- Don't set hardware slot time according to "short slot time" capability
[dragonfly.git] / lib / libcaps / slaballoc.c
blob4b9056b595e9b43f9f32a79b6f9dc962a0de7b6b
1 /*
2 * SLABALLOC.C - Userland SLAB memory allocator
4 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * $DragonFly: src/lib/libcaps/slaballoc.c,v 1.4 2004/07/04 22:44:26 eirikn Exp $
30 * This module implements a thread-safe slab allocator for userland.
32 * A slab allocator reserves a ZONE for each chunk size, then lays the
33 * chunks out in an array within the zone. Allocation and deallocation
34 * is nearly instantanious, and fragmentation/overhead losses are limited
35 * to a fixed worst-case amount.
37 * The downside of this slab implementation is in the chunk size
38 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
39 * To mitigate this we attempt to select a reasonable zone size based on
40 * available system memory. e.g. 32K instead of 128K. Also since the
41 * slab allocator is operating out of virtual memory in userland the actual
42 * physical memory use is not as bad as it might otherwise be.
44 * The upside is that overhead is bounded... waste goes down as use goes up.
46 * Slab management is done on a per-cpu basis and no locking or mutexes
47 * are required, only a critical section. When one cpu frees memory
48 * belonging to another cpu's slab manager an asynchronous IPI message
49 * will be queued to execute the operation. In addition, both the
50 * high level slab allocator and the low level zone allocator optimize
51 * M_ZERO requests, and the slab allocator does not have to pre initialize
52 * the linked list of chunks.
54 * XXX Balancing is needed between cpus. Balance will be handled through
55 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
57 * Alloc Size Chunking Number of zones
58 * 0-127 8 16
59 * 128-255 16 8
60 * 256-511 32 8
61 * 512-1023 64 8
62 * 1024-2047 128 8
63 * 2048-4095 256 8
64 * 4096-8191 512 8
65 * 8192-16383 1024 8
66 * 16384-32767 2048 8
67 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
69 * Allocations >= ZoneLimit go directly to kmem.
71 * API REQUIREMENTS AND SIDE EFFECTS
73 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
74 * have remained compatible with the following API requirements:
76 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
77 * + all power-of-2 sized allocations are power-of-2 aligned (twe)
78 * + malloc(0) is allowed and returns non-NULL (ahc driver)
79 * + ability to allocate arbitrarily large chunks of memory
82 #include <string.h>
83 #include <stdlib.h>
84 #include <sys/types.h>
85 #include <sys/mman.h>
86 #include <sys/stdint.h>
87 #include <sys/malloc.h>
88 #include "thread.h"
89 #include <sys/thread.h>
90 #include <sys/msgport.h>
91 #include <sys/errno.h>
92 #include "globaldata.h"
93 #include <sys/sysctl.h>
94 #include <machine/cpufunc.h>
95 #include <sys/thread2.h>
96 #include <sys/msgport2.h>
98 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0]))
99 #define slab_min(a,b) (((a)<(b)) ? (a) : (b))
102 * Fixed globals (not per-cpu)
104 static int ZoneSize;
105 static int ZoneLimit;
106 static int ZonePageCount;
107 static int ZonePageLimit;
108 static int ZoneMask;
109 static struct malloc_type *kmemstatistics;
110 static int32_t weirdary[16];
113 * Misc constants. Note that allocations that are exact multiples of
114 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
115 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
117 #define MIN_CHUNK_SIZE 8 /* in bytes */
118 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
119 #define ZONE_RELS_THRESH 2 /* threshold number of zones */
120 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
122 #define SLOVERSZ_HSIZE 8192
123 #define SLOVERSZ_HMASK (SLOVERSZ_HSIZE - 1)
125 #define SLOVERSZ_HASH(ptr) ((((uintptr_t)ptr >> PAGE_SHIFT) ^ \
126 ((uintptr_t)ptr >> (PAGE_SHIFT * 2))) & \
127 SLOVERSZ_HMASK)
129 SLOversized *SLOvHash[SLOVERSZ_HSIZE];
132 * The WEIRD_ADDR is used as known text to copy into free objects to
133 * try to create deterministic failure cases if the data is accessed after
134 * free.
136 #define WEIRD_ADDR 0xdeadc0de
137 #define MAX_COPY sizeof(weirdary)
138 #define ZERO_LENGTH_PTR ((void *)-8)
141 * Misc global malloc buckets
143 MALLOC_DEFINE(M_OVERSIZED, "overszinfo", "Oversized Info Blocks");
145 static __inline
146 SLOversized **
147 get_oversized(void *ptr)
149 SLOversized **slovpp;
150 SLOversized *slov;
152 for (slovpp = &SLOvHash[SLOVERSZ_HASH(ptr)];
153 (slov = *slovpp) != NULL;
154 slovpp = &slov->ov_Next
156 if (slov->ov_Ptr == ptr)
157 return(slovpp);
159 return(NULL);
163 * Initialize the slab memory allocator. We have to choose a zone size based
164 * on available physical memory. We choose a zone side which is approximately
165 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
166 * 128K. The zone size is limited to the bounds set in slaballoc.h
167 * (typically 32K min, 128K max).
169 void
170 slab_init(void)
172 int i;
173 int error;
174 int pagecnt;
175 int pagecnt_size = sizeof(pagecnt);
177 error = sysctlbyname("vm.stats.vm.v_page_count",
178 &pagecnt, &pagecnt_size, NULL, 0);
179 if (error == 0) {
180 vm_poff_t limsize;
181 int usesize;
183 limsize = pagecnt * (vm_poff_t)PAGE_SIZE;
184 usesize = (int)(limsize / 1024); /* convert to KB */
186 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
187 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
188 ZoneSize <<= 1;
189 } else {
190 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
192 ZoneLimit = ZoneSize / 4;
193 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
194 ZoneLimit = ZALLOC_ZONE_LIMIT;
195 ZoneMask = ZoneSize - 1;
196 ZonePageLimit = PAGE_SIZE * 4;
197 ZonePageCount = ZoneSize / PAGE_SIZE;
199 for (i = 0; i < arysize(weirdary); ++i)
200 weirdary[i] = WEIRD_ADDR;
201 slab_malloc_init(M_OVERSIZED);
205 * Initialize a malloc type tracking structure.
207 void
208 slab_malloc_init(void *data)
210 struct malloc_type *type = data;
211 vm_poff_t limsize;
214 * Skip if already initialized
216 if (type->ks_limit != 0)
217 return;
219 type->ks_magic = M_MAGIC;
220 limsize = (vm_poff_t)-1; /* unlimited */
221 type->ks_limit = limsize / 10;
222 type->ks_next = kmemstatistics;
223 kmemstatistics = type;
226 void
227 slab_malloc_uninit(void *data)
229 struct malloc_type *type = data;
230 struct malloc_type *t;
231 #ifdef INVARIANTS
232 int i;
233 long ttl;
234 #endif
236 if (type->ks_magic != M_MAGIC)
237 panic("malloc type lacks magic");
239 if (type->ks_limit == 0)
240 panic("malloc_uninit on uninitialized type");
242 #ifdef INVARIANTS
244 * memuse is only correct in aggregation. Due to memory being allocated
245 * on one cpu and freed on another individual array entries may be
246 * negative or positive (canceling each other out).
248 for (i = ttl = 0; i < ncpus; ++i)
249 ttl += type->ks_memuse[i];
250 if (ttl) {
251 printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
252 ttl, type->ks_shortdesc, i);
254 #endif
255 if (type == kmemstatistics) {
256 kmemstatistics = type->ks_next;
257 } else {
258 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
259 if (t->ks_next == type) {
260 t->ks_next = type->ks_next;
261 break;
265 type->ks_next = NULL;
266 type->ks_limit = 0;
270 * Calculate the zone index for the allocation request size and set the
271 * allocation request size to that particular zone's chunk size.
273 static __inline int
274 zoneindex(unsigned long *bytes)
276 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
277 if (n < 128) {
278 *bytes = n = (n + 7) & ~7;
279 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
281 if (n < 256) {
282 *bytes = n = (n + 15) & ~15;
283 return(n / 16 + 7);
285 if (n < 8192) {
286 if (n < 512) {
287 *bytes = n = (n + 31) & ~31;
288 return(n / 32 + 15);
290 if (n < 1024) {
291 *bytes = n = (n + 63) & ~63;
292 return(n / 64 + 23);
294 if (n < 2048) {
295 *bytes = n = (n + 127) & ~127;
296 return(n / 128 + 31);
298 if (n < 4096) {
299 *bytes = n = (n + 255) & ~255;
300 return(n / 256 + 39);
302 *bytes = n = (n + 511) & ~511;
303 return(n / 512 + 47);
305 #if ZALLOC_ZONE_LIMIT > 8192
306 if (n < 16384) {
307 *bytes = n = (n + 1023) & ~1023;
308 return(n / 1024 + 55);
310 #endif
311 #if ZALLOC_ZONE_LIMIT > 16384
312 if (n < 32768) {
313 *bytes = n = (n + 2047) & ~2047;
314 return(n / 2048 + 63);
316 #endif
317 panic("Unexpected byte count %d", n);
318 return(0);
322 * slab_malloc()
324 * Allocate memory via the slab allocator. If the request is too large,
325 * or if it page-aligned beyond a certain size, we fall back to the
326 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
327 * &SlabMisc if you don't care.
329 * M_NOWAIT - return NULL instead of blocking.
330 * M_ZERO - zero the returned memory.
332 void *
333 slab_malloc(unsigned long size, struct malloc_type *type, int flags)
335 SLZone *z;
336 SLChunk *chunk;
337 SLGlobalData *slgd;
338 struct globaldata *gd;
339 int zi;
341 gd = mycpu;
342 slgd = &gd->gd_slab;
345 * XXX silly to have this in the critical path.
347 if (type->ks_limit == 0) {
348 crit_enter();
349 if (type->ks_limit == 0)
350 slab_malloc_init(type);
351 crit_exit();
353 ++type->ks_calls;
356 * Handle the case where the limit is reached. Panic if can't return
357 * NULL. XXX the original malloc code looped, but this tended to
358 * simply deadlock the computer.
360 while (type->ks_loosememuse >= type->ks_limit) {
361 int i;
362 long ttl;
364 for (i = ttl = 0; i < ncpus; ++i)
365 ttl += type->ks_memuse[i];
366 type->ks_loosememuse = ttl;
367 if (ttl >= type->ks_limit) {
368 if (flags & (M_NOWAIT|M_NULLOK))
369 return(NULL);
370 panic("%s: malloc limit exceeded", type->ks_shortdesc);
375 * Handle the degenerate size == 0 case. Yes, this does happen.
376 * Return a special pointer. This is to maintain compatibility with
377 * the original malloc implementation. Certain devices, such as the
378 * adaptec driver, not only allocate 0 bytes, they check for NULL and
379 * also realloc() later on. Joy.
381 if (size == 0)
382 return(ZERO_LENGTH_PTR);
385 * Handle hysteresis from prior frees here in malloc(). We cannot
386 * safely manipulate the kernel_map in free() due to free() possibly
387 * being called via an IPI message or from sensitive interrupt code.
389 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_NOWAIT) == 0) {
390 crit_enter();
391 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */
392 z = slgd->FreeZones;
393 slgd->FreeZones = z->z_Next;
394 --slgd->NFreeZones;
395 munmap(z, ZoneSize);
397 crit_exit();
400 * XXX handle oversized frees that were queued from free().
402 while (slgd->FreeOvZones && (flags & M_NOWAIT) == 0) {
403 crit_enter();
404 if ((z = slgd->FreeOvZones) != NULL) {
405 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
406 slgd->FreeOvZones = z->z_Next;
407 munmap(z, z->z_ChunkSize);
409 crit_exit();
413 * Handle large allocations directly. There should not be very many of
414 * these so performance is not a big issue.
416 * Guarentee page alignment for allocations in multiples of PAGE_SIZE
418 if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
419 SLOversized **slovpp;
420 SLOversized *slov;
422 slov = slab_malloc(sizeof(SLOversized), M_OVERSIZED, M_ZERO);
423 if (slov == NULL)
424 return(NULL);
426 size = round_page(size);
427 chunk = mmap(NULL, size, PROT_READ|PROT_WRITE,
428 MAP_ANON|MAP_PRIVATE, -1, 0);
429 if (chunk == MAP_FAILED) {
430 slab_free(slov, M_OVERSIZED);
431 return(NULL);
433 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
434 flags |= M_PASSIVE_ZERO;
436 slov->ov_Ptr = chunk;
437 slov->ov_Bytes = size;
438 slovpp = &SLOvHash[SLOVERSZ_HASH(chunk)];
439 slov->ov_Next = *slovpp;
440 *slovpp = slov;
441 crit_enter();
442 goto done;
446 * Attempt to allocate out of an existing zone. First try the free list,
447 * then allocate out of unallocated space. If we find a good zone move
448 * it to the head of the list so later allocations find it quickly
449 * (we might have thousands of zones in the list).
451 * Note: zoneindex() will panic of size is too large.
453 zi = zoneindex(&size);
454 KKASSERT(zi < NZONES);
455 crit_enter();
456 if ((z = slgd->ZoneAry[zi]) != NULL) {
457 KKASSERT(z->z_NFree > 0);
460 * Remove us from the ZoneAry[] when we become empty
462 if (--z->z_NFree == 0) {
463 slgd->ZoneAry[zi] = z->z_Next;
464 z->z_Next = NULL;
468 * Locate a chunk in a free page. This attempts to localize
469 * reallocations into earlier pages without us having to sort
470 * the chunk list. A chunk may still overlap a page boundary.
472 while (z->z_FirstFreePg < ZonePageCount) {
473 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
474 #ifdef DIAGNOSTIC
476 * Diagnostic: c_Next is not total garbage.
478 KKASSERT(chunk->c_Next == NULL ||
479 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
480 ((intptr_t)chunk & IN_SAME_PAGE_MASK));
481 #endif
482 #ifdef INVARIANTS
483 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
484 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
485 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
486 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
487 #endif
488 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
489 goto done;
491 ++z->z_FirstFreePg;
495 * No chunks are available but NFree said we had some memory, so
496 * it must be available in the never-before-used-memory area
497 * governed by UIndex. The consequences are very serious if our zone
498 * got corrupted so we use an explicit panic rather then a KASSERT.
500 if (z->z_UIndex + 1 != z->z_NMax)
501 z->z_UIndex = z->z_UIndex + 1;
502 else
503 z->z_UIndex = 0;
504 if (z->z_UIndex == z->z_UEndIndex)
505 panic("slaballoc: corrupted zone");
506 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
507 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
508 flags &= ~M_ZERO;
509 flags |= M_PASSIVE_ZERO;
511 goto done;
515 * If all zones are exhausted we need to allocate a new zone for this
516 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
517 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
518 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
519 * we do not pre-zero it because we do not want to mess up the L1 cache.
521 * At least one subsystem, the tty code (see CROUND) expects power-of-2
522 * allocations to be power-of-2 aligned. We maintain compatibility by
523 * adjusting the base offset below.
526 int off;
528 if ((z = slgd->FreeZones) != NULL) {
529 slgd->FreeZones = z->z_Next;
530 --slgd->NFreeZones;
531 bzero(z, sizeof(SLZone));
532 z->z_Flags |= SLZF_UNOTZEROD;
533 } else {
534 z = mmap(NULL, ZoneSize, PROT_READ|PROT_WRITE,
535 MAP_ANON|MAP_PRIVATE, -1, 0);
536 if (z == MAP_FAILED)
537 goto fail;
541 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
542 * Otherwise just 8-byte align the data.
544 if ((size | (size - 1)) + 1 == (size << 1))
545 off = (sizeof(SLZone) + size - 1) & ~(size - 1);
546 else
547 off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
548 z->z_Magic = ZALLOC_SLAB_MAGIC;
549 z->z_ZoneIndex = zi;
550 z->z_NMax = (ZoneSize - off) / size;
551 z->z_NFree = z->z_NMax - 1;
552 z->z_BasePtr = (char *)z + off;
553 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
554 z->z_ChunkSize = size;
555 z->z_FirstFreePg = ZonePageCount;
556 z->z_Cpu = gd->gd_cpuid;
557 z->z_CpuGd = gd;
558 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
559 z->z_Next = slgd->ZoneAry[zi];
560 slgd->ZoneAry[zi] = z;
561 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
562 flags &= ~M_ZERO; /* already zero'd */
563 flags |= M_PASSIVE_ZERO;
567 * Slide the base index for initial allocations out of the next
568 * zone we create so we do not over-weight the lower part of the
569 * cpu memory caches.
571 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
572 & (ZALLOC_MAX_ZONE_SIZE - 1);
574 done:
575 ++type->ks_inuse[gd->gd_cpuid];
576 type->ks_memuse[gd->gd_cpuid] += size;
577 type->ks_loosememuse += size;
578 crit_exit();
579 if (flags & M_ZERO)
580 bzero(chunk, size);
581 #ifdef INVARIANTS
582 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0)
583 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
584 #endif
585 return(chunk);
586 fail:
587 crit_exit();
588 return(NULL);
591 void *
592 slab_realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
594 SLZone *z;
595 SLOversized **slovpp;
596 SLOversized *slov;
597 void *nptr;
598 unsigned long osize;
600 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
601 return(slab_malloc(size, type, flags));
602 if (size == 0) {
603 slab_free(ptr, type);
604 return(NULL);
608 * Handle oversized allocations.
610 if ((slovpp = get_oversized(ptr)) != NULL) {
611 slov = *slovpp;
612 osize = slov->ov_Bytes;
613 if (osize == round_page(size))
614 return(ptr);
615 if ((nptr = slab_malloc(size, type, flags)) == NULL)
616 return(NULL);
617 bcopy(ptr, nptr, slab_min(size, osize));
618 slab_free(ptr, type);
619 return(nptr);
623 * Get the original allocation's zone. If the new request winds up
624 * using the same chunk size we do not have to do anything.
626 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
627 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
629 zoneindex(&size);
630 if (z->z_ChunkSize == size)
631 return(ptr);
634 * Allocate memory for the new request size. Note that zoneindex has
635 * already adjusted the request size to the appropriate chunk size, which
636 * should optimize our bcopy(). Then copy and return the new pointer.
638 if ((nptr = slab_malloc(size, type, flags)) == NULL)
639 return(NULL);
640 bcopy(ptr, nptr, slab_min(size, z->z_ChunkSize));
641 slab_free(ptr, type);
642 return(nptr);
645 #ifdef SMP
647 * slab_free() (SLAB ALLOCATOR)
649 * Free the specified chunk of memory.
651 static
652 void
653 slab_free_remote(void *ptr)
655 slab_free(ptr, *(struct malloc_type **)ptr);
658 #endif
660 void
661 slab_free(void *ptr, struct malloc_type *type)
663 SLZone *z;
664 SLOversized **slovpp;
665 SLOversized *slov;
666 SLChunk *chunk;
667 SLGlobalData *slgd;
668 struct globaldata *gd;
669 int pgno;
671 gd = mycpu;
672 slgd = &gd->gd_slab;
675 * Handle special 0-byte allocations
677 if (ptr == ZERO_LENGTH_PTR)
678 return;
681 * Handle oversized allocations. XXX we really should require that a
682 * size be passed to slab_free() instead of this nonsense.
684 * This code is never called via an ipi.
686 if ((slovpp = get_oversized(ptr)) != NULL) {
687 slov = *slovpp;
688 *slovpp = slov->ov_Next;
690 #ifdef INVARIANTS
691 KKASSERT(sizeof(weirdary) <= slov->ov_Bytes);
692 bcopy(weirdary, ptr, sizeof(weirdary));
693 #endif
695 * note: we always adjust our cpu's slot, not the originating
696 * cpu (kup->ku_cpuid). The statistics are in aggregate.
698 * note: XXX we have still inherited the interrupts-can't-block
699 * assumption. An interrupt thread does not bump
700 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
701 * primarily until we can fix softupdate's assumptions about
702 * slab_free().
704 crit_enter();
705 --type->ks_inuse[gd->gd_cpuid];
706 type->ks_memuse[gd->gd_cpuid] -= slov->ov_Bytes;
707 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
708 z = (SLZone *)ptr;
709 z->z_Magic = ZALLOC_OVSZ_MAGIC;
710 z->z_Next = slgd->FreeOvZones;
711 z->z_ChunkSize = slov->ov_Bytes;
712 slgd->FreeOvZones = z;
713 crit_exit();
714 } else {
715 crit_exit();
716 munmap(ptr, slov->ov_Bytes);
718 slab_free(slov, M_OVERSIZED);
719 return;
723 * Zone case. Figure out the zone based on the fact that it is
724 * ZoneSize aligned.
726 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
727 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
730 * If we do not own the zone then forward the request to the
731 * cpu that does. The freeing code does not need the byte count
732 * unless DIAGNOSTIC is set.
734 if (z->z_CpuGd != gd) {
735 *(struct malloc_type **)ptr = type;
736 #ifdef SMP
737 lwkt_send_ipiq(z->z_CpuGd, slab_free_remote, ptr);
738 #else
739 panic("Corrupt SLZone");
740 #endif
741 return;
744 if (type->ks_magic != M_MAGIC)
745 panic("slab_free: malloc type lacks magic");
747 crit_enter();
748 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
749 chunk = ptr;
751 #ifdef INVARIANTS
753 * Attempt to detect a double-free. To reduce overhead we only check
754 * if there appears to be link pointer at the base of the data.
756 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
757 SLChunk *scan;
758 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
759 if (scan == chunk)
760 panic("Double free at %p", chunk);
763 #endif
766 * Put weird data into the memory to detect modifications after freeing,
767 * illegal pointer use after freeing (we should fault on the odd address),
768 * and so forth. XXX needs more work, see the old malloc code.
770 #ifdef INVARIANTS
771 if (z->z_ChunkSize < sizeof(weirdary))
772 bcopy(weirdary, chunk, z->z_ChunkSize);
773 else
774 bcopy(weirdary, chunk, sizeof(weirdary));
775 #endif
778 * Add this free non-zero'd chunk to a linked list for reuse, adjust
779 * z_FirstFreePg.
781 #ifdef INVARIANTS
782 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
783 panic("BADFREE %p\n", chunk);
784 #endif
785 chunk->c_Next = z->z_PageAry[pgno];
786 z->z_PageAry[pgno] = chunk;
787 #ifdef INVARIANTS
788 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
789 panic("BADFREE2");
790 #endif
791 if (z->z_FirstFreePg > pgno)
792 z->z_FirstFreePg = pgno;
795 * Bump the number of free chunks. If it becomes non-zero the zone
796 * must be added back onto the appropriate list.
798 if (z->z_NFree++ == 0) {
799 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
800 slgd->ZoneAry[z->z_ZoneIndex] = z;
803 --type->ks_inuse[z->z_Cpu];
804 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
807 * If the zone becomes totally free, and there are other zones we
808 * can allocate from, move this zone to the FreeZones list. Since
809 * this code can be called from an IPI callback, do *NOT* try to mess
810 * with kernel_map here. Hysteresis will be performed at malloc() time.
812 if (z->z_NFree == z->z_NMax &&
813 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
815 SLZone **pz;
817 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
819 *pz = z->z_Next;
820 z->z_Magic = -1;
821 z->z_Next = slgd->FreeZones;
822 slgd->FreeZones = z;
823 ++slgd->NFreeZones;
825 crit_exit();