kernel - Add Proportional RSS (PRES)
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap.c
blob6b5e43ace76be0f3a72b7046e5ce20e912d42901
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1994 David Greenman
7 * Copyright (c) 2003 Peter Wemm
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * Copyright (c) 2008, 2009 The DragonFly Project.
10 * Copyright (c) 2008, 2009 Jordan Gordeev.
11 * All rights reserved.
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
45 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
46 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
50 * Manages physical address maps.
52 * In most cases the vm_token must be held when manipulating a user pmap
53 * or elements within a vm_page, and the kvm_token must be held when
54 * manipulating the kernel pmap. Operations on user pmaps may require
55 * additional synchronization.
57 * In some cases the caller may hold the required tokens to prevent pmap
58 * functions from blocking on those same tokens. This typically only works
59 * for lookup-style operations.
62 #if JG
63 #include "opt_pmap.h"
64 #endif
65 #include "opt_msgbuf.h"
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/proc.h>
71 #include <sys/msgbuf.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/vmspace.h>
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_extern.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_zone.h>
89 #include <sys/user.h>
90 #include <sys/thread2.h>
91 #include <sys/sysref2.h>
93 #include <machine/cputypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
96 #include <machine/smp.h>
97 #include <machine/globaldata.h>
98 #include <machine/pmap.h>
99 #include <machine/pmap_inval.h>
101 #include <ddb/ddb.h>
103 #include <stdio.h>
104 #include <assert.h>
105 #include <stdlib.h>
107 #define PMAP_KEEP_PDIRS
108 #ifndef PMAP_SHPGPERPROC
109 #define PMAP_SHPGPERPROC 200
110 #endif
112 #if defined(DIAGNOSTIC)
113 #define PMAP_DIAGNOSTIC
114 #endif
116 #define MINPV 2048
118 #if !defined(PMAP_DIAGNOSTIC)
119 #define PMAP_INLINE __inline
120 #else
121 #define PMAP_INLINE
122 #endif
125 * Get PDEs and PTEs for user/kernel address space
127 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
128 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
130 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & VPTE_V) != 0)
131 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
132 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & VPTE_M) != 0)
133 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & VPTE_A) != 0)
134 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & VPTE_V) != 0)
137 * Given a map and a machine independent protection code,
138 * convert to a vax protection code.
140 #define pte_prot(m, p) \
141 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
142 static int protection_codes[8];
144 struct pmap kernel_pmap;
145 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
147 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
149 static vm_object_t kptobj;
151 static int nkpt;
153 static uint64_t KPDphys; /* phys addr of kernel level 2 */
154 uint64_t KPDPphys; /* phys addr of kernel level 3 */
155 uint64_t KPML4phys; /* phys addr of kernel level 4 */
159 * Data for the pv entry allocation mechanism
161 static vm_zone_t pvzone;
162 static struct vm_zone pvzone_store;
163 static struct vm_object pvzone_obj;
164 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
165 static int pmap_pagedaemon_waken = 0;
166 static struct pv_entry *pvinit;
169 * All those kernel PT submaps that BSD is so fond of
171 pt_entry_t *CMAP1 = 0, *ptmmap;
172 caddr_t CADDR1 = 0;
173 static pt_entry_t *msgbufmap;
175 uint64_t KPTphys;
177 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
178 static pv_entry_t get_pv_entry (void);
179 static void i386_protection_init (void);
180 static __inline void pmap_clearbit (vm_page_t m, int bit);
182 static void pmap_remove_all (vm_page_t m);
183 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
184 vm_offset_t sva);
185 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
186 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
187 vm_offset_t va);
188 static boolean_t pmap_testbit (vm_page_t m, int bit);
189 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
190 vm_page_t mpte, vm_page_t m);
192 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
194 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
195 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
196 #if JGPMAP32
197 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
198 #endif
199 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
200 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
203 * pmap_pte_quick:
205 * Super fast pmap_pte routine best used when scanning the pv lists.
206 * This eliminates many course-grained invltlb calls. Note that many of
207 * the pv list scans are across different pmaps and it is very wasteful
208 * to do an entire invltlb when checking a single mapping.
210 * Should only be called while in a critical section.
212 #if JGPMAP32
213 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
215 static pt_entry_t *
216 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
218 return pmap_pte(pmap, va);
220 #endif
222 /* Return a non-clipped PD index for a given VA */
223 static __inline vm_pindex_t
224 pmap_pde_pindex(vm_offset_t va)
226 return va >> PDRSHIFT;
229 /* Return various clipped indexes for a given VA */
230 static __inline vm_pindex_t
231 pmap_pte_index(vm_offset_t va)
234 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
237 static __inline vm_pindex_t
238 pmap_pde_index(vm_offset_t va)
241 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
244 static __inline vm_pindex_t
245 pmap_pdpe_index(vm_offset_t va)
248 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
251 static __inline vm_pindex_t
252 pmap_pml4e_index(vm_offset_t va)
255 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
258 /* Return a pointer to the PML4 slot that corresponds to a VA */
259 static __inline pml4_entry_t *
260 pmap_pml4e(pmap_t pmap, vm_offset_t va)
263 return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
266 /* Return a pointer to the PDP slot that corresponds to a VA */
267 static __inline pdp_entry_t *
268 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
270 pdp_entry_t *pdpe;
272 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
273 return (&pdpe[pmap_pdpe_index(va)]);
276 /* Return a pointer to the PDP slot that corresponds to a VA */
277 static __inline pdp_entry_t *
278 pmap_pdpe(pmap_t pmap, vm_offset_t va)
280 pml4_entry_t *pml4e;
282 pml4e = pmap_pml4e(pmap, va);
283 if ((*pml4e & VPTE_V) == 0)
284 return NULL;
285 return (pmap_pml4e_to_pdpe(pml4e, va));
288 /* Return a pointer to the PD slot that corresponds to a VA */
289 static __inline pd_entry_t *
290 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
292 pd_entry_t *pde;
294 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
295 return (&pde[pmap_pde_index(va)]);
298 /* Return a pointer to the PD slot that corresponds to a VA */
299 static __inline pd_entry_t *
300 pmap_pde(pmap_t pmap, vm_offset_t va)
302 pdp_entry_t *pdpe;
304 pdpe = pmap_pdpe(pmap, va);
305 if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
306 return NULL;
307 return (pmap_pdpe_to_pde(pdpe, va));
310 /* Return a pointer to the PT slot that corresponds to a VA */
311 static __inline pt_entry_t *
312 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
314 pt_entry_t *pte;
316 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
317 return (&pte[pmap_pte_index(va)]);
320 /* Return a pointer to the PT slot that corresponds to a VA */
321 static __inline pt_entry_t *
322 pmap_pte(pmap_t pmap, vm_offset_t va)
324 pd_entry_t *pde;
326 pde = pmap_pde(pmap, va);
327 if (pde == NULL || (*pde & VPTE_V) == 0)
328 return NULL;
329 if ((*pde & VPTE_PS) != 0) /* compat with i386 pmap_pte() */
330 return ((pt_entry_t *)pde);
331 return (pmap_pde_to_pte(pde, va));
335 #if JGV
336 PMAP_INLINE pt_entry_t *
337 vtopte(vm_offset_t va)
339 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
341 return (PTmap + ((va >> PAGE_SHIFT) & mask));
344 static __inline pd_entry_t *
345 vtopde(vm_offset_t va)
347 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
349 return (PDmap + ((va >> PDRSHIFT) & mask));
351 #else
352 static PMAP_INLINE pt_entry_t *
353 vtopte(vm_offset_t va)
355 pt_entry_t *x;
356 x = pmap_pte(&kernel_pmap, va);
357 assert(x != NULL);
358 return x;
361 static __inline pd_entry_t *
362 vtopde(vm_offset_t va)
364 pd_entry_t *x;
365 x = pmap_pde(&kernel_pmap, va);
366 assert(x != NULL);
367 return x;
369 #endif
371 static uint64_t
372 allocpages(vm_paddr_t *firstaddr, int n)
374 uint64_t ret;
376 ret = *firstaddr;
377 #if JGV
378 bzero((void *)ret, n * PAGE_SIZE);
379 #endif
380 *firstaddr += n * PAGE_SIZE;
381 return (ret);
384 static void
385 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
387 int i;
388 pml4_entry_t *KPML4virt;
389 pdp_entry_t *KPDPvirt;
390 pd_entry_t *KPDvirt;
391 pt_entry_t *KPTvirt;
392 int kpml4i = pmap_pml4e_index(ptov_offset);
393 int kpdpi = pmap_pdpe_index(ptov_offset);
396 * Calculate NKPT - number of kernel page tables. We have to
397 * accomodoate prealloction of the vm_page_array, dump bitmap,
398 * MSGBUF_SIZE, and other stuff. Be generous.
400 * Maxmem is in pages.
402 nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
405 * Allocate pages
407 KPML4phys = allocpages(firstaddr, 1);
408 KPDPphys = allocpages(firstaddr, NKPML4E);
409 KPDphys = allocpages(firstaddr, NKPDPE);
410 KPTphys = allocpages(firstaddr, nkpt);
412 KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
413 KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
414 KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
415 KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
417 bzero(KPML4virt, 1 * PAGE_SIZE);
418 bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
419 bzero(KPDvirt, NKPDPE * PAGE_SIZE);
420 bzero(KPTvirt, nkpt * PAGE_SIZE);
422 /* Now map the page tables at their location within PTmap */
423 for (i = 0; i < nkpt; i++) {
424 KPDvirt[i] = KPTphys + (i << PAGE_SHIFT);
425 KPDvirt[i] |= VPTE_R | VPTE_W | VPTE_V;
428 /* And connect up the PD to the PDP */
429 for (i = 0; i < NKPDPE; i++) {
430 KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
431 KPDPvirt[i + kpdpi] |= VPTE_R | VPTE_W | VPTE_V;
434 /* And recursively map PML4 to itself in order to get PTmap */
435 KPML4virt[PML4PML4I] = KPML4phys;
436 KPML4virt[PML4PML4I] |= VPTE_R | VPTE_W | VPTE_V;
438 /* Connect the KVA slot up to the PML4 */
439 KPML4virt[kpml4i] = KPDPphys;
440 KPML4virt[kpml4i] |= VPTE_R | VPTE_W | VPTE_V;
444 * Bootstrap the system enough to run with virtual memory.
446 * On the i386 this is called after mapping has already been enabled
447 * and just syncs the pmap module with what has already been done.
448 * [We can't call it easily with mapping off since the kernel is not
449 * mapped with PA == VA, hence we would have to relocate every address
450 * from the linked base (virtual) address "KERNBASE" to the actual
451 * (physical) address starting relative to 0]
453 void
454 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
456 vm_offset_t va;
457 pt_entry_t *pte;
460 * Create an initial set of page tables to run the kernel in.
462 create_pagetables(firstaddr, ptov_offset);
464 virtual_start = KvaStart + *firstaddr;
465 virtual_end = KvaEnd;
468 * Initialize protection array.
470 i386_protection_init();
473 * The kernel's pmap is statically allocated so we don't have to use
474 * pmap_create, which is unlikely to work correctly at this part of
475 * the boot sequence (XXX and which no longer exists).
477 kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
478 kernel_pmap.pm_count = 1;
479 kernel_pmap.pm_active = (cpumask_t)-1; /* don't allow deactivation */
480 TAILQ_INIT(&kernel_pmap.pm_pvlist);
483 * Reserve some special page table entries/VA space for temporary
484 * mapping of pages.
486 #define SYSMAP(c, p, v, n) \
487 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
489 va = virtual_start;
490 pte = pmap_pte(&kernel_pmap, va);
493 * CMAP1/CMAP2 are used for zeroing and copying pages.
495 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
497 #if JGV
499 * Crashdump maps.
501 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
502 #endif
505 * ptvmmap is used for reading arbitrary physical pages via
506 * /dev/mem.
508 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
511 * msgbufp is used to map the system message buffer.
512 * XXX msgbufmap is not used.
514 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
515 atop(round_page(MSGBUF_SIZE)))
517 virtual_start = va;
519 *CMAP1 = 0;
521 cpu_invltlb();
525 * Initialize the pmap module.
526 * Called by vm_init, to initialize any structures that the pmap
527 * system needs to map virtual memory.
528 * pmap_init has been enhanced to support in a fairly consistant
529 * way, discontiguous physical memory.
531 void
532 pmap_init(void)
534 int i;
535 int initial_pvs;
538 * object for kernel page table pages
540 /* JG I think the number can be arbitrary */
541 kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
544 * Allocate memory for random pmap data structures. Includes the
545 * pv_head_table.
548 for(i = 0; i < vm_page_array_size; i++) {
549 vm_page_t m;
551 m = &vm_page_array[i];
552 TAILQ_INIT(&m->md.pv_list);
553 m->md.pv_list_count = 0;
557 * init the pv free list
559 initial_pvs = vm_page_array_size;
560 if (initial_pvs < MINPV)
561 initial_pvs = MINPV;
562 pvzone = &pvzone_store;
563 pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
564 initial_pvs * sizeof (struct pv_entry));
565 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
566 initial_pvs);
569 * Now it is safe to enable pv_table recording.
571 pmap_initialized = TRUE;
575 * Initialize the address space (zone) for the pv_entries. Set a
576 * high water mark so that the system can recover from excessive
577 * numbers of pv entries.
579 void
580 pmap_init2(void)
582 int shpgperproc = PMAP_SHPGPERPROC;
584 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
585 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
586 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
587 pv_entry_high_water = 9 * (pv_entry_max / 10);
588 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
592 /***************************************************
593 * Low level helper routines.....
594 ***************************************************/
597 * The modification bit is not tracked for any pages in this range. XXX
598 * such pages in this maps should always use pmap_k*() functions and not
599 * be managed anyhow.
601 * XXX User and kernel address spaces are independant for virtual kernels,
602 * this function only applies to the kernel pmap.
604 static int
605 pmap_track_modified(pmap_t pmap, vm_offset_t va)
607 if (pmap != &kernel_pmap)
608 return 1;
609 if ((va < clean_sva) || (va >= clean_eva))
610 return 1;
611 else
612 return 0;
616 * Extract the physical page address associated with the map/VA pair.
618 * No requirements.
620 vm_paddr_t
621 pmap_extract(pmap_t pmap, vm_offset_t va)
623 vm_paddr_t rtval;
624 pt_entry_t *pte;
625 pd_entry_t pde, *pdep;
627 lwkt_gettoken(&vm_token);
628 rtval = 0;
629 pdep = pmap_pde(pmap, va);
630 if (pdep != NULL) {
631 pde = *pdep;
632 if (pde) {
633 if ((pde & VPTE_PS) != 0) {
634 /* JGV */
635 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
636 } else {
637 pte = pmap_pde_to_pte(pdep, va);
638 rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
642 lwkt_reltoken(&vm_token);
643 return rtval;
647 * Routine: pmap_kextract
648 * Function:
649 * Extract the physical page address associated
650 * kernel virtual address.
652 vm_paddr_t
653 pmap_kextract(vm_offset_t va)
655 pd_entry_t pde;
656 vm_paddr_t pa;
658 KKASSERT(va >= KvaStart && va < KvaEnd);
661 * The DMAP region is not included in [KvaStart, KvaEnd)
663 #if 0
664 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
665 pa = DMAP_TO_PHYS(va);
666 } else {
667 #endif
668 pde = *vtopde(va);
669 if (pde & VPTE_PS) {
670 /* JGV */
671 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
672 } else {
674 * Beware of a concurrent promotion that changes the
675 * PDE at this point! For example, vtopte() must not
676 * be used to access the PTE because it would use the
677 * new PDE. It is, however, safe to use the old PDE
678 * because the page table page is preserved by the
679 * promotion.
681 pa = *pmap_pde_to_pte(&pde, va);
682 pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
684 #if 0
686 #endif
687 return pa;
690 /***************************************************
691 * Low level mapping routines.....
692 ***************************************************/
695 * Enter a mapping into kernel_pmap. Mappings created in this fashion
696 * are not managed. Mappings must be immediately accessible on all cpus.
698 * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
699 * real pmap and handle related races before storing the new vpte.
701 void
702 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
704 pt_entry_t *pte;
705 pt_entry_t npte;
707 KKASSERT(va >= KvaStart && va < KvaEnd);
708 npte = pa | VPTE_R | VPTE_W | VPTE_V;
709 pte = vtopte(va);
710 if (*pte & VPTE_V)
711 pmap_inval_pte(pte, &kernel_pmap, va);
712 *pte = npte;
716 * Enter an unmanaged KVA mapping for the private use of the current
717 * cpu only. pmap_kenter_sync() may be called to make the mapping usable
718 * by other cpus.
720 * It is illegal for the mapping to be accessed by other cpus unleess
721 * pmap_kenter_sync*() is called.
723 void
724 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
726 pt_entry_t *pte;
727 pt_entry_t npte;
729 KKASSERT(va >= KvaStart && va < KvaEnd);
731 npte = (vpte_t)pa | VPTE_R | VPTE_W | VPTE_V;
732 pte = vtopte(va);
733 if (*pte & VPTE_V)
734 pmap_inval_pte_quick(pte, &kernel_pmap, va);
735 *pte = npte;
736 //cpu_invlpg((void *)va);
740 * Synchronize a kvm mapping originally made for the private use on
741 * some other cpu so it can be used on all cpus.
743 * XXX add MADV_RESYNC to improve performance.
745 void
746 pmap_kenter_sync(vm_offset_t va)
748 madvise((void *)va, PAGE_SIZE, MADV_INVAL);
752 * Synchronize a kvm mapping originally made for the private use on
753 * some other cpu so it can be used on our cpu. Turns out to be the
754 * same madvise() call, because we have to sync the real pmaps anyway.
756 * XXX add MADV_RESYNC to improve performance.
758 void
759 pmap_kenter_sync_quick(vm_offset_t va)
761 madvise((void *)va, PAGE_SIZE, MADV_INVAL);
765 * Remove an unmanaged mapping created with pmap_kenter*().
767 void
768 pmap_kremove(vm_offset_t va)
770 pt_entry_t *pte;
772 KKASSERT(va >= KvaStart && va < KvaEnd);
774 pte = vtopte(va);
775 if (*pte & VPTE_V)
776 pmap_inval_pte(pte, &kernel_pmap, va);
777 *pte = 0;
781 * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
782 * only with this cpu.
784 * Unfortunately because we optimize new entries by testing VPTE_V later
785 * on, we actually still have to synchronize with all the cpus. XXX maybe
786 * store a junk value and test against 0 in the other places instead?
788 void
789 pmap_kremove_quick(vm_offset_t va)
791 pt_entry_t *pte;
793 KKASSERT(va >= KvaStart && va < KvaEnd);
795 pte = vtopte(va);
796 if (*pte & VPTE_V)
797 pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
798 *pte = 0;
802 * Used to map a range of physical addresses into kernel
803 * virtual address space.
805 * For now, VM is already on, we only need to map the
806 * specified memory.
808 vm_offset_t
809 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
811 return PHYS_TO_DMAP(start);
816 * Map a set of unmanaged VM pages into KVM.
818 void
819 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
821 vm_offset_t end_va;
823 end_va = va + count * PAGE_SIZE;
824 KKASSERT(va >= KvaStart && end_va < KvaEnd);
826 while (va < end_va) {
827 pt_entry_t *pte;
829 pte = vtopte(va);
830 if (*pte & VPTE_V)
831 pmap_inval_pte(pte, &kernel_pmap, va);
832 *pte = VM_PAGE_TO_PHYS(*m) | VPTE_R | VPTE_W | VPTE_V;
833 va += PAGE_SIZE;
834 m++;
839 * Undo the effects of pmap_qenter*().
841 void
842 pmap_qremove(vm_offset_t va, int count)
844 vm_offset_t end_va;
846 end_va = va + count * PAGE_SIZE;
847 KKASSERT(va >= KvaStart && end_va < KvaEnd);
849 while (va < end_va) {
850 pt_entry_t *pte;
852 pte = vtopte(va);
853 if (*pte & VPTE_V)
854 pmap_inval_pte(pte, &kernel_pmap, va);
855 *pte = 0;
856 va += PAGE_SIZE;
861 * This routine works like vm_page_lookup() but also blocks as long as the
862 * page is busy. This routine does not busy the page it returns.
864 * Unless the caller is managing objects whos pages are in a known state,
865 * the call should be made with a critical section held so the page's object
866 * association remains valid on return.
868 static vm_page_t
869 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
871 vm_page_t m;
873 do {
874 m = vm_page_lookup(object, pindex);
875 } while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
877 return(m);
881 * Create a new thread and optionally associate it with a (new) process.
882 * NOTE! the new thread's cpu may not equal the current cpu.
884 void
885 pmap_init_thread(thread_t td)
887 /* enforce pcb placement */
888 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
889 td->td_savefpu = &td->td_pcb->pcb_save;
890 td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
894 * This routine directly affects the fork perf for a process.
896 void
897 pmap_init_proc(struct proc *p)
902 * Dispose the UPAGES for a process that has exited.
903 * This routine directly impacts the exit perf of a process.
905 void
906 pmap_dispose_proc(struct proc *p)
908 KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
911 /***************************************************
912 * Page table page management routines.....
913 ***************************************************/
915 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
916 vm_page_t m);
919 * This routine unholds page table pages, and if the hold count
920 * drops to zero, then it decrements the wire count.
922 * We must recheck that this is the last hold reference after busy-sleeping
923 * on the page.
925 static int
926 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
928 while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
930 KASSERT(m->queue == PQ_NONE,
931 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
933 if (m->hold_count == 1) {
935 * Unmap the page table page.
937 //abort(); /* JG */
938 vm_page_busy(m);
939 /* pmap_inval_add(info, pmap, -1); */
941 if (m->pindex >= (NUPDE + NUPDPE)) {
942 /* PDP page */
943 pml4_entry_t *pml4;
944 pml4 = pmap_pml4e(pmap, va);
945 *pml4 = 0;
946 } else if (m->pindex >= NUPDE) {
947 /* PD page */
948 pdp_entry_t *pdp;
949 pdp = pmap_pdpe(pmap, va);
950 *pdp = 0;
951 } else {
952 /* PT page */
953 pd_entry_t *pd;
954 pd = pmap_pde(pmap, va);
955 *pd = 0;
958 KKASSERT(pmap->pm_stats.resident_count > 0);
959 --pmap->pm_stats.resident_count;
961 if (pmap->pm_ptphint == m)
962 pmap->pm_ptphint = NULL;
964 if (m->pindex < NUPDE) {
965 /* We just released a PT, unhold the matching PD */
966 vm_page_t pdpg;
968 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
969 pmap_unwire_pte_hold(pmap, va, pdpg);
971 if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
972 /* We just released a PD, unhold the matching PDP */
973 vm_page_t pdppg;
975 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
976 pmap_unwire_pte_hold(pmap, va, pdppg);
980 * This was our last hold, the page had better be unwired
981 * after we decrement wire_count.
983 * FUTURE NOTE: shared page directory page could result in
984 * multiple wire counts.
986 vm_page_unhold(m);
987 --m->wire_count;
988 KKASSERT(m->wire_count == 0);
989 --vmstats.v_wire_count;
990 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
991 vm_page_flash(m);
992 vm_page_free_zero(m);
993 return 1;
994 } else {
995 KKASSERT(m->hold_count > 1);
996 vm_page_unhold(m);
997 return 0;
1001 static __inline int
1002 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1004 KKASSERT(m->hold_count > 0);
1005 if (m->hold_count > 1) {
1006 vm_page_unhold(m);
1007 return 0;
1008 } else {
1009 return _pmap_unwire_pte_hold(pmap, va, m);
1014 * After removing a page table entry, this routine is used to
1015 * conditionally free the page, and manage the hold/wire counts.
1017 static int
1018 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1020 /* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1021 vm_pindex_t ptepindex;
1023 if (mpte == NULL) {
1025 * page table pages in the kernel_pmap are not managed.
1027 if (pmap == &kernel_pmap)
1028 return(0);
1029 ptepindex = pmap_pde_pindex(va);
1030 if (pmap->pm_ptphint &&
1031 (pmap->pm_ptphint->pindex == ptepindex)) {
1032 mpte = pmap->pm_ptphint;
1033 } else {
1034 mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1035 pmap->pm_ptphint = mpte;
1039 return pmap_unwire_pte_hold(pmap, va, mpte);
1043 * Initialize pmap0/vmspace0 . Since process 0 never enters user mode we
1044 * just dummy it up so it works well enough for fork().
1046 * In DragonFly, process pmaps may only be used to manipulate user address
1047 * space, never kernel address space.
1049 void
1050 pmap_pinit0(struct pmap *pmap)
1052 pmap_pinit(pmap);
1056 * Initialize a preallocated and zeroed pmap structure,
1057 * such as one in a vmspace structure.
1059 void
1060 pmap_pinit(struct pmap *pmap)
1062 vm_page_t ptdpg;
1065 * No need to allocate page table space yet but we do need a valid
1066 * page directory table.
1068 if (pmap->pm_pml4 == NULL) {
1069 pmap->pm_pml4 =
1070 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1074 * Allocate an object for the ptes
1076 if (pmap->pm_pteobj == NULL)
1077 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1080 * Allocate the page directory page, unless we already have
1081 * one cached. If we used the cached page the wire_count will
1082 * already be set appropriately.
1084 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1085 ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1086 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1087 pmap->pm_pdirm = ptdpg;
1088 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1089 ptdpg->valid = VM_PAGE_BITS_ALL;
1090 if (ptdpg->wire_count == 0)
1091 ++vmstats.v_wire_count;
1092 ptdpg->wire_count = 1;
1093 pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1095 if ((ptdpg->flags & PG_ZERO) == 0)
1096 bzero(pmap->pm_pml4, PAGE_SIZE);
1098 pmap->pm_count = 1;
1099 pmap->pm_active = 0;
1100 pmap->pm_ptphint = NULL;
1101 TAILQ_INIT(&pmap->pm_pvlist);
1102 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1103 pmap->pm_stats.resident_count = 1;
1107 * Clean up a pmap structure so it can be physically freed. This routine
1108 * is called by the vmspace dtor function. A great deal of pmap data is
1109 * left passively mapped to improve vmspace management so we have a bit
1110 * of cleanup work to do here.
1112 * No requirements.
1114 void
1115 pmap_puninit(pmap_t pmap)
1117 vm_page_t p;
1119 KKASSERT(pmap->pm_active == 0);
1120 lwkt_gettoken(&vm_token);
1121 if ((p = pmap->pm_pdirm) != NULL) {
1122 KKASSERT(pmap->pm_pml4 != NULL);
1123 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1124 p->wire_count--;
1125 vmstats.v_wire_count--;
1126 KKASSERT((p->flags & PG_BUSY) == 0);
1127 vm_page_busy(p);
1128 vm_page_free_zero(p);
1129 pmap->pm_pdirm = NULL;
1131 lwkt_reltoken(&vm_token);
1132 if (pmap->pm_pml4) {
1133 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1134 pmap->pm_pml4 = NULL;
1136 if (pmap->pm_pteobj) {
1137 vm_object_deallocate(pmap->pm_pteobj);
1138 pmap->pm_pteobj = NULL;
1143 * Wire in kernel global address entries. To avoid a race condition
1144 * between pmap initialization and pmap_growkernel, this procedure
1145 * adds the pmap to the master list (which growkernel scans to update),
1146 * then copies the template.
1148 * In a virtual kernel there are no kernel global address entries.
1150 * No requirements.
1152 void
1153 pmap_pinit2(struct pmap *pmap)
1155 crit_enter();
1156 lwkt_gettoken(&vm_token);
1157 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1158 lwkt_reltoken(&vm_token);
1159 crit_exit();
1163 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1164 * 0 on failure (if the procedure had to sleep).
1166 * When asked to remove the page directory page itself, we actually just
1167 * leave it cached so we do not have to incur the SMP inval overhead of
1168 * removing the kernel mapping. pmap_puninit() will take care of it.
1170 static int
1171 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1174 * This code optimizes the case of freeing non-busy
1175 * page-table pages. Those pages are zero now, and
1176 * might as well be placed directly into the zero queue.
1178 if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1179 return 0;
1181 vm_page_busy(p);
1184 * Remove the page table page from the processes address space.
1186 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1188 * We are the pml4 table itself.
1190 /* XXX anything to do here? */
1191 } else if (p->pindex >= (NUPDE + NUPDPE)) {
1193 * We are a PDP page.
1194 * We look for the PML4 entry that points to us.
1196 vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1197 KKASSERT(m4 != NULL);
1198 pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1199 int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1200 KKASSERT(pml4[idx] != 0);
1201 pml4[idx] = 0;
1202 m4->hold_count--;
1203 /* JG What about wire_count? */
1204 } else if (p->pindex >= NUPDE) {
1206 * We are a PD page.
1207 * We look for the PDP entry that points to us.
1209 vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1210 KKASSERT(m3 != NULL);
1211 pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1212 int idx = (p->pindex - NUPDE) % NPDPEPG;
1213 KKASSERT(pdp[idx] != 0);
1214 pdp[idx] = 0;
1215 m3->hold_count--;
1216 /* JG What about wire_count? */
1217 } else {
1218 /* We are a PT page.
1219 * We look for the PD entry that points to us.
1221 vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1222 KKASSERT(m2 != NULL);
1223 pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1224 int idx = p->pindex % NPDEPG;
1225 pd[idx] = 0;
1226 m2->hold_count--;
1227 /* JG What about wire_count? */
1229 KKASSERT(pmap->pm_stats.resident_count > 0);
1230 --pmap->pm_stats.resident_count;
1232 if (p->hold_count) {
1233 panic("pmap_release: freeing held page table page");
1235 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1236 pmap->pm_ptphint = NULL;
1239 * We leave the top-level page table page cached, wired, and mapped in
1240 * the pmap until the dtor function (pmap_puninit()) gets called.
1241 * However, still clean it up so we can set PG_ZERO.
1243 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1244 bzero(pmap->pm_pml4, PAGE_SIZE);
1245 vm_page_flag_set(p, PG_ZERO);
1246 vm_page_wakeup(p);
1247 } else {
1248 abort();
1249 p->wire_count--;
1250 vmstats.v_wire_count--;
1251 /* JG eventually revert to using vm_page_free_zero() */
1252 vm_page_free(p);
1254 return 1;
1258 * this routine is called if the page table page is not
1259 * mapped correctly.
1261 static vm_page_t
1262 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1264 vm_page_t m, pdppg, pdpg;
1267 * Find or fabricate a new pagetable page
1269 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1270 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1272 if ((m->flags & PG_ZERO) == 0) {
1273 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1276 KASSERT(m->queue == PQ_NONE,
1277 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1280 * Increment the hold count for the page we will be returning to
1281 * the caller.
1283 m->hold_count++;
1285 if (m->wire_count == 0)
1286 vmstats.v_wire_count++;
1287 m->wire_count++;
1290 * Map the pagetable page into the process address space, if
1291 * it isn't already there.
1294 ++pmap->pm_stats.resident_count;
1296 if (ptepindex >= (NUPDE + NUPDPE)) {
1297 pml4_entry_t *pml4;
1298 vm_pindex_t pml4index;
1300 /* Wire up a new PDP page */
1301 pml4index = ptepindex - (NUPDE + NUPDPE);
1302 pml4 = &pmap->pm_pml4[pml4index];
1303 *pml4 = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1304 VPTE_A | VPTE_M;
1305 } else if (ptepindex >= NUPDE) {
1306 vm_pindex_t pml4index;
1307 vm_pindex_t pdpindex;
1308 pml4_entry_t *pml4;
1309 pdp_entry_t *pdp;
1311 /* Wire up a new PD page */
1312 pdpindex = ptepindex - NUPDE;
1313 pml4index = pdpindex >> NPML4EPGSHIFT;
1315 pml4 = &pmap->pm_pml4[pml4index];
1316 if ((*pml4 & VPTE_V) == 0) {
1317 /* Have to allocate a new PDP page, recurse */
1318 if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1319 == NULL) {
1320 --m->wire_count;
1321 vm_page_free(m);
1322 return (NULL);
1324 } else {
1325 /* Add reference to the PDP page */
1326 pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1327 pdppg->hold_count++;
1329 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1331 /* Now find the pdp page */
1332 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1333 KKASSERT(*pdp == 0); /* JG DEBUG64 */
1334 *pdp = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1335 VPTE_A | VPTE_M;
1336 } else {
1337 vm_pindex_t pml4index;
1338 vm_pindex_t pdpindex;
1339 pml4_entry_t *pml4;
1340 pdp_entry_t *pdp;
1341 pd_entry_t *pd;
1343 /* Wire up a new PT page */
1344 pdpindex = ptepindex >> NPDPEPGSHIFT;
1345 pml4index = pdpindex >> NPML4EPGSHIFT;
1347 /* First, find the pdp and check that its valid. */
1348 pml4 = &pmap->pm_pml4[pml4index];
1349 if ((*pml4 & VPTE_V) == 0) {
1350 /* We miss a PDP page. We ultimately need a PD page.
1351 * Recursively allocating a PD page will allocate
1352 * the missing PDP page and will also allocate
1353 * the PD page we need.
1355 /* Have to allocate a new PD page, recurse */
1356 if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1357 == NULL) {
1358 --m->wire_count;
1359 vm_page_free(m);
1360 return (NULL);
1362 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1363 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1364 } else {
1365 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1366 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1367 if ((*pdp & VPTE_V) == 0) {
1368 /* Have to allocate a new PD page, recurse */
1369 if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1370 == NULL) {
1371 --m->wire_count;
1372 vm_page_free(m);
1373 return (NULL);
1375 } else {
1376 /* Add reference to the PD page */
1377 pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1378 pdpg->hold_count++;
1381 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1383 /* Now we know where the page directory page is */
1384 pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1385 KKASSERT(*pd == 0); /* JG DEBUG64 */
1386 *pd = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1387 VPTE_A | VPTE_M;
1391 * Set the page table hint
1393 pmap->pm_ptphint = m;
1395 m->valid = VM_PAGE_BITS_ALL;
1396 vm_page_flag_clear(m, PG_ZERO);
1397 vm_page_flag_set(m, PG_MAPPED);
1398 vm_page_wakeup(m);
1400 return m;
1404 * Determine the page table page required to access the VA in the pmap
1405 * and allocate it if necessary. Return a held vm_page_t for the page.
1407 * Only used with user pmaps.
1409 static vm_page_t
1410 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1412 vm_pindex_t ptepindex;
1413 pd_entry_t *pd;
1414 vm_page_t m;
1417 * Calculate pagetable page index
1419 ptepindex = pmap_pde_pindex(va);
1422 * Get the page directory entry
1424 pd = pmap_pde(pmap, va);
1427 * This supports switching from a 2MB page to a
1428 * normal 4K page.
1430 if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1431 panic("no promotion/demotion yet");
1432 *pd = 0;
1433 pd = NULL;
1434 /*cpu_invltlb();*/
1435 /*smp_invltlb();*/
1439 * If the page table page is mapped, we just increment the
1440 * hold count, and activate it.
1442 if (pd != NULL && (*pd & VPTE_V) != 0) {
1443 /* YYY hint is used here on i386 */
1444 m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1445 pmap->pm_ptphint = m;
1446 m->hold_count++;
1447 return m;
1450 * Here if the pte page isn't mapped, or if it has been deallocated.
1452 return _pmap_allocpte(pmap, ptepindex);
1456 /***************************************************
1457 * Pmap allocation/deallocation routines.
1458 ***************************************************/
1461 * Release any resources held by the given physical map.
1462 * Called when a pmap initialized by pmap_pinit is being released.
1463 * Should only be called if the map contains no valid mappings.
1465 * No requirements.
1467 static int pmap_release_callback(struct vm_page *p, void *data);
1469 void
1470 pmap_release(struct pmap *pmap)
1472 vm_object_t object = pmap->pm_pteobj;
1473 struct rb_vm_page_scan_info info;
1475 KKASSERT(pmap != &kernel_pmap);
1477 #if defined(DIAGNOSTIC)
1478 if (object->ref_count != 1)
1479 panic("pmap_release: pteobj reference count != 1");
1480 #endif
1482 info.pmap = pmap;
1483 info.object = object;
1484 crit_enter();
1485 lwkt_gettoken(&vm_token);
1486 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1487 crit_exit();
1489 do {
1490 crit_enter();
1491 info.error = 0;
1492 info.mpte = NULL;
1493 info.limit = object->generation;
1495 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1496 pmap_release_callback, &info);
1497 if (info.error == 0 && info.mpte) {
1498 if (!pmap_release_free_page(pmap, info.mpte))
1499 info.error = 1;
1501 crit_exit();
1502 } while (info.error);
1503 lwkt_reltoken(&vm_token);
1506 static int
1507 pmap_release_callback(struct vm_page *p, void *data)
1509 struct rb_vm_page_scan_info *info = data;
1511 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1512 info->mpte = p;
1513 return(0);
1515 if (!pmap_release_free_page(info->pmap, p)) {
1516 info->error = 1;
1517 return(-1);
1519 if (info->object->generation != info->limit) {
1520 info->error = 1;
1521 return(-1);
1523 return(0);
1527 * Grow the number of kernel page table entries, if needed.
1529 * No requirements.
1531 void
1532 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1534 vm_offset_t addr;
1535 vm_paddr_t paddr;
1536 vm_offset_t ptppaddr;
1537 vm_page_t nkpg;
1538 pd_entry_t *pde, newpdir;
1539 pdp_entry_t newpdp;
1541 addr = kend;
1543 crit_enter();
1544 lwkt_gettoken(&vm_token);
1545 if (kernel_vm_end == 0) {
1546 kernel_vm_end = KvaStart;
1547 nkpt = 0;
1548 while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1549 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1550 nkpt++;
1551 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1552 kernel_vm_end = kernel_map.max_offset;
1553 break;
1557 addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1558 if (addr - 1 >= kernel_map.max_offset)
1559 addr = kernel_map.max_offset;
1560 while (kernel_vm_end < addr) {
1561 pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1562 if (pde == NULL) {
1563 /* We need a new PDP entry */
1564 nkpg = vm_page_alloc(kptobj, nkpt,
1565 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1566 | VM_ALLOC_INTERRUPT);
1567 if (nkpg == NULL) {
1568 panic("pmap_growkernel: no memory to "
1569 "grow kernel");
1571 paddr = VM_PAGE_TO_PHYS(nkpg);
1572 if ((nkpg->flags & PG_ZERO) == 0)
1573 pmap_zero_page(paddr);
1574 vm_page_flag_clear(nkpg, PG_ZERO);
1575 newpdp = (pdp_entry_t)(paddr | VPTE_V | VPTE_R |
1576 VPTE_W | VPTE_A | VPTE_M);
1577 *pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1578 nkpt++;
1579 continue; /* try again */
1581 if ((*pde & VPTE_V) != 0) {
1582 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1583 ~(PAGE_SIZE * NPTEPG - 1);
1584 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1585 kernel_vm_end = kernel_map.max_offset;
1586 break;
1588 continue;
1592 * This index is bogus, but out of the way
1594 nkpg = vm_page_alloc(kptobj, nkpt,
1595 VM_ALLOC_NORMAL |
1596 VM_ALLOC_SYSTEM |
1597 VM_ALLOC_INTERRUPT);
1598 if (nkpg == NULL)
1599 panic("pmap_growkernel: no memory to grow kernel");
1601 vm_page_wire(nkpg);
1602 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1603 pmap_zero_page(ptppaddr);
1604 vm_page_flag_clear(nkpg, PG_ZERO);
1605 newpdir = (pd_entry_t)(ptppaddr | VPTE_V | VPTE_R |
1606 VPTE_W | VPTE_A | VPTE_M);
1607 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1608 nkpt++;
1610 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1611 ~(PAGE_SIZE * NPTEPG - 1);
1612 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1613 kernel_vm_end = kernel_map.max_offset;
1614 break;
1617 lwkt_reltoken(&vm_token);
1618 crit_exit();
1622 * Retire the given physical map from service. Should only be called
1623 * if the map contains no valid mappings.
1625 * No requirements.
1627 void
1628 pmap_destroy(pmap_t pmap)
1630 if (pmap == NULL)
1631 return;
1633 lwkt_gettoken(&vm_token);
1634 if (--pmap->pm_count == 0) {
1635 pmap_release(pmap);
1636 panic("destroying a pmap is not yet implemented");
1638 lwkt_reltoken(&vm_token);
1642 * Add a reference to the specified pmap.
1644 * No requirements.
1646 void
1647 pmap_reference(pmap_t pmap)
1649 if (pmap) {
1650 lwkt_gettoken(&vm_token);
1651 ++pmap->pm_count;
1652 lwkt_reltoken(&vm_token);
1656 /************************************************************************
1657 * VMSPACE MANAGEMENT *
1658 ************************************************************************
1660 * The VMSPACE management we do in our virtual kernel must be reflected
1661 * in the real kernel. This is accomplished by making vmspace system
1662 * calls to the real kernel.
1664 void
1665 cpu_vmspace_alloc(struct vmspace *vm)
1667 int r;
1668 void *rp;
1669 vpte_t vpte;
1671 #define USER_SIZE (VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1673 if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1674 panic("vmspace_create() failed");
1676 rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1677 PROT_READ|PROT_WRITE,
1678 MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1679 MemImageFd, 0);
1680 if (rp == MAP_FAILED)
1681 panic("vmspace_mmap: failed");
1682 vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1683 MADV_NOSYNC, 0);
1684 vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_R | VPTE_W | VPTE_V;
1685 r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1686 MADV_SETMAP, vpte);
1687 if (r < 0)
1688 panic("vmspace_mcontrol: failed");
1691 void
1692 cpu_vmspace_free(struct vmspace *vm)
1694 if (vmspace_destroy(&vm->vm_pmap) < 0)
1695 panic("vmspace_destroy() failed");
1698 /***************************************************
1699 * page management routines.
1700 ***************************************************/
1703 * free the pv_entry back to the free list. This function may be
1704 * called from an interrupt.
1706 static __inline void
1707 free_pv_entry(pv_entry_t pv)
1709 pv_entry_count--;
1710 KKASSERT(pv_entry_count >= 0);
1711 zfree(pvzone, pv);
1715 * get a new pv_entry, allocating a block from the system
1716 * when needed. This function may be called from an interrupt.
1718 static pv_entry_t
1719 get_pv_entry(void)
1721 pv_entry_count++;
1722 if (pv_entry_high_water &&
1723 (pv_entry_count > pv_entry_high_water) &&
1724 (pmap_pagedaemon_waken == 0)) {
1725 pmap_pagedaemon_waken = 1;
1726 wakeup(&vm_pages_needed);
1728 return zalloc(pvzone);
1732 * This routine is very drastic, but can save the system
1733 * in a pinch.
1735 * No requirements.
1737 void
1738 pmap_collect(void)
1740 int i;
1741 vm_page_t m;
1742 static int warningdone=0;
1744 if (pmap_pagedaemon_waken == 0)
1745 return;
1746 lwkt_gettoken(&vm_token);
1747 pmap_pagedaemon_waken = 0;
1749 if (warningdone < 5) {
1750 kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1751 warningdone++;
1754 for(i = 0; i < vm_page_array_size; i++) {
1755 m = &vm_page_array[i];
1756 if (m->wire_count || m->hold_count || m->busy ||
1757 (m->flags & PG_BUSY))
1758 continue;
1759 pmap_remove_all(m);
1761 lwkt_reltoken(&vm_token);
1766 * If it is the first entry on the list, it is actually
1767 * in the header and we must copy the following entry up
1768 * to the header. Otherwise we must search the list for
1769 * the entry. In either case we free the now unused entry.
1771 static int
1772 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1774 pv_entry_t pv;
1775 int rtval;
1777 crit_enter();
1778 if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1779 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1780 if (pmap == pv->pv_pmap && va == pv->pv_va)
1781 break;
1783 } else {
1784 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1785 if (va == pv->pv_va)
1786 break;
1791 * Note that pv_ptem is NULL if the page table page itself is not
1792 * managed, even if the page being removed IS managed.
1794 rtval = 0;
1795 /* JGXXX When can 'pv' be NULL? */
1796 if (pv) {
1797 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1798 m->md.pv_list_count--;
1799 m->object->agg_pv_list_count--;
1800 KKASSERT(m->md.pv_list_count >= 0);
1801 if (TAILQ_EMPTY(&m->md.pv_list))
1802 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1803 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1804 ++pmap->pm_generation;
1805 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1806 free_pv_entry(pv);
1808 crit_exit();
1809 return rtval;
1813 * Create a pv entry for page at pa for (pmap, va). If the page table page
1814 * holding the VA is managed, mpte will be non-NULL.
1816 static void
1817 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1819 pv_entry_t pv;
1821 crit_enter();
1822 pv = get_pv_entry();
1823 pv->pv_va = va;
1824 pv->pv_pmap = pmap;
1825 pv->pv_ptem = mpte;
1827 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1828 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1829 m->md.pv_list_count++;
1830 m->object->agg_pv_list_count++;
1832 crit_exit();
1836 * pmap_remove_pte: do the things to unmap a page in a process
1838 static int
1839 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1841 pt_entry_t oldpte;
1842 vm_page_t m;
1844 oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1845 if (oldpte & VPTE_WIRED)
1846 --pmap->pm_stats.wired_count;
1847 KKASSERT(pmap->pm_stats.wired_count >= 0);
1849 #if 0
1851 * Machines that don't support invlpg, also don't support
1852 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1853 * the SMP case.
1855 if (oldpte & PG_G)
1856 cpu_invlpg((void *)va);
1857 #endif
1858 KKASSERT(pmap->pm_stats.resident_count > 0);
1859 --pmap->pm_stats.resident_count;
1860 if (oldpte & VPTE_MANAGED) {
1861 m = PHYS_TO_VM_PAGE(oldpte);
1862 if (oldpte & VPTE_M) {
1863 #if defined(PMAP_DIAGNOSTIC)
1864 if (pmap_nw_modified((pt_entry_t) oldpte)) {
1865 kprintf(
1866 "pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1867 va, oldpte);
1869 #endif
1870 if (pmap_track_modified(pmap, va))
1871 vm_page_dirty(m);
1873 if (oldpte & VPTE_A)
1874 vm_page_flag_set(m, PG_REFERENCED);
1875 return pmap_remove_entry(pmap, m, va);
1876 } else {
1877 return pmap_unuse_pt(pmap, va, NULL);
1880 return 0;
1884 * pmap_remove_page:
1886 * Remove a single page from a process address space.
1888 * This function may not be called from an interrupt if the pmap is
1889 * not kernel_pmap.
1891 static void
1892 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1894 pt_entry_t *pte;
1896 pte = pmap_pte(pmap, va);
1897 if (pte == NULL)
1898 return;
1899 if ((*pte & VPTE_V) == 0)
1900 return;
1901 pmap_remove_pte(pmap, pte, va);
1905 * Remove the given range of addresses from the specified map.
1907 * It is assumed that the start and end are properly rounded to
1908 * the page size.
1910 * This function may not be called from an interrupt if the pmap is
1911 * not kernel_pmap.
1913 * No requirements.
1915 void
1916 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1918 vm_offset_t va_next;
1919 pml4_entry_t *pml4e;
1920 pdp_entry_t *pdpe;
1921 pd_entry_t ptpaddr, *pde;
1922 pt_entry_t *pte;
1924 if (pmap == NULL)
1925 return;
1927 lwkt_gettoken(&vm_token);
1928 KKASSERT(pmap->pm_stats.resident_count >= 0);
1929 if (pmap->pm_stats.resident_count == 0) {
1930 lwkt_reltoken(&vm_token);
1931 return;
1935 * special handling of removing one page. a very
1936 * common operation and easy to short circuit some
1937 * code.
1939 if (sva + PAGE_SIZE == eva) {
1940 pde = pmap_pde(pmap, sva);
1941 if (pde && (*pde & VPTE_PS) == 0) {
1942 pmap_remove_page(pmap, sva);
1943 lwkt_reltoken(&vm_token);
1944 return;
1948 for (; sva < eva; sva = va_next) {
1949 pml4e = pmap_pml4e(pmap, sva);
1950 if ((*pml4e & VPTE_V) == 0) {
1951 va_next = (sva + NBPML4) & ~PML4MASK;
1952 if (va_next < sva)
1953 va_next = eva;
1954 continue;
1957 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
1958 if ((*pdpe & VPTE_V) == 0) {
1959 va_next = (sva + NBPDP) & ~PDPMASK;
1960 if (va_next < sva)
1961 va_next = eva;
1962 continue;
1966 * Calculate index for next page table.
1968 va_next = (sva + NBPDR) & ~PDRMASK;
1969 if (va_next < sva)
1970 va_next = eva;
1972 pde = pmap_pdpe_to_pde(pdpe, sva);
1973 ptpaddr = *pde;
1976 * Weed out invalid mappings.
1978 if (ptpaddr == 0)
1979 continue;
1982 * Check for large page.
1984 if ((ptpaddr & VPTE_PS) != 0) {
1985 /* JG FreeBSD has more complex treatment here */
1986 KKASSERT(*pde != 0);
1987 pmap_inval_pde(pde, pmap, sva);
1988 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1989 continue;
1993 * Limit our scan to either the end of the va represented
1994 * by the current page table page, or to the end of the
1995 * range being removed.
1997 if (va_next > eva)
1998 va_next = eva;
2001 * NOTE: pmap_remove_pte() can block.
2003 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2004 sva += PAGE_SIZE) {
2005 if (*pte == 0)
2006 continue;
2007 if (pmap_remove_pte(pmap, pte, sva))
2008 break;
2011 lwkt_reltoken(&vm_token);
2015 * Removes this physical page from all physical maps in which it resides.
2016 * Reflects back modify bits to the pager.
2018 * This routine may not be called from an interrupt.
2020 * No requirements.
2023 static void
2024 pmap_remove_all(vm_page_t m)
2026 pt_entry_t *pte, tpte;
2027 pv_entry_t pv;
2029 #if defined(PMAP_DIAGNOSTIC)
2031 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2032 * pages!
2034 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2035 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2037 #endif
2039 crit_enter();
2040 lwkt_gettoken(&vm_token);
2041 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2042 KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2043 --pv->pv_pmap->pm_stats.resident_count;
2045 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2046 KKASSERT(pte != NULL);
2048 tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2049 if (tpte & VPTE_WIRED)
2050 pv->pv_pmap->pm_stats.wired_count--;
2051 KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2053 if (tpte & VPTE_A)
2054 vm_page_flag_set(m, PG_REFERENCED);
2057 * Update the vm_page_t clean and reference bits.
2059 if (tpte & VPTE_M) {
2060 #if defined(PMAP_DIAGNOSTIC)
2061 if (pmap_nw_modified(tpte)) {
2062 kprintf(
2063 "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2064 pv->pv_va, tpte);
2066 #endif
2067 if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2068 vm_page_dirty(m);
2070 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2071 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2072 ++pv->pv_pmap->pm_generation;
2073 m->md.pv_list_count--;
2074 m->object->agg_pv_list_count--;
2075 KKASSERT(m->md.pv_list_count >= 0);
2076 if (TAILQ_EMPTY(&m->md.pv_list))
2077 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2078 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2079 free_pv_entry(pv);
2081 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2082 lwkt_reltoken(&vm_token);
2083 crit_exit();
2087 * Set the physical protection on the specified range of this map
2088 * as requested.
2090 * This function may not be called from an interrupt if the map is
2091 * not the kernel_pmap.
2093 * No requirements.
2095 void
2096 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2098 vm_offset_t va_next;
2099 pml4_entry_t *pml4e;
2100 pdp_entry_t *pdpe;
2101 pd_entry_t ptpaddr, *pde;
2102 pt_entry_t *pte;
2104 /* JG review for NX */
2106 if (pmap == NULL)
2107 return;
2109 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2110 pmap_remove(pmap, sva, eva);
2111 return;
2114 if (prot & VM_PROT_WRITE)
2115 return;
2117 lwkt_gettoken(&vm_token);
2119 for (; sva < eva; sva = va_next) {
2121 pml4e = pmap_pml4e(pmap, sva);
2122 if ((*pml4e & VPTE_V) == 0) {
2123 va_next = (sva + NBPML4) & ~PML4MASK;
2124 if (va_next < sva)
2125 va_next = eva;
2126 continue;
2129 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2130 if ((*pdpe & VPTE_V) == 0) {
2131 va_next = (sva + NBPDP) & ~PDPMASK;
2132 if (va_next < sva)
2133 va_next = eva;
2134 continue;
2137 va_next = (sva + NBPDR) & ~PDRMASK;
2138 if (va_next < sva)
2139 va_next = eva;
2141 pde = pmap_pdpe_to_pde(pdpe, sva);
2142 ptpaddr = *pde;
2145 * Check for large page.
2147 if ((ptpaddr & VPTE_PS) != 0) {
2148 /* JG correct? */
2149 pmap_clean_pde(pde, pmap, sva);
2150 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2151 continue;
2155 * Weed out invalid mappings. Note: we assume that the page
2156 * directory table is always allocated, and in kernel virtual.
2158 if (ptpaddr == 0)
2159 continue;
2161 if (va_next > eva)
2162 va_next = eva;
2164 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2165 sva += PAGE_SIZE) {
2166 pt_entry_t pbits;
2167 vm_page_t m;
2170 * Clean managed pages and also check the accessed
2171 * bit. Just remove write perms for unmanaged
2172 * pages. Be careful of races, turning off write
2173 * access will force a fault rather then setting
2174 * the modified bit at an unexpected time.
2176 if (*pte & VPTE_MANAGED) {
2177 pbits = pmap_clean_pte(pte, pmap, sva);
2178 m = NULL;
2179 if (pbits & VPTE_A) {
2180 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2181 vm_page_flag_set(m, PG_REFERENCED);
2182 atomic_clear_long(pte, VPTE_A);
2184 if (pbits & VPTE_M) {
2185 if (pmap_track_modified(pmap, sva)) {
2186 if (m == NULL)
2187 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2188 vm_page_dirty(m);
2191 } else {
2192 pbits = pmap_setro_pte(pte, pmap, sva);
2196 lwkt_reltoken(&vm_token);
2200 * Enter a managed page into a pmap. If the page is not wired related pmap
2201 * data can be destroyed at any time for later demand-operation.
2203 * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2204 * specified protection, and wire the mapping if requested.
2206 * NOTE: This routine may not lazy-evaluate or lose information. The
2207 * page must actually be inserted into the given map NOW.
2209 * NOTE: When entering a page at a KVA address, the pmap must be the
2210 * kernel_pmap.
2212 * No requirements.
2214 void
2215 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2216 boolean_t wired)
2218 vm_paddr_t pa;
2219 pd_entry_t *pde;
2220 pt_entry_t *pte;
2221 vm_paddr_t opa;
2222 pt_entry_t origpte, newpte;
2223 vm_page_t mpte;
2225 if (pmap == NULL)
2226 return;
2228 va = trunc_page(va);
2230 lwkt_gettoken(&vm_token);
2233 * Get the page table page. The kernel_pmap's page table pages
2234 * are preallocated and have no associated vm_page_t.
2236 if (pmap == &kernel_pmap)
2237 mpte = NULL;
2238 else
2239 mpte = pmap_allocpte(pmap, va);
2241 pde = pmap_pde(pmap, va);
2242 if (pde != NULL && (*pde & VPTE_V) != 0) {
2243 if ((*pde & VPTE_PS) != 0)
2244 panic("pmap_enter: attempted pmap_enter on 2MB page");
2245 pte = pmap_pde_to_pte(pde, va);
2246 } else {
2247 panic("pmap_enter: invalid page directory va=%#lx", va);
2250 KKASSERT(pte != NULL);
2252 * Deal with races on the original mapping (though don't worry
2253 * about VPTE_A races) by cleaning it. This will force a fault
2254 * if an attempt is made to write to the page.
2256 pa = VM_PAGE_TO_PHYS(m);
2257 origpte = pmap_clean_pte(pte, pmap, va);
2258 opa = origpte & VPTE_FRAME;
2260 if (origpte & VPTE_PS)
2261 panic("pmap_enter: attempted pmap_enter on 2MB page");
2264 * Mapping has not changed, must be protection or wiring change.
2266 if (origpte && (opa == pa)) {
2268 * Wiring change, just update stats. We don't worry about
2269 * wiring PT pages as they remain resident as long as there
2270 * are valid mappings in them. Hence, if a user page is wired,
2271 * the PT page will be also.
2273 if (wired && ((origpte & VPTE_WIRED) == 0))
2274 ++pmap->pm_stats.wired_count;
2275 else if (!wired && (origpte & VPTE_WIRED))
2276 --pmap->pm_stats.wired_count;
2279 * Remove the extra pte reference. Note that we cannot
2280 * optimize the RO->RW case because we have adjusted the
2281 * wiring count above and may need to adjust the wiring
2282 * bits below.
2284 if (mpte)
2285 mpte->hold_count--;
2288 * We might be turning off write access to the page,
2289 * so we go ahead and sense modify status.
2291 if (origpte & VPTE_MANAGED) {
2292 if ((origpte & VPTE_M) &&
2293 pmap_track_modified(pmap, va)) {
2294 vm_page_t om;
2295 om = PHYS_TO_VM_PAGE(opa);
2296 vm_page_dirty(om);
2298 pa |= VPTE_MANAGED;
2299 KKASSERT(m->flags & PG_MAPPED);
2301 goto validate;
2304 * Mapping has changed, invalidate old range and fall through to
2305 * handle validating new mapping.
2307 if (opa) {
2308 int err;
2309 err = pmap_remove_pte(pmap, pte, va);
2310 if (err)
2311 panic("pmap_enter: pte vanished, va: 0x%lx", va);
2315 * Enter on the PV list if part of our managed memory. Note that we
2316 * raise IPL while manipulating pv_table since pmap_enter can be
2317 * called at interrupt time.
2319 if (pmap_initialized &&
2320 (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2321 pmap_insert_entry(pmap, va, mpte, m);
2322 pa |= VPTE_MANAGED;
2323 vm_page_flag_set(m, PG_MAPPED);
2327 * Increment counters
2329 ++pmap->pm_stats.resident_count;
2330 if (wired)
2331 pmap->pm_stats.wired_count++;
2333 validate:
2335 * Now validate mapping with desired protection/wiring.
2337 newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V);
2339 if (wired)
2340 newpte |= VPTE_WIRED;
2341 if (pmap != &kernel_pmap)
2342 newpte |= VPTE_U;
2345 * If the mapping or permission bits are different from the
2346 * (now cleaned) original pte, an update is needed. We've
2347 * already downgraded or invalidated the page so all we have
2348 * to do now is update the bits.
2350 * XXX should we synchronize RO->RW changes to avoid another
2351 * fault?
2353 if ((origpte & ~(VPTE_W|VPTE_M|VPTE_A)) != newpte) {
2354 *pte = newpte | VPTE_A;
2355 if (newpte & VPTE_W)
2356 vm_page_flag_set(m, PG_WRITEABLE);
2358 KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2359 lwkt_reltoken(&vm_token);
2363 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2365 * Currently this routine may only be used on user pmaps, not kernel_pmap.
2367 * No requirements.
2369 void
2370 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2372 pt_entry_t *pte;
2373 vm_paddr_t pa;
2374 vm_page_t mpte;
2375 vm_pindex_t ptepindex;
2376 pd_entry_t *ptepa;
2378 KKASSERT(pmap != &kernel_pmap);
2380 KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2383 * Calculate pagetable page index
2385 ptepindex = pmap_pde_pindex(va);
2387 lwkt_gettoken(&vm_token);
2389 do {
2391 * Get the page directory entry
2393 ptepa = pmap_pde(pmap, va);
2396 * If the page table page is mapped, we just increment
2397 * the hold count, and activate it.
2399 if (ptepa && (*ptepa & VPTE_V) != 0) {
2400 if (*ptepa & VPTE_PS)
2401 panic("pmap_enter_quick: unexpected mapping into 2MB page");
2402 if (pmap->pm_ptphint &&
2403 (pmap->pm_ptphint->pindex == ptepindex)) {
2404 mpte = pmap->pm_ptphint;
2405 } else {
2406 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2407 pmap->pm_ptphint = mpte;
2409 if (mpte)
2410 mpte->hold_count++;
2411 } else {
2412 mpte = _pmap_allocpte(pmap, ptepindex);
2414 } while (mpte == NULL);
2417 * Ok, now that the page table page has been validated, get the pte.
2418 * If the pte is already mapped undo mpte's hold_count and
2419 * just return.
2421 pte = pmap_pte(pmap, va);
2422 if (*pte & VPTE_V) {
2423 KKASSERT(mpte != NULL);
2424 pmap_unwire_pte_hold(pmap, va, mpte);
2425 pa = VM_PAGE_TO_PHYS(m);
2426 KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2427 lwkt_reltoken(&vm_token);
2428 return;
2432 * Enter on the PV list if part of our managed memory
2434 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2435 pmap_insert_entry(pmap, va, mpte, m);
2436 vm_page_flag_set(m, PG_MAPPED);
2440 * Increment counters
2442 ++pmap->pm_stats.resident_count;
2444 pa = VM_PAGE_TO_PHYS(m);
2447 * Now validate mapping with RO protection
2449 if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2450 *pte = (vpte_t)pa | VPTE_V | VPTE_U;
2451 else
2452 *pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2453 /*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2454 /*pmap_inval_flush(&info); don't need for vkernel */
2455 lwkt_reltoken(&vm_token);
2459 * Make a temporary mapping for a physical address. This is only intended
2460 * to be used for panic dumps.
2462 void *
2463 pmap_kenter_temporary(vm_paddr_t pa, int i)
2465 pmap_kenter(crashdumpmap + (i * PAGE_SIZE), pa);
2466 return ((void *)crashdumpmap);
2469 #define MAX_INIT_PT (96)
2472 * This routine preloads the ptes for a given object into the specified pmap.
2473 * This eliminates the blast of soft faults on process startup and
2474 * immediately after an mmap.
2476 * No requirements.
2478 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2480 void
2481 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2482 vm_object_t object, vm_pindex_t pindex,
2483 vm_size_t size, int limit)
2485 struct rb_vm_page_scan_info info;
2486 struct lwp *lp;
2487 vm_size_t psize;
2490 * We can't preinit if read access isn't set or there is no pmap
2491 * or object.
2493 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2494 return;
2497 * We can't preinit if the pmap is not the current pmap
2499 lp = curthread->td_lwp;
2500 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2501 return;
2503 psize = x86_64_btop(size);
2505 if ((object->type != OBJT_VNODE) ||
2506 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2507 (object->resident_page_count > MAX_INIT_PT))) {
2508 return;
2511 if (psize + pindex > object->size) {
2512 if (object->size < pindex)
2513 return;
2514 psize = object->size - pindex;
2517 if (psize == 0)
2518 return;
2521 * Use a red-black scan to traverse the requested range and load
2522 * any valid pages found into the pmap.
2524 * We cannot safely scan the object's memq unless we are in a
2525 * critical section since interrupts can remove pages from objects.
2527 info.start_pindex = pindex;
2528 info.end_pindex = pindex + psize - 1;
2529 info.limit = limit;
2530 info.mpte = NULL;
2531 info.addr = addr;
2532 info.pmap = pmap;
2534 crit_enter();
2535 lwkt_gettoken(&vm_token);
2536 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2537 pmap_object_init_pt_callback, &info);
2538 lwkt_reltoken(&vm_token);
2539 crit_exit();
2542 static
2544 pmap_object_init_pt_callback(vm_page_t p, void *data)
2546 struct rb_vm_page_scan_info *info = data;
2547 vm_pindex_t rel_index;
2549 * don't allow an madvise to blow away our really
2550 * free pages allocating pv entries.
2552 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2553 vmstats.v_free_count < vmstats.v_free_reserved) {
2554 return(-1);
2556 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2557 (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2558 if ((p->queue - p->pc) == PQ_CACHE)
2559 vm_page_deactivate(p);
2560 vm_page_busy(p);
2561 rel_index = p->pindex - info->start_pindex;
2562 pmap_enter_quick(info->pmap,
2563 info->addr + x86_64_ptob(rel_index), p);
2564 vm_page_wakeup(p);
2566 return(0);
2570 * Return TRUE if the pmap is in shape to trivially
2571 * pre-fault the specified address.
2573 * Returns FALSE if it would be non-trivial or if a
2574 * pte is already loaded into the slot.
2576 * No requirements.
2579 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2581 pt_entry_t *pte;
2582 pd_entry_t *pde;
2583 int ret;
2585 lwkt_gettoken(&vm_token);
2586 pde = pmap_pde(pmap, addr);
2587 if (pde == NULL || *pde == 0) {
2588 ret = 0;
2589 } else {
2590 pte = pmap_pde_to_pte(pde, addr);
2591 ret = (*pte) ? 0 : 1;
2593 lwkt_reltoken(&vm_token);
2594 return (ret);
2598 * Change the wiring attribute for a map/virtual-address pair.
2600 * The mapping must already exist in the pmap.
2601 * No other requirements.
2603 void
2604 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2606 pt_entry_t *pte;
2608 if (pmap == NULL)
2609 return;
2611 lwkt_gettoken(&vm_token);
2612 pte = pmap_pte(pmap, va);
2614 if (wired && !pmap_pte_w(pte))
2615 pmap->pm_stats.wired_count++;
2616 else if (!wired && pmap_pte_w(pte))
2617 pmap->pm_stats.wired_count--;
2620 * Wiring is not a hardware characteristic so there is no need to
2621 * invalidate TLB. However, in an SMP environment we must use
2622 * a locked bus cycle to update the pte (if we are not using
2623 * the pmap_inval_*() API that is)... it's ok to do this for simple
2624 * wiring changes.
2626 if (wired)
2627 atomic_set_long(pte, VPTE_WIRED);
2628 else
2629 atomic_clear_long(pte, VPTE_WIRED);
2630 lwkt_reltoken(&vm_token);
2634 * Copy the range specified by src_addr/len
2635 * from the source map to the range dst_addr/len
2636 * in the destination map.
2638 * This routine is only advisory and need not do anything.
2640 void
2641 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2642 vm_size_t len, vm_offset_t src_addr)
2645 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2646 * valid through blocking calls, and that's just not going to
2647 * be the case.
2649 * FIXME!
2651 return;
2655 * pmap_zero_page:
2657 * Zero the specified physical page.
2659 * This function may be called from an interrupt and no locking is
2660 * required.
2662 void
2663 pmap_zero_page(vm_paddr_t phys)
2665 vm_offset_t va = PHYS_TO_DMAP(phys);
2667 bzero((void *)va, PAGE_SIZE);
2671 * pmap_page_assertzero:
2673 * Assert that a page is empty, panic if it isn't.
2675 void
2676 pmap_page_assertzero(vm_paddr_t phys)
2678 int i;
2680 crit_enter();
2681 vm_offset_t virt = PHYS_TO_DMAP(phys);
2683 for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2684 if (*(int *)((char *)virt + i) != 0) {
2685 panic("pmap_page_assertzero() @ %p not zero!\n",
2686 (void *)virt);
2689 crit_exit();
2693 * pmap_zero_page:
2695 * Zero part of a physical page by mapping it into memory and clearing
2696 * its contents with bzero.
2698 * off and size may not cover an area beyond a single hardware page.
2700 void
2701 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2703 crit_enter();
2704 vm_offset_t virt = PHYS_TO_DMAP(phys);
2705 bzero((char *)virt + off, size);
2706 crit_exit();
2710 * pmap_copy_page:
2712 * Copy the physical page from the source PA to the target PA.
2713 * This function may be called from an interrupt. No locking
2714 * is required.
2716 void
2717 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2719 vm_offset_t src_virt, dst_virt;
2721 crit_enter();
2722 src_virt = PHYS_TO_DMAP(src);
2723 dst_virt = PHYS_TO_DMAP(dst);
2724 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2725 crit_exit();
2729 * pmap_copy_page_frag:
2731 * Copy the physical page from the source PA to the target PA.
2732 * This function may be called from an interrupt. No locking
2733 * is required.
2735 void
2736 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2738 vm_offset_t src_virt, dst_virt;
2740 crit_enter();
2741 src_virt = PHYS_TO_DMAP(src);
2742 dst_virt = PHYS_TO_DMAP(dst);
2743 bcopy((char *)src_virt + (src & PAGE_MASK),
2744 (char *)dst_virt + (dst & PAGE_MASK),
2745 bytes);
2746 crit_exit();
2750 * Returns true if the pmap's pv is one of the first 16 pvs linked to
2751 * from this page. This count may be changed upwards or downwards
2752 * in the future; it is only necessary that true be returned for a small
2753 * subset of pmaps for proper page aging.
2755 * No other requirements.
2757 boolean_t
2758 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2760 pv_entry_t pv;
2761 int loops = 0;
2763 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2764 return FALSE;
2766 crit_enter();
2767 lwkt_gettoken(&vm_token);
2769 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2770 if (pv->pv_pmap == pmap) {
2771 lwkt_reltoken(&vm_token);
2772 crit_exit();
2773 return TRUE;
2775 loops++;
2776 if (loops >= 16)
2777 break;
2779 lwkt_reltoken(&vm_token);
2780 crit_exit();
2781 return (FALSE);
2785 * Remove all pages from specified address space this aids process
2786 * exit speeds. Also, this code is special cased for current
2787 * process only, but can have the more generic (and slightly slower)
2788 * mode enabled. This is much faster than pmap_remove in the case
2789 * of running down an entire address space.
2791 * No other requirements.
2793 void
2794 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2796 pt_entry_t *pte, tpte;
2797 pv_entry_t pv, npv;
2798 vm_page_t m;
2799 int save_generation;
2801 crit_enter();
2802 lwkt_gettoken(&vm_token);
2803 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2804 if (pv->pv_va >= eva || pv->pv_va < sva) {
2805 npv = TAILQ_NEXT(pv, pv_plist);
2806 continue;
2809 KKASSERT(pmap == pv->pv_pmap);
2811 pte = pmap_pte(pmap, pv->pv_va);
2814 * We cannot remove wired pages from a process' mapping
2815 * at this time
2817 if (*pte & VPTE_WIRED) {
2818 npv = TAILQ_NEXT(pv, pv_plist);
2819 continue;
2821 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2823 m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2825 KASSERT(m < &vm_page_array[vm_page_array_size],
2826 ("pmap_remove_pages: bad tpte %lx", tpte));
2828 KKASSERT(pmap->pm_stats.resident_count > 0);
2829 --pmap->pm_stats.resident_count;
2832 * Update the vm_page_t clean and reference bits.
2834 if (tpte & VPTE_M) {
2835 vm_page_dirty(m);
2838 npv = TAILQ_NEXT(pv, pv_plist);
2839 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2840 save_generation = ++pmap->pm_generation;
2842 m->md.pv_list_count--;
2843 m->object->agg_pv_list_count--;
2844 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2845 if (TAILQ_EMPTY(&m->md.pv_list))
2846 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2848 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2849 free_pv_entry(pv);
2852 * Restart the scan if we blocked during the unuse or free
2853 * calls and other removals were made.
2855 if (save_generation != pmap->pm_generation) {
2856 kprintf("Warning: pmap_remove_pages race-A avoided\n");
2857 npv = TAILQ_FIRST(&pmap->pm_pvlist);
2860 lwkt_reltoken(&vm_token);
2861 crit_exit();
2865 * pmap_testbit tests bits in active mappings of a VM page.
2867 static boolean_t
2868 pmap_testbit(vm_page_t m, int bit)
2870 pv_entry_t pv;
2871 pt_entry_t *pte;
2873 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2874 return FALSE;
2876 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2877 return FALSE;
2879 crit_enter();
2881 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2883 * if the bit being tested is the modified bit, then
2884 * mark clean_map and ptes as never
2885 * modified.
2887 if (bit & (VPTE_A|VPTE_M)) {
2888 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2889 continue;
2892 #if defined(PMAP_DIAGNOSTIC)
2893 if (pv->pv_pmap == NULL) {
2894 kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2895 continue;
2897 #endif
2898 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2899 if (*pte & bit) {
2900 crit_exit();
2901 return TRUE;
2904 crit_exit();
2905 return (FALSE);
2909 * This routine is used to clear bits in ptes. Certain bits require special
2910 * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2912 * This routine is only called with certain VPTE_* bit combinations.
2914 static __inline void
2915 pmap_clearbit(vm_page_t m, int bit)
2917 pv_entry_t pv;
2918 pt_entry_t *pte;
2919 pt_entry_t pbits;
2921 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2922 return;
2924 crit_enter();
2927 * Loop over all current mappings setting/clearing as appropos If
2928 * setting RO do we need to clear the VAC?
2930 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2932 * don't write protect pager mappings
2934 if (bit == VPTE_W) {
2935 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2936 continue;
2939 #if defined(PMAP_DIAGNOSTIC)
2940 if (pv->pv_pmap == NULL) {
2941 kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2942 continue;
2944 #endif
2947 * Careful here. We can use a locked bus instruction to
2948 * clear VPTE_A or VPTE_M safely but we need to synchronize
2949 * with the target cpus when we mess with VPTE_W.
2951 * On virtual kernels we must force a new fault-on-write
2952 * in the real kernel if we clear the Modify bit ourselves,
2953 * otherwise the real kernel will not get a new fault and
2954 * will never set our Modify bit again.
2956 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2957 if (*pte & bit) {
2958 if (bit == VPTE_W) {
2960 * We must also clear VPTE_M when clearing
2961 * VPTE_W
2963 pbits = pmap_clean_pte(pte, pv->pv_pmap,
2964 pv->pv_va);
2965 if (pbits & VPTE_M)
2966 vm_page_dirty(m);
2967 } else if (bit == VPTE_M) {
2969 * We do not have to make the page read-only
2970 * when clearing the Modify bit. The real
2971 * kernel will make the real PTE read-only
2972 * or otherwise detect the write and set
2973 * our VPTE_M again simply by us invalidating
2974 * the real kernel VA for the pmap (as we did
2975 * above). This allows the real kernel to
2976 * handle the write fault without forwarding
2977 * the fault to us.
2979 atomic_clear_long(pte, VPTE_M);
2980 } else if ((bit & (VPTE_W|VPTE_M)) == (VPTE_W|VPTE_M)) {
2982 * We've been asked to clear W & M, I guess
2983 * the caller doesn't want us to update
2984 * the dirty status of the VM page.
2986 pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
2987 } else {
2989 * We've been asked to clear bits that do
2990 * not interact with hardware.
2992 atomic_clear_long(pte, bit);
2996 crit_exit();
3000 * Lower the permission for all mappings to a given page.
3002 * No other requirements.
3004 void
3005 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3007 /* JG NX support? */
3008 if ((prot & VM_PROT_WRITE) == 0) {
3009 lwkt_gettoken(&vm_token);
3010 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3011 pmap_clearbit(m, VPTE_W);
3012 vm_page_flag_clear(m, PG_WRITEABLE);
3013 } else {
3014 pmap_remove_all(m);
3016 lwkt_reltoken(&vm_token);
3020 vm_paddr_t
3021 pmap_phys_address(vm_pindex_t ppn)
3023 return (x86_64_ptob(ppn));
3027 * Return a count of reference bits for a page, clearing those bits.
3028 * It is not necessary for every reference bit to be cleared, but it
3029 * is necessary that 0 only be returned when there are truly no
3030 * reference bits set.
3032 * XXX: The exact number of bits to check and clear is a matter that
3033 * should be tested and standardized at some point in the future for
3034 * optimal aging of shared pages.
3036 * No other requirements.
3039 pmap_ts_referenced(vm_page_t m)
3041 pv_entry_t pv, pvf, pvn;
3042 pt_entry_t *pte;
3043 int rtval = 0;
3045 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3046 return (rtval);
3048 crit_enter();
3049 lwkt_gettoken(&vm_token);
3051 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3053 pvf = pv;
3055 do {
3056 pvn = TAILQ_NEXT(pv, pv_list);
3058 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3060 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3062 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3063 continue;
3065 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3067 if (pte && (*pte & VPTE_A)) {
3068 #ifdef SMP
3069 atomic_clear_long(pte, VPTE_A);
3070 #else
3071 atomic_clear_long_nonlocked(pte, VPTE_A);
3072 #endif
3073 rtval++;
3074 if (rtval > 4) {
3075 break;
3078 } while ((pv = pvn) != NULL && pv != pvf);
3080 lwkt_reltoken(&vm_token);
3081 crit_exit();
3083 return (rtval);
3087 * Return whether or not the specified physical page was modified
3088 * in any physical maps.
3090 * No other requirements.
3092 boolean_t
3093 pmap_is_modified(vm_page_t m)
3095 boolean_t res;
3097 lwkt_gettoken(&vm_token);
3098 res = pmap_testbit(m, VPTE_M);
3099 lwkt_reltoken(&vm_token);
3100 return (res);
3104 * Clear the modify bits on the specified physical page.
3106 * No other requirements.
3108 void
3109 pmap_clear_modify(vm_page_t m)
3111 lwkt_gettoken(&vm_token);
3112 pmap_clearbit(m, VPTE_M);
3113 lwkt_reltoken(&vm_token);
3117 * Clear the reference bit on the specified physical page.
3119 * No other requirements.
3121 void
3122 pmap_clear_reference(vm_page_t m)
3124 lwkt_gettoken(&vm_token);
3125 pmap_clearbit(m, VPTE_A);
3126 lwkt_reltoken(&vm_token);
3130 * Miscellaneous support routines follow
3133 static void
3134 i386_protection_init(void)
3136 int *kp, prot;
3138 kp = protection_codes;
3139 for (prot = 0; prot < 8; prot++) {
3140 if (prot & VM_PROT_READ)
3141 *kp |= VPTE_R;
3142 if (prot & VM_PROT_WRITE)
3143 *kp |= VPTE_W;
3144 if (prot & VM_PROT_EXECUTE)
3145 *kp |= VPTE_X;
3146 ++kp;
3151 * Perform the pmap work for mincore
3153 * No other requirements.
3156 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3158 pt_entry_t *ptep, pte;
3159 vm_page_t m;
3160 int val = 0;
3162 lwkt_gettoken(&vm_token);
3163 ptep = pmap_pte(pmap, addr);
3165 if (ptep && (pte = *ptep) != 0) {
3166 vm_paddr_t pa;
3168 val = MINCORE_INCORE;
3169 if ((pte & VPTE_MANAGED) == 0)
3170 goto done;
3172 pa = pte & VPTE_FRAME;
3174 m = PHYS_TO_VM_PAGE(pa);
3177 * Modified by us
3179 if (pte & VPTE_M)
3180 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3182 * Modified by someone
3184 else if (m->dirty || pmap_is_modified(m))
3185 val |= MINCORE_MODIFIED_OTHER;
3187 * Referenced by us
3189 if (pte & VPTE_A)
3190 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3193 * Referenced by someone
3195 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3196 val |= MINCORE_REFERENCED_OTHER;
3197 vm_page_flag_set(m, PG_REFERENCED);
3200 done:
3201 lwkt_reltoken(&vm_token);
3202 return val;
3206 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3207 * vmspace will be ref'd and the old one will be deref'd.
3209 void
3210 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3212 struct vmspace *oldvm;
3213 struct lwp *lp;
3215 crit_enter();
3216 oldvm = p->p_vmspace;
3217 if (oldvm != newvm) {
3218 p->p_vmspace = newvm;
3219 KKASSERT(p->p_nthreads == 1);
3220 lp = RB_ROOT(&p->p_lwp_tree);
3221 pmap_setlwpvm(lp, newvm);
3222 if (adjrefs) {
3223 sysref_get(&newvm->vm_sysref);
3224 sysref_put(&oldvm->vm_sysref);
3227 crit_exit();
3231 * Set the vmspace for a LWP. The vmspace is almost universally set the
3232 * same as the process vmspace, but virtual kernels need to swap out contexts
3233 * on a per-lwp basis.
3235 void
3236 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3238 struct vmspace *oldvm;
3239 struct pmap *pmap;
3241 crit_enter();
3242 oldvm = lp->lwp_vmspace;
3244 if (oldvm != newvm) {
3245 lp->lwp_vmspace = newvm;
3246 if (curthread->td_lwp == lp) {
3247 pmap = vmspace_pmap(newvm);
3248 #if defined(SMP)
3249 atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3250 #else
3251 pmap->pm_active |= 1;
3252 #endif
3253 #if defined(SWTCH_OPTIM_STATS)
3254 tlb_flush_count++;
3255 #endif
3256 pmap = vmspace_pmap(oldvm);
3257 #if defined(SMP)
3258 atomic_clear_int(&pmap->pm_active,
3259 1 << mycpu->gd_cpuid);
3260 #else
3261 pmap->pm_active &= ~1;
3262 #endif
3265 crit_exit();
3268 vm_offset_t
3269 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3272 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3273 return addr;
3276 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3277 return addr;
3281 * Used by kmalloc/kfree, page already exists at va
3283 vm_page_t
3284 pmap_kvtom(vm_offset_t va)
3286 vpte_t *ptep;
3288 KKASSERT(va >= KvaStart && va < KvaEnd);
3289 ptep = vtopte(va);
3290 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));