kernel - Add Proportional RSS (PRES)
[dragonfly.git] / sys / vm / vm_object.c
blob15a201167415cf4d1f5d1d444a0975dcb151284b
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
71 * Virtual memory object module.
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_zone.h>
97 #define EASY_SCAN_FACTOR 8
99 static void vm_object_qcollapse(vm_object_t object);
100 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
104 * Virtual memory objects maintain the actual data
105 * associated with allocated virtual memory. A given
106 * page of memory exists within exactly one object.
108 * An object is only deallocated when all "references"
109 * are given up. Only one "reference" to a given
110 * region of an object should be writeable.
112 * Associated with each object is a list of all resident
113 * memory pages belonging to that object; this list is
114 * maintained by the "vm_page" module, and locked by the object's
115 * lock.
117 * Each object also records a "pager" routine which is
118 * used to retrieve (and store) pages to the proper backing
119 * storage. In addition, objects may be backed by other
120 * objects from which they were virtual-copied.
122 * The only items within the object structure which are
123 * modified after time of creation are:
124 * reference count locked by object's lock
125 * pager routine locked by object's lock
129 struct object_q vm_object_list; /* locked by vmobj_token */
130 struct vm_object kernel_object;
132 static long vm_object_count; /* locked by vmobj_token */
133 extern int vm_pageout_page_count;
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 static int object_hash_rand;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
145 * Initialize a freshly allocated object
147 * Used only by vm_object_allocate() and zinitna().
149 * No requirements.
151 void
152 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
154 int incr;
156 RB_INIT(&object->rb_memq);
157 LIST_INIT(&object->shadow_head);
159 object->type = type;
160 object->size = size;
161 object->ref_count = 1;
162 object->flags = 0;
163 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164 vm_object_set_flag(object, OBJ_ONEMAPPING);
165 object->paging_in_progress = 0;
166 object->resident_page_count = 0;
167 object->agg_pv_list_count = 0;
168 object->shadow_count = 0;
169 object->pg_color = next_index;
170 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
171 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
172 else
173 incr = size;
174 next_index = (next_index + incr) & PQ_L2_MASK;
175 object->handle = NULL;
176 object->backing_object = NULL;
177 object->backing_object_offset = (vm_ooffset_t) 0;
179 * Try to generate a number that will spread objects out in the
180 * hash table. We 'wipe' new objects across the hash in 128 page
181 * increments plus 1 more to offset it a little more by the time
182 * it wraps around.
184 object->hash_rand = object_hash_rand - 129;
186 object->generation++;
187 object->swblock_count = 0;
188 RB_INIT(&object->swblock_root);
190 lwkt_gettoken(&vmobj_token);
191 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
192 vm_object_count++;
193 object_hash_rand = object->hash_rand;
194 lwkt_reltoken(&vmobj_token);
198 * Initialize the VM objects module.
200 * Called from the low level boot code only.
202 void
203 vm_object_init(void)
205 TAILQ_INIT(&vm_object_list);
207 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
208 &kernel_object);
210 obj_zone = &obj_zone_store;
211 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 vm_objects_init, VM_OBJECTS_INIT);
215 void
216 vm_object_init2(void)
218 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
222 * Allocate and return a new object of the specified type and size.
224 * No requirements.
226 vm_object_t
227 vm_object_allocate(objtype_t type, vm_pindex_t size)
229 vm_object_t result;
231 result = (vm_object_t) zalloc(obj_zone);
233 _vm_object_allocate(type, size, result);
235 return (result);
239 * Add an additional reference to a vm_object.
241 * Object passed by caller must be stable or caller must already
242 * hold vmobj_token to avoid races.
244 void
245 vm_object_reference(vm_object_t object)
247 if (object) {
248 lwkt_gettoken(&vmobj_token);
249 object->ref_count++;
250 if (object->type == OBJT_VNODE) {
251 vref(object->handle);
252 /* XXX what if the vnode is being destroyed? */
254 lwkt_reltoken(&vmobj_token);
258 void
259 vm_object_reference_locked(vm_object_t object)
261 if (object) {
262 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
263 object->ref_count++;
264 if (object->type == OBJT_VNODE) {
265 vref(object->handle);
266 /* XXX what if the vnode is being destroyed? */
272 * Dereference an object and its underlying vnode.
274 * The caller must hold vmobj_token.
276 static void
277 vm_object_vndeallocate(vm_object_t object)
279 struct vnode *vp = (struct vnode *) object->handle;
281 KASSERT(object->type == OBJT_VNODE,
282 ("vm_object_vndeallocate: not a vnode object"));
283 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
284 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
285 #ifdef INVARIANTS
286 if (object->ref_count == 0) {
287 vprint("vm_object_vndeallocate", vp);
288 panic("vm_object_vndeallocate: bad object reference count");
290 #endif
292 object->ref_count--;
293 if (object->ref_count == 0)
294 vclrflags(vp, VTEXT);
295 vrele(vp);
299 * Release a reference to the specified object, gained either through a
300 * vm_object_allocate or a vm_object_reference call. When all references
301 * are gone, storage associated with this object may be relinquished.
303 void
304 vm_object_deallocate(vm_object_t object)
306 lwkt_gettoken(&vmobj_token);
307 vm_object_deallocate_locked(object);
308 lwkt_reltoken(&vmobj_token);
311 void
312 vm_object_deallocate_locked(vm_object_t object)
314 vm_object_t temp;
316 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
318 while (object != NULL) {
319 if (object->type == OBJT_VNODE) {
320 vm_object_vndeallocate(object);
321 break;
324 if (object->ref_count == 0) {
325 panic("vm_object_deallocate: object deallocated "
326 "too many times: %d", object->type);
328 if (object->ref_count > 2) {
329 object->ref_count--;
330 break;
334 * We currently need the vm_token from this point on, and
335 * we must recheck ref_count after acquiring it.
337 lwkt_gettoken(&vm_token);
339 if (object->ref_count > 2) {
340 object->ref_count--;
341 lwkt_reltoken(&vm_token);
342 break;
346 * Here on ref_count of one or two, which are special cases for
347 * objects.
349 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
350 vm_object_set_flag(object, OBJ_ONEMAPPING);
351 object->ref_count--;
352 lwkt_reltoken(&vm_token);
353 break;
355 if ((object->ref_count == 2) && (object->shadow_count == 1)) {
356 object->ref_count--;
357 if ((object->handle == NULL) &&
358 (object->type == OBJT_DEFAULT ||
359 object->type == OBJT_SWAP)) {
360 vm_object_t robject;
362 robject = LIST_FIRST(&object->shadow_head);
363 KASSERT(robject != NULL,
364 ("vm_object_deallocate: ref_count: "
365 "%d, shadow_count: %d",
366 object->ref_count,
367 object->shadow_count));
369 if ((robject->handle == NULL) &&
370 (robject->type == OBJT_DEFAULT ||
371 robject->type == OBJT_SWAP)) {
373 robject->ref_count++;
375 while (
376 robject->paging_in_progress ||
377 object->paging_in_progress
379 vm_object_pip_sleep(robject, "objde1");
380 vm_object_pip_sleep(object, "objde2");
383 if (robject->ref_count == 1) {
384 robject->ref_count--;
385 object = robject;
386 goto doterm;
389 object = robject;
390 vm_object_collapse(object);
391 lwkt_reltoken(&vm_token);
392 continue;
395 lwkt_reltoken(&vm_token);
396 break;
400 * Normal dereferencing path
402 object->ref_count--;
403 if (object->ref_count != 0) {
404 lwkt_reltoken(&vm_token);
405 break;
409 * Termination path
411 doterm:
412 temp = object->backing_object;
413 if (temp) {
414 LIST_REMOVE(object, shadow_list);
415 temp->shadow_count--;
416 temp->generation++;
417 object->backing_object = NULL;
419 lwkt_reltoken(&vm_token);
422 * Don't double-terminate, we could be in a termination
423 * recursion due to the terminate having to sync data
424 * to disk.
426 if ((object->flags & OBJ_DEAD) == 0)
427 vm_object_terminate(object);
428 object = temp;
433 * Destroy the specified object, freeing up related resources.
435 * The object must have zero references.
437 * The caller must be holding vmobj_token and properly interlock with
438 * OBJ_DEAD.
440 static int vm_object_terminate_callback(vm_page_t p, void *data);
442 void
443 vm_object_terminate(vm_object_t object)
446 * Make sure no one uses us. Once we set OBJ_DEAD we should be
447 * able to safely block.
449 KKASSERT((object->flags & OBJ_DEAD) == 0);
450 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
451 vm_object_set_flag(object, OBJ_DEAD);
454 * Wait for the pageout daemon to be done with the object
456 vm_object_pip_wait(object, "objtrm");
458 KASSERT(!object->paging_in_progress,
459 ("vm_object_terminate: pageout in progress"));
462 * Clean and free the pages, as appropriate. All references to the
463 * object are gone, so we don't need to lock it.
465 if (object->type == OBJT_VNODE) {
466 struct vnode *vp;
469 * Clean pages and flush buffers.
471 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
473 vp = (struct vnode *) object->handle;
474 vinvalbuf(vp, V_SAVE, 0, 0);
478 * Wait for any I/O to complete, after which there had better not
479 * be any references left on the object.
481 vm_object_pip_wait(object, "objtrm");
483 if (object->ref_count != 0) {
484 panic("vm_object_terminate: object with references, "
485 "ref_count=%d", object->ref_count);
489 * Now free any remaining pages. For internal objects, this also
490 * removes them from paging queues. Don't free wired pages, just
491 * remove them from the object.
493 lwkt_gettoken(&vm_token);
494 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
495 vm_object_terminate_callback, NULL);
496 lwkt_reltoken(&vm_token);
499 * Let the pager know object is dead.
501 vm_pager_deallocate(object);
504 * Remove the object from the global object list.
506 * (we are holding vmobj_token)
508 TAILQ_REMOVE(&vm_object_list, object, object_list);
509 vm_object_count--;
510 vm_object_dead_wakeup(object);
512 if (object->ref_count != 0) {
513 panic("vm_object_terminate2: object with references, "
514 "ref_count=%d", object->ref_count);
518 * Free the space for the object.
520 zfree(obj_zone, object);
524 * The caller must hold vm_token.
526 static int
527 vm_object_terminate_callback(vm_page_t p, void *data __unused)
529 if (p->busy || (p->flags & PG_BUSY))
530 panic("vm_object_terminate: freeing busy page %p", p);
531 if (p->wire_count == 0) {
532 vm_page_busy(p);
533 vm_page_free(p);
534 mycpu->gd_cnt.v_pfree++;
535 } else {
536 if (p->queue != PQ_NONE)
537 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
538 vm_page_busy(p);
539 vm_page_remove(p);
540 vm_page_wakeup(p);
542 return(0);
546 * The object is dead but still has an object<->pager association. Sleep
547 * and return. The caller typically retests the association in a loop.
549 * Must be called with the vmobj_token held.
551 void
552 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
554 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
555 if (object->handle) {
556 vm_object_set_flag(object, OBJ_DEADWNT);
557 tsleep(object, 0, wmesg, 0);
558 /* object may be invalid after this point */
563 * Wakeup anyone waiting for the object<->pager disassociation on
564 * a dead object.
566 * Must be called with the vmobj_token held.
568 void
569 vm_object_dead_wakeup(vm_object_t object)
571 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
572 if (object->flags & OBJ_DEADWNT) {
573 vm_object_clear_flag(object, OBJ_DEADWNT);
574 wakeup(object);
579 * Clean all dirty pages in the specified range of object. Leaves page
580 * on whatever queue it is currently on. If NOSYNC is set then do not
581 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
582 * leaving the object dirty.
584 * When stuffing pages asynchronously, allow clustering. XXX we need a
585 * synchronous clustering mode implementation.
587 * Odd semantics: if start == end, we clean everything.
589 * The object must be locked? XXX
591 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
592 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
594 void
595 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
596 int flags)
598 struct rb_vm_page_scan_info info;
599 struct vnode *vp;
600 int wholescan;
601 int pagerflags;
602 int curgeneration;
604 lwkt_gettoken(&vm_token);
605 if (object->type != OBJT_VNODE ||
606 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
607 lwkt_reltoken(&vm_token);
608 return;
611 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
612 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
613 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
615 vp = object->handle;
618 * Interlock other major object operations. This allows us to
619 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
621 crit_enter();
622 vm_object_set_flag(object, OBJ_CLEANING);
625 * Handle 'entire object' case
627 info.start_pindex = start;
628 if (end == 0) {
629 info.end_pindex = object->size - 1;
630 } else {
631 info.end_pindex = end - 1;
633 wholescan = (start == 0 && info.end_pindex == object->size - 1);
634 info.limit = flags;
635 info.pagerflags = pagerflags;
636 info.object = object;
639 * If cleaning the entire object do a pass to mark the pages read-only.
640 * If everything worked out ok, clear OBJ_WRITEABLE and
641 * OBJ_MIGHTBEDIRTY.
643 if (wholescan) {
644 info.error = 0;
645 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
646 vm_object_page_clean_pass1, &info);
647 if (info.error == 0) {
648 vm_object_clear_flag(object,
649 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
650 if (object->type == OBJT_VNODE &&
651 (vp = (struct vnode *)object->handle) != NULL) {
652 if (vp->v_flag & VOBJDIRTY)
653 vclrflags(vp, VOBJDIRTY);
659 * Do a pass to clean all the dirty pages we find.
661 do {
662 info.error = 0;
663 curgeneration = object->generation;
664 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
665 vm_object_page_clean_pass2, &info);
666 } while (info.error || curgeneration != object->generation);
668 vm_object_clear_flag(object, OBJ_CLEANING);
669 crit_exit();
670 lwkt_reltoken(&vm_token);
674 * The caller must hold vm_token.
676 static
678 vm_object_page_clean_pass1(struct vm_page *p, void *data)
680 struct rb_vm_page_scan_info *info = data;
682 vm_page_flag_set(p, PG_CLEANCHK);
683 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
684 info->error = 1;
685 else
686 vm_page_protect(p, VM_PROT_READ); /* must not block */
687 return(0);
691 * The caller must hold vm_token.
693 static
695 vm_object_page_clean_pass2(struct vm_page *p, void *data)
697 struct rb_vm_page_scan_info *info = data;
698 int n;
701 * Do not mess with pages that were inserted after we started
702 * the cleaning pass.
704 if ((p->flags & PG_CLEANCHK) == 0)
705 return(0);
708 * Before wasting time traversing the pmaps, check for trivial
709 * cases where the page cannot be dirty.
711 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
712 KKASSERT((p->dirty & p->valid) == 0);
713 return(0);
717 * Check whether the page is dirty or not. The page has been set
718 * to be read-only so the check will not race a user dirtying the
719 * page.
721 vm_page_test_dirty(p);
722 if ((p->dirty & p->valid) == 0) {
723 vm_page_flag_clear(p, PG_CLEANCHK);
724 return(0);
728 * If we have been asked to skip nosync pages and this is a
729 * nosync page, skip it. Note that the object flags were
730 * not cleared in this case (because pass1 will have returned an
731 * error), so we do not have to set them.
733 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
734 vm_page_flag_clear(p, PG_CLEANCHK);
735 return(0);
739 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
740 * the pages that get successfully flushed. Set info->error if
741 * we raced an object modification.
743 n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
744 if (n == 0)
745 info->error = 1;
746 return(0);
750 * Collect the specified page and nearby pages and flush them out.
751 * The number of pages flushed is returned.
753 * The caller must hold vm_token.
755 static int
756 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
758 int runlen;
759 int maxf;
760 int chkb;
761 int maxb;
762 int i;
763 int curgeneration;
764 vm_pindex_t pi;
765 vm_page_t maf[vm_pageout_page_count];
766 vm_page_t mab[vm_pageout_page_count];
767 vm_page_t ma[vm_pageout_page_count];
769 curgeneration = object->generation;
771 pi = p->pindex;
772 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
773 if (object->generation != curgeneration) {
774 return(0);
777 KKASSERT(p->object == object && p->pindex == pi);
779 maxf = 0;
780 for(i = 1; i < vm_pageout_page_count; i++) {
781 vm_page_t tp;
783 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
784 if ((tp->flags & PG_BUSY) ||
785 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
786 (tp->flags & PG_CLEANCHK) == 0) ||
787 (tp->busy != 0))
788 break;
789 if((tp->queue - tp->pc) == PQ_CACHE) {
790 vm_page_flag_clear(tp, PG_CLEANCHK);
791 break;
793 vm_page_test_dirty(tp);
794 if ((tp->dirty & tp->valid) == 0) {
795 vm_page_flag_clear(tp, PG_CLEANCHK);
796 break;
798 maf[ i - 1 ] = tp;
799 maxf++;
800 continue;
802 break;
805 maxb = 0;
806 chkb = vm_pageout_page_count - maxf;
807 if (chkb) {
808 for(i = 1; i < chkb;i++) {
809 vm_page_t tp;
811 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
812 if ((tp->flags & PG_BUSY) ||
813 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
814 (tp->flags & PG_CLEANCHK) == 0) ||
815 (tp->busy != 0))
816 break;
817 if((tp->queue - tp->pc) == PQ_CACHE) {
818 vm_page_flag_clear(tp, PG_CLEANCHK);
819 break;
821 vm_page_test_dirty(tp);
822 if ((tp->dirty & tp->valid) == 0) {
823 vm_page_flag_clear(tp, PG_CLEANCHK);
824 break;
826 mab[ i - 1 ] = tp;
827 maxb++;
828 continue;
830 break;
834 for(i = 0; i < maxb; i++) {
835 int index = (maxb - i) - 1;
836 ma[index] = mab[i];
837 vm_page_flag_clear(ma[index], PG_CLEANCHK);
839 vm_page_flag_clear(p, PG_CLEANCHK);
840 ma[maxb] = p;
841 for(i = 0; i < maxf; i++) {
842 int index = (maxb + i) + 1;
843 ma[index] = maf[i];
844 vm_page_flag_clear(ma[index], PG_CLEANCHK);
846 runlen = maxb + maxf + 1;
848 vm_pageout_flush(ma, runlen, pagerflags);
849 for (i = 0; i < runlen; i++) {
850 if (ma[i]->valid & ma[i]->dirty) {
851 vm_page_protect(ma[i], VM_PROT_READ);
852 vm_page_flag_set(ma[i], PG_CLEANCHK);
855 * maxf will end up being the actual number of pages
856 * we wrote out contiguously, non-inclusive of the
857 * first page. We do not count look-behind pages.
859 if (i >= maxb + 1 && (maxf > i - maxb - 1))
860 maxf = i - maxb - 1;
863 return(maxf + 1);
867 * Same as vm_object_pmap_copy, except range checking really
868 * works, and is meant for small sections of an object.
870 * This code protects resident pages by making them read-only
871 * and is typically called on a fork or split when a page
872 * is converted to copy-on-write.
874 * NOTE: If the page is already at VM_PROT_NONE, calling
875 * vm_page_protect will have no effect.
877 void
878 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
880 vm_pindex_t idx;
881 vm_page_t p;
883 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
884 return;
887 * spl protection needed to prevent races between the lookup,
888 * an interrupt unbusy/free, and our protect call.
890 crit_enter();
891 lwkt_gettoken(&vm_token);
892 for (idx = start; idx < end; idx++) {
893 p = vm_page_lookup(object, idx);
894 if (p == NULL)
895 continue;
896 vm_page_protect(p, VM_PROT_READ);
898 lwkt_reltoken(&vm_token);
899 crit_exit();
903 * Removes all physical pages in the specified object range from all
904 * physical maps.
906 * The object must *not* be locked.
909 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
911 void
912 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
914 struct rb_vm_page_scan_info info;
916 if (object == NULL)
917 return;
918 info.start_pindex = start;
919 info.end_pindex = end - 1;
921 crit_enter();
922 lwkt_gettoken(&vm_token);
923 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
924 vm_object_pmap_remove_callback, &info);
925 if (start == 0 && end == object->size)
926 vm_object_clear_flag(object, OBJ_WRITEABLE);
927 lwkt_reltoken(&vm_token);
928 crit_exit();
932 * The caller must hold vm_token.
934 static int
935 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
937 vm_page_protect(p, VM_PROT_NONE);
938 return(0);
942 * Implements the madvise function at the object/page level.
944 * MADV_WILLNEED (any object)
946 * Activate the specified pages if they are resident.
948 * MADV_DONTNEED (any object)
950 * Deactivate the specified pages if they are resident.
952 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
954 * Deactivate and clean the specified pages if they are
955 * resident. This permits the process to reuse the pages
956 * without faulting or the kernel to reclaim the pages
957 * without I/O.
959 * No requirements.
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
964 vm_pindex_t end, tpindex;
965 vm_object_t tobject;
966 vm_page_t m;
968 if (object == NULL)
969 return;
971 end = pindex + count;
973 lwkt_gettoken(&vm_token);
976 * Locate and adjust resident pages
978 for (; pindex < end; pindex += 1) {
979 relookup:
980 tobject = object;
981 tpindex = pindex;
982 shadowlookup:
984 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985 * and those pages must be OBJ_ONEMAPPING.
987 if (advise == MADV_FREE) {
988 if ((tobject->type != OBJT_DEFAULT &&
989 tobject->type != OBJT_SWAP) ||
990 (tobject->flags & OBJ_ONEMAPPING) == 0) {
991 continue;
996 * spl protection is required to avoid a race between the
997 * lookup, an interrupt unbusy/free, and our busy check.
1000 crit_enter();
1001 m = vm_page_lookup(tobject, tpindex);
1003 if (m == NULL) {
1005 * There may be swap even if there is no backing page
1007 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1008 swap_pager_freespace(tobject, tpindex, 1);
1011 * next object
1013 crit_exit();
1014 if (tobject->backing_object == NULL)
1015 continue;
1016 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1017 tobject = tobject->backing_object;
1018 goto shadowlookup;
1022 * If the page is busy or not in a normal active state,
1023 * we skip it. If the page is not managed there are no
1024 * page queues to mess with. Things can break if we mess
1025 * with pages in any of the below states.
1027 if (
1028 m->hold_count ||
1029 m->wire_count ||
1030 (m->flags & PG_UNMANAGED) ||
1031 m->valid != VM_PAGE_BITS_ALL
1033 crit_exit();
1034 continue;
1037 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1038 crit_exit();
1039 goto relookup;
1041 crit_exit();
1044 * Theoretically once a page is known not to be busy, an
1045 * interrupt cannot come along and rip it out from under us.
1048 if (advise == MADV_WILLNEED) {
1049 vm_page_activate(m);
1050 } else if (advise == MADV_DONTNEED) {
1051 vm_page_dontneed(m);
1052 } else if (advise == MADV_FREE) {
1054 * Mark the page clean. This will allow the page
1055 * to be freed up by the system. However, such pages
1056 * are often reused quickly by malloc()/free()
1057 * so we do not do anything that would cause
1058 * a page fault if we can help it.
1060 * Specifically, we do not try to actually free
1061 * the page now nor do we try to put it in the
1062 * cache (which would cause a page fault on reuse).
1064 * But we do make the page is freeable as we
1065 * can without actually taking the step of unmapping
1066 * it.
1068 pmap_clear_modify(m);
1069 m->dirty = 0;
1070 m->act_count = 0;
1071 vm_page_dontneed(m);
1072 if (tobject->type == OBJT_SWAP)
1073 swap_pager_freespace(tobject, tpindex, 1);
1076 lwkt_reltoken(&vm_token);
1080 * Create a new object which is backed by the specified existing object
1081 * range. The source object reference is deallocated.
1083 * The new object and offset into that object are returned in the source
1084 * parameters.
1086 * No other requirements.
1088 void
1089 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1091 vm_object_t source;
1092 vm_object_t result;
1094 source = *object;
1097 * Don't create the new object if the old object isn't shared.
1099 lwkt_gettoken(&vm_token);
1101 if (source != NULL &&
1102 source->ref_count == 1 &&
1103 source->handle == NULL &&
1104 (source->type == OBJT_DEFAULT ||
1105 source->type == OBJT_SWAP)) {
1106 lwkt_reltoken(&vm_token);
1107 return;
1111 * Allocate a new object with the given length
1114 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1115 panic("vm_object_shadow: no object for shadowing");
1118 * The new object shadows the source object, adding a reference to it.
1119 * Our caller changes his reference to point to the new object,
1120 * removing a reference to the source object. Net result: no change
1121 * of reference count.
1123 * Try to optimize the result object's page color when shadowing
1124 * in order to maintain page coloring consistency in the combined
1125 * shadowed object.
1127 result->backing_object = source;
1128 if (source) {
1129 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1130 source->shadow_count++;
1131 source->generation++;
1132 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1136 * Store the offset into the source object, and fix up the offset into
1137 * the new object.
1139 result->backing_object_offset = *offset;
1140 lwkt_reltoken(&vm_token);
1143 * Return the new things
1145 *offset = 0;
1146 *object = result;
1149 #define OBSC_TEST_ALL_SHADOWED 0x0001
1150 #define OBSC_COLLAPSE_NOWAIT 0x0002
1151 #define OBSC_COLLAPSE_WAIT 0x0004
1153 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1156 * The caller must hold vm_token.
1158 static __inline int
1159 vm_object_backing_scan(vm_object_t object, int op)
1161 struct rb_vm_page_scan_info info;
1162 vm_object_t backing_object;
1164 crit_enter();
1166 backing_object = object->backing_object;
1167 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1170 * Initial conditions
1173 if (op & OBSC_TEST_ALL_SHADOWED) {
1175 * We do not want to have to test for the existence of
1176 * swap pages in the backing object. XXX but with the
1177 * new swapper this would be pretty easy to do.
1179 * XXX what about anonymous MAP_SHARED memory that hasn't
1180 * been ZFOD faulted yet? If we do not test for this, the
1181 * shadow test may succeed! XXX
1183 if (backing_object->type != OBJT_DEFAULT) {
1184 crit_exit();
1185 return(0);
1188 if (op & OBSC_COLLAPSE_WAIT) {
1189 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1190 vm_object_set_flag(backing_object, OBJ_DEAD);
1194 * Our scan. We have to retry if a negative error code is returned,
1195 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1196 * the scan had to be stopped because the parent does not completely
1197 * shadow the child.
1199 info.object = object;
1200 info.backing_object = backing_object;
1201 info.limit = op;
1202 do {
1203 info.error = 1;
1204 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1205 vm_object_backing_scan_callback,
1206 &info);
1207 } while (info.error < 0);
1208 crit_exit();
1209 return(info.error);
1213 * The caller must hold vm_token.
1215 static int
1216 vm_object_backing_scan_callback(vm_page_t p, void *data)
1218 struct rb_vm_page_scan_info *info = data;
1219 vm_object_t backing_object;
1220 vm_object_t object;
1221 vm_pindex_t new_pindex;
1222 vm_pindex_t backing_offset_index;
1223 int op;
1225 new_pindex = p->pindex - info->backing_offset_index;
1226 op = info->limit;
1227 object = info->object;
1228 backing_object = info->backing_object;
1229 backing_offset_index = info->backing_offset_index;
1231 if (op & OBSC_TEST_ALL_SHADOWED) {
1232 vm_page_t pp;
1235 * Ignore pages outside the parent object's range
1236 * and outside the parent object's mapping of the
1237 * backing object.
1239 * note that we do not busy the backing object's
1240 * page.
1242 if (
1243 p->pindex < backing_offset_index ||
1244 new_pindex >= object->size
1246 return(0);
1250 * See if the parent has the page or if the parent's
1251 * object pager has the page. If the parent has the
1252 * page but the page is not valid, the parent's
1253 * object pager must have the page.
1255 * If this fails, the parent does not completely shadow
1256 * the object and we might as well give up now.
1259 pp = vm_page_lookup(object, new_pindex);
1260 if ((pp == NULL || pp->valid == 0) &&
1261 !vm_pager_has_page(object, new_pindex)
1263 info->error = 0; /* problemo */
1264 return(-1); /* stop the scan */
1269 * Check for busy page
1272 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1273 vm_page_t pp;
1275 if (op & OBSC_COLLAPSE_NOWAIT) {
1276 if (
1277 (p->flags & PG_BUSY) ||
1278 !p->valid ||
1279 p->hold_count ||
1280 p->wire_count ||
1281 p->busy
1283 return(0);
1285 } else if (op & OBSC_COLLAPSE_WAIT) {
1286 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1288 * If we slept, anything could have
1289 * happened. Ask that the scan be restarted.
1291 * Since the object is marked dead, the
1292 * backing offset should not have changed.
1294 info->error = -1;
1295 return(-1);
1300 * Busy the page
1302 vm_page_busy(p);
1304 KASSERT(
1305 p->object == backing_object,
1306 ("vm_object_qcollapse(): object mismatch")
1310 * Destroy any associated swap
1312 if (backing_object->type == OBJT_SWAP)
1313 swap_pager_freespace(backing_object, p->pindex, 1);
1315 if (
1316 p->pindex < backing_offset_index ||
1317 new_pindex >= object->size
1320 * Page is out of the parent object's range, we
1321 * can simply destroy it.
1323 vm_page_protect(p, VM_PROT_NONE);
1324 vm_page_free(p);
1325 return(0);
1328 pp = vm_page_lookup(object, new_pindex);
1329 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1331 * page already exists in parent OR swap exists
1332 * for this location in the parent. Destroy
1333 * the original page from the backing object.
1335 * Leave the parent's page alone
1337 vm_page_protect(p, VM_PROT_NONE);
1338 vm_page_free(p);
1339 return(0);
1343 * Page does not exist in parent, rename the
1344 * page from the backing object to the main object.
1346 * If the page was mapped to a process, it can remain
1347 * mapped through the rename.
1349 if ((p->queue - p->pc) == PQ_CACHE)
1350 vm_page_deactivate(p);
1352 vm_page_rename(p, object, new_pindex);
1353 /* page automatically made dirty by rename */
1355 return(0);
1359 * This version of collapse allows the operation to occur earlier and
1360 * when paging_in_progress is true for an object... This is not a complete
1361 * operation, but should plug 99.9% of the rest of the leaks.
1363 * The caller must hold vm_token and vmobj_token.
1364 * (only called from vm_object_collapse)
1366 static void
1367 vm_object_qcollapse(vm_object_t object)
1369 vm_object_t backing_object = object->backing_object;
1371 if (backing_object->ref_count != 1)
1372 return;
1374 backing_object->ref_count += 2;
1376 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1378 backing_object->ref_count -= 2;
1382 * Collapse an object with the object backing it. Pages in the backing
1383 * object are moved into the parent, and the backing object is deallocated.
1385 void
1386 vm_object_collapse(vm_object_t object)
1388 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1389 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1391 while (TRUE) {
1392 vm_object_t backing_object;
1395 * Verify that the conditions are right for collapse:
1397 * The object exists and the backing object exists.
1399 if (object == NULL)
1400 break;
1402 if ((backing_object = object->backing_object) == NULL)
1403 break;
1406 * we check the backing object first, because it is most likely
1407 * not collapsable.
1409 if (backing_object->handle != NULL ||
1410 (backing_object->type != OBJT_DEFAULT &&
1411 backing_object->type != OBJT_SWAP) ||
1412 (backing_object->flags & OBJ_DEAD) ||
1413 object->handle != NULL ||
1414 (object->type != OBJT_DEFAULT &&
1415 object->type != OBJT_SWAP) ||
1416 (object->flags & OBJ_DEAD)) {
1417 break;
1420 if (
1421 object->paging_in_progress != 0 ||
1422 backing_object->paging_in_progress != 0
1424 vm_object_qcollapse(object);
1425 break;
1429 * We know that we can either collapse the backing object (if
1430 * the parent is the only reference to it) or (perhaps) have
1431 * the parent bypass the object if the parent happens to shadow
1432 * all the resident pages in the entire backing object.
1434 * This is ignoring pager-backed pages such as swap pages.
1435 * vm_object_backing_scan fails the shadowing test in this
1436 * case.
1439 if (backing_object->ref_count == 1) {
1441 * If there is exactly one reference to the backing
1442 * object, we can collapse it into the parent.
1444 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1447 * Move the pager from backing_object to object.
1450 if (backing_object->type == OBJT_SWAP) {
1451 vm_object_pip_add(backing_object, 1);
1454 * scrap the paging_offset junk and do a
1455 * discrete copy. This also removes major
1456 * assumptions about how the swap-pager
1457 * works from where it doesn't belong. The
1458 * new swapper is able to optimize the
1459 * destroy-source case.
1462 vm_object_pip_add(object, 1);
1463 swap_pager_copy(
1464 backing_object,
1465 object,
1466 OFF_TO_IDX(object->backing_object_offset), TRUE);
1467 vm_object_pip_wakeup(object);
1469 vm_object_pip_wakeup(backing_object);
1472 * Object now shadows whatever backing_object did.
1473 * Note that the reference to
1474 * backing_object->backing_object moves from within
1475 * backing_object to within object.
1478 LIST_REMOVE(object, shadow_list);
1479 object->backing_object->shadow_count--;
1480 object->backing_object->generation++;
1481 if (backing_object->backing_object) {
1482 LIST_REMOVE(backing_object, shadow_list);
1483 backing_object->backing_object->shadow_count--;
1484 backing_object->backing_object->generation++;
1486 object->backing_object = backing_object->backing_object;
1487 if (object->backing_object) {
1488 LIST_INSERT_HEAD(
1489 &object->backing_object->shadow_head,
1490 object,
1491 shadow_list
1493 object->backing_object->shadow_count++;
1494 object->backing_object->generation++;
1497 object->backing_object_offset +=
1498 backing_object->backing_object_offset;
1501 * Discard backing_object.
1503 * Since the backing object has no pages, no pager left,
1504 * and no object references within it, all that is
1505 * necessary is to dispose of it.
1508 KASSERT(backing_object->ref_count == 1,
1509 ("backing_object %p was somehow "
1510 "re-referenced during collapse!",
1511 backing_object));
1512 KASSERT(RB_EMPTY(&backing_object->rb_memq),
1513 ("backing_object %p somehow has left "
1514 "over pages during collapse!",
1515 backing_object));
1517 /* (we are holding vmobj_token) */
1518 TAILQ_REMOVE(&vm_object_list, backing_object,
1519 object_list);
1520 vm_object_count--;
1522 zfree(obj_zone, backing_object);
1524 object_collapses++;
1525 } else {
1526 vm_object_t new_backing_object;
1529 * If we do not entirely shadow the backing object,
1530 * there is nothing we can do so we give up.
1533 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1534 break;
1538 * Make the parent shadow the next object in the
1539 * chain. Deallocating backing_object will not remove
1540 * it, since its reference count is at least 2.
1543 LIST_REMOVE(object, shadow_list);
1544 backing_object->shadow_count--;
1545 backing_object->generation++;
1547 new_backing_object = backing_object->backing_object;
1548 if ((object->backing_object = new_backing_object) != NULL) {
1549 vm_object_reference(new_backing_object);
1550 LIST_INSERT_HEAD(
1551 &new_backing_object->shadow_head,
1552 object,
1553 shadow_list
1555 new_backing_object->shadow_count++;
1556 new_backing_object->generation++;
1557 object->backing_object_offset +=
1558 backing_object->backing_object_offset;
1562 * Drop the reference count on backing_object. Since
1563 * its ref_count was at least 2, it will not vanish;
1564 * so we don't need to call vm_object_deallocate, but
1565 * we do anyway.
1567 vm_object_deallocate_locked(backing_object);
1568 object_bypasses++;
1572 * Try again with this object's new backing object.
1578 * Removes all physical pages in the specified object range from the
1579 * object's list of pages.
1581 * No requirements.
1583 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1585 void
1586 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1587 boolean_t clean_only)
1589 struct rb_vm_page_scan_info info;
1590 int all;
1593 * Degenerate cases and assertions
1595 lwkt_gettoken(&vm_token);
1596 if (object == NULL ||
1597 (object->resident_page_count == 0 && object->swblock_count == 0)) {
1598 lwkt_reltoken(&vm_token);
1599 return;
1601 KASSERT(object->type != OBJT_PHYS,
1602 ("attempt to remove pages from a physical object"));
1605 * Indicate that paging is occuring on the object
1607 crit_enter();
1608 vm_object_pip_add(object, 1);
1611 * Figure out the actual removal range and whether we are removing
1612 * the entire contents of the object or not. If removing the entire
1613 * contents, be sure to get all pages, even those that might be
1614 * beyond the end of the object.
1616 info.start_pindex = start;
1617 if (end == 0)
1618 info.end_pindex = (vm_pindex_t)-1;
1619 else
1620 info.end_pindex = end - 1;
1621 info.limit = clean_only;
1622 all = (start == 0 && info.end_pindex >= object->size - 1);
1625 * Loop until we are sure we have gotten them all.
1627 do {
1628 info.error = 0;
1629 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1630 vm_object_page_remove_callback, &info);
1631 } while (info.error);
1634 * Remove any related swap if throwing away pages, or for
1635 * non-swap objects (the swap is a clean copy in that case).
1637 if (object->type != OBJT_SWAP || clean_only == FALSE) {
1638 if (all)
1639 swap_pager_freespace_all(object);
1640 else
1641 swap_pager_freespace(object, info.start_pindex,
1642 info.end_pindex - info.start_pindex + 1);
1646 * Cleanup
1648 vm_object_pip_wakeup(object);
1649 crit_exit();
1650 lwkt_reltoken(&vm_token);
1654 * The caller must hold vm_token.
1656 static int
1657 vm_object_page_remove_callback(vm_page_t p, void *data)
1659 struct rb_vm_page_scan_info *info = data;
1662 * Wired pages cannot be destroyed, but they can be invalidated
1663 * and we do so if clean_only (limit) is not set.
1665 * WARNING! The page may be wired due to being part of a buffer
1666 * cache buffer, and the buffer might be marked B_CACHE.
1667 * This is fine as part of a truncation but VFSs must be
1668 * sure to fix the buffer up when re-extending the file.
1670 if (p->wire_count != 0) {
1671 vm_page_protect(p, VM_PROT_NONE);
1672 if (info->limit == 0)
1673 p->valid = 0;
1674 return(0);
1678 * The busy flags are only cleared at
1679 * interrupt -- minimize the spl transitions
1682 if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1683 info->error = 1;
1684 return(0);
1688 * limit is our clean_only flag. If set and the page is dirty, do
1689 * not free it. If set and the page is being held by someone, do
1690 * not free it.
1692 if (info->limit && p->valid) {
1693 vm_page_test_dirty(p);
1694 if (p->valid & p->dirty)
1695 return(0);
1696 if (p->hold_count)
1697 return(0);
1701 * Destroy the page
1703 vm_page_busy(p);
1704 vm_page_protect(p, VM_PROT_NONE);
1705 vm_page_free(p);
1706 return(0);
1710 * Coalesces two objects backing up adjoining regions of memory into a
1711 * single object.
1713 * returns TRUE if objects were combined.
1715 * NOTE: Only works at the moment if the second object is NULL -
1716 * if it's not, which object do we lock first?
1718 * Parameters:
1719 * prev_object First object to coalesce
1720 * prev_offset Offset into prev_object
1721 * next_object Second object into coalesce
1722 * next_offset Offset into next_object
1724 * prev_size Size of reference to prev_object
1725 * next_size Size of reference to next_object
1727 * The object must not be locked.
1728 * The caller must hold vm_token and vmobj_token.
1730 boolean_t
1731 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1732 vm_size_t prev_size, vm_size_t next_size)
1734 vm_pindex_t next_pindex;
1736 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1737 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1739 if (prev_object == NULL) {
1740 return (TRUE);
1743 if (prev_object->type != OBJT_DEFAULT &&
1744 prev_object->type != OBJT_SWAP) {
1745 return (FALSE);
1749 * Try to collapse the object first
1751 vm_object_collapse(prev_object);
1754 * Can't coalesce if: . more than one reference . paged out . shadows
1755 * another object . has a copy elsewhere (any of which mean that the
1756 * pages not mapped to prev_entry may be in use anyway)
1759 if (prev_object->backing_object != NULL)
1760 return (FALSE);
1762 prev_size >>= PAGE_SHIFT;
1763 next_size >>= PAGE_SHIFT;
1764 next_pindex = prev_pindex + prev_size;
1766 if ((prev_object->ref_count > 1) &&
1767 (prev_object->size != next_pindex)) {
1768 return (FALSE);
1772 * Remove any pages that may still be in the object from a previous
1773 * deallocation.
1775 if (next_pindex < prev_object->size) {
1776 vm_object_page_remove(prev_object,
1777 next_pindex,
1778 next_pindex + next_size, FALSE);
1779 if (prev_object->type == OBJT_SWAP)
1780 swap_pager_freespace(prev_object,
1781 next_pindex, next_size);
1785 * Extend the object if necessary.
1787 if (next_pindex + next_size > prev_object->size)
1788 prev_object->size = next_pindex + next_size;
1789 return (TRUE);
1793 * Make the object writable and flag is being possibly dirty.
1795 * No requirements.
1797 void
1798 vm_object_set_writeable_dirty(vm_object_t object)
1800 struct vnode *vp;
1802 lwkt_gettoken(&vm_token);
1803 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1804 if (object->type == OBJT_VNODE &&
1805 (vp = (struct vnode *)object->handle) != NULL) {
1806 if ((vp->v_flag & VOBJDIRTY) == 0) {
1807 vsetflags(vp, VOBJDIRTY);
1810 lwkt_reltoken(&vm_token);
1813 #include "opt_ddb.h"
1814 #ifdef DDB
1815 #include <sys/kernel.h>
1817 #include <sys/cons.h>
1819 #include <ddb/ddb.h>
1821 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1822 vm_map_entry_t entry);
1823 static int vm_object_in_map (vm_object_t object);
1826 * The caller must hold vm_token.
1828 static int
1829 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1831 vm_map_t tmpm;
1832 vm_map_entry_t tmpe;
1833 vm_object_t obj;
1834 int entcount;
1836 if (map == 0)
1837 return 0;
1838 if (entry == 0) {
1839 tmpe = map->header.next;
1840 entcount = map->nentries;
1841 while (entcount-- && (tmpe != &map->header)) {
1842 if( _vm_object_in_map(map, object, tmpe)) {
1843 return 1;
1845 tmpe = tmpe->next;
1847 return (0);
1849 switch(entry->maptype) {
1850 case VM_MAPTYPE_SUBMAP:
1851 tmpm = entry->object.sub_map;
1852 tmpe = tmpm->header.next;
1853 entcount = tmpm->nentries;
1854 while (entcount-- && tmpe != &tmpm->header) {
1855 if( _vm_object_in_map(tmpm, object, tmpe)) {
1856 return 1;
1858 tmpe = tmpe->next;
1860 break;
1861 case VM_MAPTYPE_NORMAL:
1862 case VM_MAPTYPE_VPAGETABLE:
1863 obj = entry->object.vm_object;
1864 while (obj) {
1865 if (obj == object)
1866 return 1;
1867 obj = obj->backing_object;
1869 break;
1870 default:
1871 break;
1873 return 0;
1876 static int vm_object_in_map_callback(struct proc *p, void *data);
1878 struct vm_object_in_map_info {
1879 vm_object_t object;
1880 int rv;
1884 * Debugging only
1886 static int
1887 vm_object_in_map(vm_object_t object)
1889 struct vm_object_in_map_info info;
1891 info.rv = 0;
1892 info.object = object;
1894 allproc_scan(vm_object_in_map_callback, &info);
1895 if (info.rv)
1896 return 1;
1897 if( _vm_object_in_map(&kernel_map, object, 0))
1898 return 1;
1899 if( _vm_object_in_map(&pager_map, object, 0))
1900 return 1;
1901 if( _vm_object_in_map(&buffer_map, object, 0))
1902 return 1;
1903 return 0;
1907 * Debugging only
1909 static int
1910 vm_object_in_map_callback(struct proc *p, void *data)
1912 struct vm_object_in_map_info *info = data;
1914 if (p->p_vmspace) {
1915 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1916 info->rv = 1;
1917 return -1;
1920 return (0);
1923 DB_SHOW_COMMAND(vmochk, vm_object_check)
1925 vm_object_t object;
1928 * make sure that internal objs are in a map somewhere
1929 * and none have zero ref counts.
1931 for (object = TAILQ_FIRST(&vm_object_list);
1932 object != NULL;
1933 object = TAILQ_NEXT(object, object_list)) {
1934 if (object->type == OBJT_MARKER)
1935 continue;
1936 if (object->handle == NULL &&
1937 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1938 if (object->ref_count == 0) {
1939 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1940 (long)object->size);
1942 if (!vm_object_in_map(object)) {
1943 db_printf(
1944 "vmochk: internal obj is not in a map: "
1945 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1946 object->ref_count, (u_long)object->size,
1947 (u_long)object->size,
1948 (void *)object->backing_object);
1955 * Debugging only
1957 DB_SHOW_COMMAND(object, vm_object_print_static)
1959 /* XXX convert args. */
1960 vm_object_t object = (vm_object_t)addr;
1961 boolean_t full = have_addr;
1963 vm_page_t p;
1965 /* XXX count is an (unused) arg. Avoid shadowing it. */
1966 #define count was_count
1968 int count;
1970 if (object == NULL)
1971 return;
1973 db_iprintf(
1974 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1975 object, (int)object->type, (u_long)object->size,
1976 object->resident_page_count, object->ref_count, object->flags);
1978 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1980 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1981 object->shadow_count,
1982 object->backing_object ? object->backing_object->ref_count : 0,
1983 object->backing_object, (long)object->backing_object_offset);
1985 if (!full)
1986 return;
1988 db_indent += 2;
1989 count = 0;
1990 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1991 if (count == 0)
1992 db_iprintf("memory:=");
1993 else if (count == 6) {
1994 db_printf("\n");
1995 db_iprintf(" ...");
1996 count = 0;
1997 } else
1998 db_printf(",");
1999 count++;
2001 db_printf("(off=0x%lx,page=0x%lx)",
2002 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2004 if (count != 0)
2005 db_printf("\n");
2006 db_indent -= 2;
2009 /* XXX. */
2010 #undef count
2013 * XXX need this non-static entry for calling from vm_map_print.
2015 * Debugging only
2017 void
2018 vm_object_print(/* db_expr_t */ long addr,
2019 boolean_t have_addr,
2020 /* db_expr_t */ long count,
2021 char *modif)
2023 vm_object_print_static(addr, have_addr, count, modif);
2027 * Debugging only
2029 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2031 vm_object_t object;
2032 int nl = 0;
2033 int c;
2034 for (object = TAILQ_FIRST(&vm_object_list);
2035 object != NULL;
2036 object = TAILQ_NEXT(object, object_list)) {
2037 vm_pindex_t idx, fidx;
2038 vm_pindex_t osize;
2039 vm_paddr_t pa = -1, padiff;
2040 int rcount;
2041 vm_page_t m;
2043 if (object->type == OBJT_MARKER)
2044 continue;
2045 db_printf("new object: %p\n", (void *)object);
2046 if ( nl > 18) {
2047 c = cngetc();
2048 if (c != ' ')
2049 return;
2050 nl = 0;
2052 nl++;
2053 rcount = 0;
2054 fidx = 0;
2055 osize = object->size;
2056 if (osize > 128)
2057 osize = 128;
2058 for (idx = 0; idx < osize; idx++) {
2059 m = vm_page_lookup(object, idx);
2060 if (m == NULL) {
2061 if (rcount) {
2062 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2063 (long)fidx, rcount, (long)pa);
2064 if ( nl > 18) {
2065 c = cngetc();
2066 if (c != ' ')
2067 return;
2068 nl = 0;
2070 nl++;
2071 rcount = 0;
2073 continue;
2077 if (rcount &&
2078 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2079 ++rcount;
2080 continue;
2082 if (rcount) {
2083 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2084 padiff >>= PAGE_SHIFT;
2085 padiff &= PQ_L2_MASK;
2086 if (padiff == 0) {
2087 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2088 ++rcount;
2089 continue;
2091 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2092 (long)fidx, rcount, (long)pa);
2093 db_printf("pd(%ld)\n", (long)padiff);
2094 if ( nl > 18) {
2095 c = cngetc();
2096 if (c != ' ')
2097 return;
2098 nl = 0;
2100 nl++;
2102 fidx = idx;
2103 pa = VM_PAGE_TO_PHYS(m);
2104 rcount = 1;
2106 if (rcount) {
2107 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2108 (long)fidx, rcount, (long)pa);
2109 if ( nl > 18) {
2110 c = cngetc();
2111 if (c != ' ')
2112 return;
2113 nl = 0;
2115 nl++;
2119 #endif /* DDB */