HAMMER 59E/Many: Stabilization pass
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
bloba49790ad42bd53b8b08908aed7255a13276992fd
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.59 2008/06/30 02:45:30 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
79 * up the boundaries).
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static void hammer_make_separator(hammer_base_elm_t key1,
91 hammer_base_elm_t key2, hammer_base_elm_t dest);
94 * Iterate records after a search. The cursor is iterated forwards past
95 * the current record until a record matching the key-range requirements
96 * is found. ENOENT is returned if the iteration goes past the ending
97 * key.
99 * The iteration is inclusive of key_beg and can be inclusive or exclusive
100 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
102 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
103 * may be modified by B-Tree functions.
105 * cursor->key_beg may or may not be modified by this function during
106 * the iteration. XXX future - in case of an inverted lock we may have
107 * to reinitiate the lookup and set key_beg to properly pick up where we
108 * left off.
110 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
113 hammer_btree_iterate(hammer_cursor_t cursor)
115 hammer_node_ondisk_t node;
116 hammer_btree_elm_t elm;
117 int error;
118 int r;
119 int s;
122 * Skip past the current record
124 node = cursor->node->ondisk;
125 if (node == NULL)
126 return(ENOENT);
127 if (cursor->index < node->count &&
128 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
129 ++cursor->index;
133 * Loop until an element is found or we are done.
135 for (;;) {
137 * We iterate up the tree and then index over one element
138 * while we are at the last element in the current node.
140 * If we are at the root of the filesystem, cursor_up
141 * returns ENOENT.
143 * XXX this could be optimized by storing the information in
144 * the parent reference.
146 * XXX we can lose the node lock temporarily, this could mess
147 * up our scan.
149 ++hammer_stats_btree_iterations;
150 if (cursor->index == node->count) {
151 if (hammer_debug_btree) {
152 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
153 cursor->node->node_offset,
154 cursor->index,
155 (cursor->parent ? cursor->parent->node_offset : -1),
156 cursor->parent_index,
157 curthread);
159 KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
160 error = hammer_cursor_up(cursor);
161 if (error)
162 break;
163 /* reload stale pointer */
164 node = cursor->node->ondisk;
165 KKASSERT(cursor->index != node->count);
168 * If we are reblocking we want to return internal
169 * nodes.
171 if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
172 cursor->flags |= HAMMER_CURSOR_ATEDISK;
173 return(0);
175 ++cursor->index;
176 continue;
180 * Check internal or leaf element. Determine if the record
181 * at the cursor has gone beyond the end of our range.
183 * We recurse down through internal nodes.
185 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
186 elm = &node->elms[cursor->index];
188 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
189 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
190 if (hammer_debug_btree) {
191 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
192 cursor->node->node_offset,
193 cursor->index,
194 elm[0].internal.base.obj_id,
195 elm[0].internal.base.rec_type,
196 elm[0].internal.base.key,
197 elm[0].internal.base.localization,
199 curthread
201 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
202 cursor->node->node_offset,
203 cursor->index + 1,
204 elm[1].internal.base.obj_id,
205 elm[1].internal.base.rec_type,
206 elm[1].internal.base.key,
207 elm[1].internal.base.localization,
212 if (r < 0) {
213 error = ENOENT;
214 break;
216 if (r == 0 && (cursor->flags &
217 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
218 error = ENOENT;
219 break;
221 KKASSERT(s <= 0);
224 * Better not be zero
226 KKASSERT(elm->internal.subtree_offset != 0);
229 * If running the mirror filter see if we can skip
230 * the entire sub-tree.
232 if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
233 if (elm->internal.mirror_tid <
234 cursor->mirror_tid) {
235 ++cursor->index;
236 continue;
240 error = hammer_cursor_down(cursor);
241 if (error)
242 break;
243 KKASSERT(cursor->index == 0);
244 /* reload stale pointer */
245 node = cursor->node->ondisk;
246 continue;
247 } else {
248 elm = &node->elms[cursor->index];
249 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
250 if (hammer_debug_btree) {
251 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
252 cursor->node->node_offset,
253 cursor->index,
254 (elm[0].leaf.base.btype ?
255 elm[0].leaf.base.btype : '?'),
256 elm[0].leaf.base.obj_id,
257 elm[0].leaf.base.rec_type,
258 elm[0].leaf.base.key,
259 elm[0].leaf.base.localization,
263 if (r < 0) {
264 error = ENOENT;
265 break;
269 * We support both end-inclusive and
270 * end-exclusive searches.
272 if (r == 0 &&
273 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
274 error = ENOENT;
275 break;
278 switch(elm->leaf.base.btype) {
279 case HAMMER_BTREE_TYPE_RECORD:
280 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
281 hammer_btree_chkts(cursor->asof, &elm->base)) {
282 ++cursor->index;
283 continue;
285 break;
286 default:
287 error = EINVAL;
288 break;
290 if (error)
291 break;
294 * node pointer invalid after loop
298 * Return entry
300 if (hammer_debug_btree) {
301 int i = cursor->index;
302 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
303 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
304 cursor->node, i,
305 elm->internal.base.obj_id,
306 elm->internal.base.rec_type,
307 elm->internal.base.key,
308 elm->internal.base.localization
311 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
312 return(0);
314 return(error);
318 * Iterate in the reverse direction. This is used by the pruning code to
319 * avoid overlapping records.
322 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
324 hammer_node_ondisk_t node;
325 hammer_btree_elm_t elm;
326 int error;
327 int r;
328 int s;
331 * Skip past the current record. For various reasons the cursor
332 * may end up set to -1 or set to point at the end of the current
333 * node. These cases must be addressed.
335 node = cursor->node->ondisk;
336 if (node == NULL)
337 return(ENOENT);
338 if (cursor->index != -1 &&
339 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
340 --cursor->index;
342 if (cursor->index == cursor->node->ondisk->count)
343 --cursor->index;
346 * Loop until an element is found or we are done.
348 for (;;) {
350 * We iterate up the tree and then index over one element
351 * while we are at the last element in the current node.
353 if (cursor->index == -1) {
354 error = hammer_cursor_up(cursor);
355 if (error) {
356 cursor->index = 0; /* sanity */
357 break;
359 /* reload stale pointer */
360 node = cursor->node->ondisk;
361 KKASSERT(cursor->index != node->count);
362 --cursor->index;
363 continue;
367 * Check internal or leaf element. Determine if the record
368 * at the cursor has gone beyond the end of our range.
370 * We recurse down through internal nodes.
372 KKASSERT(cursor->index != node->count);
373 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
374 elm = &node->elms[cursor->index];
375 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
376 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
377 if (hammer_debug_btree) {
378 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
379 cursor->node->node_offset,
380 cursor->index,
381 elm[0].internal.base.obj_id,
382 elm[0].internal.base.rec_type,
383 elm[0].internal.base.key,
384 elm[0].internal.base.localization,
387 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
388 cursor->node->node_offset,
389 cursor->index + 1,
390 elm[1].internal.base.obj_id,
391 elm[1].internal.base.rec_type,
392 elm[1].internal.base.key,
393 elm[1].internal.base.localization,
398 if (s >= 0) {
399 error = ENOENT;
400 break;
402 KKASSERT(r >= 0);
405 * Better not be zero
407 KKASSERT(elm->internal.subtree_offset != 0);
409 error = hammer_cursor_down(cursor);
410 if (error)
411 break;
412 KKASSERT(cursor->index == 0);
413 /* reload stale pointer */
414 node = cursor->node->ondisk;
416 /* this can assign -1 if the leaf was empty */
417 cursor->index = node->count - 1;
418 continue;
419 } else {
420 elm = &node->elms[cursor->index];
421 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
422 if (hammer_debug_btree) {
423 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
424 cursor->node->node_offset,
425 cursor->index,
426 (elm[0].leaf.base.btype ?
427 elm[0].leaf.base.btype : '?'),
428 elm[0].leaf.base.obj_id,
429 elm[0].leaf.base.rec_type,
430 elm[0].leaf.base.key,
431 elm[0].leaf.base.localization,
435 if (s > 0) {
436 error = ENOENT;
437 break;
440 switch(elm->leaf.base.btype) {
441 case HAMMER_BTREE_TYPE_RECORD:
442 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
443 hammer_btree_chkts(cursor->asof, &elm->base)) {
444 --cursor->index;
445 continue;
447 break;
448 default:
449 error = EINVAL;
450 break;
452 if (error)
453 break;
456 * node pointer invalid after loop
460 * Return entry
462 if (hammer_debug_btree) {
463 int i = cursor->index;
464 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
465 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
466 cursor->node, i,
467 elm->internal.base.obj_id,
468 elm->internal.base.rec_type,
469 elm->internal.base.key,
470 elm->internal.base.localization
473 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
474 return(0);
476 return(error);
480 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
481 * could not be found, EDEADLK if inserting and a retry is needed, and a
482 * fatal error otherwise. When retrying, the caller must terminate the
483 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
485 * The cursor is suitably positioned for a deletion on success, and suitably
486 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
487 * specified.
489 * The cursor may begin anywhere, the search will traverse the tree in
490 * either direction to locate the requested element.
492 * Most of the logic implementing historical searches is handled here. We
493 * do an initial lookup with create_tid set to the asof TID. Due to the
494 * way records are laid out, a backwards iteration may be required if
495 * ENOENT is returned to locate the historical record. Here's the
496 * problem:
498 * create_tid: 10 15 20
499 * LEAF1 LEAF2
500 * records: (11) (18)
502 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
503 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
504 * not visible and thus causes ENOENT to be returned. We really need
505 * to check record 11 in LEAF1. If it also fails then the search fails
506 * (e.g. it might represent the range 11-16 and thus still not match our
507 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
508 * further iterations.
510 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
511 * and the cursor->create_check TID if an iteration might be needed.
512 * In the above example create_check would be set to 14.
515 hammer_btree_lookup(hammer_cursor_t cursor)
517 int error;
519 ++hammer_stats_btree_lookups;
520 if (cursor->flags & HAMMER_CURSOR_ASOF) {
521 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
522 cursor->key_beg.create_tid = cursor->asof;
523 for (;;) {
524 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
525 error = btree_search(cursor, 0);
526 if (error != ENOENT ||
527 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
529 * Stop if no error.
530 * Stop if error other then ENOENT.
531 * Stop if ENOENT and not special case.
533 break;
535 if (hammer_debug_btree) {
536 kprintf("CREATE_CHECK %016llx\n",
537 cursor->create_check);
539 cursor->key_beg.create_tid = cursor->create_check;
540 /* loop */
542 } else {
543 error = btree_search(cursor, 0);
545 if (error == 0)
546 error = hammer_btree_extract(cursor, cursor->flags);
547 return(error);
551 * Execute the logic required to start an iteration. The first record
552 * located within the specified range is returned and iteration control
553 * flags are adjusted for successive hammer_btree_iterate() calls.
556 hammer_btree_first(hammer_cursor_t cursor)
558 int error;
560 error = hammer_btree_lookup(cursor);
561 if (error == ENOENT) {
562 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
563 error = hammer_btree_iterate(cursor);
565 cursor->flags |= HAMMER_CURSOR_ATEDISK;
566 return(error);
570 * Similarly but for an iteration in the reverse direction.
572 * Set ATEDISK when iterating backwards to skip the current entry,
573 * which after an ENOENT lookup will be pointing beyond our end point.
576 hammer_btree_last(hammer_cursor_t cursor)
578 struct hammer_base_elm save;
579 int error;
581 save = cursor->key_beg;
582 cursor->key_beg = cursor->key_end;
583 error = hammer_btree_lookup(cursor);
584 cursor->key_beg = save;
585 if (error == ENOENT ||
586 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
587 cursor->flags |= HAMMER_CURSOR_ATEDISK;
588 error = hammer_btree_iterate_reverse(cursor);
590 cursor->flags |= HAMMER_CURSOR_ATEDISK;
591 return(error);
595 * Extract the record and/or data associated with the cursor's current
596 * position. Any prior record or data stored in the cursor is replaced.
597 * The cursor must be positioned at a leaf node.
599 * NOTE: All extractions occur at the leaf of the B-Tree.
602 hammer_btree_extract(hammer_cursor_t cursor, int flags)
604 hammer_mount_t hmp;
605 hammer_node_ondisk_t node;
606 hammer_btree_elm_t elm;
607 hammer_off_t data_off;
608 int32_t data_len;
609 int error;
612 * The case where the data reference resolves to the same buffer
613 * as the record reference must be handled.
615 node = cursor->node->ondisk;
616 elm = &node->elms[cursor->index];
617 cursor->data = NULL;
618 hmp = cursor->node->hmp;
621 * There is nothing to extract for an internal element.
623 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
624 return(EINVAL);
627 * Only record types have data.
629 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
630 cursor->leaf = &elm->leaf;
632 if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
633 return(0);
634 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
635 return(0);
636 data_off = elm->leaf.data_offset;
637 data_len = elm->leaf.data_len;
638 if (data_off == 0)
639 return(0);
642 * Load the data
644 KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
645 cursor->data = hammer_bread_ext(hmp, data_off, data_len,
646 &error, &cursor->data_buffer);
647 if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0)
648 Debugger("CRC FAILED: DATA");
649 return(error);
654 * Insert a leaf element into the B-Tree at the current cursor position.
655 * The cursor is positioned such that the element at and beyond the cursor
656 * are shifted to make room for the new record.
658 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
659 * flag set and that call must return ENOENT before this function can be
660 * called.
662 * The caller may depend on the cursor's exclusive lock after return to
663 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
665 * ENOSPC is returned if there is no room to insert a new record.
668 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm)
670 hammer_node_ondisk_t node;
671 int i;
672 int error;
674 if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
675 return(error);
676 ++hammer_stats_btree_inserts;
679 * Insert the element at the leaf node and update the count in the
680 * parent. It is possible for parent to be NULL, indicating that
681 * the filesystem's ROOT B-Tree node is a leaf itself, which is
682 * possible. The root inode can never be deleted so the leaf should
683 * never be empty.
685 * Remember that the right-hand boundary is not included in the
686 * count.
688 hammer_modify_node_all(cursor->trans, cursor->node);
689 node = cursor->node->ondisk;
690 i = cursor->index;
691 KKASSERT(elm->base.btype != 0);
692 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
693 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
694 if (i != node->count) {
695 bcopy(&node->elms[i], &node->elms[i+1],
696 (node->count - i) * sizeof(*elm));
698 node->elms[i].leaf = *elm;
699 ++node->count;
702 * Update the leaf node's aggregate mirror_tid for mirroring
703 * support.
705 if (node->mirror_tid < elm->base.delete_tid)
706 node->mirror_tid = elm->base.delete_tid;
707 if (node->mirror_tid < elm->base.create_tid)
708 node->mirror_tid = elm->base.create_tid;
709 hammer_modify_node_done(cursor->node);
712 * What we really want to do is propogate mirror_tid all the way
713 * up the parent chain to the B-Tree root. That would be
714 * ultra-expensive, though.
716 if (cursor->parent &&
717 (cursor->trans->hmp->hflags & (HMNT_MASTERID|HMNT_SLAVE))) {
718 hammer_btree_mirror_propagate(cursor->trans, cursor->parent,
719 cursor->parent_index,
720 node->mirror_tid);
724 * Debugging sanity checks.
726 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
727 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
728 if (i) {
729 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
731 if (i != node->count - 1)
732 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
734 return(0);
738 * Delete a record from the B-Tree at the current cursor position.
739 * The cursor is positioned such that the current element is the one
740 * to be deleted.
742 * On return the cursor will be positioned after the deleted element and
743 * MAY point to an internal node. It will be suitable for the continuation
744 * of an iteration but not for an insertion or deletion.
746 * Deletions will attempt to partially rebalance the B-Tree in an upward
747 * direction, but will terminate rather then deadlock. Empty internal nodes
748 * are never allowed by a deletion which deadlocks may end up giving us an
749 * empty leaf. The pruner will clean up and rebalance the tree.
751 * This function can return EDEADLK, requiring the caller to retry the
752 * operation after clearing the deadlock.
755 hammer_btree_delete(hammer_cursor_t cursor)
757 hammer_node_ondisk_t ondisk;
758 hammer_node_t node;
759 hammer_node_t parent;
760 int error;
761 int i;
763 if ((error = hammer_cursor_upgrade(cursor)) != 0)
764 return(error);
765 ++hammer_stats_btree_deletes;
768 * Delete the element from the leaf node.
770 * Remember that leaf nodes do not have boundaries.
772 node = cursor->node;
773 ondisk = node->ondisk;
774 i = cursor->index;
776 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
777 KKASSERT(i >= 0 && i < ondisk->count);
778 hammer_modify_node_all(cursor->trans, node);
779 if (i + 1 != ondisk->count) {
780 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
781 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
783 --ondisk->count;
784 hammer_modify_node_done(node);
787 * Validate local parent
789 if (ondisk->parent) {
790 parent = cursor->parent;
792 KKASSERT(parent != NULL);
793 KKASSERT(parent->node_offset == ondisk->parent);
797 * If the leaf becomes empty it must be detached from the parent,
798 * potentially recursing through to the filesystem root.
800 * This may reposition the cursor at one of the parent's of the
801 * current node.
803 * Ignore deadlock errors, that simply means that btree_remove
804 * was unable to recurse and had to leave us with an empty leaf.
806 KKASSERT(cursor->index <= ondisk->count);
807 if (ondisk->count == 0) {
808 error = btree_remove(cursor);
809 if (error == EDEADLK)
810 error = 0;
811 } else {
812 error = 0;
814 KKASSERT(cursor->parent == NULL ||
815 cursor->parent_index < cursor->parent->ondisk->count);
816 return(error);
820 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
822 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
824 * The search can begin ANYWHERE in the B-Tree. As a first step the search
825 * iterates up the tree as necessary to properly position itself prior to
826 * actually doing the sarch.
828 * INSERTIONS: The search will split full nodes and leaves on its way down
829 * and guarentee that the leaf it ends up on is not full. If we run out
830 * of space the search continues to the leaf (to position the cursor for
831 * the spike), but ENOSPC is returned.
833 * The search is only guarenteed to end up on a leaf if an error code of 0
834 * is returned, or if inserting and an error code of ENOENT is returned.
835 * Otherwise it can stop at an internal node. On success a search returns
836 * a leaf node.
838 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
839 * filesystem, and it is not simple code. Please note the following facts:
841 * - Internal node recursions have a boundary on the left AND right. The
842 * right boundary is non-inclusive. The create_tid is a generic part
843 * of the key for internal nodes.
845 * - Leaf nodes contain terminal elements only now.
847 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
848 * historical search. ASOF and INSERT are mutually exclusive. When
849 * doing an as-of lookup btree_search() checks for a right-edge boundary
850 * case. If while recursing down the left-edge differs from the key
851 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
852 * with cursor->create_check. This is used by btree_lookup() to iterate.
853 * The iteration backwards because as-of searches can wind up going
854 * down the wrong branch of the B-Tree.
856 static
858 btree_search(hammer_cursor_t cursor, int flags)
860 hammer_node_ondisk_t node;
861 hammer_btree_elm_t elm;
862 int error;
863 int enospc = 0;
864 int i;
865 int r;
866 int s;
868 flags |= cursor->flags;
869 ++hammer_stats_btree_searches;
871 if (hammer_debug_btree) {
872 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
873 cursor->node->node_offset,
874 cursor->index,
875 cursor->key_beg.obj_id,
876 cursor->key_beg.rec_type,
877 cursor->key_beg.key,
878 cursor->key_beg.create_tid,
879 cursor->key_beg.localization,
880 curthread
882 if (cursor->parent)
883 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
884 cursor->parent->node_offset, cursor->parent_index,
885 cursor->left_bound->obj_id,
886 cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
887 cursor->right_bound->obj_id,
888 cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
889 cursor->left_bound,
890 &cursor->parent->ondisk->elms[cursor->parent_index],
891 cursor->right_bound,
892 &cursor->parent->ondisk->elms[cursor->parent_index+1]
897 * Move our cursor up the tree until we find a node whos range covers
898 * the key we are trying to locate.
900 * The left bound is inclusive, the right bound is non-inclusive.
901 * It is ok to cursor up too far.
903 for (;;) {
904 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
905 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
906 if (r >= 0 && s < 0)
907 break;
908 KKASSERT(cursor->parent);
909 ++hammer_stats_btree_iterations;
910 error = hammer_cursor_up(cursor);
911 if (error)
912 goto done;
916 * The delete-checks below are based on node, not parent. Set the
917 * initial delete-check based on the parent.
919 if (r == 1) {
920 KKASSERT(cursor->left_bound->create_tid != 1);
921 cursor->create_check = cursor->left_bound->create_tid - 1;
922 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
926 * We better have ended up with a node somewhere.
928 KKASSERT(cursor->node != NULL);
931 * If we are inserting we can't start at a full node if the parent
932 * is also full (because there is no way to split the node),
933 * continue running up the tree until the requirement is satisfied
934 * or we hit the root of the filesystem.
936 * (If inserting we aren't doing an as-of search so we don't have
937 * to worry about create_check).
939 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
940 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
941 if (btree_node_is_full(cursor->node->ondisk) == 0)
942 break;
943 } else {
944 if (btree_node_is_full(cursor->node->ondisk) ==0)
945 break;
947 if (cursor->node->ondisk->parent == 0 ||
948 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
949 break;
951 ++hammer_stats_btree_iterations;
952 error = hammer_cursor_up(cursor);
953 /* node may have become stale */
954 if (error)
955 goto done;
959 * Push down through internal nodes to locate the requested key.
961 node = cursor->node->ondisk;
962 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
964 * Scan the node to find the subtree index to push down into.
965 * We go one-past, then back-up.
967 * We must proactively remove deleted elements which may
968 * have been left over from a deadlocked btree_remove().
970 * The left and right boundaries are included in the loop
971 * in order to detect edge cases.
973 * If the separator only differs by create_tid (r == 1)
974 * and we are doing an as-of search, we may end up going
975 * down a branch to the left of the one containing the
976 * desired key. This requires numerous special cases.
978 ++hammer_stats_btree_iterations;
979 if (hammer_debug_btree) {
980 kprintf("SEARCH-I %016llx count=%d\n",
981 cursor->node->node_offset,
982 node->count);
986 * Try to shortcut the search before dropping into the
987 * linear loop. Locate the first node where r <= 1.
989 i = hammer_btree_search_node(&cursor->key_beg, node);
990 while (i <= node->count) {
991 ++hammer_stats_btree_elements;
992 elm = &node->elms[i];
993 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
994 if (hammer_debug_btree > 2) {
995 kprintf(" IELM %p %d r=%d\n",
996 &node->elms[i], i, r);
998 if (r < 0)
999 break;
1000 if (r == 1) {
1001 KKASSERT(elm->base.create_tid != 1);
1002 cursor->create_check = elm->base.create_tid - 1;
1003 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1005 ++i;
1007 if (hammer_debug_btree) {
1008 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1009 i, node->count, r);
1013 * These cases occur when the parent's idea of the boundary
1014 * is wider then the child's idea of the boundary, and
1015 * require special handling. If not inserting we can
1016 * terminate the search early for these cases but the
1017 * child's boundaries cannot be unconditionally modified.
1019 if (i == 0) {
1021 * If i == 0 the search terminated to the LEFT of the
1022 * left_boundary but to the RIGHT of the parent's left
1023 * boundary.
1025 u_int8_t save;
1027 elm = &node->elms[0];
1030 * If we aren't inserting we can stop here.
1032 if ((flags & (HAMMER_CURSOR_INSERT |
1033 HAMMER_CURSOR_PRUNING)) == 0) {
1034 cursor->index = 0;
1035 return(ENOENT);
1039 * Correct a left-hand boundary mismatch.
1041 * We can only do this if we can upgrade the lock,
1042 * and synchronized as a background cursor (i.e.
1043 * inserting or pruning).
1045 * WARNING: We can only do this if inserting, i.e.
1046 * we are running on the backend.
1048 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1049 return(error);
1050 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1051 hammer_modify_node_field(cursor->trans, cursor->node,
1052 elms[0]);
1053 save = node->elms[0].base.btype;
1054 node->elms[0].base = *cursor->left_bound;
1055 node->elms[0].base.btype = save;
1056 hammer_modify_node_done(cursor->node);
1057 } else if (i == node->count + 1) {
1059 * If i == node->count + 1 the search terminated to
1060 * the RIGHT of the right boundary but to the LEFT
1061 * of the parent's right boundary. If we aren't
1062 * inserting we can stop here.
1064 * Note that the last element in this case is
1065 * elms[i-2] prior to adjustments to 'i'.
1067 --i;
1068 if ((flags & (HAMMER_CURSOR_INSERT |
1069 HAMMER_CURSOR_PRUNING)) == 0) {
1070 cursor->index = i;
1071 return (ENOENT);
1075 * Correct a right-hand boundary mismatch.
1076 * (actual push-down record is i-2 prior to
1077 * adjustments to i).
1079 * We can only do this if we can upgrade the lock,
1080 * and synchronized as a background cursor (i.e.
1081 * inserting or pruning).
1083 * WARNING: We can only do this if inserting, i.e.
1084 * we are running on the backend.
1086 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1087 return(error);
1088 elm = &node->elms[i];
1089 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1090 hammer_modify_node(cursor->trans, cursor->node,
1091 &elm->base, sizeof(elm->base));
1092 elm->base = *cursor->right_bound;
1093 hammer_modify_node_done(cursor->node);
1094 --i;
1095 } else {
1097 * The push-down index is now i - 1. If we had
1098 * terminated on the right boundary this will point
1099 * us at the last element.
1101 --i;
1103 cursor->index = i;
1104 elm = &node->elms[i];
1106 if (hammer_debug_btree) {
1107 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1108 "key=%016llx cre=%016llx lo=%02x\n",
1109 cursor->node->node_offset,
1111 elm->internal.base.obj_id,
1112 elm->internal.base.rec_type,
1113 elm->internal.base.key,
1114 elm->internal.base.create_tid,
1115 elm->internal.base.localization
1120 * We better have a valid subtree offset.
1122 KKASSERT(elm->internal.subtree_offset != 0);
1125 * Handle insertion and deletion requirements.
1127 * If inserting split full nodes. The split code will
1128 * adjust cursor->node and cursor->index if the current
1129 * index winds up in the new node.
1131 * If inserting and a left or right edge case was detected,
1132 * we cannot correct the left or right boundary and must
1133 * prepend and append an empty leaf node in order to make
1134 * the boundary correction.
1136 * If we run out of space we set enospc and continue on
1137 * to a leaf to provide the spike code with a good point
1138 * of entry.
1140 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1141 if (btree_node_is_full(node)) {
1142 error = btree_split_internal(cursor);
1143 if (error) {
1144 if (error != ENOSPC)
1145 goto done;
1146 enospc = 1;
1149 * reload stale pointers
1151 i = cursor->index;
1152 node = cursor->node->ondisk;
1157 * Push down (push into new node, existing node becomes
1158 * the parent) and continue the search.
1160 error = hammer_cursor_down(cursor);
1161 /* node may have become stale */
1162 if (error)
1163 goto done;
1164 node = cursor->node->ondisk;
1168 * We are at a leaf, do a linear search of the key array.
1170 * On success the index is set to the matching element and 0
1171 * is returned.
1173 * On failure the index is set to the insertion point and ENOENT
1174 * is returned.
1176 * Boundaries are not stored in leaf nodes, so the index can wind
1177 * up to the left of element 0 (index == 0) or past the end of
1178 * the array (index == node->count). It is also possible that the
1179 * leaf might be empty.
1181 ++hammer_stats_btree_iterations;
1182 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1183 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1184 if (hammer_debug_btree) {
1185 kprintf("SEARCH-L %016llx count=%d\n",
1186 cursor->node->node_offset,
1187 node->count);
1191 * Try to shortcut the search before dropping into the
1192 * linear loop. Locate the first node where r <= 1.
1194 i = hammer_btree_search_node(&cursor->key_beg, node);
1195 while (i < node->count) {
1196 ++hammer_stats_btree_elements;
1197 elm = &node->elms[i];
1199 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1201 if (hammer_debug_btree > 1)
1202 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1205 * We are at a record element. Stop if we've flipped past
1206 * key_beg, not counting the create_tid test. Allow the
1207 * r == 1 case (key_beg > element but differs only by its
1208 * create_tid) to fall through to the AS-OF check.
1210 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1212 if (r < 0)
1213 goto failed;
1214 if (r > 1) {
1215 ++i;
1216 continue;
1220 * Check our as-of timestamp against the element.
1222 if (flags & HAMMER_CURSOR_ASOF) {
1223 if (hammer_btree_chkts(cursor->asof,
1224 &node->elms[i].base) != 0) {
1225 ++i;
1226 continue;
1228 /* success */
1229 } else {
1230 if (r > 0) { /* can only be +1 */
1231 ++i;
1232 continue;
1234 /* success */
1236 cursor->index = i;
1237 error = 0;
1238 if (hammer_debug_btree) {
1239 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1240 cursor->node->node_offset, i);
1242 goto done;
1246 * The search of the leaf node failed. i is the insertion point.
1248 failed:
1249 if (hammer_debug_btree) {
1250 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1251 cursor->node->node_offset, i);
1255 * No exact match was found, i is now at the insertion point.
1257 * If inserting split a full leaf before returning. This
1258 * may have the side effect of adjusting cursor->node and
1259 * cursor->index.
1261 cursor->index = i;
1262 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1263 btree_node_is_full(node)) {
1264 error = btree_split_leaf(cursor);
1265 if (error) {
1266 if (error != ENOSPC)
1267 goto done;
1268 enospc = 1;
1271 * reload stale pointers
1273 /* NOT USED
1274 i = cursor->index;
1275 node = &cursor->node->internal;
1280 * We reached a leaf but did not find the key we were looking for.
1281 * If this is an insert we will be properly positioned for an insert
1282 * (ENOENT) or spike (ENOSPC) operation.
1284 error = enospc ? ENOSPC : ENOENT;
1285 done:
1286 return(error);
1290 * Heuristical search for the first element whos comparison is <= 1. May
1291 * return an index whos compare result is > 1 but may only return an index
1292 * whos compare result is <= 1 if it is the first element with that result.
1295 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1297 int b;
1298 int s;
1299 int i;
1300 int r;
1303 * Don't bother if the node does not have very many elements
1305 b = 0;
1306 s = node->count;
1307 while (s - b > 4) {
1308 i = b + (s - b) / 2;
1309 ++hammer_stats_btree_elements;
1310 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1311 if (r <= 1) {
1312 s = i;
1313 } else {
1314 b = i;
1317 return(b);
1321 /************************************************************************
1322 * SPLITTING AND MERGING *
1323 ************************************************************************
1325 * These routines do all the dirty work required to split and merge nodes.
1329 * Split an internal node into two nodes and move the separator at the split
1330 * point to the parent.
1332 * (cursor->node, cursor->index) indicates the element the caller intends
1333 * to push into. We will adjust node and index if that element winds
1334 * up in the split node.
1336 * If we are at the root of the filesystem a new root must be created with
1337 * two elements, one pointing to the original root and one pointing to the
1338 * newly allocated split node.
1340 static
1342 btree_split_internal(hammer_cursor_t cursor)
1344 hammer_node_ondisk_t ondisk;
1345 hammer_node_t node;
1346 hammer_node_t parent;
1347 hammer_node_t new_node;
1348 hammer_btree_elm_t elm;
1349 hammer_btree_elm_t parent_elm;
1350 hammer_node_locklist_t locklist = NULL;
1351 hammer_mount_t hmp = cursor->trans->hmp;
1352 int parent_index;
1353 int made_root;
1354 int split;
1355 int error;
1356 int i;
1357 const int esize = sizeof(*elm);
1359 error = hammer_btree_lock_children(cursor, &locklist);
1360 if (error)
1361 goto done;
1362 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1363 goto done;
1364 ++hammer_stats_btree_splits;
1367 * We are splitting but elms[split] will be promoted to the parent,
1368 * leaving the right hand node with one less element. If the
1369 * insertion point will be on the left-hand side adjust the split
1370 * point to give the right hand side one additional node.
1372 node = cursor->node;
1373 ondisk = node->ondisk;
1374 split = (ondisk->count + 1) / 2;
1375 if (cursor->index <= split)
1376 --split;
1379 * If we are at the root of the filesystem, create a new root node
1380 * with 1 element and split normally. Avoid making major
1381 * modifications until we know the whole operation will work.
1383 if (ondisk->parent == 0) {
1384 parent = hammer_alloc_btree(cursor->trans, &error);
1385 if (parent == NULL)
1386 goto done;
1387 hammer_lock_ex(&parent->lock);
1388 hammer_modify_node_noundo(cursor->trans, parent);
1389 ondisk = parent->ondisk;
1390 ondisk->count = 1;
1391 ondisk->parent = 0;
1392 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1393 ondisk->elms[0].base = hmp->root_btree_beg;
1394 ondisk->elms[0].base.btype = node->ondisk->type;
1395 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1396 ondisk->elms[1].base = hmp->root_btree_end;
1397 hammer_modify_node_done(parent);
1398 /* ondisk->elms[1].base.btype - not used */
1399 made_root = 1;
1400 parent_index = 0; /* index of current node in parent */
1401 } else {
1402 made_root = 0;
1403 parent = cursor->parent;
1404 parent_index = cursor->parent_index;
1408 * Split node into new_node at the split point.
1410 * B O O O P N N B <-- P = node->elms[split]
1411 * 0 1 2 3 4 5 6 <-- subtree indices
1413 * x x P x x
1414 * s S S s
1415 * / \
1416 * B O O O B B N N B <--- inner boundary points are 'P'
1417 * 0 1 2 3 4 5 6
1420 new_node = hammer_alloc_btree(cursor->trans, &error);
1421 if (new_node == NULL) {
1422 if (made_root) {
1423 hammer_unlock(&parent->lock);
1424 hammer_delete_node(cursor->trans, parent);
1425 hammer_rel_node(parent);
1427 goto done;
1429 hammer_lock_ex(&new_node->lock);
1432 * Create the new node. P becomes the left-hand boundary in the
1433 * new node. Copy the right-hand boundary as well.
1435 * elm is the new separator.
1437 hammer_modify_node_noundo(cursor->trans, new_node);
1438 hammer_modify_node_all(cursor->trans, node);
1439 ondisk = node->ondisk;
1440 elm = &ondisk->elms[split];
1441 bcopy(elm, &new_node->ondisk->elms[0],
1442 (ondisk->count - split + 1) * esize);
1443 new_node->ondisk->count = ondisk->count - split;
1444 new_node->ondisk->parent = parent->node_offset;
1445 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1446 KKASSERT(ondisk->type == new_node->ondisk->type);
1449 * Cleanup the original node. Elm (P) becomes the new boundary,
1450 * its subtree_offset was moved to the new node. If we had created
1451 * a new root its parent pointer may have changed.
1453 elm->internal.subtree_offset = 0;
1454 ondisk->count = split;
1457 * Insert the separator into the parent, fixup the parent's
1458 * reference to the original node, and reference the new node.
1459 * The separator is P.
1461 * Remember that base.count does not include the right-hand boundary.
1463 hammer_modify_node_all(cursor->trans, parent);
1464 ondisk = parent->ondisk;
1465 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1466 parent_elm = &ondisk->elms[parent_index+1];
1467 bcopy(parent_elm, parent_elm + 1,
1468 (ondisk->count - parent_index) * esize);
1469 parent_elm->internal.base = elm->base; /* separator P */
1470 parent_elm->internal.base.btype = new_node->ondisk->type;
1471 parent_elm->internal.subtree_offset = new_node->node_offset;
1472 ++ondisk->count;
1473 hammer_modify_node_done(parent);
1476 * The children of new_node need their parent pointer set to new_node.
1477 * The children have already been locked by
1478 * hammer_btree_lock_children().
1480 for (i = 0; i < new_node->ondisk->count; ++i) {
1481 elm = &new_node->ondisk->elms[i];
1482 error = btree_set_parent(cursor->trans, new_node, elm);
1483 if (error) {
1484 panic("btree_split_internal: btree-fixup problem");
1487 hammer_modify_node_done(new_node);
1490 * The filesystem's root B-Tree pointer may have to be updated.
1492 if (made_root) {
1493 hammer_volume_t volume;
1495 volume = hammer_get_root_volume(hmp, &error);
1496 KKASSERT(error == 0);
1498 hammer_modify_volume_field(cursor->trans, volume,
1499 vol0_btree_root);
1500 volume->ondisk->vol0_btree_root = parent->node_offset;
1501 hammer_modify_volume_done(volume);
1502 node->ondisk->parent = parent->node_offset;
1503 if (cursor->parent) {
1504 hammer_unlock(&cursor->parent->lock);
1505 hammer_rel_node(cursor->parent);
1507 cursor->parent = parent; /* lock'd and ref'd */
1508 hammer_rel_volume(volume, 0);
1510 hammer_modify_node_done(node);
1514 * Ok, now adjust the cursor depending on which element the original
1515 * index was pointing at. If we are >= the split point the push node
1516 * is now in the new node.
1518 * NOTE: If we are at the split point itself we cannot stay with the
1519 * original node because the push index will point at the right-hand
1520 * boundary, which is illegal.
1522 * NOTE: The cursor's parent or parent_index must be adjusted for
1523 * the case where a new parent (new root) was created, and the case
1524 * where the cursor is now pointing at the split node.
1526 if (cursor->index >= split) {
1527 cursor->parent_index = parent_index + 1;
1528 cursor->index -= split;
1529 hammer_unlock(&cursor->node->lock);
1530 hammer_rel_node(cursor->node);
1531 cursor->node = new_node; /* locked and ref'd */
1532 } else {
1533 cursor->parent_index = parent_index;
1534 hammer_unlock(&new_node->lock);
1535 hammer_rel_node(new_node);
1539 * Fixup left and right bounds
1541 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1542 cursor->left_bound = &parent_elm[0].internal.base;
1543 cursor->right_bound = &parent_elm[1].internal.base;
1544 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1545 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1546 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1547 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1549 done:
1550 hammer_btree_unlock_children(&locklist);
1551 hammer_cursor_downgrade(cursor);
1552 return (error);
1556 * Same as the above, but splits a full leaf node.
1558 * This function
1560 static
1562 btree_split_leaf(hammer_cursor_t cursor)
1564 hammer_node_ondisk_t ondisk;
1565 hammer_node_t parent;
1566 hammer_node_t leaf;
1567 hammer_mount_t hmp;
1568 hammer_node_t new_leaf;
1569 hammer_btree_elm_t elm;
1570 hammer_btree_elm_t parent_elm;
1571 hammer_base_elm_t mid_boundary;
1572 int parent_index;
1573 int made_root;
1574 int split;
1575 int error;
1576 const size_t esize = sizeof(*elm);
1578 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1579 return(error);
1580 ++hammer_stats_btree_splits;
1582 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1583 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1584 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1585 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1588 * Calculate the split point. If the insertion point will be on
1589 * the left-hand side adjust the split point to give the right
1590 * hand side one additional node.
1592 * Spikes are made up of two leaf elements which cannot be
1593 * safely split.
1595 leaf = cursor->node;
1596 ondisk = leaf->ondisk;
1597 split = (ondisk->count + 1) / 2;
1598 if (cursor->index <= split)
1599 --split;
1600 error = 0;
1601 hmp = leaf->hmp;
1603 elm = &ondisk->elms[split];
1605 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1606 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1607 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1608 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1611 * If we are at the root of the tree, create a new root node with
1612 * 1 element and split normally. Avoid making major modifications
1613 * until we know the whole operation will work.
1615 if (ondisk->parent == 0) {
1616 parent = hammer_alloc_btree(cursor->trans, &error);
1617 if (parent == NULL)
1618 goto done;
1619 hammer_lock_ex(&parent->lock);
1620 hammer_modify_node_noundo(cursor->trans, parent);
1621 ondisk = parent->ondisk;
1622 ondisk->count = 1;
1623 ondisk->parent = 0;
1624 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1625 ondisk->elms[0].base = hmp->root_btree_beg;
1626 ondisk->elms[0].base.btype = leaf->ondisk->type;
1627 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1628 ondisk->elms[1].base = hmp->root_btree_end;
1629 /* ondisk->elms[1].base.btype = not used */
1630 hammer_modify_node_done(parent);
1631 made_root = 1;
1632 parent_index = 0; /* insertion point in parent */
1633 } else {
1634 made_root = 0;
1635 parent = cursor->parent;
1636 parent_index = cursor->parent_index;
1640 * Split leaf into new_leaf at the split point. Select a separator
1641 * value in-between the two leafs but with a bent towards the right
1642 * leaf since comparisons use an 'elm >= separator' inequality.
1644 * L L L L L L L L
1646 * x x P x x
1647 * s S S s
1648 * / \
1649 * L L L L L L L L
1651 new_leaf = hammer_alloc_btree(cursor->trans, &error);
1652 if (new_leaf == NULL) {
1653 if (made_root) {
1654 hammer_unlock(&parent->lock);
1655 hammer_delete_node(cursor->trans, parent);
1656 hammer_rel_node(parent);
1658 goto done;
1660 hammer_lock_ex(&new_leaf->lock);
1663 * Create the new node and copy the leaf elements from the split
1664 * point on to the new node.
1666 hammer_modify_node_all(cursor->trans, leaf);
1667 hammer_modify_node_noundo(cursor->trans, new_leaf);
1668 ondisk = leaf->ondisk;
1669 elm = &ondisk->elms[split];
1670 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1671 new_leaf->ondisk->count = ondisk->count - split;
1672 new_leaf->ondisk->parent = parent->node_offset;
1673 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1674 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1675 hammer_modify_node_done(new_leaf);
1678 * Cleanup the original node. Because this is a leaf node and
1679 * leaf nodes do not have a right-hand boundary, there
1680 * aren't any special edge cases to clean up. We just fixup the
1681 * count.
1683 ondisk->count = split;
1686 * Insert the separator into the parent, fixup the parent's
1687 * reference to the original node, and reference the new node.
1688 * The separator is P.
1690 * Remember that base.count does not include the right-hand boundary.
1691 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1693 hammer_modify_node_all(cursor->trans, parent);
1694 ondisk = parent->ondisk;
1695 KKASSERT(split != 0);
1696 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1697 parent_elm = &ondisk->elms[parent_index+1];
1698 bcopy(parent_elm, parent_elm + 1,
1699 (ondisk->count - parent_index) * esize);
1701 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1702 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1703 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1704 mid_boundary = &parent_elm->base;
1705 ++ondisk->count;
1706 hammer_modify_node_done(parent);
1709 * The filesystem's root B-Tree pointer may have to be updated.
1711 if (made_root) {
1712 hammer_volume_t volume;
1714 volume = hammer_get_root_volume(hmp, &error);
1715 KKASSERT(error == 0);
1717 hammer_modify_volume_field(cursor->trans, volume,
1718 vol0_btree_root);
1719 volume->ondisk->vol0_btree_root = parent->node_offset;
1720 hammer_modify_volume_done(volume);
1721 leaf->ondisk->parent = parent->node_offset;
1722 if (cursor->parent) {
1723 hammer_unlock(&cursor->parent->lock);
1724 hammer_rel_node(cursor->parent);
1726 cursor->parent = parent; /* lock'd and ref'd */
1727 hammer_rel_volume(volume, 0);
1729 hammer_modify_node_done(leaf);
1732 * Ok, now adjust the cursor depending on which element the original
1733 * index was pointing at. If we are >= the split point the push node
1734 * is now in the new node.
1736 * NOTE: If we are at the split point itself we need to select the
1737 * old or new node based on where key_beg's insertion point will be.
1738 * If we pick the wrong side the inserted element will wind up in
1739 * the wrong leaf node and outside that node's bounds.
1741 if (cursor->index > split ||
1742 (cursor->index == split &&
1743 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1744 cursor->parent_index = parent_index + 1;
1745 cursor->index -= split;
1746 hammer_unlock(&cursor->node->lock);
1747 hammer_rel_node(cursor->node);
1748 cursor->node = new_leaf;
1749 } else {
1750 cursor->parent_index = parent_index;
1751 hammer_unlock(&new_leaf->lock);
1752 hammer_rel_node(new_leaf);
1756 * Fixup left and right bounds
1758 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1759 cursor->left_bound = &parent_elm[0].internal.base;
1760 cursor->right_bound = &parent_elm[1].internal.base;
1763 * Assert that the bounds are correct.
1765 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1766 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1767 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1768 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1769 KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1770 KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1772 done:
1773 hammer_cursor_downgrade(cursor);
1774 return (error);
1778 * Recursively correct the right-hand boundary's create_tid to (tid) as
1779 * long as the rest of the key matches. We have to recurse upward in
1780 * the tree as well as down the left side of each parent's right node.
1782 * Return EDEADLK if we were only partially successful, forcing the caller
1783 * to try again. The original cursor is not modified. This routine can
1784 * also fail with EDEADLK if it is forced to throw away a portion of its
1785 * record history.
1787 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1789 struct hammer_rhb {
1790 TAILQ_ENTRY(hammer_rhb) entry;
1791 hammer_node_t node;
1792 int index;
1795 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1798 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1800 struct hammer_rhb_list rhb_list;
1801 hammer_base_elm_t elm;
1802 hammer_node_t orig_node;
1803 struct hammer_rhb *rhb;
1804 int orig_index;
1805 int error;
1807 TAILQ_INIT(&rhb_list);
1810 * Save our position so we can restore it on return. This also
1811 * gives us a stable 'elm'.
1813 orig_node = cursor->node;
1814 hammer_ref_node(orig_node);
1815 hammer_lock_sh(&orig_node->lock);
1816 orig_index = cursor->index;
1817 elm = &orig_node->ondisk->elms[orig_index].base;
1820 * Now build a list of parents going up, allocating a rhb
1821 * structure for each one.
1823 while (cursor->parent) {
1825 * Stop if we no longer have any right-bounds to fix up
1827 if (elm->obj_id != cursor->right_bound->obj_id ||
1828 elm->rec_type != cursor->right_bound->rec_type ||
1829 elm->key != cursor->right_bound->key) {
1830 break;
1834 * Stop if the right-hand bound's create_tid does not
1835 * need to be corrected.
1837 if (cursor->right_bound->create_tid >= tid)
1838 break;
1840 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1841 rhb->node = cursor->parent;
1842 rhb->index = cursor->parent_index;
1843 hammer_ref_node(rhb->node);
1844 hammer_lock_sh(&rhb->node->lock);
1845 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1847 hammer_cursor_up(cursor);
1851 * now safely adjust the right hand bound for each rhb. This may
1852 * also require taking the right side of the tree and iterating down
1853 * ITS left side.
1855 error = 0;
1856 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1857 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1858 if (error)
1859 break;
1860 TAILQ_REMOVE(&rhb_list, rhb, entry);
1861 hammer_unlock(&rhb->node->lock);
1862 hammer_rel_node(rhb->node);
1863 kfree(rhb, M_HAMMER);
1865 switch (cursor->node->ondisk->type) {
1866 case HAMMER_BTREE_TYPE_INTERNAL:
1868 * Right-boundary for parent at internal node
1869 * is one element to the right of the element whos
1870 * right boundary needs adjusting. We must then
1871 * traverse down the left side correcting any left
1872 * bounds (which may now be too far to the left).
1874 ++cursor->index;
1875 error = hammer_btree_correct_lhb(cursor, tid);
1876 break;
1877 default:
1878 panic("hammer_btree_correct_rhb(): Bad node type");
1879 error = EINVAL;
1880 break;
1885 * Cleanup
1887 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1888 TAILQ_REMOVE(&rhb_list, rhb, entry);
1889 hammer_unlock(&rhb->node->lock);
1890 hammer_rel_node(rhb->node);
1891 kfree(rhb, M_HAMMER);
1893 error = hammer_cursor_seek(cursor, orig_node, orig_index);
1894 hammer_unlock(&orig_node->lock);
1895 hammer_rel_node(orig_node);
1896 return (error);
1900 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1901 * bound going downward starting at the current cursor position.
1903 * This function does not restore the cursor after use.
1906 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1908 struct hammer_rhb_list rhb_list;
1909 hammer_base_elm_t elm;
1910 hammer_base_elm_t cmp;
1911 struct hammer_rhb *rhb;
1912 int error;
1914 TAILQ_INIT(&rhb_list);
1916 cmp = &cursor->node->ondisk->elms[cursor->index].base;
1919 * Record the node and traverse down the left-hand side for all
1920 * matching records needing a boundary correction.
1922 error = 0;
1923 for (;;) {
1924 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1925 rhb->node = cursor->node;
1926 rhb->index = cursor->index;
1927 hammer_ref_node(rhb->node);
1928 hammer_lock_sh(&rhb->node->lock);
1929 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1931 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1933 * Nothing to traverse down if we are at the right
1934 * boundary of an internal node.
1936 if (cursor->index == cursor->node->ondisk->count)
1937 break;
1938 } else {
1939 elm = &cursor->node->ondisk->elms[cursor->index].base;
1940 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
1941 break;
1942 panic("Illegal leaf record type %02x", elm->btype);
1944 error = hammer_cursor_down(cursor);
1945 if (error)
1946 break;
1948 elm = &cursor->node->ondisk->elms[cursor->index].base;
1949 if (elm->obj_id != cmp->obj_id ||
1950 elm->rec_type != cmp->rec_type ||
1951 elm->key != cmp->key) {
1952 break;
1954 if (elm->create_tid >= tid)
1955 break;
1960 * Now we can safely adjust the left-hand boundary from the bottom-up.
1961 * The last element we remove from the list is the caller's right hand
1962 * boundary, which must also be adjusted.
1964 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1965 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1966 if (error)
1967 break;
1968 TAILQ_REMOVE(&rhb_list, rhb, entry);
1969 hammer_unlock(&rhb->node->lock);
1970 hammer_rel_node(rhb->node);
1971 kfree(rhb, M_HAMMER);
1973 elm = &cursor->node->ondisk->elms[cursor->index].base;
1974 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1975 hammer_modify_node(cursor->trans, cursor->node,
1976 &elm->create_tid,
1977 sizeof(elm->create_tid));
1978 elm->create_tid = tid;
1979 hammer_modify_node_done(cursor->node);
1980 } else {
1981 panic("hammer_btree_correct_lhb(): Bad element type");
1986 * Cleanup
1988 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1989 TAILQ_REMOVE(&rhb_list, rhb, entry);
1990 hammer_unlock(&rhb->node->lock);
1991 hammer_rel_node(rhb->node);
1992 kfree(rhb, M_HAMMER);
1994 return (error);
1998 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
1999 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2000 * the operation due to a deadlock, or some other error.
2002 * This routine is always called with an empty, locked leaf but may recurse
2003 * into want-to-be-empty parents as part of its operation.
2005 * It should also be noted that when removing empty leaves we must be sure
2006 * to test and update mirror_tid because another thread may have deadlocked
2007 * against us (or someone) trying to propogate it up and cannot retry once
2008 * the node has been deleted.
2010 * On return the cursor may end up pointing to an internal node, suitable
2011 * for further iteration but not for an immediate insertion or deletion.
2013 static int
2014 btree_remove(hammer_cursor_t cursor)
2016 hammer_node_ondisk_t ondisk;
2017 hammer_btree_elm_t elm;
2018 hammer_node_t node;
2019 hammer_node_t parent;
2020 const int esize = sizeof(*elm);
2021 int error;
2023 node = cursor->node;
2026 * When deleting the root of the filesystem convert it to
2027 * an empty leaf node. Internal nodes cannot be empty.
2029 ondisk = node->ondisk;
2030 if (ondisk->parent == 0) {
2031 KKASSERT(cursor->parent == NULL);
2032 hammer_modify_node_all(cursor->trans, node);
2033 KKASSERT(ondisk == node->ondisk);
2034 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2035 ondisk->count = 0;
2036 hammer_modify_node_done(node);
2037 cursor->index = 0;
2038 return(0);
2041 parent = cursor->parent;
2044 * If another thread deadlocked trying to propogate mirror_tid up
2045 * we have to finish the job before deleting node. XXX
2047 if (parent->ondisk->mirror_tid < node->ondisk->mirror_tid &&
2048 (cursor->trans->hmp->hflags & (HMNT_MASTERID|HMNT_SLAVE))) {
2049 hammer_btree_mirror_propagate(cursor->trans,
2050 parent,
2051 cursor->parent_index,
2052 node->ondisk->mirror_tid);
2057 * Attempt to remove the parent's reference to the child. If the
2058 * parent would become empty we have to recurse. If we fail we
2059 * leave the parent pointing to an empty leaf node.
2061 if (parent->ondisk->count == 1) {
2063 * This special cursor_up_locked() call leaves the original
2064 * node exclusively locked and referenced, leaves the
2065 * original parent locked (as the new node), and locks the
2066 * new parent. It can return EDEADLK.
2068 error = hammer_cursor_up_locked(cursor);
2069 if (error == 0) {
2070 error = btree_remove(cursor);
2071 if (error == 0) {
2072 hammer_modify_node_all(cursor->trans, node);
2073 ondisk = node->ondisk;
2074 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2075 ondisk->count = 0;
2076 hammer_modify_node_done(node);
2077 hammer_flush_node(node);
2078 hammer_delete_node(cursor->trans, node);
2079 } else {
2080 kprintf("Warning: BTREE_REMOVE: Defering "
2081 "parent removal1 @ %016llx, skipping\n",
2082 node->node_offset);
2084 hammer_unlock(&node->lock);
2085 hammer_rel_node(node);
2086 } else {
2087 kprintf("Warning: BTREE_REMOVE: Defering parent "
2088 "removal2 @ %016llx, skipping\n",
2089 node->node_offset);
2091 } else {
2092 KKASSERT(parent->ondisk->count > 1);
2095 * Delete the subtree reference in the parent
2097 hammer_modify_node_all(cursor->trans, parent);
2098 ondisk = parent->ondisk;
2099 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2101 elm = &ondisk->elms[cursor->parent_index];
2102 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2103 KKASSERT(ondisk->count > 0);
2104 bcopy(&elm[1], &elm[0],
2105 (ondisk->count - cursor->parent_index) * esize);
2106 --ondisk->count;
2107 hammer_modify_node_done(parent);
2108 hammer_flush_node(node);
2109 hammer_delete_node(cursor->trans, node);
2112 * cursor->node is invalid, cursor up to make the cursor
2113 * valid again.
2115 error = hammer_cursor_up(cursor);
2117 return (error);
2121 * Propagate a mirror TID update upwards through the B-Tree to the root.
2123 * A locked internal node must be passed in. The node will remain locked
2124 * on return.
2126 * This function syncs mirror_tid at the specified internal node's element,
2127 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2130 hammer_btree_mirror_propagate(hammer_transaction_t trans, hammer_node_t node,
2131 int index, hammer_tid_t mirror_tid)
2133 hammer_btree_internal_elm_t elm;
2134 hammer_node_t parent;
2135 int parent_index;
2136 int error;
2138 KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2141 * Adjust the node's element
2143 elm = &node->ondisk->elms[index].internal;
2144 if (elm->mirror_tid >= mirror_tid)
2145 return(0);
2146 hammer_modify_node(trans, node, &elm->mirror_tid,
2147 sizeof(elm->mirror_tid));
2148 elm->mirror_tid = mirror_tid;
2149 hammer_modify_node_done(node);
2152 * Adjust the node's mirror_tid aggragator
2154 if (node->ondisk->mirror_tid >= mirror_tid)
2155 return(0);
2156 hammer_modify_node_field(trans, node, mirror_tid);
2157 node->ondisk->mirror_tid = mirror_tid;
2158 hammer_modify_node_done(node);
2160 error = 0;
2161 error = 0;
2162 if (node->ondisk->parent &&
2163 (trans->hmp->hflags & (HMNT_MASTERID|HMNT_SLAVE))) {
2164 parent = hammer_btree_get_parent(node, &parent_index,
2165 &error, 1);
2166 if (parent) {
2167 hammer_btree_mirror_propagate(trans, parent,
2168 parent_index, mirror_tid);
2169 hammer_unlock(&parent->lock);
2170 hammer_rel_node(parent);
2173 return(error);
2176 hammer_node_t
2177 hammer_btree_get_parent(hammer_node_t node, int *parent_indexp, int *errorp,
2178 int try_exclusive)
2180 hammer_node_t parent;
2181 hammer_btree_elm_t elm;
2182 int i;
2185 * Get the node
2187 parent = hammer_get_node(node->hmp, node->ondisk->parent, 0, errorp);
2188 if (*errorp) {
2189 KKASSERT(parent == NULL);
2190 return(NULL);
2192 KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2195 * Lock the node
2197 if (try_exclusive) {
2198 if (hammer_lock_ex_try(&parent->lock)) {
2199 hammer_rel_node(parent);
2200 *errorp = EDEADLK;
2201 return(NULL);
2203 } else {
2204 hammer_lock_sh(&parent->lock);
2208 * Figure out which element in the parent is pointing to the
2209 * child.
2211 if (node->ondisk->count) {
2212 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2213 parent->ondisk);
2214 } else {
2215 i = 0;
2217 while (i < parent->ondisk->count) {
2218 elm = &parent->ondisk->elms[i];
2219 if (elm->internal.subtree_offset == node->node_offset)
2220 break;
2221 ++i;
2223 if (i == parent->ondisk->count) {
2224 hammer_unlock(&parent->lock);
2225 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2227 *parent_indexp = i;
2228 KKASSERT(*errorp == 0);
2229 return(parent);
2233 * The element (elm) has been moved to a new internal node (node).
2235 * If the element represents a pointer to an internal node that node's
2236 * parent must be adjusted to the element's new location.
2238 * XXX deadlock potential here with our exclusive locks
2241 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2242 hammer_btree_elm_t elm)
2244 hammer_node_t child;
2245 int error;
2247 error = 0;
2249 switch(elm->base.btype) {
2250 case HAMMER_BTREE_TYPE_INTERNAL:
2251 case HAMMER_BTREE_TYPE_LEAF:
2252 child = hammer_get_node(node->hmp, elm->internal.subtree_offset,
2253 0, &error);
2254 if (error == 0) {
2255 hammer_modify_node_field(trans, child, parent);
2256 child->ondisk->parent = node->node_offset;
2257 hammer_modify_node_done(child);
2258 hammer_rel_node(child);
2260 break;
2261 default:
2262 break;
2264 return(error);
2268 * Exclusively lock all the children of node. This is used by the split
2269 * code to prevent anyone from accessing the children of a cursor node
2270 * while we fix-up its parent offset.
2272 * If we don't lock the children we can really mess up cursors which block
2273 * trying to cursor-up into our node.
2275 * On failure EDEADLK (or some other error) is returned. If a deadlock
2276 * error is returned the cursor is adjusted to block on termination.
2279 hammer_btree_lock_children(hammer_cursor_t cursor,
2280 struct hammer_node_locklist **locklistp)
2282 hammer_node_t node;
2283 hammer_node_locklist_t item;
2284 hammer_node_ondisk_t ondisk;
2285 hammer_btree_elm_t elm;
2286 hammer_node_t child;
2287 int error;
2288 int i;
2290 node = cursor->node;
2291 ondisk = node->ondisk;
2292 error = 0;
2295 * We really do not want to block on I/O with exclusive locks held,
2296 * pre-get the children before trying to lock the mess.
2298 for (i = 0; i < ondisk->count; ++i) {
2299 ++hammer_stats_btree_elements;
2300 elm = &ondisk->elms[i];
2301 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2302 elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2303 continue;
2305 child = hammer_get_node(node->hmp,
2306 elm->internal.subtree_offset,
2307 0, &error);
2308 if (child)
2309 hammer_rel_node(child);
2313 * Do it for real
2315 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2316 ++hammer_stats_btree_elements;
2317 elm = &ondisk->elms[i];
2319 switch(elm->base.btype) {
2320 case HAMMER_BTREE_TYPE_INTERNAL:
2321 case HAMMER_BTREE_TYPE_LEAF:
2322 KKASSERT(elm->internal.subtree_offset != 0);
2323 child = hammer_get_node(node->hmp,
2324 elm->internal.subtree_offset,
2325 0, &error);
2326 break;
2327 default:
2328 child = NULL;
2329 break;
2331 if (child) {
2332 if (hammer_lock_ex_try(&child->lock) != 0) {
2333 if (cursor->deadlk_node == NULL) {
2334 cursor->deadlk_node = child;
2335 hammer_ref_node(cursor->deadlk_node);
2337 error = EDEADLK;
2338 hammer_rel_node(child);
2339 } else {
2340 item = kmalloc(sizeof(*item),
2341 M_HAMMER, M_WAITOK);
2342 item->next = *locklistp;
2343 item->node = child;
2344 *locklistp = item;
2348 if (error)
2349 hammer_btree_unlock_children(locklistp);
2350 return(error);
2355 * Release previously obtained node locks.
2357 void
2358 hammer_btree_unlock_children(struct hammer_node_locklist **locklistp)
2360 hammer_node_locklist_t item;
2362 while ((item = *locklistp) != NULL) {
2363 *locklistp = item->next;
2364 hammer_unlock(&item->node->lock);
2365 hammer_rel_node(item->node);
2366 kfree(item, M_HAMMER);
2370 /************************************************************************
2371 * MISCELLANIOUS SUPPORT *
2372 ************************************************************************/
2375 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2377 * Note that for this particular function a return value of -1, 0, or +1
2378 * can denote a match if create_tid is otherwise discounted. A create_tid
2379 * of zero is considered to be 'infinity' in comparisons.
2381 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2384 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2386 if (key1->localization < key2->localization)
2387 return(-5);
2388 if (key1->localization > key2->localization)
2389 return(5);
2391 if (key1->obj_id < key2->obj_id)
2392 return(-4);
2393 if (key1->obj_id > key2->obj_id)
2394 return(4);
2396 if (key1->rec_type < key2->rec_type)
2397 return(-3);
2398 if (key1->rec_type > key2->rec_type)
2399 return(3);
2401 if (key1->key < key2->key)
2402 return(-2);
2403 if (key1->key > key2->key)
2404 return(2);
2407 * A create_tid of zero indicates a record which is undeletable
2408 * and must be considered to have a value of positive infinity.
2410 if (key1->create_tid == 0) {
2411 if (key2->create_tid == 0)
2412 return(0);
2413 return(1);
2415 if (key2->create_tid == 0)
2416 return(-1);
2417 if (key1->create_tid < key2->create_tid)
2418 return(-1);
2419 if (key1->create_tid > key2->create_tid)
2420 return(1);
2421 return(0);
2425 * Test a timestamp against an element to determine whether the
2426 * element is visible. A timestamp of 0 means 'infinity'.
2429 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2431 if (asof == 0) {
2432 if (base->delete_tid)
2433 return(1);
2434 return(0);
2436 if (asof < base->create_tid)
2437 return(-1);
2438 if (base->delete_tid && asof >= base->delete_tid)
2439 return(1);
2440 return(0);
2444 * Create a separator half way inbetween key1 and key2. For fields just
2445 * one unit apart, the separator will match key2. key1 is on the left-hand
2446 * side and key2 is on the right-hand side.
2448 * key2 must be >= the separator. It is ok for the separator to match key2.
2450 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2451 * key2.
2453 * NOTE: It might be beneficial to just scrap this whole mess and just
2454 * set the separator to key2.
2456 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2457 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2459 static void
2460 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2461 hammer_base_elm_t dest)
2463 bzero(dest, sizeof(*dest));
2465 dest->rec_type = key2->rec_type;
2466 dest->key = key2->key;
2467 dest->obj_id = key2->obj_id;
2468 dest->create_tid = key2->create_tid;
2470 MAKE_SEPARATOR(key1, key2, dest, localization);
2471 if (key1->localization == key2->localization) {
2472 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2473 if (key1->obj_id == key2->obj_id) {
2474 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2475 if (key1->rec_type == key2->rec_type) {
2476 MAKE_SEPARATOR(key1, key2, dest, key);
2478 * Don't bother creating a separator for
2479 * create_tid, which also conveniently avoids
2480 * having to handle the create_tid == 0
2481 * (infinity) case. Just leave create_tid
2482 * set to key2.
2484 * Worst case, dest matches key2 exactly,
2485 * which is acceptable.
2492 #undef MAKE_SEPARATOR
2495 * Return whether a generic internal or leaf node is full
2497 static int
2498 btree_node_is_full(hammer_node_ondisk_t node)
2500 switch(node->type) {
2501 case HAMMER_BTREE_TYPE_INTERNAL:
2502 if (node->count == HAMMER_BTREE_INT_ELMS)
2503 return(1);
2504 break;
2505 case HAMMER_BTREE_TYPE_LEAF:
2506 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2507 return(1);
2508 break;
2509 default:
2510 panic("illegal btree subtype");
2512 return(0);
2515 #if 0
2516 static int
2517 btree_max_elements(u_int8_t type)
2519 if (type == HAMMER_BTREE_TYPE_LEAF)
2520 return(HAMMER_BTREE_LEAF_ELMS);
2521 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2522 return(HAMMER_BTREE_INT_ELMS);
2523 panic("btree_max_elements: bad type %d\n", type);
2525 #endif
2527 void
2528 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2530 hammer_btree_elm_t elm;
2531 int i;
2533 kprintf("node %p count=%d parent=%016llx type=%c\n",
2534 ondisk, ondisk->count, ondisk->parent, ondisk->type);
2537 * Dump both boundary elements if an internal node
2539 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2540 for (i = 0; i <= ondisk->count; ++i) {
2541 elm = &ondisk->elms[i];
2542 hammer_print_btree_elm(elm, ondisk->type, i);
2544 } else {
2545 for (i = 0; i < ondisk->count; ++i) {
2546 elm = &ondisk->elms[i];
2547 hammer_print_btree_elm(elm, ondisk->type, i);
2552 void
2553 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2555 kprintf(" %2d", i);
2556 kprintf("\tobj_id = %016llx\n", elm->base.obj_id);
2557 kprintf("\tkey = %016llx\n", elm->base.key);
2558 kprintf("\tcreate_tid = %016llx\n", elm->base.create_tid);
2559 kprintf("\tdelete_tid = %016llx\n", elm->base.delete_tid);
2560 kprintf("\trec_type = %04x\n", elm->base.rec_type);
2561 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
2562 kprintf("\tbtype = %02x (%c)\n",
2563 elm->base.btype,
2564 (elm->base.btype ? elm->base.btype : '?'));
2565 kprintf("\tlocalization = %02x\n", elm->base.localization);
2567 switch(type) {
2568 case HAMMER_BTREE_TYPE_INTERNAL:
2569 kprintf("\tsubtree_off = %016llx\n",
2570 elm->internal.subtree_offset);
2571 break;
2572 case HAMMER_BTREE_TYPE_RECORD:
2573 kprintf("\tdata_offset = %016llx\n", elm->leaf.data_offset);
2574 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
2575 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
2576 break;