIC. */
9170 || TREE_CODE (exp) == FUNCTION_DECL);
9172 /* This is the case of an array whose size is to be determined
9173 from its initializer, while the initializer is still being parsed.
9174 See expand_decl. */
9176 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9177 temp = validize_mem (decl_rtl);
9179 /* If DECL_RTL is memory, we are in the normal case and the
9180 address is not valid, get the address into a register. */
9182 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9184 if (alt_rtl)
9185 *alt_rtl = decl_rtl;
9186 decl_rtl = use_anchored_address (decl_rtl);
9187 if (modifier != EXPAND_CONST_ADDRESS
9188 && modifier != EXPAND_SUM
9189 && !memory_address_addr_space_p (DECL_MODE (exp),
9190 XEXP (decl_rtl, 0),
9191 MEM_ADDR_SPACE (decl_rtl)))
9192 temp = replace_equiv_address (decl_rtl,
9193 copy_rtx (XEXP (decl_rtl, 0)));
9196 /* If we got something, return it. But first, set the alignment
9197 if the address is a register. */
9198 if (temp != 0)
9200 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9201 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9203 return temp;
9206 /* If the mode of DECL_RTL does not match that of the decl,
9207 there are two cases: we are dealing with a BLKmode value
9208 that is returned in a register, or we are dealing with
9209 a promoted value. In the latter case, return a SUBREG
9210 of the wanted mode, but mark it so that we know that it
9211 was already extended. */
9212 if (REG_P (decl_rtl)
9213 && DECL_MODE (exp) != BLKmode
9214 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9216 enum machine_mode pmode;
9218 /* Get the signedness to be used for this variable. Ensure we get
9219 the same mode we got when the variable was declared. */
9220 if (code == SSA_NAME
9221 && (g = SSA_NAME_DEF_STMT (ssa_name))
9222 && gimple_code (g) == GIMPLE_CALL)
9224 gcc_assert (!gimple_call_internal_p (g));
9225 pmode = promote_function_mode (type, mode, &unsignedp,
9226 gimple_call_fntype (g),
9229 else
9230 pmode = promote_decl_mode (exp, &unsignedp);
9231 gcc_assert (GET_MODE (decl_rtl) == pmode);
9233 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9234 SUBREG_PROMOTED_VAR_P (temp) = 1;
9235 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
9236 return temp;
9239 return decl_rtl;
9241 case INTEGER_CST:
9242 temp = immed_double_const (TREE_INT_CST_LOW (exp),
9243 TREE_INT_CST_HIGH (exp), mode);
9245 return temp;
9247 case VECTOR_CST:
9249 tree tmp = NULL_TREE;
9250 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9251 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9252 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9253 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9254 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9255 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9256 return const_vector_from_tree (exp);
9257 if (GET_MODE_CLASS (mode) == MODE_INT)
9259 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9260 if (type_for_mode)
9261 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9263 if (!tmp)
9264 tmp = build_constructor_from_list (type,
9265 TREE_VECTOR_CST_ELTS (exp));
9266 return expand_expr (tmp, ignore ? const0_rtx : target,
9267 tmode, modifier);
9270 case CONST_DECL:
9271 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9273 case REAL_CST:
9274 /* If optimized, generate immediate CONST_DOUBLE
9275 which will be turned into memory by reload if necessary.
9277 We used to force a register so that loop.c could see it. But
9278 this does not allow gen_* patterns to perform optimizations with
9279 the constants. It also produces two insns in cases like "x = 1.0;".
9280 On most machines, floating-point constants are not permitted in
9281 many insns, so we'd end up copying it to a register in any case.
9283 Now, we do the copying in expand_binop, if appropriate. */
9284 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9285 TYPE_MODE (TREE_TYPE (exp)));
9287 case FIXED_CST:
9288 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9289 TYPE_MODE (TREE_TYPE (exp)));
9291 case COMPLEX_CST:
9292 /* Handle evaluating a complex constant in a CONCAT target. */
9293 if (original_target && GET_CODE (original_target) == CONCAT)
9295 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9296 rtx rtarg, itarg;
9298 rtarg = XEXP (original_target, 0);
9299 itarg = XEXP (original_target, 1);
9301 /* Move the real and imaginary parts separately. */
9302 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9303 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9305 if (op0 != rtarg)
9306 emit_move_insn (rtarg, op0);
9307 if (op1 != itarg)
9308 emit_move_insn (itarg, op1);
9310 return original_target;
9313 /* ... fall through ... */
9315 case STRING_CST:
9316 temp = expand_expr_constant (exp, 1, modifier);
9318 /* temp contains a constant address.
9319 On RISC machines where a constant address isn't valid,
9320 make some insns to get that address into a register. */
9321 if (modifier != EXPAND_CONST_ADDRESS
9322 && modifier != EXPAND_INITIALIZER
9323 && modifier != EXPAND_SUM
9324 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9325 MEM_ADDR_SPACE (temp)))
9326 return replace_equiv_address (temp,
9327 copy_rtx (XEXP (temp, 0)));
9328 return temp;
9330 case SAVE_EXPR:
9332 tree val = treeop0;
9333 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
9335 if (!SAVE_EXPR_RESOLVED_P (exp))
9337 /* We can indeed still hit this case, typically via builtin
9338 expanders calling save_expr immediately before expanding
9339 something. Assume this means that we only have to deal
9340 with non-BLKmode values. */
9341 gcc_assert (GET_MODE (ret) != BLKmode);
9343 val = build_decl (EXPR_LOCATION (exp),
9344 VAR_DECL, NULL, TREE_TYPE (exp));
9345 DECL_ARTIFICIAL (val) = 1;
9346 DECL_IGNORED_P (val) = 1;
9347 treeop0 = val;
9348 TREE_OPERAND (exp, 0) = treeop0;
9349 SAVE_EXPR_RESOLVED_P (exp) = 1;
9351 if (!CONSTANT_P (ret))
9352 ret = copy_to_reg (ret);
9353 SET_DECL_RTL (val, ret);
9356 return ret;
9360 case CONSTRUCTOR:
9361 /* If we don't need the result, just ensure we evaluate any
9362 subexpressions. */
9363 if (ignore)
9365 unsigned HOST_WIDE_INT idx;
9366 tree value;
9368 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9369 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9371 return const0_rtx;
9374 return expand_constructor (exp, target, modifier, false);
9376 case TARGET_MEM_REF:
9378 addr_space_t as
9379 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9380 struct mem_address addr;
9381 enum insn_code icode;
9382 unsigned int align;
9384 get_address_description (exp, &addr);
9385 op0 = addr_for_mem_ref (&addr, as, true);
9386 op0 = memory_address_addr_space (mode, op0, as);
9387 temp = gen_rtx_MEM (mode, op0);
9388 set_mem_attributes (temp, exp, 0);
9389 set_mem_addr_space (temp, as);
9390 align = get_object_or_type_alignment (exp);
9391 if (mode != BLKmode
9392 && align < GET_MODE_ALIGNMENT (mode)
9393 /* If the target does not have special handling for unaligned
9394 loads of mode then it can use regular moves for them. */
9395 && ((icode = optab_handler (movmisalign_optab, mode))
9396 != CODE_FOR_nothing))
9398 struct expand_operand ops[2];
9400 /* We've already validated the memory, and we're creating a
9401 new pseudo destination. The predicates really can't fail,
9402 nor can the generator. */
9403 create_output_operand (&ops[0], NULL_RTX, mode);
9404 create_fixed_operand (&ops[1], temp);
9405 expand_insn (icode, 2, ops);
9406 return ops[0].value;
9408 return temp;
9411 case MEM_REF:
9413 addr_space_t as
9414 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9415 enum machine_mode address_mode;
9416 tree base = TREE_OPERAND (exp, 0);
9417 gimple def_stmt;
9418 enum insn_code icode;
9419 unsigned align;
9420 /* Handle expansion of non-aliased memory with non-BLKmode. That
9421 might end up in a register. */
9422 if (mem_ref_refers_to_non_mem_p (exp))
9424 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9425 tree bit_offset;
9426 tree bftype;
9427 base = TREE_OPERAND (base, 0);
9428 if (offset == 0
9429 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
9430 && (GET_MODE_BITSIZE (DECL_MODE (base))
9431 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
9432 return expand_expr (build1 (VIEW_CONVERT_EXPR,
9433 TREE_TYPE (exp), base),
9434 target, tmode, modifier);
9435 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
9436 bftype = TREE_TYPE (base);
9437 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
9438 bftype = TREE_TYPE (exp);
9439 else
9441 temp = assign_stack_temp (DECL_MODE (base),
9442 GET_MODE_SIZE (DECL_MODE (base)),
9444 store_expr (base, temp, 0, false);
9445 temp = adjust_address (temp, BLKmode, offset);
9446 set_mem_size (temp, int_size_in_bytes (TREE_TYPE (exp)));
9447 return temp;
9449 return expand_expr (build3 (BIT_FIELD_REF, bftype,
9450 base,
9451 TYPE_SIZE (TREE_TYPE (exp)),
9452 bit_offset),
9453 target, tmode, modifier);
9455 address_mode = targetm.addr_space.address_mode (as);
9456 base = TREE_OPERAND (exp, 0);
9457 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9459 tree mask = gimple_assign_rhs2 (def_stmt);
9460 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9461 gimple_assign_rhs1 (def_stmt), mask);
9462 TREE_OPERAND (exp, 0) = base;
9464 align = get_object_or_type_alignment (exp);
9465 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9466 op0 = memory_address_addr_space (address_mode, op0, as);
9467 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9469 rtx off
9470 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9471 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9473 op0 = memory_address_addr_space (mode, op0, as);
9474 temp = gen_rtx_MEM (mode, op0);
9475 set_mem_attributes (temp, exp, 0);
9476 set_mem_addr_space (temp, as);
9477 if (TREE_THIS_VOLATILE (exp))
9478 MEM_VOLATILE_P (temp) = 1;
9479 if (mode != BLKmode
9480 && align < GET_MODE_ALIGNMENT (mode)
9481 /* If the target does not have special handling for unaligned
9482 loads of mode then it can use regular moves for them. */
9483 && ((icode = optab_handler (movmisalign_optab, mode))
9484 != CODE_FOR_nothing))
9486 struct expand_operand ops[2];
9488 /* We've already validated the memory, and we're creating a
9489 new pseudo destination. The predicates really can't fail,
9490 nor can the generator. */
9491 create_output_operand (&ops[0], NULL_RTX, mode);
9492 create_fixed_operand (&ops[1], temp);
9493 expand_insn (icode, 2, ops);
9494 return ops[0].value;
9496 return temp;
9499 case ARRAY_REF:
9502 tree array = treeop0;
9503 tree index = treeop1;
9505 /* Fold an expression like: "foo"[2].
9506 This is not done in fold so it won't happen inside &.
9507 Don't fold if this is for wide characters since it's too
9508 difficult to do correctly and this is a very rare case. */
9510 if (modifier != EXPAND_CONST_ADDRESS
9511 && modifier != EXPAND_INITIALIZER
9512 && modifier != EXPAND_MEMORY)
9514 tree t = fold_read_from_constant_string (exp);
9516 if (t)
9517 return expand_expr (t, target, tmode, modifier);
9520 /* If this is a constant index into a constant array,
9521 just get the value from the array. Handle both the cases when
9522 we have an explicit constructor and when our operand is a variable
9523 that was declared const. */
9525 if (modifier != EXPAND_CONST_ADDRESS
9526 && modifier != EXPAND_INITIALIZER
9527 && modifier != EXPAND_MEMORY
9528 && TREE_CODE (array) == CONSTRUCTOR
9529 && ! TREE_SIDE_EFFECTS (array)
9530 && TREE_CODE (index) == INTEGER_CST)
9532 unsigned HOST_WIDE_INT ix;
9533 tree field, value;
9535 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9536 field, value)
9537 if (tree_int_cst_equal (field, index))
9539 if (!TREE_SIDE_EFFECTS (value))
9540 return expand_expr (fold (value), target, tmode, modifier);
9541 break;
9545 else if (optimize >= 1
9546 && modifier != EXPAND_CONST_ADDRESS
9547 && modifier != EXPAND_INITIALIZER
9548 && modifier != EXPAND_MEMORY
9549 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9550 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
9551 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
9552 && const_value_known_p (array))
9554 if (TREE_CODE (index) == INTEGER_CST)
9556 tree init = DECL_INITIAL (array);
9558 if (TREE_CODE (init) == CONSTRUCTOR)
9560 unsigned HOST_WIDE_INT ix;
9561 tree field, value;
9563 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9564 field, value)
9565 if (tree_int_cst_equal (field, index))
9567 if (TREE_SIDE_EFFECTS (value))
9568 break;
9570 if (TREE_CODE (value) == CONSTRUCTOR)
9572 /* If VALUE is a CONSTRUCTOR, this
9573 optimization is only useful if
9574 this doesn't store the CONSTRUCTOR
9575 into memory. If it does, it is more
9576 efficient to just load the data from
9577 the array directly. */
9578 rtx ret = expand_constructor (value, target,
9579 modifier, true);
9580 if (ret == NULL_RTX)
9581 break;
9584 return expand_expr (fold (value), target, tmode,
9585 modifier);
9588 else if(TREE_CODE (init) == STRING_CST)
9590 tree index1 = index;
9591 tree low_bound = array_ref_low_bound (exp);
9592 index1 = fold_convert_loc (loc, sizetype,
9593 treeop1);
9595 /* Optimize the special-case of a zero lower bound.
9597 We convert the low_bound to sizetype to avoid some problems
9598 with constant folding. (E.g. suppose the lower bound is 1,
9599 and its mode is QI. Without the conversion,l (ARRAY
9600 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9601 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9603 if (! integer_zerop (low_bound))
9604 index1 = size_diffop_loc (loc, index1,
9605 fold_convert_loc (loc, sizetype,
9606 low_bound));
9608 if (0 > compare_tree_int (index1,
9609 TREE_STRING_LENGTH (init)))
9611 tree type = TREE_TYPE (TREE_TYPE (init));
9612 enum machine_mode mode = TYPE_MODE (type);
9614 if (GET_MODE_CLASS (mode) == MODE_INT
9615 && GET_MODE_SIZE (mode) == 1)
9616 return gen_int_mode (TREE_STRING_POINTER (init)
9617 [TREE_INT_CST_LOW (index1)],
9618 mode);
9624 goto normal_inner_ref;
9626 case COMPONENT_REF:
9627 /* If the operand is a CONSTRUCTOR, we can just extract the
9628 appropriate field if it is present. */
9629 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9631 unsigned HOST_WIDE_INT idx;
9632 tree field, value;
9634 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9635 idx, field, value)
9636 if (field == treeop1
9637 /* We can normally use the value of the field in the
9638 CONSTRUCTOR. However, if this is a bitfield in
9639 an integral mode that we can fit in a HOST_WIDE_INT,
9640 we must mask only the number of bits in the bitfield,
9641 since this is done implicitly by the constructor. If
9642 the bitfield does not meet either of those conditions,
9643 we can't do this optimization. */
9644 && (! DECL_BIT_FIELD (field)
9645 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9646 && (GET_MODE_PRECISION (DECL_MODE (field))
9647 <= HOST_BITS_PER_WIDE_INT))))
9649 if (DECL_BIT_FIELD (field)
9650 && modifier == EXPAND_STACK_PARM)
9651 target = 0;
9652 op0 = expand_expr (value, target, tmode, modifier);
9653 if (DECL_BIT_FIELD (field))
9655 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9656 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9658 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9660 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
9661 op0 = expand_and (imode, op0, op1, target);
9663 else
9665 int count = GET_MODE_PRECISION (imode) - bitsize;
9667 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9668 target, 0);
9669 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9670 target, 0);
9674 return op0;
9677 goto normal_inner_ref;
9679 case BIT_FIELD_REF:
9680 case ARRAY_RANGE_REF:
9681 normal_inner_ref:
9683 enum machine_mode mode1, mode2;
9684 HOST_WIDE_INT bitsize, bitpos;
9685 tree offset;
9686 int volatilep = 0, must_force_mem;
9687 bool packedp = false;
9688 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9689 &mode1, &unsignedp, &volatilep, true);
9690 rtx orig_op0, memloc;
9692 /* If we got back the original object, something is wrong. Perhaps
9693 we are evaluating an expression too early. In any event, don't
9694 infinitely recurse. */
9695 gcc_assert (tem != exp);
9697 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9698 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9699 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9700 packedp = true;
9702 /* If TEM's type is a union of variable size, pass TARGET to the inner
9703 computation, since it will need a temporary and TARGET is known
9704 to have to do. This occurs in unchecked conversion in Ada. */
9705 orig_op0 = op0
9706 = expand_expr (tem,
9707 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9708 && COMPLETE_TYPE_P (TREE_TYPE (tem))
9709 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9710 != INTEGER_CST)
9711 && modifier != EXPAND_STACK_PARM
9712 ? target : NULL_RTX),
9713 VOIDmode,
9714 (modifier == EXPAND_INITIALIZER
9715 || modifier == EXPAND_CONST_ADDRESS
9716 || modifier == EXPAND_STACK_PARM)
9717 ? modifier : EXPAND_NORMAL);
9720 /* If the bitfield is volatile, we want to access it in the
9721 field's mode, not the computed mode.
9722 If a MEM has VOIDmode (external with incomplete type),
9723 use BLKmode for it instead. */
9724 if (MEM_P (op0))
9726 if (volatilep && flag_strict_volatile_bitfields > 0)
9727 op0 = adjust_address (op0, mode1, 0);
9728 else if (GET_MODE (op0) == VOIDmode)
9729 op0 = adjust_address (op0, BLKmode, 0);
9732 mode2
9733 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9735 /* If we have either an offset, a BLKmode result, or a reference
9736 outside the underlying object, we must force it to memory.
9737 Such a case can occur in Ada if we have unchecked conversion
9738 of an expression from a scalar type to an aggregate type or
9739 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9740 passed a partially uninitialized object or a view-conversion
9741 to a larger size. */
9742 must_force_mem = (offset
9743 || mode1 == BLKmode
9744 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9746 /* Handle CONCAT first. */
9747 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9749 if (bitpos == 0
9750 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9751 return op0;
9752 if (bitpos == 0
9753 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9754 && bitsize)
9756 op0 = XEXP (op0, 0);
9757 mode2 = GET_MODE (op0);
9759 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9760 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9761 && bitpos
9762 && bitsize)
9764 op0 = XEXP (op0, 1);
9765 bitpos = 0;
9766 mode2 = GET_MODE (op0);
9768 else
9769 /* Otherwise force into memory. */
9770 must_force_mem = 1;
9773 /* If this is a constant, put it in a register if it is a legitimate
9774 constant and we don't need a memory reference. */
9775 if (CONSTANT_P (op0)
9776 && mode2 != BLKmode
9777 && targetm.legitimate_constant_p (mode2, op0)
9778 && !must_force_mem)
9779 op0 = force_reg (mode2, op0);
9781 /* Otherwise, if this is a constant, try to force it to the constant
9782 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9783 is a legitimate constant. */
9784 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9785 op0 = validize_mem (memloc);
9787 /* Otherwise, if this is a constant or the object is not in memory
9788 and need be, put it there. */
9789 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9791 tree nt = build_qualified_type (TREE_TYPE (tem),
9792 (TYPE_QUALS (TREE_TYPE (tem))
9793 | TYPE_QUAL_CONST));
9794 memloc = assign_temp (nt, 1, 1, 1);
9795 emit_move_insn (memloc, op0);
9796 op0 = memloc;
9799 if (offset)
9801 enum machine_mode address_mode;
9802 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9803 EXPAND_SUM);
9805 gcc_assert (MEM_P (op0));
9807 address_mode
9808 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9809 if (GET_MODE (offset_rtx) != address_mode)
9810 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9812 if (GET_MODE (op0) == BLKmode
9813 /* A constant address in OP0 can have VOIDmode, we must
9814 not try to call force_reg in that case. */
9815 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9816 && bitsize != 0
9817 && (bitpos % bitsize) == 0
9818 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9819 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9821 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9822 bitpos = 0;
9825 op0 = offset_address (op0, offset_rtx,
9826 highest_pow2_factor (offset));
9829 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9830 record its alignment as BIGGEST_ALIGNMENT. */
9831 if (MEM_P (op0) && bitpos == 0 && offset != 0
9832 && is_aligning_offset (offset, tem))
9833 set_mem_align (op0, BIGGEST_ALIGNMENT);
9835 /* Don't forget about volatility even if this is a bitfield. */
9836 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9838 if (op0 == orig_op0)
9839 op0 = copy_rtx (op0);
9841 MEM_VOLATILE_P (op0) = 1;
9844 /* In cases where an aligned union has an unaligned object
9845 as a field, we might be extracting a BLKmode value from
9846 an integer-mode (e.g., SImode) object. Handle this case
9847 by doing the extract into an object as wide as the field
9848 (which we know to be the width of a basic mode), then
9849 storing into memory, and changing the mode to BLKmode. */
9850 if (mode1 == VOIDmode
9851 || REG_P (op0) || GET_CODE (op0) == SUBREG
9852 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9853 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9854 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9855 && modifier != EXPAND_CONST_ADDRESS
9856 && modifier != EXPAND_INITIALIZER)
9857 /* If the field is volatile, we always want an aligned
9858 access. Do this in following two situations:
9859 1. the access is not already naturally
9860 aligned, otherwise "normal" (non-bitfield) volatile fields
9861 become non-addressable.
9862 2. the bitsize is narrower than the access size. Need
9863 to extract bitfields from the access. */
9864 || (volatilep && flag_strict_volatile_bitfields > 0
9865 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0
9866 || (mode1 != BLKmode
9867 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)))
9868 /* If the field isn't aligned enough to fetch as a memref,
9869 fetch it as a bit field. */
9870 || (mode1 != BLKmode
9871 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9872 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9873 || (MEM_P (op0)
9874 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9875 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9876 && ((modifier == EXPAND_CONST_ADDRESS
9877 || modifier == EXPAND_INITIALIZER)
9878 ? STRICT_ALIGNMENT
9879 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9880 || (bitpos % BITS_PER_UNIT != 0)))
9881 /* If the type and the field are a constant size and the
9882 size of the type isn't the same size as the bitfield,
9883 we must use bitfield operations. */
9884 || (bitsize >= 0
9885 && TYPE_SIZE (TREE_TYPE (exp))
9886 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9887 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9888 bitsize)))
9890 enum machine_mode ext_mode = mode;
9892 if (ext_mode == BLKmode
9893 && ! (target != 0 && MEM_P (op0)
9894 && MEM_P (target)
9895 && bitpos % BITS_PER_UNIT == 0))
9896 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9898 if (ext_mode == BLKmode)
9900 if (target == 0)
9901 target = assign_temp (type, 0, 1, 1);
9903 if (bitsize == 0)
9904 return target;
9906 /* In this case, BITPOS must start at a byte boundary and
9907 TARGET, if specified, must be a MEM. */
9908 gcc_assert (MEM_P (op0)
9909 && (!target || MEM_P (target))
9910 && !(bitpos % BITS_PER_UNIT));
9912 emit_block_move (target,
9913 adjust_address (op0, VOIDmode,
9914 bitpos / BITS_PER_UNIT),
9915 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9916 / BITS_PER_UNIT),
9917 (modifier == EXPAND_STACK_PARM
9918 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9920 return target;
9923 op0 = validize_mem (op0);
9925 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9926 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9928 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9929 (modifier == EXPAND_STACK_PARM
9930 ? NULL_RTX : target),
9931 ext_mode, ext_mode);
9933 /* If the result is a record type and BITSIZE is narrower than
9934 the mode of OP0, an integral mode, and this is a big endian
9935 machine, we must put the field into the high-order bits. */
9936 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9937 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9938 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9939 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9940 GET_MODE_BITSIZE (GET_MODE (op0))
9941 - bitsize, op0, 1);
9943 /* If the result type is BLKmode, store the data into a temporary
9944 of the appropriate type, but with the mode corresponding to the
9945 mode for the data we have (op0's mode). It's tempting to make
9946 this a constant type, since we know it's only being stored once,
9947 but that can cause problems if we are taking the address of this
9948 COMPONENT_REF because the MEM of any reference via that address
9949 will have flags corresponding to the type, which will not
9950 necessarily be constant. */
9951 if (mode == BLKmode)
9953 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9954 rtx new_rtx;
9956 /* If the reference doesn't use the alias set of its type,
9957 we cannot create the temporary using that type. */
9958 if (component_uses_parent_alias_set (exp))
9960 new_rtx = assign_stack_local (ext_mode, size, 0);
9961 set_mem_alias_set (new_rtx, get_alias_set (exp));
9963 else
9964 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9966 emit_move_insn (new_rtx, op0);
9967 op0 = copy_rtx (new_rtx);
9968 PUT_MODE (op0, BLKmode);
9969 set_mem_attributes (op0, exp, 1);
9972 return op0;
9975 /* If the result is BLKmode, use that to access the object
9976 now as well. */
9977 if (mode == BLKmode)
9978 mode1 = BLKmode;
9980 /* Get a reference to just this component. */
9981 if (modifier == EXPAND_CONST_ADDRESS
9982 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9983 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9984 else
9985 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9987 if (op0 == orig_op0)
9988 op0 = copy_rtx (op0);
9990 set_mem_attributes (op0, exp, 0);
9991 if (REG_P (XEXP (op0, 0)))
9992 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9994 MEM_VOLATILE_P (op0) |= volatilep;
9995 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9996 || modifier == EXPAND_CONST_ADDRESS
9997 || modifier == EXPAND_INITIALIZER)
9998 return op0;
9999 else if (target == 0)
10000 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10002 convert_move (target, op0, unsignedp);
10003 return target;
10006 case OBJ_TYPE_REF:
10007 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10009 case CALL_EXPR:
10010 /* All valid uses of __builtin_va_arg_pack () are removed during
10011 inlining. */
10012 if (CALL_EXPR_VA_ARG_PACK (exp))
10013 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10015 tree fndecl = get_callee_fndecl (exp), attr;
10017 if (fndecl
10018 && (attr = lookup_attribute ("error",
10019 DECL_ATTRIBUTES (fndecl))) != NULL)
10020 error ("%Kcall to %qs declared with attribute error: %s",
10021 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10022 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10023 if (fndecl
10024 && (attr = lookup_attribute ("warning",
10025 DECL_ATTRIBUTES (fndecl))) != NULL)
10026 warning_at (tree_nonartificial_location (exp),
10027 0, "%Kcall to %qs declared with attribute warning: %s",
10028 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10029 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10031 /* Check for a built-in function. */
10032 if (fndecl && DECL_BUILT_IN (fndecl))
10034 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10035 return expand_builtin (exp, target, subtarget, tmode, ignore);
10038 return expand_call (exp, target, ignore);
10040 case VIEW_CONVERT_EXPR:
10041 op0 = NULL_RTX;
10043 /* If we are converting to BLKmode, try to avoid an intermediate
10044 temporary by fetching an inner memory reference. */
10045 if (mode == BLKmode
10046 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10047 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10048 && handled_component_p (treeop0))
10050 enum machine_mode mode1;
10051 HOST_WIDE_INT bitsize, bitpos;
10052 tree offset;
10053 int unsignedp;
10054 int volatilep = 0;
10055 tree tem
10056 = get_inner_reference (treeop0, &bitsize, &bitpos,
10057 &offset, &mode1, &unsignedp, &volatilep,
10058 true);
10059 rtx orig_op0;
10061 /* ??? We should work harder and deal with non-zero offsets. */
10062 if (!offset
10063 && (bitpos % BITS_PER_UNIT) == 0
10064 && bitsize >= 0
10065 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
10067 /* See the normal_inner_ref case for the rationale. */
10068 orig_op0
10069 = expand_expr (tem,
10070 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10071 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10072 != INTEGER_CST)
10073 && modifier != EXPAND_STACK_PARM
10074 ? target : NULL_RTX),
10075 VOIDmode,
10076 (modifier == EXPAND_INITIALIZER
10077 || modifier == EXPAND_CONST_ADDRESS
10078 || modifier == EXPAND_STACK_PARM)
10079 ? modifier : EXPAND_NORMAL);
10081 if (MEM_P (orig_op0))
10083 op0 = orig_op0;
10085 /* Get a reference to just this component. */
10086 if (modifier == EXPAND_CONST_ADDRESS
10087 || modifier == EXPAND_SUM
10088 || modifier == EXPAND_INITIALIZER)
10089 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10090 else
10091 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10093 if (op0 == orig_op0)
10094 op0 = copy_rtx (op0);
10096 set_mem_attributes (op0, treeop0, 0);
10097 if (REG_P (XEXP (op0, 0)))
10098 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10100 MEM_VOLATILE_P (op0) |= volatilep;
10105 if (!op0)
10106 op0 = expand_expr (treeop0,
10107 NULL_RTX, VOIDmode, modifier);
10109 /* If the input and output modes are both the same, we are done. */
10110 if (mode == GET_MODE (op0))
10112 /* If neither mode is BLKmode, and both modes are the same size
10113 then we can use gen_lowpart. */
10114 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10115 && (GET_MODE_PRECISION (mode)
10116 == GET_MODE_PRECISION (GET_MODE (op0)))
10117 && !COMPLEX_MODE_P (GET_MODE (op0)))
10119 if (GET_CODE (op0) == SUBREG)
10120 op0 = force_reg (GET_MODE (op0), op0);
10121 temp = gen_lowpart_common (mode, op0);
10122 if (temp)
10123 op0 = temp;
10124 else
10126 if (!REG_P (op0) && !MEM_P (op0))
10127 op0 = force_reg (GET_MODE (op0), op0);
10128 op0 = gen_lowpart (mode, op0);
10131 /* If both types are integral, convert from one mode to the other. */
10132 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10133 op0 = convert_modes (mode, GET_MODE (op0), op0,
10134 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10135 /* As a last resort, spill op0 to memory, and reload it in a
10136 different mode. */
10137 else if (!MEM_P (op0))
10139 /* If the operand is not a MEM, force it into memory. Since we
10140 are going to be changing the mode of the MEM, don't call
10141 force_const_mem for constants because we don't allow pool
10142 constants to change mode. */
10143 tree inner_type = TREE_TYPE (treeop0);
10145 gcc_assert (!TREE_ADDRESSABLE (exp));
10147 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10148 target
10149 = assign_stack_temp_for_type
10150 (TYPE_MODE (inner_type),
10151 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
10153 emit_move_insn (target, op0);
10154 op0 = target;
10157 /* At this point, OP0 is in the correct mode. If the output type is
10158 such that the operand is known to be aligned, indicate that it is.
10159 Otherwise, we need only be concerned about alignment for non-BLKmode
10160 results. */
10161 if (MEM_P (op0))
10163 enum insn_code icode;
10165 op0 = copy_rtx (op0);
10167 if (TYPE_ALIGN_OK (type))
10168 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10169 else if (mode != BLKmode
10170 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode)
10171 /* If the target does have special handling for unaligned
10172 loads of mode then use them. */
10173 && ((icode = optab_handler (movmisalign_optab, mode))
10174 != CODE_FOR_nothing))
10176 rtx reg, insn;
10178 op0 = adjust_address (op0, mode, 0);
10179 /* We've already validated the memory, and we're creating a
10180 new pseudo destination. The predicates really can't
10181 fail. */
10182 reg = gen_reg_rtx (mode);
10184 /* Nor can the insn generator. */
10185 insn = GEN_FCN (icode) (reg, op0);
10186 emit_insn (insn);
10187 return reg;
10189 else if (STRICT_ALIGNMENT
10190 && mode != BLKmode
10191 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10193 tree inner_type = TREE_TYPE (treeop0);
10194 HOST_WIDE_INT temp_size
10195 = MAX (int_size_in_bytes (inner_type),
10196 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10197 rtx new_rtx
10198 = assign_stack_temp_for_type (mode, temp_size, 0, type);
10199 rtx new_with_op0_mode
10200 = adjust_address (new_rtx, GET_MODE (op0), 0);
10202 gcc_assert (!TREE_ADDRESSABLE (exp));
10204 if (GET_MODE (op0) == BLKmode)
10205 emit_block_move (new_with_op0_mode, op0,
10206 GEN_INT (GET_MODE_SIZE (mode)),
10207 (modifier == EXPAND_STACK_PARM
10208 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10209 else
10210 emit_move_insn (new_with_op0_mode, op0);
10212 op0 = new_rtx;
10215 op0 = adjust_address (op0, mode, 0);
10218 return op0;
10220 case MODIFY_EXPR:
10222 tree lhs = treeop0;
10223 tree rhs = treeop1;
10224 gcc_assert (ignore);
10226 /* Check for |= or &= of a bitfield of size one into another bitfield
10227 of size 1. In this case, (unless we need the result of the
10228 assignment) we can do this more efficiently with a
10229 test followed by an assignment, if necessary.
10231 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10232 things change so we do, this code should be enhanced to
10233 support it. */
10234 if (TREE_CODE (lhs) == COMPONENT_REF
10235 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10236 || TREE_CODE (rhs) == BIT_AND_EXPR)
10237 && TREE_OPERAND (rhs, 0) == lhs
10238 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10239 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10240 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10242 rtx label = gen_label_rtx ();
10243 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10244 do_jump (TREE_OPERAND (rhs, 1),
10245 value ? label : 0,
10246 value ? 0 : label, -1);
10247 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10248 MOVE_NONTEMPORAL (exp));
10249 do_pending_stack_adjust ();
10250 emit_label (label);
10251 return const0_rtx;
10254 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
10255 return const0_rtx;
10258 case ADDR_EXPR:
10259 return expand_expr_addr_expr (exp, target, tmode, modifier);
10261 case REALPART_EXPR:
10262 op0 = expand_normal (treeop0);
10263 return read_complex_part (op0, false);
10265 case IMAGPART_EXPR:
10266 op0 = expand_normal (treeop0);
10267 return read_complex_part (op0, true);
10269 case RETURN_EXPR:
10270 case LABEL_EXPR:
10271 case GOTO_EXPR:
10272 case SWITCH_EXPR:
10273 case ASM_EXPR:
10274 /* Expanded in cfgexpand.c. */
10275 gcc_unreachable ();
10277 case TRY_CATCH_EXPR:
10278 case CATCH_EXPR:
10279 case EH_FILTER_EXPR:
10280 case TRY_FINALLY_EXPR:
10281 /* Lowered by tree-eh.c. */
10282 gcc_unreachable ();
10284 case WITH_CLEANUP_EXPR:
10285 case CLEANUP_POINT_EXPR:
10286 case TARGET_EXPR:
10287 case CASE_LABEL_EXPR:
10288 case VA_ARG_EXPR:
10289 case BIND_EXPR:
10290 case INIT_EXPR:
10291 case CONJ_EXPR:
10292 case COMPOUND_EXPR:
10293 case PREINCREMENT_EXPR:
10294 case PREDECREMENT_EXPR:
10295 case POSTINCREMENT_EXPR:
10296 case POSTDECREMENT_EXPR:
10297 case LOOP_EXPR:
10298 case EXIT_EXPR:
10299 /* Lowered by gimplify.c. */
10300 gcc_unreachable ();
10302 case FDESC_EXPR:
10303 /* Function descriptors are not valid except for as
10304 initialization constants, and should not be expanded. */
10305 gcc_unreachable ();
10307 case WITH_SIZE_EXPR:
10308 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10309 have pulled out the size to use in whatever context it needed. */
10310 return expand_expr_real (treeop0, original_target, tmode,
10311 modifier, alt_rtl);
10313 case COMPOUND_LITERAL_EXPR:
10315 /* Initialize the anonymous variable declared in the compound
10316 literal, then return the variable. */
10317 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
10319 /* Create RTL for this variable. */
10320 if (!DECL_RTL_SET_P (decl))
10322 if (DECL_HARD_REGISTER (decl))
10323 /* The user specified an assembler name for this variable.
10324 Set that up now. */
10325 rest_of_decl_compilation (decl, 0, 0);
10326 else
10327 expand_decl (decl);
10330 return expand_expr_real (decl, original_target, tmode,
10331 modifier, alt_rtl);
10334 default:
10335 return expand_expr_real_2 (&ops, target, tmode, modifier);
10339 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10340 signedness of TYPE), possibly returning the result in TARGET. */
10341 static rtx
10342 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10344 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10345 if (target && GET_MODE (target) != GET_MODE (exp))
10346 target = 0;
10347 /* For constant values, reduce using build_int_cst_type. */
10348 if (CONST_INT_P (exp))
10350 HOST_WIDE_INT value = INTVAL (exp);
10351 tree t = build_int_cst_type (type, value);
10352 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10354 else if (TYPE_UNSIGNED (type))
10356 rtx mask = immed_double_int_const (double_int_mask (prec),
10357 GET_MODE (exp));
10358 return expand_and (GET_MODE (exp), exp, mask, target);
10360 else
10362 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10363 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10364 exp, count, target, 0);
10365 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10366 exp, count, target, 0);
10370 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10371 when applied to the address of EXP produces an address known to be
10372 aligned more than BIGGEST_ALIGNMENT. */
10374 static int
10375 is_aligning_offset (const_tree offset, const_tree exp)
10377 /* Strip off any conversions. */
10378 while (CONVERT_EXPR_P (offset))
10379 offset = TREE_OPERAND (offset, 0);
10381 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10382 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10383 if (TREE_CODE (offset) != BIT_AND_EXPR
10384 || !host_integerp (TREE_OPERAND (offset, 1), 1)
10385 || compare_tree_int (TREE_OPERAND (offset, 1),
10386 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10387 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
10388 return 0;
10390 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10391 It must be NEGATE_EXPR. Then strip any more conversions. */
10392 offset = TREE_OPERAND (offset, 0);
10393 while (CONVERT_EXPR_P (offset))
10394 offset = TREE_OPERAND (offset, 0);
10396 if (TREE_CODE (offset) != NEGATE_EXPR)
10397 return 0;
10399 offset = TREE_OPERAND (offset, 0);
10400 while (CONVERT_EXPR_P (offset))
10401 offset = TREE_OPERAND (offset, 0);
10403 /* This must now be the address of EXP. */
10404 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10407 /* Return the tree node if an ARG corresponds to a string constant or zero
10408 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10409 in bytes within the string that ARG is accessing. The type of the
10410 offset will be `sizetype'. */
10412 tree
10413 string_constant (tree arg, tree *ptr_offset)
10415 tree array, offset, lower_bound;
10416 STRIP_NOPS (arg);
10418 if (TREE_CODE (arg) == ADDR_EXPR)
10420 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10422 *ptr_offset = size_zero_node;
10423 return TREE_OPERAND (arg, 0);
10425 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10427 array = TREE_OPERAND (arg, 0);
10428 offset = size_zero_node;
10430 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10432 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10433 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10434 if (TREE_CODE (array) != STRING_CST
10435 && TREE_CODE (array) != VAR_DECL)
10436 return 0;
10438 /* Check if the array has a nonzero lower bound. */
10439 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10440 if (!integer_zerop (lower_bound))
10442 /* If the offset and base aren't both constants, return 0. */
10443 if (TREE_CODE (lower_bound) != INTEGER_CST)
10444 return 0;
10445 if (TREE_CODE (offset) != INTEGER_CST)
10446 return 0;
10447 /* Adjust offset by the lower bound. */
10448 offset = size_diffop (fold_convert (sizetype, offset),
10449 fold_convert (sizetype, lower_bound));
10452 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10454 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10455 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10456 if (TREE_CODE (array) != ADDR_EXPR)
10457 return 0;
10458 array = TREE_OPERAND (array, 0);
10459 if (TREE_CODE (array) != STRING_CST
10460 && TREE_CODE (array) != VAR_DECL)
10461 return 0;
10463 else
10464 return 0;
10466 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10468 tree arg0 = TREE_OPERAND (arg, 0);
10469 tree arg1 = TREE_OPERAND (arg, 1);
10471 STRIP_NOPS (arg0);
10472 STRIP_NOPS (arg1);
10474 if (TREE_CODE (arg0) == ADDR_EXPR
10475 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10476 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10478 array = TREE_OPERAND (arg0, 0);
10479 offset = arg1;
10481 else if (TREE_CODE (arg1) == ADDR_EXPR
10482 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10483 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10485 array = TREE_OPERAND (arg1, 0);
10486 offset = arg0;
10488 else
10489 return 0;
10491 else
10492 return 0;
10494 if (TREE_CODE (array) == STRING_CST)
10496 *ptr_offset = fold_convert (sizetype, offset);
10497 return array;
10499 else if (TREE_CODE (array) == VAR_DECL
10500 || TREE_CODE (array) == CONST_DECL)
10502 int length;
10504 /* Variables initialized to string literals can be handled too. */
10505 if (!const_value_known_p (array)
10506 || !DECL_INITIAL (array)
10507 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
10508 return 0;
10510 /* Avoid const char foo[4] = "abcde"; */
10511 if (DECL_SIZE_UNIT (array) == NULL_TREE
10512 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10513 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
10514 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10515 return 0;
10517 /* If variable is bigger than the string literal, OFFSET must be constant
10518 and inside of the bounds of the string literal. */
10519 offset = fold_convert (sizetype, offset);
10520 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10521 && (! host_integerp (offset, 1)
10522 || compare_tree_int (offset, length) >= 0))
10523 return 0;
10525 *ptr_offset = offset;
10526 return DECL_INITIAL (array);
10529 return 0;
10532 /* Generate code to calculate OPS, and exploded expression
10533 using a store-flag instruction and return an rtx for the result.
10534 OPS reflects a comparison.
10536 If TARGET is nonzero, store the result there if convenient.
10538 Return zero if there is no suitable set-flag instruction
10539 available on this machine.
10541 Once expand_expr has been called on the arguments of the comparison,
10542 we are committed to doing the store flag, since it is not safe to
10543 re-evaluate the expression. We emit the store-flag insn by calling
10544 emit_store_flag, but only expand the arguments if we have a reason
10545 to believe that emit_store_flag will be successful. If we think that
10546 it will, but it isn't, we have to simulate the store-flag with a
10547 set/jump/set sequence. */
10549 static rtx
10550 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10552 enum rtx_code code;
10553 tree arg0, arg1, type;
10554 tree tem;
10555 enum machine_mode operand_mode;
10556 int unsignedp;
10557 rtx op0, op1;
10558 rtx subtarget = target;
10559 location_t loc = ops->location;
10561 arg0 = ops->op0;
10562 arg1 = ops->op1;
10564 /* Don't crash if the comparison was erroneous. */
10565 if (arg0 == error_mark_node || arg1 == error_mark_node)
10566 return const0_rtx;
10568 type = TREE_TYPE (arg0);
10569 operand_mode = TYPE_MODE (type);
10570 unsignedp = TYPE_UNSIGNED (type);
10572 /* We won't bother with BLKmode store-flag operations because it would mean
10573 passing a lot of information to emit_store_flag. */
10574 if (operand_mode == BLKmode)
10575 return 0;
10577 /* We won't bother with store-flag operations involving function pointers
10578 when function pointers must be canonicalized before comparisons. */
10579 #ifdef HAVE_canonicalize_funcptr_for_compare
10580 if (HAVE_canonicalize_funcptr_for_compare
10581 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10582 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10583 == FUNCTION_TYPE))
10584 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10585 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10586 == FUNCTION_TYPE))))
10587 return 0;
10588 #endif
10590 STRIP_NOPS (arg0);
10591 STRIP_NOPS (arg1);
10593 /* For vector typed comparisons emit code to generate the desired
10594 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10595 expander for this. */
10596 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10598 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10599 tree if_true = constant_boolean_node (true, ops->type);
10600 tree if_false = constant_boolean_node (false, ops->type);
10601 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10604 /* For vector typed comparisons emit code to generate the desired
10605 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10606 expander for this. */
10607 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10609 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10610 tree if_true = constant_boolean_node (true, ops->type);
10611 tree if_false = constant_boolean_node (false, ops->type);
10612 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10615 /* Get the rtx comparison code to use. We know that EXP is a comparison
10616 operation of some type. Some comparisons against 1 and -1 can be
10617 converted to comparisons with zero. Do so here so that the tests
10618 below will be aware that we have a comparison with zero. These
10619 tests will not catch constants in the first operand, but constants
10620 are rarely passed as the first operand. */
10622 switch (ops->code)
10624 case EQ_EXPR:
10625 code = EQ;
10626 break;
10627 case NE_EXPR:
10628 code = NE;
10629 break;
10630 case LT_EXPR:
10631 if (integer_onep (arg1))
10632 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10633 else
10634 code = unsignedp ? LTU : LT;
10635 break;
10636 case LE_EXPR:
10637 if (! unsignedp && integer_all_onesp (arg1))
10638 arg1 = integer_zero_node, code = LT;
10639 else
10640 code = unsignedp ? LEU : LE;
10641 break;
10642 case GT_EXPR:
10643 if (! unsignedp && integer_all_onesp (arg1))
10644 arg1 = integer_zero_node, code = GE;
10645 else
10646 code = unsignedp ? GTU : GT;
10647 break;
10648 case GE_EXPR:
10649 if (integer_onep (arg1))
10650 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10651 else
10652 code = unsignedp ? GEU : GE;
10653 break;
10655 case UNORDERED_EXPR:
10656 code = UNORDERED;
10657 break;
10658 case ORDERED_EXPR:
10659 code = ORDERED;
10660 break;
10661 case UNLT_EXPR:
10662 code = UNLT;
10663 break;
10664 case UNLE_EXPR:
10665 code = UNLE;
10666 break;
10667 case UNGT_EXPR:
10668 code = UNGT;
10669 break;
10670 case UNGE_EXPR:
10671 code = UNGE;
10672 break;
10673 case UNEQ_EXPR:
10674 code = UNEQ;
10675 break;
10676 case LTGT_EXPR:
10677 code = LTGT;
10678 break;
10680 default:
10681 gcc_unreachable ();
10684 /* Put a constant second. */
10685 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10686 || TREE_CODE (arg0) == FIXED_CST)
10688 tem = arg0; arg0 = arg1; arg1 = tem;
10689 code = swap_condition (code);
10692 /* If this is an equality or inequality test of a single bit, we can
10693 do this by shifting the bit being tested to the low-order bit and
10694 masking the result with the constant 1. If the condition was EQ,
10695 we xor it with 1. This does not require an scc insn and is faster
10696 than an scc insn even if we have it.
10698 The code to make this transformation was moved into fold_single_bit_test,
10699 so we just call into the folder and expand its result. */
10701 if ((code == NE || code == EQ)
10702 && integer_zerop (arg1)
10703 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10705 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
10706 if (srcstmt
10707 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
10709 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
10710 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10711 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
10712 gimple_assign_rhs1 (srcstmt),
10713 gimple_assign_rhs2 (srcstmt));
10714 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
10715 if (temp)
10716 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
10720 if (! get_subtarget (target)
10721 || GET_MODE (subtarget) != operand_mode)
10722 subtarget = 0;
10724 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10726 if (target == 0)
10727 target = gen_reg_rtx (mode);
10729 /* Try a cstore if possible. */
10730 return emit_store_flag_force (target, code, op0, op1,
10731 operand_mode, unsignedp,
10732 (TYPE_PRECISION (ops->type) == 1
10733 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10737 /* Stubs in case we haven't got a casesi insn. */
10738 #ifndef HAVE_casesi
10739 # define HAVE_casesi 0
10740 # define gen_casesi(a, b, c, d, e) (0)
10741 # define CODE_FOR_casesi CODE_FOR_nothing
10742 #endif
10744 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10745 0 otherwise (i.e. if there is no casesi instruction). */
10747 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10748 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10749 rtx fallback_label ATTRIBUTE_UNUSED)
10751 struct expand_operand ops[5];
10752 enum machine_mode index_mode = SImode;
10753 int index_bits = GET_MODE_BITSIZE (index_mode);
10754 rtx op1, op2, index;
10756 if (! HAVE_casesi)
10757 return 0;
10759 /* Convert the index to SImode. */
10760 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10762 enum machine_mode omode = TYPE_MODE (index_type);
10763 rtx rangertx = expand_normal (range);
10765 /* We must handle the endpoints in the original mode. */
10766 index_expr = build2 (MINUS_EXPR, index_type,
10767 index_expr, minval);
10768 minval = integer_zero_node;
10769 index = expand_normal (index_expr);
10770 if (default_label)
10771 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10772 omode, 1, default_label);
10773 /* Now we can safely truncate. */
10774 index = convert_to_mode (index_mode, index, 0);
10776 else
10778 if (TYPE_MODE (index_type) != index_mode)
10780 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10781 index_expr = fold_convert (index_type, index_expr);
10784 index = expand_normal (index_expr);
10787 do_pending_stack_adjust ();
10789 op1 = expand_normal (minval);
10790 op2 = expand_normal (range);
10792 create_input_operand (&ops[0], index, index_mode);
10793 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10794 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10795 create_fixed_operand (&ops[3], table_label);
10796 create_fixed_operand (&ops[4], (default_label
10797 ? default_label
10798 : fallback_label));
10799 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10800 return 1;
10803 /* Attempt to generate a tablejump instruction; same concept. */
10804 #ifndef HAVE_tablejump
10805 #define HAVE_tablejump 0
10806 #define gen_tablejump(x, y) (0)
10807 #endif
10809 /* Subroutine of the next function.
10811 INDEX is the value being switched on, with the lowest value
10812 in the table already subtracted.
10813 MODE is its expected mode (needed if INDEX is constant).
10814 RANGE is the length of the jump table.
10815 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10817 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10818 index value is out of range. */
10820 static void
10821 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10822 rtx default_label)
10824 rtx temp, vector;
10826 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10827 cfun->cfg->max_jumptable_ents = INTVAL (range);
10829 /* Do an unsigned comparison (in the proper mode) between the index
10830 expression and the value which represents the length of the range.
10831 Since we just finished subtracting the lower bound of the range
10832 from the index expression, this comparison allows us to simultaneously
10833 check that the original index expression value is both greater than
10834 or equal to the minimum value of the range and less than or equal to
10835 the maximum value of the range. */
10837 if (default_label)
10838 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10839 default_label);
10841 /* If index is in range, it must fit in Pmode.
10842 Convert to Pmode so we can index with it. */
10843 if (mode != Pmode)
10844 index = convert_to_mode (Pmode, index, 1);
10846 /* Don't let a MEM slip through, because then INDEX that comes
10847 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10848 and break_out_memory_refs will go to work on it and mess it up. */
10849 #ifdef PIC_CASE_VECTOR_ADDRESS
10850 if (flag_pic && !REG_P (index))
10851 index = copy_to_mode_reg (Pmode, index);
10852 #endif
10854 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10855 GET_MODE_SIZE, because this indicates how large insns are. The other
10856 uses should all be Pmode, because they are addresses. This code
10857 could fail if addresses and insns are not the same size. */
10858 index = gen_rtx_PLUS (Pmode,
10859 gen_rtx_MULT (Pmode, index,
10860 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10861 gen_rtx_LABEL_REF (Pmode, table_label));
10862 #ifdef PIC_CASE_VECTOR_ADDRESS
10863 if (flag_pic)
10864 index = PIC_CASE_VECTOR_ADDRESS (index);
10865 else
10866 #endif
10867 index = memory_address (CASE_VECTOR_MODE, index);
10868 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10869 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10870 convert_move (temp, vector, 0);
10872 emit_jump_insn (gen_tablejump (temp, table_label));
10874 /* If we are generating PIC code or if the table is PC-relative, the
10875 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10876 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10877 emit_barrier ();
10881 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10882 rtx table_label, rtx default_label)
10884 rtx index;
10886 if (! HAVE_tablejump)
10887 return 0;
10889 index_expr = fold_build2 (MINUS_EXPR, index_type,
10890 fold_convert (index_type, index_expr),
10891 fold_convert (index_type, minval));
10892 index = expand_normal (index_expr);
10893 do_pending_stack_adjust ();
10895 do_tablejump (index, TYPE_MODE (index_type),
10896 convert_modes (TYPE_MODE (index_type),
10897 TYPE_MODE (TREE_TYPE (range)),
10898 expand_normal (range),
10899 TYPE_UNSIGNED (TREE_TYPE (range))),
10900 table_label, default_label);
10901 return 1;
10904 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10905 static rtx
10906 const_vector_from_tree (tree exp)
10908 rtvec v;
10909 int units, i;
10910 tree link, elt;
10911 enum machine_mode inner, mode;
10913 mode = TYPE_MODE (TREE_TYPE (exp));
10915 if (initializer_zerop (exp))
10916 return CONST0_RTX (mode);
10918 units = GET_MODE_NUNITS (mode);
10919 inner = GET_MODE_INNER (mode);
10921 v = rtvec_alloc (units);
10923 link = TREE_VECTOR_CST_ELTS (exp);
10924 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10926 elt = TREE_VALUE (link);
10928 if (TREE_CODE (elt) == REAL_CST)
10929 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10930 inner);
10931 else if (TREE_CODE (elt) == FIXED_CST)
10932 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10933 inner);
10934 else
10935 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10936 inner);
10939 /* Initialize remaining elements to 0. */
10940 for (; i < units; ++i)
10941 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10943 return gen_rtx_CONST_VECTOR (mode, v);
10946 /* Build a decl for a personality function given a language prefix. */
10948 tree
10949 build_personality_function (const char *lang)
10951 const char *unwind_and_version;
10952 tree decl, type;
10953 char *name;
10955 switch (targetm_common.except_unwind_info (&global_options))
10957 case UI_NONE:
10958 return NULL;
10959 case UI_SJLJ:
10960 unwind_and_version = "_sj0";
10961 break;
10962 case UI_DWARF2:
10963 case UI_TARGET:
10964 unwind_and_version = "_v0";
10965 break;
10966 default:
10967 gcc_unreachable ();
10970 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10972 type = build_function_type_list (integer_type_node, integer_type_node,
10973 long_long_unsigned_type_node,
10974 ptr_type_node, ptr_type_node, NULL_TREE);
10975 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10976 get_identifier (name), type);
10977 DECL_ARTIFICIAL (decl) = 1;
10978 DECL_EXTERNAL (decl) = 1;
10979 TREE_PUBLIC (decl) = 1;
10981 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10982 are the flags assigned by targetm.encode_section_info. */
10983 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10985 return decl;
10988 /* Extracts the personality function of DECL and returns the corresponding
10989 libfunc. */
10992 get_personality_function (tree decl)
10994 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10995 enum eh_personality_kind pk;
10997 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10998 if (pk == eh_personality_none)
10999 return NULL;
11001 if (!personality
11002 && pk == eh_personality_any)
11003 personality = lang_hooks.eh_personality ();
11005 if (pk == eh_personality_lang)
11006 gcc_assert (personality != NULL_TREE);
11008 return XEXP (DECL_RTL (personality), 0);
11011 #include "gt-expr.h"