sbin/hammer: Have consistent naming for buffer variables
[dragonfly.git] / sys / kern / lwkt_thread.c
blob46faf9a76da1af5295ba4ecb9396d091b1c8feed
1 /*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
59 #include <sys/dsched.h>
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/clock.h>
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
78 #define LOOPMASK
80 #if !defined(KTR_CTXSW)
81 #define KTR_CTXSW KTR_ALL
82 #endif
83 KTR_INFO_MASTER(ctxsw);
84 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
87 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
89 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
91 #ifdef INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 static int lwkt_use_spin_port;
99 static struct objcache *thread_cache;
100 int cpu_mwait_spin = 0;
102 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
103 static void lwkt_setcpu_remote(void *arg);
106 * We can make all thread ports use the spin backend instead of the thread
107 * backend. This should only be set to debug the spin backend.
109 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111 #ifdef INVARIANTS
112 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
113 "Panic if attempting to switch lwkt's while mastering cpusync");
114 #endif
115 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
116 "Number of switched threads");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
118 "Successful preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
120 "Failed preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
122 "Number of preempted threads.");
123 static int fairq_enable = 0;
124 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
125 &fairq_enable, 0, "Turn on fairq priority accumulators");
126 static int fairq_bypass = -1;
127 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
128 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
129 extern int lwkt_sched_debug;
130 int lwkt_sched_debug = 0;
131 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
132 &lwkt_sched_debug, 0, "Scheduler debug");
133 static u_int lwkt_spin_loops = 10;
134 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
135 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
136 static int preempt_enable = 1;
137 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
138 &preempt_enable, 0, "Enable preemption");
139 static int lwkt_cache_threads = 0;
140 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
141 &lwkt_cache_threads, 0, "thread+kstack cache");
144 * These helper procedures handle the runq, they can only be called from
145 * within a critical section.
147 * WARNING! Prior to SMP being brought up it is possible to enqueue and
148 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149 * instead of 'mycpu' when referencing the globaldata structure. Once
150 * SMP live enqueuing and dequeueing only occurs on the current cpu.
152 static __inline
153 void
154 _lwkt_dequeue(thread_t td)
156 if (td->td_flags & TDF_RUNQ) {
157 struct globaldata *gd = td->td_gd;
159 td->td_flags &= ~TDF_RUNQ;
160 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
161 --gd->gd_tdrunqcount;
162 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
163 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
168 * Priority enqueue.
170 * There are a limited number of lwkt threads runnable since user
171 * processes only schedule one at a time per cpu. However, there can
172 * be many user processes in kernel mode exiting from a tsleep() which
173 * become runnable.
175 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
176 * will ignore user priority. This is to ensure that user threads in
177 * kernel mode get cpu at some point regardless of what the user
178 * scheduler thinks.
180 static __inline
181 void
182 _lwkt_enqueue(thread_t td)
184 thread_t xtd;
186 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
187 struct globaldata *gd = td->td_gd;
189 td->td_flags |= TDF_RUNQ;
190 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
191 if (xtd == NULL) {
192 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
193 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
194 } else {
196 * NOTE: td_upri - higher numbers more desireable, same sense
197 * as td_pri (typically reversed from lwp_upri).
199 * In the equal priority case we want the best selection
200 * at the beginning so the less desireable selections know
201 * that they have to setrunqueue/go-to-another-cpu, even
202 * though it means switching back to the 'best' selection.
203 * This also avoids degenerate situations when many threads
204 * are runnable or waking up at the same time.
206 * If upri matches exactly place at end/round-robin.
208 while (xtd &&
209 (xtd->td_pri >= td->td_pri ||
210 (xtd->td_pri == td->td_pri &&
211 xtd->td_upri >= td->td_upri))) {
212 xtd = TAILQ_NEXT(xtd, td_threadq);
214 if (xtd)
215 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
216 else
217 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
219 ++gd->gd_tdrunqcount;
222 * Request a LWKT reschedule if we are now at the head of the queue.
224 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
225 need_lwkt_resched();
229 static boolean_t
230 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
232 struct thread *td = (struct thread *)obj;
234 td->td_kstack = NULL;
235 td->td_kstack_size = 0;
236 td->td_flags = TDF_ALLOCATED_THREAD;
237 td->td_mpflags = 0;
238 return (1);
241 static void
242 _lwkt_thread_dtor(void *obj, void *privdata)
244 struct thread *td = (struct thread *)obj;
246 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
247 ("_lwkt_thread_dtor: not allocated from objcache"));
248 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
249 td->td_kstack_size > 0,
250 ("_lwkt_thread_dtor: corrupted stack"));
251 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
252 td->td_kstack = NULL;
253 td->td_flags = 0;
257 * Initialize the lwkt s/system.
259 * Nominally cache up to 32 thread + kstack structures. Cache more on
260 * systems with a lot of cpu cores.
262 static void
263 lwkt_init(void)
265 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
266 if (lwkt_cache_threads == 0) {
267 lwkt_cache_threads = ncpus * 4;
268 if (lwkt_cache_threads < 32)
269 lwkt_cache_threads = 32;
271 thread_cache = objcache_create_mbacked(
272 M_THREAD, sizeof(struct thread),
273 0, lwkt_cache_threads,
274 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
276 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
279 * Schedule a thread to run. As the current thread we can always safely
280 * schedule ourselves, and a shortcut procedure is provided for that
281 * function.
283 * (non-blocking, self contained on a per cpu basis)
285 void
286 lwkt_schedule_self(thread_t td)
288 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
289 crit_enter_quick(td);
290 KASSERT(td != &td->td_gd->gd_idlethread,
291 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
292 KKASSERT(td->td_lwp == NULL ||
293 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
294 _lwkt_enqueue(td);
295 crit_exit_quick(td);
299 * Deschedule a thread.
301 * (non-blocking, self contained on a per cpu basis)
303 void
304 lwkt_deschedule_self(thread_t td)
306 crit_enter_quick(td);
307 _lwkt_dequeue(td);
308 crit_exit_quick(td);
312 * LWKTs operate on a per-cpu basis
314 * WARNING! Called from early boot, 'mycpu' may not work yet.
316 void
317 lwkt_gdinit(struct globaldata *gd)
319 TAILQ_INIT(&gd->gd_tdrunq);
320 TAILQ_INIT(&gd->gd_tdallq);
324 * Create a new thread. The thread must be associated with a process context
325 * or LWKT start address before it can be scheduled. If the target cpu is
326 * -1 the thread will be created on the current cpu.
328 * If you intend to create a thread without a process context this function
329 * does everything except load the startup and switcher function.
331 thread_t
332 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
334 static int cpu_rotator;
335 globaldata_t gd = mycpu;
336 void *stack;
339 * If static thread storage is not supplied allocate a thread. Reuse
340 * a cached free thread if possible. gd_freetd is used to keep an exiting
341 * thread intact through the exit.
343 if (td == NULL) {
344 crit_enter_gd(gd);
345 if ((td = gd->gd_freetd) != NULL) {
346 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
347 TDF_RUNQ)) == 0);
348 gd->gd_freetd = NULL;
349 } else {
350 td = objcache_get(thread_cache, M_WAITOK);
351 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
352 TDF_RUNQ)) == 0);
354 crit_exit_gd(gd);
355 KASSERT((td->td_flags &
356 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
357 TDF_ALLOCATED_THREAD,
358 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
359 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
363 * Try to reuse cached stack.
365 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
366 if (flags & TDF_ALLOCATED_STACK) {
367 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
368 stack = NULL;
371 if (stack == NULL) {
372 if (cpu < 0)
373 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
374 else
375 stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
376 KM_CPU(cpu));
377 flags |= TDF_ALLOCATED_STACK;
379 if (cpu < 0) {
380 cpu = ++cpu_rotator;
381 cpu_ccfence();
382 cpu %= ncpus;
384 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
385 return(td);
389 * Initialize a preexisting thread structure. This function is used by
390 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
392 * All threads start out in a critical section at a priority of
393 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
394 * appropriate. This function may send an IPI message when the
395 * requested cpu is not the current cpu and consequently gd_tdallq may
396 * not be initialized synchronously from the point of view of the originating
397 * cpu.
399 * NOTE! we have to be careful in regards to creating threads for other cpus
400 * if SMP has not yet been activated.
402 static void
403 lwkt_init_thread_remote(void *arg)
405 thread_t td = arg;
408 * Protected by critical section held by IPI dispatch
410 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
414 * lwkt core thread structural initialization.
416 * NOTE: All threads are initialized as mpsafe threads.
418 void
419 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
420 struct globaldata *gd)
422 globaldata_t mygd = mycpu;
424 bzero(td, sizeof(struct thread));
425 td->td_kstack = stack;
426 td->td_kstack_size = stksize;
427 td->td_flags = flags;
428 td->td_mpflags = 0;
429 td->td_type = TD_TYPE_GENERIC;
430 td->td_gd = gd;
431 td->td_pri = TDPRI_KERN_DAEMON;
432 td->td_critcount = 1;
433 td->td_toks_have = NULL;
434 td->td_toks_stop = &td->td_toks_base;
435 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
436 lwkt_initport_spin(&td->td_msgport, td,
437 (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
438 } else {
439 lwkt_initport_thread(&td->td_msgport, td);
441 pmap_init_thread(td);
443 * Normally initializing a thread for a remote cpu requires sending an
444 * IPI. However, the idlethread is setup before the other cpus are
445 * activated so we have to treat it as a special case. XXX manipulation
446 * of gd_tdallq requires the BGL.
448 if (gd == mygd || td == &gd->gd_idlethread) {
449 crit_enter_gd(mygd);
450 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
451 crit_exit_gd(mygd);
452 } else {
453 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
455 dsched_enter_thread(td);
458 void
459 lwkt_set_comm(thread_t td, const char *ctl, ...)
461 __va_list va;
463 __va_start(va, ctl);
464 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
465 __va_end(va);
466 KTR_LOG(ctxsw_newtd, td, td->td_comm);
470 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
471 * this does not prevent the thread from migrating to another cpu so the
472 * gd_tdallq state is not protected by this.
474 void
475 lwkt_hold(thread_t td)
477 atomic_add_int(&td->td_refs, 1);
480 void
481 lwkt_rele(thread_t td)
483 KKASSERT(td->td_refs > 0);
484 atomic_add_int(&td->td_refs, -1);
487 void
488 lwkt_free_thread(thread_t td)
490 KKASSERT(td->td_refs == 0);
491 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
492 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
493 if (td->td_flags & TDF_ALLOCATED_THREAD) {
494 objcache_put(thread_cache, td);
495 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
496 /* client-allocated struct with internally allocated stack */
497 KASSERT(td->td_kstack && td->td_kstack_size > 0,
498 ("lwkt_free_thread: corrupted stack"));
499 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
500 td->td_kstack = NULL;
501 td->td_kstack_size = 0;
504 KTR_LOG(ctxsw_deadtd, td);
509 * Switch to the next runnable lwkt. If no LWKTs are runnable then
510 * switch to the idlethread. Switching must occur within a critical
511 * section to avoid races with the scheduling queue.
513 * We always have full control over our cpu's run queue. Other cpus
514 * that wish to manipulate our queue must use the cpu_*msg() calls to
515 * talk to our cpu, so a critical section is all that is needed and
516 * the result is very, very fast thread switching.
518 * The LWKT scheduler uses a fixed priority model and round-robins at
519 * each priority level. User process scheduling is a totally
520 * different beast and LWKT priorities should not be confused with
521 * user process priorities.
523 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
524 * is not called by the current thread in the preemption case, only when
525 * the preempting thread blocks (in order to return to the original thread).
527 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
528 * migration and tsleep deschedule the current lwkt thread and call
529 * lwkt_switch(). In particular, the target cpu of the migration fully
530 * expects the thread to become non-runnable and can deadlock against
531 * cpusync operations if we run any IPIs prior to switching the thread out.
533 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
534 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
536 void
537 lwkt_switch(void)
539 globaldata_t gd = mycpu;
540 thread_t td = gd->gd_curthread;
541 thread_t ntd;
542 int upri;
543 #ifdef LOOPMASK
544 uint64_t tsc_base = rdtsc();
545 #endif
547 KKASSERT(gd->gd_processing_ipiq == 0);
548 KKASSERT(td->td_flags & TDF_RUNNING);
551 * Switching from within a 'fast' (non thread switched) interrupt or IPI
552 * is illegal. However, we may have to do it anyway if we hit a fatal
553 * kernel trap or we have paniced.
555 * If this case occurs save and restore the interrupt nesting level.
557 if (gd->gd_intr_nesting_level) {
558 int savegdnest;
559 int savegdtrap;
561 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
562 panic("lwkt_switch: Attempt to switch from a "
563 "fast interrupt, ipi, or hard code section, "
564 "td %p\n",
565 td);
566 } else {
567 savegdnest = gd->gd_intr_nesting_level;
568 savegdtrap = gd->gd_trap_nesting_level;
569 gd->gd_intr_nesting_level = 0;
570 gd->gd_trap_nesting_level = 0;
571 if ((td->td_flags & TDF_PANICWARN) == 0) {
572 td->td_flags |= TDF_PANICWARN;
573 kprintf("Warning: thread switch from interrupt, IPI, "
574 "or hard code section.\n"
575 "thread %p (%s)\n", td, td->td_comm);
576 print_backtrace(-1);
578 lwkt_switch();
579 gd->gd_intr_nesting_level = savegdnest;
580 gd->gd_trap_nesting_level = savegdtrap;
581 return;
586 * Release our current user process designation if we are blocking
587 * or if a user reschedule was requested.
589 * NOTE: This function is NOT called if we are switching into or
590 * returning from a preemption.
592 * NOTE: Releasing our current user process designation may cause
593 * it to be assigned to another thread, which in turn will
594 * cause us to block in the usched acquire code when we attempt
595 * to return to userland.
597 * NOTE: On SMP systems this can be very nasty when heavy token
598 * contention is present so we want to be careful not to
599 * release the designation gratuitously.
601 if (td->td_release &&
602 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
603 td->td_release(td);
607 * Release all tokens. Once we do this we must remain in the critical
608 * section and cannot run IPIs or other interrupts until we switch away
609 * because they may implode if they try to get a token using our thread
610 * context.
612 crit_enter_gd(gd);
613 if (TD_TOKS_HELD(td))
614 lwkt_relalltokens(td);
617 * We had better not be holding any spin locks, but don't get into an
618 * endless panic loop.
620 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
621 ("lwkt_switch: still holding %d exclusive spinlocks!",
622 gd->gd_spinlocks));
624 #ifdef INVARIANTS
625 if (td->td_cscount) {
626 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
627 td);
628 if (panic_on_cscount)
629 panic("switching while mastering cpusync");
631 #endif
634 * If we had preempted another thread on this cpu, resume the preempted
635 * thread. This occurs transparently, whether the preempted thread
636 * was scheduled or not (it may have been preempted after descheduling
637 * itself).
639 * We have to setup the MP lock for the original thread after backing
640 * out the adjustment that was made to curthread when the original
641 * was preempted.
643 if ((ntd = td->td_preempted) != NULL) {
644 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
645 ntd->td_flags |= TDF_PREEMPT_DONE;
646 ntd->td_contended = 0; /* reset contended */
649 * The interrupt may have woken a thread up, we need to properly
650 * set the reschedule flag if the originally interrupted thread is
651 * at a lower priority.
653 * The interrupt may not have descheduled.
655 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
656 need_lwkt_resched();
657 goto havethread_preempted;
661 * Figure out switch target. If we cannot switch to our desired target
662 * look for a thread that we can switch to.
664 * NOTE! The limited spin loop and related parameters are extremely
665 * important for system performance, particularly for pipes and
666 * concurrent conflicting VM faults.
668 clear_lwkt_resched();
669 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
671 if (ntd) {
672 do {
673 if (TD_TOKS_NOT_HELD(ntd) ||
674 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
676 goto havethread;
678 ++gd->gd_cnt.v_lock_colls;
679 ++ntd->td_contended; /* overflow ok */
680 #ifdef LOOPMASK
681 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
682 kprintf("lwkt_switch: excessive contended %d "
683 "thread %p\n", ntd->td_contended, ntd);
684 tsc_base = rdtsc();
686 #endif
687 } while (ntd->td_contended < (lwkt_spin_loops >> 1));
688 upri = ntd->td_upri;
691 * Bleh, the thread we wanted to switch to has a contended token.
692 * See if we can switch to another thread.
694 * We generally don't want to do this because it represents a
695 * priority inversion. Do not allow the case if the thread
696 * is returning to userland (not a kernel thread) AND the thread
697 * has a lower upri.
699 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
700 if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
701 break;
702 upri = ntd->td_upri;
705 * Try this one.
707 if (TD_TOKS_NOT_HELD(ntd) ||
708 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
709 goto havethread;
711 ++ntd->td_contended; /* overflow ok */
712 ++gd->gd_cnt.v_lock_colls;
716 * Fall through, switch to idle thread to get us out of the current
717 * context. Since we were contended, prevent HLT by flagging a
718 * LWKT reschedule.
720 need_lwkt_resched();
724 * We either contended on ntd or the runq is empty. We must switch
725 * through the idle thread to get out of the current context.
727 ntd = &gd->gd_idlethread;
728 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
729 ASSERT_NO_TOKENS_HELD(ntd);
730 cpu_time.cp_msg[0] = 0;
731 goto haveidle;
733 havethread:
735 * Clear gd_idle_repeat when doing a normal switch to a non-idle
736 * thread.
738 ntd->td_wmesg = NULL;
739 ntd->td_contended = 0; /* reset once scheduled */
740 ++gd->gd_cnt.v_swtch;
741 gd->gd_idle_repeat = 0;
743 havethread_preempted:
745 * If the new target does not need the MP lock and we are holding it,
746 * release the MP lock. If the new target requires the MP lock we have
747 * already acquired it for the target.
750 haveidle:
751 KASSERT(ntd->td_critcount,
752 ("priority problem in lwkt_switch %d %d",
753 td->td_critcount, ntd->td_critcount));
755 if (td != ntd) {
757 * Execute the actual thread switch operation. This function
758 * returns to the current thread and returns the previous thread
759 * (which may be different from the thread we switched to).
761 * We are responsible for marking ntd as TDF_RUNNING.
763 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
764 ++switch_count;
765 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
766 ntd->td_flags |= TDF_RUNNING;
767 lwkt_switch_return(td->td_switch(ntd));
768 /* ntd invalid, td_switch() can return a different thread_t */
772 * catch-all. XXX is this strictly needed?
774 splz_check();
776 /* NOTE: current cpu may have changed after switch */
777 crit_exit_quick(td);
781 * Called by assembly in the td_switch (thread restore path) for thread
782 * bootstrap cases which do not 'return' to lwkt_switch().
784 void
785 lwkt_switch_return(thread_t otd)
787 globaldata_t rgd;
788 #ifdef LOOPMASK
789 uint64_t tsc_base = rdtsc();
790 #endif
791 int exiting;
793 exiting = otd->td_flags & TDF_EXITING;
794 cpu_ccfence();
797 * Check if otd was migrating. Now that we are on ntd we can finish
798 * up the migration. This is a bit messy but it is the only place
799 * where td is known to be fully descheduled.
801 * We can only activate the migration if otd was migrating but not
802 * held on the cpu due to a preemption chain. We still have to
803 * clear TDF_RUNNING on the old thread either way.
805 * We are responsible for clearing the previously running thread's
806 * TDF_RUNNING.
808 if ((rgd = otd->td_migrate_gd) != NULL &&
809 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
810 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
811 (TDF_MIGRATING | TDF_RUNNING));
812 otd->td_migrate_gd = NULL;
813 otd->td_flags &= ~TDF_RUNNING;
814 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
815 } else {
816 otd->td_flags &= ~TDF_RUNNING;
820 * Final exit validations (see lwp_wait()). Note that otd becomes
821 * invalid the *instant* we set TDF_MP_EXITSIG.
823 * Use the EXITING status loaded from before we clear TDF_RUNNING,
824 * because if it is not set otd becomes invalid the instant we clear
825 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
826 * might 'steal' TDF_EXITING from another switch-return!).
828 while (exiting) {
829 u_int mpflags;
831 mpflags = otd->td_mpflags;
832 cpu_ccfence();
834 if (mpflags & TDF_MP_EXITWAIT) {
835 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
836 mpflags | TDF_MP_EXITSIG)) {
837 wakeup(otd);
838 break;
840 } else {
841 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
842 mpflags | TDF_MP_EXITSIG)) {
843 wakeup(otd);
844 break;
848 #ifdef LOOPMASK
849 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
850 kprintf("lwkt_switch_return: excessive TDF_EXITING "
851 "thread %p\n", otd);
852 tsc_base = rdtsc();
854 #endif
859 * Request that the target thread preempt the current thread. Preemption
860 * can only occur if our only critical section is the one that we were called
861 * with, the relative priority of the target thread is higher, and the target
862 * thread holds no tokens. This also only works if we are not holding any
863 * spinlocks (obviously).
865 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
866 * this is called via lwkt_schedule() through the td_preemptable callback.
867 * critcount is the managed critical priority that we should ignore in order
868 * to determine whether preemption is possible (aka usually just the crit
869 * priority of lwkt_schedule() itself).
871 * Preemption is typically limited to interrupt threads.
873 * Operation works in a fairly straight-forward manner. The normal
874 * scheduling code is bypassed and we switch directly to the target
875 * thread. When the target thread attempts to block or switch away
876 * code at the base of lwkt_switch() will switch directly back to our
877 * thread. Our thread is able to retain whatever tokens it holds and
878 * if the target needs one of them the target will switch back to us
879 * and reschedule itself normally.
881 void
882 lwkt_preempt(thread_t ntd, int critcount)
884 struct globaldata *gd = mycpu;
885 thread_t xtd;
886 thread_t td;
887 int save_gd_intr_nesting_level;
890 * The caller has put us in a critical section. We can only preempt
891 * if the caller of the caller was not in a critical section (basically
892 * a local interrupt), as determined by the 'critcount' parameter. We
893 * also can't preempt if the caller is holding any spinlocks (even if
894 * he isn't in a critical section). This also handles the tokens test.
896 * YYY The target thread must be in a critical section (else it must
897 * inherit our critical section? I dunno yet).
899 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
901 td = gd->gd_curthread;
902 if (preempt_enable == 0) {
903 ++preempt_miss;
904 return;
906 if (ntd->td_pri <= td->td_pri) {
907 ++preempt_miss;
908 return;
910 if (td->td_critcount > critcount) {
911 ++preempt_miss;
912 return;
914 if (td->td_cscount) {
915 ++preempt_miss;
916 return;
918 if (ntd->td_gd != gd) {
919 ++preempt_miss;
920 return;
924 * We don't have to check spinlocks here as they will also bump
925 * td_critcount.
927 * Do not try to preempt if the target thread is holding any tokens.
928 * We could try to acquire the tokens but this case is so rare there
929 * is no need to support it.
931 KKASSERT(gd->gd_spinlocks == 0);
933 if (TD_TOKS_HELD(ntd)) {
934 ++preempt_miss;
935 return;
937 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
938 ++preempt_weird;
939 return;
941 if (ntd->td_preempted) {
942 ++preempt_hit;
943 return;
945 KKASSERT(gd->gd_processing_ipiq == 0);
948 * Since we are able to preempt the current thread, there is no need to
949 * call need_lwkt_resched().
951 * We must temporarily clear gd_intr_nesting_level around the switch
952 * since switchouts from the target thread are allowed (they will just
953 * return to our thread), and since the target thread has its own stack.
955 * A preemption must switch back to the original thread, assert the
956 * case.
958 ++preempt_hit;
959 ntd->td_preempted = td;
960 td->td_flags |= TDF_PREEMPT_LOCK;
961 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
962 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
963 gd->gd_intr_nesting_level = 0;
965 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
966 ntd->td_flags |= TDF_RUNNING;
967 xtd = td->td_switch(ntd);
968 KKASSERT(xtd == ntd);
969 lwkt_switch_return(xtd);
970 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
972 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
973 ntd->td_preempted = NULL;
974 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
978 * Conditionally call splz() if gd_reqflags indicates work is pending.
979 * This will work inside a critical section but not inside a hard code
980 * section.
982 * (self contained on a per cpu basis)
984 void
985 splz_check(void)
987 globaldata_t gd = mycpu;
988 thread_t td = gd->gd_curthread;
990 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
991 gd->gd_intr_nesting_level == 0 &&
992 td->td_nest_count < 2)
994 splz();
999 * This version is integrated into crit_exit, reqflags has already
1000 * been tested but td_critcount has not.
1002 * We only want to execute the splz() on the 1->0 transition of
1003 * critcount and not in a hard code section or if too deeply nested.
1005 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1007 void
1008 lwkt_maybe_splz(thread_t td)
1010 globaldata_t gd = td->td_gd;
1012 if (td->td_critcount == 0 &&
1013 gd->gd_intr_nesting_level == 0 &&
1014 td->td_nest_count < 2)
1016 splz();
1021 * Drivers which set up processing co-threads can call this function to
1022 * run the co-thread at a higher priority and to allow it to preempt
1023 * normal threads.
1025 void
1026 lwkt_set_interrupt_support_thread(void)
1028 thread_t td = curthread;
1030 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1031 td->td_flags |= TDF_INTTHREAD;
1032 td->td_preemptable = lwkt_preempt;
1037 * This function is used to negotiate a passive release of the current
1038 * process/lwp designation with the user scheduler, allowing the user
1039 * scheduler to schedule another user thread. The related kernel thread
1040 * (curthread) continues running in the released state.
1042 void
1043 lwkt_passive_release(struct thread *td)
1045 struct lwp *lp = td->td_lwp;
1047 td->td_release = NULL;
1048 lwkt_setpri_self(TDPRI_KERN_USER);
1050 lp->lwp_proc->p_usched->release_curproc(lp);
1055 * This implements a LWKT yield, allowing a kernel thread to yield to other
1056 * kernel threads at the same or higher priority. This function can be
1057 * called in a tight loop and will typically only yield once per tick.
1059 * Most kernel threads run at the same priority in order to allow equal
1060 * sharing.
1062 * (self contained on a per cpu basis)
1064 void
1065 lwkt_yield(void)
1067 globaldata_t gd = mycpu;
1068 thread_t td = gd->gd_curthread;
1071 * Should never be called with spinlocks held but there is a path
1072 * via ACPI where it might happen.
1074 if (gd->gd_spinlocks)
1075 return;
1078 * Safe to call splz if we are not too-heavily nested.
1080 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1081 splz();
1084 * Caller allows switching
1086 if (lwkt_resched_wanted()) {
1087 lwkt_schedule_self(curthread);
1088 lwkt_switch();
1093 * The quick version processes pending interrupts and higher-priority
1094 * LWKT threads but will not round-robin same-priority LWKT threads.
1096 * When called while attempting to return to userland the only same-pri
1097 * threads are the ones which have already tried to become the current
1098 * user process.
1100 void
1101 lwkt_yield_quick(void)
1103 globaldata_t gd = mycpu;
1104 thread_t td = gd->gd_curthread;
1106 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1107 splz();
1108 if (lwkt_resched_wanted()) {
1109 crit_enter();
1110 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1111 clear_lwkt_resched();
1112 } else {
1113 lwkt_schedule_self(curthread);
1114 lwkt_switch();
1116 crit_exit();
1121 * This yield is designed for kernel threads with a user context.
1123 * The kernel acting on behalf of the user is potentially cpu-bound,
1124 * this function will efficiently allow other threads to run and also
1125 * switch to other processes by releasing.
1127 * The lwkt_user_yield() function is designed to have very low overhead
1128 * if no yield is determined to be needed.
1130 void
1131 lwkt_user_yield(void)
1133 globaldata_t gd = mycpu;
1134 thread_t td = gd->gd_curthread;
1137 * Should never be called with spinlocks held but there is a path
1138 * via ACPI where it might happen.
1140 if (gd->gd_spinlocks)
1141 return;
1144 * Always run any pending interrupts in case we are in a critical
1145 * section.
1147 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1148 splz();
1151 * Switch (which forces a release) if another kernel thread needs
1152 * the cpu, if userland wants us to resched, or if our kernel
1153 * quantum has run out.
1155 if (lwkt_resched_wanted() ||
1156 user_resched_wanted())
1158 lwkt_switch();
1161 #if 0
1163 * Reacquire the current process if we are released.
1165 * XXX not implemented atm. The kernel may be holding locks and such,
1166 * so we want the thread to continue to receive cpu.
1168 if (td->td_release == NULL && lp) {
1169 lp->lwp_proc->p_usched->acquire_curproc(lp);
1170 td->td_release = lwkt_passive_release;
1171 lwkt_setpri_self(TDPRI_USER_NORM);
1173 #endif
1177 * Generic schedule. Possibly schedule threads belonging to other cpus and
1178 * deal with threads that might be blocked on a wait queue.
1180 * We have a little helper inline function which does additional work after
1181 * the thread has been enqueued, including dealing with preemption and
1182 * setting need_lwkt_resched() (which prevents the kernel from returning
1183 * to userland until it has processed higher priority threads).
1185 * It is possible for this routine to be called after a failed _enqueue
1186 * (due to the target thread migrating, sleeping, or otherwise blocked).
1187 * We have to check that the thread is actually on the run queue!
1189 static __inline
1190 void
1191 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1193 if (ntd->td_flags & TDF_RUNQ) {
1194 if (ntd->td_preemptable) {
1195 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1200 static __inline
1201 void
1202 _lwkt_schedule(thread_t td)
1204 globaldata_t mygd = mycpu;
1206 KASSERT(td != &td->td_gd->gd_idlethread,
1207 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1208 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1209 crit_enter_gd(mygd);
1210 KKASSERT(td->td_lwp == NULL ||
1211 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1213 if (td == mygd->gd_curthread) {
1214 _lwkt_enqueue(td);
1215 } else {
1217 * If we own the thread, there is no race (since we are in a
1218 * critical section). If we do not own the thread there might
1219 * be a race but the target cpu will deal with it.
1221 if (td->td_gd == mygd) {
1222 _lwkt_enqueue(td);
1223 _lwkt_schedule_post(mygd, td, 1);
1224 } else {
1225 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1228 crit_exit_gd(mygd);
1231 void
1232 lwkt_schedule(thread_t td)
1234 _lwkt_schedule(td);
1237 void
1238 lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1240 _lwkt_schedule(td);
1244 * When scheduled remotely if frame != NULL the IPIQ is being
1245 * run via doreti or an interrupt then preemption can be allowed.
1247 * To allow preemption we have to drop the critical section so only
1248 * one is present in _lwkt_schedule_post.
1250 static void
1251 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1253 thread_t td = curthread;
1254 thread_t ntd = arg;
1256 if (frame && ntd->td_preemptable) {
1257 crit_exit_noyield(td);
1258 _lwkt_schedule(ntd);
1259 crit_enter_quick(td);
1260 } else {
1261 _lwkt_schedule(ntd);
1266 * Thread migration using a 'Pull' method. The thread may or may not be
1267 * the current thread. It MUST be descheduled and in a stable state.
1268 * lwkt_giveaway() must be called on the cpu owning the thread.
1270 * At any point after lwkt_giveaway() is called, the target cpu may
1271 * 'pull' the thread by calling lwkt_acquire().
1273 * We have to make sure the thread is not sitting on a per-cpu tsleep
1274 * queue or it will blow up when it moves to another cpu.
1276 * MPSAFE - must be called under very specific conditions.
1278 void
1279 lwkt_giveaway(thread_t td)
1281 globaldata_t gd = mycpu;
1283 crit_enter_gd(gd);
1284 if (td->td_flags & TDF_TSLEEPQ)
1285 tsleep_remove(td);
1286 KKASSERT(td->td_gd == gd);
1287 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1288 td->td_flags |= TDF_MIGRATING;
1289 crit_exit_gd(gd);
1292 void
1293 lwkt_acquire(thread_t td)
1295 globaldata_t gd;
1296 globaldata_t mygd;
1298 KKASSERT(td->td_flags & TDF_MIGRATING);
1299 gd = td->td_gd;
1300 mygd = mycpu;
1301 if (gd != mycpu) {
1302 #ifdef LOOPMASK
1303 uint64_t tsc_base = rdtsc();
1304 #endif
1305 cpu_lfence();
1306 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1307 crit_enter_gd(mygd);
1308 DEBUG_PUSH_INFO("lwkt_acquire");
1309 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1310 lwkt_process_ipiq();
1311 cpu_lfence();
1312 #ifdef _KERNEL_VIRTUAL
1313 pthread_yield();
1314 #endif
1315 #ifdef LOOPMASK
1316 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1317 kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1318 td, td->td_flags);
1319 tsc_base = rdtsc();
1321 #endif
1323 DEBUG_POP_INFO();
1324 cpu_mfence();
1325 td->td_gd = mygd;
1326 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1327 td->td_flags &= ~TDF_MIGRATING;
1328 crit_exit_gd(mygd);
1329 } else {
1330 crit_enter_gd(mygd);
1331 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1332 td->td_flags &= ~TDF_MIGRATING;
1333 crit_exit_gd(mygd);
1338 * Generic deschedule. Descheduling threads other then your own should be
1339 * done only in carefully controlled circumstances. Descheduling is
1340 * asynchronous.
1342 * This function may block if the cpu has run out of messages.
1344 void
1345 lwkt_deschedule(thread_t td)
1347 crit_enter();
1348 if (td == curthread) {
1349 _lwkt_dequeue(td);
1350 } else {
1351 if (td->td_gd == mycpu) {
1352 _lwkt_dequeue(td);
1353 } else {
1354 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1357 crit_exit();
1361 * Set the target thread's priority. This routine does not automatically
1362 * switch to a higher priority thread, LWKT threads are not designed for
1363 * continuous priority changes. Yield if you want to switch.
1365 void
1366 lwkt_setpri(thread_t td, int pri)
1368 if (td->td_pri != pri) {
1369 KKASSERT(pri >= 0);
1370 crit_enter();
1371 if (td->td_flags & TDF_RUNQ) {
1372 KKASSERT(td->td_gd == mycpu);
1373 _lwkt_dequeue(td);
1374 td->td_pri = pri;
1375 _lwkt_enqueue(td);
1376 } else {
1377 td->td_pri = pri;
1379 crit_exit();
1384 * Set the initial priority for a thread prior to it being scheduled for
1385 * the first time. The thread MUST NOT be scheduled before or during
1386 * this call. The thread may be assigned to a cpu other then the current
1387 * cpu.
1389 * Typically used after a thread has been created with TDF_STOPPREQ,
1390 * and before the thread is initially scheduled.
1392 void
1393 lwkt_setpri_initial(thread_t td, int pri)
1395 KKASSERT(pri >= 0);
1396 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1397 td->td_pri = pri;
1400 void
1401 lwkt_setpri_self(int pri)
1403 thread_t td = curthread;
1405 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1406 crit_enter();
1407 if (td->td_flags & TDF_RUNQ) {
1408 _lwkt_dequeue(td);
1409 td->td_pri = pri;
1410 _lwkt_enqueue(td);
1411 } else {
1412 td->td_pri = pri;
1414 crit_exit();
1418 * hz tick scheduler clock for LWKT threads
1420 void
1421 lwkt_schedulerclock(thread_t td)
1423 globaldata_t gd = td->td_gd;
1424 thread_t xtd;
1426 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1428 * If the current thread is at the head of the runq shift it to the
1429 * end of any equal-priority threads and request a LWKT reschedule
1430 * if it moved.
1432 * Ignore upri in this situation. There will only be one user thread
1433 * in user mode, all others will be user threads running in kernel
1434 * mode and we have to make sure they get some cpu.
1436 xtd = TAILQ_NEXT(td, td_threadq);
1437 if (xtd && xtd->td_pri == td->td_pri) {
1438 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1439 while (xtd && xtd->td_pri == td->td_pri)
1440 xtd = TAILQ_NEXT(xtd, td_threadq);
1441 if (xtd)
1442 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1443 else
1444 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1445 need_lwkt_resched();
1447 } else {
1449 * If we scheduled a thread other than the one at the head of the
1450 * queue always request a reschedule every tick.
1452 need_lwkt_resched();
1457 * Migrate the current thread to the specified cpu.
1459 * This is accomplished by descheduling ourselves from the current cpu
1460 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1461 * 'old' thread wants to migrate after it has been completely switched out
1462 * and will complete the migration.
1464 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1466 * We must be sure to release our current process designation (if a user
1467 * process) before clearing out any tsleepq we are on because the release
1468 * code may re-add us.
1470 * We must be sure to remove ourselves from the current cpu's tsleepq
1471 * before potentially moving to another queue. The thread can be on
1472 * a tsleepq due to a left-over tsleep_interlock().
1475 void
1476 lwkt_setcpu_self(globaldata_t rgd)
1478 thread_t td = curthread;
1480 if (td->td_gd != rgd) {
1481 crit_enter_quick(td);
1483 if (td->td_release)
1484 td->td_release(td);
1485 if (td->td_flags & TDF_TSLEEPQ)
1486 tsleep_remove(td);
1489 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1490 * trying to deschedule ourselves and switch away, then deschedule
1491 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1492 * call lwkt_switch() to complete the operation.
1494 td->td_flags |= TDF_MIGRATING;
1495 lwkt_deschedule_self(td);
1496 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1497 td->td_migrate_gd = rgd;
1498 lwkt_switch();
1501 * We are now on the target cpu
1503 KKASSERT(rgd == mycpu);
1504 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1505 crit_exit_quick(td);
1509 void
1510 lwkt_migratecpu(int cpuid)
1512 globaldata_t rgd;
1514 rgd = globaldata_find(cpuid);
1515 lwkt_setcpu_self(rgd);
1519 * Remote IPI for cpu migration (called while in a critical section so we
1520 * do not have to enter another one).
1522 * The thread (td) has already been completely descheduled from the
1523 * originating cpu and we can simply assert the case. The thread is
1524 * assigned to the new cpu and enqueued.
1526 * The thread will re-add itself to tdallq when it resumes execution.
1528 static void
1529 lwkt_setcpu_remote(void *arg)
1531 thread_t td = arg;
1532 globaldata_t gd = mycpu;
1534 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1535 td->td_gd = gd;
1536 cpu_mfence();
1537 td->td_flags &= ~TDF_MIGRATING;
1538 KKASSERT(td->td_migrate_gd == NULL);
1539 KKASSERT(td->td_lwp == NULL ||
1540 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1541 _lwkt_enqueue(td);
1544 struct lwp *
1545 lwkt_preempted_proc(void)
1547 thread_t td = curthread;
1548 while (td->td_preempted)
1549 td = td->td_preempted;
1550 return(td->td_lwp);
1554 * Create a kernel process/thread/whatever. It shares it's address space
1555 * with proc0 - ie: kernel only.
1557 * If the cpu is not specified one will be selected. In the future
1558 * specifying a cpu of -1 will enable kernel thread migration between
1559 * cpus.
1562 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1563 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1565 thread_t td;
1566 __va_list ap;
1568 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1569 tdflags);
1570 if (tdp)
1571 *tdp = td;
1572 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1575 * Set up arg0 for 'ps' etc
1577 __va_start(ap, fmt);
1578 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1579 __va_end(ap);
1582 * Schedule the thread to run
1584 if (td->td_flags & TDF_NOSTART)
1585 td->td_flags &= ~TDF_NOSTART;
1586 else
1587 lwkt_schedule(td);
1588 return 0;
1592 * Destroy an LWKT thread. Warning! This function is not called when
1593 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1594 * uses a different reaping mechanism.
1596 void
1597 lwkt_exit(void)
1599 thread_t td = curthread;
1600 thread_t std;
1601 globaldata_t gd;
1604 * Do any cleanup that might block here
1606 if (td->td_flags & TDF_VERBOSE)
1607 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1608 biosched_done(td);
1609 dsched_exit_thread(td);
1612 * Get us into a critical section to interlock gd_freetd and loop
1613 * until we can get it freed.
1615 * We have to cache the current td in gd_freetd because objcache_put()ing
1616 * it would rip it out from under us while our thread is still active.
1618 * We are the current thread so of course our own TDF_RUNNING bit will
1619 * be set, so unlike the lwp reap code we don't wait for it to clear.
1621 gd = mycpu;
1622 crit_enter_quick(td);
1623 for (;;) {
1624 if (td->td_refs) {
1625 tsleep(td, 0, "tdreap", 1);
1626 continue;
1628 if ((std = gd->gd_freetd) != NULL) {
1629 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1630 gd->gd_freetd = NULL;
1631 objcache_put(thread_cache, std);
1632 continue;
1634 break;
1638 * Remove thread resources from kernel lists and deschedule us for
1639 * the last time. We cannot block after this point or we may end
1640 * up with a stale td on the tsleepq.
1642 * None of this may block, the critical section is the only thing
1643 * protecting tdallq and the only thing preventing new lwkt_hold()
1644 * thread refs now.
1646 if (td->td_flags & TDF_TSLEEPQ)
1647 tsleep_remove(td);
1648 lwkt_deschedule_self(td);
1649 lwkt_remove_tdallq(td);
1650 KKASSERT(td->td_refs == 0);
1653 * Final cleanup
1655 KKASSERT(gd->gd_freetd == NULL);
1656 if (td->td_flags & TDF_ALLOCATED_THREAD)
1657 gd->gd_freetd = td;
1658 cpu_thread_exit();
1661 void
1662 lwkt_remove_tdallq(thread_t td)
1664 KKASSERT(td->td_gd == mycpu);
1665 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1669 * Code reduction and branch prediction improvements. Call/return
1670 * overhead on modern cpus often degenerates into 0 cycles due to
1671 * the cpu's branch prediction hardware and return pc cache. We
1672 * can take advantage of this by not inlining medium-complexity
1673 * functions and we can also reduce the branch prediction impact
1674 * by collapsing perfectly predictable branches into a single
1675 * procedure instead of duplicating it.
1677 * Is any of this noticeable? Probably not, so I'll take the
1678 * smaller code size.
1680 void
1681 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1683 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1686 void
1687 crit_panic(void)
1689 thread_t td = curthread;
1690 int lcrit = td->td_critcount;
1692 td->td_critcount = 0;
1693 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1694 /* NOT REACHED */
1698 * Called from debugger/panic on cpus which have been stopped. We must still
1699 * process the IPIQ while stopped.
1701 * If we are dumping also try to process any pending interrupts. This may
1702 * or may not work depending on the state of the cpu at the point it was
1703 * stopped.
1705 void
1706 lwkt_smp_stopped(void)
1708 globaldata_t gd = mycpu;
1710 if (dumping) {
1711 lwkt_process_ipiq();
1712 --gd->gd_intr_nesting_level;
1713 splz();
1714 ++gd->gd_intr_nesting_level;
1715 } else {
1716 lwkt_process_ipiq();
1718 cpu_smp_stopped();