lsvfs(1): Sync a bit with FreeBSD, as applicable.
[dragonfly.git] / libexec / rtld-elf / rtld.c
blob1680ab1ef0308b448163ee9c2d075085e4fec579
1 /*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * $FreeBSD$
32 * Dynamic linker for ELF.
34 * John Polstra <jdp@polstra.com>.
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
52 #include <machine/tls.h>
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
70 #define PATH_RTLD "/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE 16
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
78 * Function declarations.
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83 const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85 const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90 int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static int parse_libdir(const char *);
122 static void *path_enumerate(const char *, path_enum_proc, void *);
123 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126 int flags, RtldLockState *lockstate);
127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128 RtldLockState *);
129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130 int flags, RtldLockState *lockstate);
131 static int rtld_dirname(const char *, char *);
132 static int rtld_dirname_abs(const char *, char *);
133 static void *rtld_dlopen(const char *name, int fd, int mode);
134 static void rtld_exit(void);
135 static char *search_library_path(const char *, const char *);
136 static char *search_library_pathfds(const char *, const char *, int *);
137 static const void **get_program_var_addr(const char *, RtldLockState *);
138 static void set_program_var(const char *, const void *);
139 static int symlook_default(SymLook *, const Obj_Entry *refobj);
140 static int symlook_global(SymLook *, DoneList *);
141 static void symlook_init_from_req(SymLook *, const SymLook *);
142 static int symlook_list(SymLook *, const Objlist *, DoneList *);
143 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
144 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
145 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
146 static void trace_loaded_objects(Obj_Entry *);
147 static void unlink_object(Obj_Entry *);
148 static void unload_object(Obj_Entry *);
149 static void unref_dag(Obj_Entry *);
150 static void ref_dag(Obj_Entry *);
151 static char *origin_subst_one(char *, const char *, const char *, bool);
152 static char *origin_subst(char *, const char *);
153 static void preinit_main(void);
154 static int rtld_verify_versions(const Objlist *);
155 static int rtld_verify_object_versions(Obj_Entry *);
156 static void object_add_name(Obj_Entry *, const char *);
157 static int object_match_name(const Obj_Entry *, const char *);
158 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160 struct dl_phdr_info *phdr_info);
161 static uint_fast32_t gnu_hash (const char *);
162 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163 const unsigned long);
165 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
166 void _r_debug_postinit(struct link_map *) __noinline;
169 * Data declarations.
171 static char *error_message; /* Message for dlerror(), or NULL */
172 struct r_debug r_debug; /* for GDB; */
173 static bool libmap_disable; /* Disable libmap */
174 static bool ld_loadfltr; /* Immediate filters processing */
175 static char *libmap_override; /* Maps to use in addition to libmap.conf */
176 static bool trust; /* False for setuid and setgid programs */
177 static bool dangerous_ld_env; /* True if environment variables have been
178 used to affect the libraries loaded */
179 static const char *ld_bind_now; /* Environment variable for immediate binding */
180 static const char *ld_debug; /* Environment variable for debugging */
181 static const char *ld_library_path; /* Environment variable for search path */
182 static const char *ld_library_dirs; /* Env variable for library descriptors */
183 static char *ld_preload; /* Environment variable for libraries to
184 load first */
185 static const char *ld_elf_hints_path; /* Env var. for alternative hints path */
186 static const char *ld_tracing; /* Called from ldd to print libs */
187 static const char *ld_utrace; /* Use utrace() to log events. */
188 static int (*rtld_functrace)( /* Optional function call tracing hook */
189 const char *caller_obj,
190 const char *callee_obj,
191 const char *callee_func,
192 void *stack);
193 static const Obj_Entry *rtld_functrace_obj; /* Object thereof */
194 static Obj_Entry *obj_list; /* Head of linked list of shared objects */
195 static Obj_Entry **obj_tail; /* Link field of last object in list */
196 static Obj_Entry **preload_tail;
197 static Obj_Entry *obj_main; /* The main program shared object */
198 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
199 static unsigned int obj_count; /* Number of objects in obj_list */
200 static unsigned int obj_loads; /* Number of objects in obj_list */
202 static int ld_resident; /* Non-zero if resident */
203 static const char *ld_ary[LD_ARY_CACHE];
204 static int ld_index;
205 static Objlist initlist;
207 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
208 STAILQ_HEAD_INITIALIZER(list_global);
209 static Objlist list_main = /* Objects loaded at program startup */
210 STAILQ_HEAD_INITIALIZER(list_main);
211 static Objlist list_fini = /* Objects needing fini() calls */
212 STAILQ_HEAD_INITIALIZER(list_fini);
214 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */
215 const char *__ld_sharedlib_base;
217 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
219 extern Elf_Dyn _DYNAMIC;
220 #pragma weak _DYNAMIC
221 #ifndef RTLD_IS_DYNAMIC
222 #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL)
223 #endif
225 #ifdef ENABLE_OSRELDATE
226 int osreldate;
227 #endif
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 #if 0
231 static int max_stack_flags;
232 #endif
235 * Global declarations normally provided by crt1. The dynamic linker is
236 * not built with crt1, so we have to provide them ourselves.
238 char *__progname;
239 char **environ;
242 * Used to pass argc, argv to init functions.
244 int main_argc;
245 char **main_argv;
248 * Globals to control TLS allocation.
250 size_t tls_last_offset; /* Static TLS offset of last module */
251 size_t tls_last_size; /* Static TLS size of last module */
252 size_t tls_static_space; /* Static TLS space allocated */
253 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */
254 int tls_max_index = 1; /* Largest module index allocated */
257 * Fill in a DoneList with an allocation large enough to hold all of
258 * the currently-loaded objects. Keep this as a macro since it calls
259 * alloca and we want that to occur within the scope of the caller.
261 #define donelist_init(dlp) \
262 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
263 assert((dlp)->objs != NULL), \
264 (dlp)->num_alloc = obj_count, \
265 (dlp)->num_used = 0)
267 #define UTRACE_DLOPEN_START 1
268 #define UTRACE_DLOPEN_STOP 2
269 #define UTRACE_DLCLOSE_START 3
270 #define UTRACE_DLCLOSE_STOP 4
271 #define UTRACE_LOAD_OBJECT 5
272 #define UTRACE_UNLOAD_OBJECT 6
273 #define UTRACE_ADD_RUNDEP 7
274 #define UTRACE_PRELOAD_FINISHED 8
275 #define UTRACE_INIT_CALL 9
276 #define UTRACE_FINI_CALL 10
278 struct utrace_rtld {
279 char sig[4]; /* 'RTLD' */
280 int event;
281 void *handle;
282 void *mapbase; /* Used for 'parent' and 'init/fini' */
283 size_t mapsize;
284 int refcnt; /* Used for 'mode' */
285 char name[MAXPATHLEN];
288 #define LD_UTRACE(e, h, mb, ms, r, n) do { \
289 if (ld_utrace != NULL) \
290 ld_utrace_log(e, h, mb, ms, r, n); \
291 } while (0)
293 static void
294 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
295 int refcnt, const char *name)
297 struct utrace_rtld ut;
299 ut.sig[0] = 'R';
300 ut.sig[1] = 'T';
301 ut.sig[2] = 'L';
302 ut.sig[3] = 'D';
303 ut.event = event;
304 ut.handle = handle;
305 ut.mapbase = mapbase;
306 ut.mapsize = mapsize;
307 ut.refcnt = refcnt;
308 bzero(ut.name, sizeof(ut.name));
309 if (name)
310 strlcpy(ut.name, name, sizeof(ut.name));
311 utrace(&ut, sizeof(ut));
315 * Main entry point for dynamic linking. The first argument is the
316 * stack pointer. The stack is expected to be laid out as described
317 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
318 * Specifically, the stack pointer points to a word containing
319 * ARGC. Following that in the stack is a null-terminated sequence
320 * of pointers to argument strings. Then comes a null-terminated
321 * sequence of pointers to environment strings. Finally, there is a
322 * sequence of "auxiliary vector" entries.
324 * The second argument points to a place to store the dynamic linker's
325 * exit procedure pointer and the third to a place to store the main
326 * program's object.
328 * The return value is the main program's entry point.
330 func_ptr_type
331 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
333 Elf_Auxinfo *aux_info[AT_COUNT];
334 int i;
335 int argc;
336 char **argv;
337 char **env;
338 Elf_Auxinfo *aux;
339 Elf_Auxinfo *auxp;
340 const char *argv0;
341 Objlist_Entry *entry;
342 Obj_Entry *obj;
343 Obj_Entry *last_interposer;
345 /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
346 Obj_Entry **preload_tail;
347 Objlist initlist;
348 from global to here. It will break the DWARF2 unwind scheme.
352 * On entry, the dynamic linker itself has not been relocated yet.
353 * Be very careful not to reference any global data until after
354 * init_rtld has returned. It is OK to reference file-scope statics
355 * and string constants, and to call static and global functions.
358 /* Find the auxiliary vector on the stack. */
359 argc = *sp++;
360 argv = (char **) sp;
361 sp += argc + 1; /* Skip over arguments and NULL terminator */
362 env = (char **) sp;
365 * If we aren't already resident we have to dig out some more info.
366 * Note that auxinfo does not exist when we are resident.
368 * I'm not sure about the ld_resident check. It seems to read zero
369 * prior to relocation, which is what we want. When running from a
370 * resident copy everything will be relocated so we are definitely
371 * good there.
373 if (ld_resident == 0) {
374 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
376 aux = (Elf_Auxinfo *) sp;
378 /* Digest the auxiliary vector. */
379 for (i = 0; i < AT_COUNT; i++)
380 aux_info[i] = NULL;
381 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
382 if (auxp->a_type < AT_COUNT)
383 aux_info[auxp->a_type] = auxp;
386 /* Initialize and relocate ourselves. */
387 assert(aux_info[AT_BASE] != NULL);
388 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
391 ld_index = 0; /* don't use old env cache in case we are resident */
392 __progname = obj_rtld.path;
393 argv0 = argv[0] != NULL ? argv[0] : "(null)";
394 environ = env;
395 main_argc = argc;
396 main_argv = argv;
398 trust = !issetugid();
400 ld_bind_now = _getenv_ld("LD_BIND_NOW");
402 * If the process is tainted, then we un-set the dangerous environment
403 * variables. The process will be marked as tainted until setuid(2)
404 * is called. If any child process calls setuid(2) we do not want any
405 * future processes to honor the potentially un-safe variables.
407 if (!trust) {
408 if ( unsetenv("LD_DEBUG")
409 || unsetenv("LD_PRELOAD")
410 || unsetenv("LD_LIBRARY_PATH")
411 || unsetenv("LD_LIBRARY_PATH_FDS")
412 || unsetenv("LD_ELF_HINTS_PATH")
413 || unsetenv("LD_LIBMAP")
414 || unsetenv("LD_LIBMAP_DISABLE")
415 || unsetenv("LD_LOADFLTR")
416 || unsetenv("LD_SHAREDLIB_BASE")
418 _rtld_error("environment corrupt; aborting");
419 die();
422 __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
423 ld_debug = _getenv_ld("LD_DEBUG");
424 libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
425 libmap_override = (char *)_getenv_ld("LD_LIBMAP");
426 ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
427 ld_library_dirs = _getenv_ld("LD_LIBRARY_PATH_FDS");
428 ld_preload = (char *)_getenv_ld("LD_PRELOAD");
429 ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
430 ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
431 dangerous_ld_env = (ld_library_path != NULL)
432 || (ld_preload != NULL)
433 || (ld_elf_hints_path != NULL)
434 || ld_loadfltr
435 || (libmap_override != NULL)
436 || libmap_disable
438 ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
439 ld_utrace = _getenv_ld("LD_UTRACE");
441 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
442 ld_elf_hints_path = _PATH_ELF_HINTS;
444 if (ld_debug != NULL && *ld_debug != '\0')
445 debug = 1;
446 dbg("%s is initialized, base address = %p", __progname,
447 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
448 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
449 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
451 dbg("initializing thread locks");
452 lockdflt_init();
455 * If we are resident we can skip work that we have already done.
456 * Note that the stack is reset and there is no Elf_Auxinfo
457 * when running from a resident image, and the static globals setup
458 * between here and resident_skip will have already been setup.
460 if (ld_resident)
461 goto resident_skip1;
464 * Load the main program, or process its program header if it is
465 * already loaded.
467 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */
468 int fd = aux_info[AT_EXECFD]->a_un.a_val;
469 dbg("loading main program");
470 obj_main = map_object(fd, argv0, NULL);
471 close(fd);
472 if (obj_main == NULL)
473 die();
474 #if 0
475 max_stack_flags = obj_main->stack_flags;
476 #endif
477 } else { /* Main program already loaded. */
478 const Elf_Phdr *phdr;
479 int phnum;
480 caddr_t entry;
482 dbg("processing main program's program header");
483 assert(aux_info[AT_PHDR] != NULL);
484 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
485 assert(aux_info[AT_PHNUM] != NULL);
486 phnum = aux_info[AT_PHNUM]->a_un.a_val;
487 assert(aux_info[AT_PHENT] != NULL);
488 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
489 assert(aux_info[AT_ENTRY] != NULL);
490 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
491 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
492 die();
495 char buf[MAXPATHLEN];
496 if (aux_info[AT_EXECPATH] != NULL) {
497 char *kexecpath;
499 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
500 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
501 if (kexecpath[0] == '/')
502 obj_main->path = kexecpath;
503 else if (getcwd(buf, sizeof(buf)) == NULL ||
504 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
505 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
506 obj_main->path = xstrdup(argv0);
507 else
508 obj_main->path = xstrdup(buf);
509 } else {
510 char resolved[MAXPATHLEN];
511 dbg("No AT_EXECPATH");
512 if (argv0[0] == '/') {
513 if (realpath(argv0, resolved) != NULL)
514 obj_main->path = xstrdup(resolved);
515 else
516 obj_main->path = xstrdup(argv0);
517 } else {
518 if (getcwd(buf, sizeof(buf)) != NULL
519 && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
520 && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
521 && access(buf, R_OK) == 0
522 && realpath(buf, resolved) != NULL)
523 obj_main->path = xstrdup(resolved);
524 else
525 obj_main->path = xstrdup(argv0);
528 dbg("obj_main path %s", obj_main->path);
529 obj_main->mainprog = true;
531 if (aux_info[AT_STACKPROT] != NULL &&
532 aux_info[AT_STACKPROT]->a_un.a_val != 0)
533 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
536 * Get the actual dynamic linker pathname from the executable if
537 * possible. (It should always be possible.) That ensures that
538 * gdb will find the right dynamic linker even if a non-standard
539 * one is being used.
541 if (obj_main->interp != NULL &&
542 strcmp(obj_main->interp, obj_rtld.path) != 0) {
543 free(obj_rtld.path);
544 obj_rtld.path = xstrdup(obj_main->interp);
545 __progname = obj_rtld.path;
548 digest_dynamic(obj_main, 0);
549 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
550 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
551 obj_main->dynsymcount);
553 linkmap_add(obj_main);
554 linkmap_add(&obj_rtld);
556 /* Link the main program into the list of objects. */
557 *obj_tail = obj_main;
558 obj_tail = &obj_main->next;
559 obj_count++;
560 obj_loads++;
562 /* Initialize a fake symbol for resolving undefined weak references. */
563 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
564 sym_zero.st_shndx = SHN_UNDEF;
565 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
567 if (!libmap_disable)
568 libmap_disable = (bool)lm_init(libmap_override);
570 dbg("loading LD_PRELOAD libraries");
571 if (load_preload_objects() == -1)
572 die();
573 preload_tail = obj_tail;
575 dbg("loading needed objects");
576 if (load_needed_objects(obj_main, 0) == -1)
577 die();
579 /* Make a list of all objects loaded at startup. */
580 last_interposer = obj_main;
581 for (obj = obj_list; obj != NULL; obj = obj->next) {
582 if (obj->z_interpose && obj != obj_main) {
583 objlist_put_after(&list_main, last_interposer, obj);
584 last_interposer = obj;
585 } else {
586 objlist_push_tail(&list_main, obj);
588 obj->refcount++;
591 dbg("checking for required versions");
592 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
593 die();
595 resident_skip1:
597 if (ld_tracing) { /* We're done */
598 trace_loaded_objects(obj_main);
599 exit(0);
602 if (ld_resident) /* XXX clean this up! */
603 goto resident_skip2;
605 if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
606 dump_relocations(obj_main);
607 exit (0);
610 /* setup TLS for main thread */
611 dbg("initializing initial thread local storage");
612 STAILQ_FOREACH(entry, &list_main, link) {
614 * Allocate all the initial objects out of the static TLS
615 * block even if they didn't ask for it.
617 allocate_tls_offset(entry->obj);
620 tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
623 * Do not try to allocate the TLS here, let libc do it itself.
624 * (crt1 for the program will call _init_tls())
627 if (relocate_objects(obj_main,
628 ld_bind_now != NULL && *ld_bind_now != '\0',
629 &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
630 die();
632 dbg("doing copy relocations");
633 if (do_copy_relocations(obj_main) == -1)
634 die();
636 resident_skip2:
638 if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
639 if (exec_sys_unregister(-1) < 0) {
640 dbg("exec_sys_unregister failed %d\n", errno);
641 exit(errno);
643 dbg("exec_sys_unregister success\n");
644 exit(0);
647 if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
648 dump_relocations(obj_main);
649 exit (0);
652 dbg("initializing key program variables");
653 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
654 set_program_var("environ", env);
655 set_program_var("__elf_aux_vector", aux);
657 if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
658 extern void resident_start(void);
659 ld_resident = 1;
660 if (exec_sys_register(resident_start) < 0) {
661 dbg("exec_sys_register failed %d\n", errno);
662 exit(errno);
664 dbg("exec_sys_register success\n");
665 exit(0);
668 /* Make a list of init functions to call. */
669 objlist_init(&initlist);
670 initlist_add_objects(obj_list, preload_tail, &initlist);
672 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
674 map_stacks_exec(NULL);
676 dbg("resolving ifuncs");
678 RtldLockState lockstate;
680 wlock_acquire(rtld_bind_lock, &lockstate);
681 if (resolve_objects_ifunc(
682 obj_main,
683 (ld_bind_now != NULL && *ld_bind_now != '\0'),
684 SYMLOOK_EARLY,
685 &lockstate) == -1) {
686 die();
688 lock_release(rtld_bind_lock, &lockstate);
692 * Do NOT call the initlist here, give libc a chance to set up
693 * the initial TLS segment. crt1 will then call _rtld_call_init().
696 dbg("transferring control to program entry point = %p", obj_main->entry);
698 /* Return the exit procedure and the program entry point. */
699 *exit_proc = rtld_exit;
700 *objp = obj_main;
701 return (func_ptr_type) obj_main->entry;
705 * Call the initialization list for dynamically loaded libraries.
706 * (called from crt1.c).
708 void
709 _rtld_call_init(void)
711 RtldLockState lockstate;
712 Obj_Entry *obj;
714 if (!obj_main->note_present && obj_main->valid_hash_gnu) {
716 * The use of a linker script with a PHDRS directive that does not include
717 * PT_NOTE will block the crt_no_init note. In this case we'll look for the
718 * recently added GNU hash dynamic tag which gets built by default. It is
719 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
720 * a gnu hash tag. If gnu hash found, consider binary to use new crt code.
722 obj_main->crt_no_init = true;
723 dbg("Setting crt_no_init without presence of PT_NOTE header");
726 wlock_acquire(rtld_bind_lock, &lockstate);
727 if (obj_main->crt_no_init)
728 preinit_main();
729 else {
731 * Make sure we don't call the main program's init and fini functions
732 * for binaries linked with old crt1 which calls _init itself.
734 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
735 obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
737 objlist_call_init(&initlist, &lockstate);
738 _r_debug_postinit(&obj_main->linkmap);
739 objlist_clear(&initlist);
740 dbg("loading filtees");
741 for (obj = obj_list->next; obj != NULL; obj = obj->next) {
742 if (ld_loadfltr || obj->z_loadfltr)
743 load_filtees(obj, 0, &lockstate);
745 lock_release(rtld_bind_lock, &lockstate);
748 void *
749 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
751 void *ptr;
752 Elf_Addr target;
754 ptr = (void *)make_function_pointer(def, obj);
755 target = ((Elf_Addr (*)(void))ptr)();
756 return ((void *)target);
759 Elf_Addr
760 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
762 const Elf_Rel *rel;
763 const Elf_Sym *def;
764 const Obj_Entry *defobj;
765 Elf_Addr *where;
766 Elf_Addr target;
767 RtldLockState lockstate;
769 rlock_acquire(rtld_bind_lock, &lockstate);
770 if (sigsetjmp(lockstate.env, 0) != 0)
771 lock_upgrade(rtld_bind_lock, &lockstate);
772 if (obj->pltrel)
773 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
774 else
775 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
777 where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
778 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
779 &lockstate);
780 if (def == NULL)
781 die();
782 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
783 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
784 else
785 target = (Elf_Addr)(defobj->relocbase + def->st_value);
787 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
788 defobj->strtab + def->st_name, basename(obj->path),
789 (void *)target, basename(defobj->path));
792 * If we have a function call tracing hook, and the
793 * hook would like to keep tracing this one function,
794 * prevent the relocation so we will wind up here
795 * the next time again.
797 * We don't want to functrace calls from the functracer
798 * to avoid recursive loops.
800 if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
801 if (rtld_functrace(obj->path,
802 defobj->path,
803 defobj->strtab + def->st_name,
804 stack)) {
805 lock_release(rtld_bind_lock, &lockstate);
806 return target;
811 * Write the new contents for the jmpslot. Note that depending on
812 * architecture, the value which we need to return back to the
813 * lazy binding trampoline may or may not be the target
814 * address. The value returned from reloc_jmpslot() is the value
815 * that the trampoline needs.
817 target = reloc_jmpslot(where, target, defobj, obj, rel);
818 lock_release(rtld_bind_lock, &lockstate);
819 return target;
823 * Error reporting function. Use it like printf. If formats the message
824 * into a buffer, and sets things up so that the next call to dlerror()
825 * will return the message.
827 void
828 _rtld_error(const char *fmt, ...)
830 static char buf[512];
831 va_list ap;
833 va_start(ap, fmt);
834 rtld_vsnprintf(buf, sizeof buf, fmt, ap);
835 error_message = buf;
836 va_end(ap);
840 * Return a dynamically-allocated copy of the current error message, if any.
842 static char *
843 errmsg_save(void)
845 return error_message == NULL ? NULL : xstrdup(error_message);
849 * Restore the current error message from a copy which was previously saved
850 * by errmsg_save(). The copy is freed.
852 static void
853 errmsg_restore(char *saved_msg)
855 if (saved_msg == NULL)
856 error_message = NULL;
857 else {
858 _rtld_error("%s", saved_msg);
859 free(saved_msg);
863 const char *
864 basename(const char *name)
866 const char *p = strrchr(name, '/');
867 return p != NULL ? p + 1 : name;
870 static struct utsname uts;
872 static char *
873 origin_subst_one(char *real, const char *kw, const char *subst,
874 bool may_free)
876 char *p, *p1, *res, *resp;
877 int subst_len, kw_len, subst_count, old_len, new_len;
879 kw_len = strlen(kw);
882 * First, count the number of the keyword occurrences, to
883 * preallocate the final string.
885 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
886 p1 = strstr(p, kw);
887 if (p1 == NULL)
888 break;
892 * If the keyword is not found, just return.
894 if (subst_count == 0)
895 return (may_free ? real : xstrdup(real));
898 * There is indeed something to substitute. Calculate the
899 * length of the resulting string, and allocate it.
901 subst_len = strlen(subst);
902 old_len = strlen(real);
903 new_len = old_len + (subst_len - kw_len) * subst_count;
904 res = xmalloc(new_len + 1);
907 * Now, execute the substitution loop.
909 for (p = real, resp = res, *resp = '\0';;) {
910 p1 = strstr(p, kw);
911 if (p1 != NULL) {
912 /* Copy the prefix before keyword. */
913 memcpy(resp, p, p1 - p);
914 resp += p1 - p;
915 /* Keyword replacement. */
916 memcpy(resp, subst, subst_len);
917 resp += subst_len;
918 *resp = '\0';
919 p = p1 + kw_len;
920 } else
921 break;
924 /* Copy to the end of string and finish. */
925 strcat(resp, p);
926 if (may_free)
927 free(real);
928 return (res);
931 static char *
932 origin_subst(char *real, const char *origin_path)
934 char *res1, *res2, *res3, *res4;
936 if (uts.sysname[0] == '\0') {
937 if (uname(&uts) != 0) {
938 _rtld_error("utsname failed: %d", errno);
939 return (NULL);
942 res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
943 res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
944 res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
945 res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
946 return (res4);
949 static void
950 die(void)
952 const char *msg = dlerror();
954 if (msg == NULL)
955 msg = "Fatal error";
956 rtld_fdputstr(STDERR_FILENO, msg);
957 rtld_fdputchar(STDERR_FILENO, '\n');
958 _exit(1);
962 * Process a shared object's DYNAMIC section, and save the important
963 * information in its Obj_Entry structure.
965 static void
966 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
967 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
969 const Elf_Dyn *dynp;
970 Needed_Entry **needed_tail = &obj->needed;
971 Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
972 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
973 const Elf_Hashelt *hashtab;
974 const Elf32_Word *hashval;
975 Elf32_Word bkt, nmaskwords;
976 int bloom_size32;
977 bool nmw_power2;
978 int plttype = DT_REL;
980 *dyn_rpath = NULL;
981 *dyn_soname = NULL;
982 *dyn_runpath = NULL;
984 obj->bind_now = false;
985 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
986 switch (dynp->d_tag) {
988 case DT_REL:
989 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
990 break;
992 case DT_RELSZ:
993 obj->relsize = dynp->d_un.d_val;
994 break;
996 case DT_RELENT:
997 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
998 break;
1000 case DT_JMPREL:
1001 obj->pltrel = (const Elf_Rel *)
1002 (obj->relocbase + dynp->d_un.d_ptr);
1003 break;
1005 case DT_PLTRELSZ:
1006 obj->pltrelsize = dynp->d_un.d_val;
1007 break;
1009 case DT_RELA:
1010 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1011 break;
1013 case DT_RELASZ:
1014 obj->relasize = dynp->d_un.d_val;
1015 break;
1017 case DT_RELAENT:
1018 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1019 break;
1021 case DT_PLTREL:
1022 plttype = dynp->d_un.d_val;
1023 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1024 break;
1026 case DT_SYMTAB:
1027 obj->symtab = (const Elf_Sym *)
1028 (obj->relocbase + dynp->d_un.d_ptr);
1029 break;
1031 case DT_SYMENT:
1032 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1033 break;
1035 case DT_STRTAB:
1036 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1037 break;
1039 case DT_STRSZ:
1040 obj->strsize = dynp->d_un.d_val;
1041 break;
1043 case DT_VERNEED:
1044 obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1045 dynp->d_un.d_val);
1046 break;
1048 case DT_VERNEEDNUM:
1049 obj->verneednum = dynp->d_un.d_val;
1050 break;
1052 case DT_VERDEF:
1053 obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1054 dynp->d_un.d_val);
1055 break;
1057 case DT_VERDEFNUM:
1058 obj->verdefnum = dynp->d_un.d_val;
1059 break;
1061 case DT_VERSYM:
1062 obj->versyms = (const Elf_Versym *)(obj->relocbase +
1063 dynp->d_un.d_val);
1064 break;
1066 case DT_HASH:
1068 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1069 dynp->d_un.d_ptr);
1070 obj->nbuckets = hashtab[0];
1071 obj->nchains = hashtab[1];
1072 obj->buckets = hashtab + 2;
1073 obj->chains = obj->buckets + obj->nbuckets;
1074 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1075 obj->buckets != NULL;
1077 break;
1079 case DT_GNU_HASH:
1081 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1082 dynp->d_un.d_ptr);
1083 obj->nbuckets_gnu = hashtab[0];
1084 obj->symndx_gnu = hashtab[1];
1085 nmaskwords = hashtab[2];
1086 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1087 /* Number of bitmask words is required to be power of 2 */
1088 nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1089 obj->maskwords_bm_gnu = nmaskwords - 1;
1090 obj->shift2_gnu = hashtab[3];
1091 obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1092 obj->buckets_gnu = hashtab + 4 + bloom_size32;
1093 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1094 obj->symndx_gnu;
1095 obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1096 obj->buckets_gnu != NULL;
1098 break;
1100 case DT_NEEDED:
1101 if (!obj->rtld) {
1102 Needed_Entry *nep = NEW(Needed_Entry);
1103 nep->name = dynp->d_un.d_val;
1104 nep->obj = NULL;
1105 nep->next = NULL;
1107 *needed_tail = nep;
1108 needed_tail = &nep->next;
1110 break;
1112 case DT_FILTER:
1113 if (!obj->rtld) {
1114 Needed_Entry *nep = NEW(Needed_Entry);
1115 nep->name = dynp->d_un.d_val;
1116 nep->obj = NULL;
1117 nep->next = NULL;
1119 *needed_filtees_tail = nep;
1120 needed_filtees_tail = &nep->next;
1122 break;
1124 case DT_AUXILIARY:
1125 if (!obj->rtld) {
1126 Needed_Entry *nep = NEW(Needed_Entry);
1127 nep->name = dynp->d_un.d_val;
1128 nep->obj = NULL;
1129 nep->next = NULL;
1131 *needed_aux_filtees_tail = nep;
1132 needed_aux_filtees_tail = &nep->next;
1134 break;
1136 case DT_PLTGOT:
1137 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1138 break;
1140 case DT_TEXTREL:
1141 obj->textrel = true;
1142 break;
1144 case DT_SYMBOLIC:
1145 obj->symbolic = true;
1146 break;
1148 case DT_RPATH:
1150 * We have to wait until later to process this, because we
1151 * might not have gotten the address of the string table yet.
1153 *dyn_rpath = dynp;
1154 break;
1156 case DT_SONAME:
1157 *dyn_soname = dynp;
1158 break;
1160 case DT_RUNPATH:
1161 *dyn_runpath = dynp;
1162 break;
1164 case DT_INIT:
1165 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1166 break;
1168 case DT_PREINIT_ARRAY:
1169 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1170 break;
1172 case DT_PREINIT_ARRAYSZ:
1173 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1174 break;
1176 case DT_INIT_ARRAY:
1177 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1178 break;
1180 case DT_INIT_ARRAYSZ:
1181 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1182 break;
1184 case DT_FINI:
1185 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1186 break;
1188 case DT_FINI_ARRAY:
1189 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1190 break;
1192 case DT_FINI_ARRAYSZ:
1193 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1194 break;
1196 case DT_DEBUG:
1197 /* XXX - not implemented yet */
1198 if (!early)
1199 dbg("Filling in DT_DEBUG entry");
1200 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1201 break;
1203 case DT_FLAGS:
1204 if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1205 obj->z_origin = true;
1206 if (dynp->d_un.d_val & DF_SYMBOLIC)
1207 obj->symbolic = true;
1208 if (dynp->d_un.d_val & DF_TEXTREL)
1209 obj->textrel = true;
1210 if (dynp->d_un.d_val & DF_BIND_NOW)
1211 obj->bind_now = true;
1212 /*if (dynp->d_un.d_val & DF_STATIC_TLS)
1214 break;
1216 case DT_FLAGS_1:
1217 if (dynp->d_un.d_val & DF_1_NOOPEN)
1218 obj->z_noopen = true;
1219 if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1220 obj->z_origin = true;
1221 /*if (dynp->d_un.d_val & DF_1_GLOBAL)
1222 XXX ;*/
1223 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1224 obj->bind_now = true;
1225 if (dynp->d_un.d_val & DF_1_NODELETE)
1226 obj->z_nodelete = true;
1227 if (dynp->d_un.d_val & DF_1_LOADFLTR)
1228 obj->z_loadfltr = true;
1229 if (dynp->d_un.d_val & DF_1_INTERPOSE)
1230 obj->z_interpose = true;
1231 if (dynp->d_un.d_val & DF_1_NODEFLIB)
1232 obj->z_nodeflib = true;
1233 break;
1235 default:
1236 if (!early) {
1237 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1238 (long)dynp->d_tag);
1240 break;
1244 obj->traced = false;
1246 if (plttype == DT_RELA) {
1247 obj->pltrela = (const Elf_Rela *) obj->pltrel;
1248 obj->pltrel = NULL;
1249 obj->pltrelasize = obj->pltrelsize;
1250 obj->pltrelsize = 0;
1253 /* Determine size of dynsym table (equal to nchains of sysv hash) */
1254 if (obj->valid_hash_sysv)
1255 obj->dynsymcount = obj->nchains;
1256 else if (obj->valid_hash_gnu) {
1257 obj->dynsymcount = 0;
1258 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1259 if (obj->buckets_gnu[bkt] == 0)
1260 continue;
1261 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1263 obj->dynsymcount++;
1264 while ((*hashval++ & 1u) == 0);
1266 obj->dynsymcount += obj->symndx_gnu;
1270 static void
1271 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1272 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1275 if (obj->z_origin && obj->origin_path == NULL) {
1276 obj->origin_path = xmalloc(PATH_MAX);
1277 if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1278 die();
1281 if (dyn_runpath != NULL) {
1282 obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1283 if (obj->z_origin)
1284 obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1286 else if (dyn_rpath != NULL) {
1287 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1288 if (obj->z_origin)
1289 obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1292 if (dyn_soname != NULL)
1293 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1296 static void
1297 digest_dynamic(Obj_Entry *obj, int early)
1299 const Elf_Dyn *dyn_rpath;
1300 const Elf_Dyn *dyn_soname;
1301 const Elf_Dyn *dyn_runpath;
1303 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1304 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1308 * Process a shared object's program header. This is used only for the
1309 * main program, when the kernel has already loaded the main program
1310 * into memory before calling the dynamic linker. It creates and
1311 * returns an Obj_Entry structure.
1313 static Obj_Entry *
1314 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1316 Obj_Entry *obj;
1317 const Elf_Phdr *phlimit = phdr + phnum;
1318 const Elf_Phdr *ph;
1319 Elf_Addr note_start, note_end;
1320 int nsegs = 0;
1322 obj = obj_new();
1323 for (ph = phdr; ph < phlimit; ph++) {
1324 if (ph->p_type != PT_PHDR)
1325 continue;
1327 obj->phdr = phdr;
1328 obj->phsize = ph->p_memsz;
1329 obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1330 break;
1333 obj->stack_flags = PF_X | PF_R | PF_W;
1335 for (ph = phdr; ph < phlimit; ph++) {
1336 switch (ph->p_type) {
1338 case PT_INTERP:
1339 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1340 break;
1342 case PT_LOAD:
1343 if (nsegs == 0) { /* First load segment */
1344 obj->vaddrbase = trunc_page(ph->p_vaddr);
1345 obj->mapbase = obj->vaddrbase + obj->relocbase;
1346 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1347 obj->vaddrbase;
1348 } else { /* Last load segment */
1349 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1350 obj->vaddrbase;
1352 nsegs++;
1353 break;
1355 case PT_DYNAMIC:
1356 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1357 break;
1359 case PT_TLS:
1360 obj->tlsindex = 1;
1361 obj->tlssize = ph->p_memsz;
1362 obj->tlsalign = ph->p_align;
1363 obj->tlsinitsize = ph->p_filesz;
1364 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1365 break;
1367 case PT_GNU_STACK:
1368 obj->stack_flags = ph->p_flags;
1369 break;
1371 case PT_GNU_RELRO:
1372 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1373 obj->relro_size = round_page(ph->p_memsz);
1374 break;
1376 case PT_NOTE:
1377 obj->note_present = true;
1378 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1379 note_end = note_start + ph->p_filesz;
1380 digest_notes(obj, note_start, note_end);
1381 break;
1384 if (nsegs < 1) {
1385 _rtld_error("%s: too few PT_LOAD segments", path);
1386 return NULL;
1389 obj->entry = entry;
1390 return obj;
1393 void
1394 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1396 const Elf_Note *note;
1397 const char *note_name;
1398 uintptr_t p;
1400 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1401 note = (const Elf_Note *)((const char *)(note + 1) +
1402 roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1403 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1404 if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1405 note->n_descsz != sizeof(int32_t))
1406 continue;
1407 if (note->n_type != ABI_NOTETYPE &&
1408 note->n_type != CRT_NOINIT_NOTETYPE)
1409 continue;
1410 note_name = (const char *)(note + 1);
1411 if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1412 continue;
1413 switch (note->n_type) {
1414 case ABI_NOTETYPE:
1415 /* DragonFly osrel note */
1416 p = (uintptr_t)(note + 1);
1417 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1418 obj->osrel = *(const int32_t *)(p);
1419 dbg("note osrel %d", obj->osrel);
1420 break;
1421 case CRT_NOINIT_NOTETYPE:
1422 /* DragonFly 'crt does not call init' note */
1423 obj->crt_no_init = true;
1424 dbg("note crt_no_init");
1425 break;
1430 static Obj_Entry *
1431 dlcheck(void *handle)
1433 Obj_Entry *obj;
1435 for (obj = obj_list; obj != NULL; obj = obj->next)
1436 if (obj == (Obj_Entry *) handle)
1437 break;
1439 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1440 _rtld_error("Invalid shared object handle %p", handle);
1441 return NULL;
1443 return obj;
1447 * If the given object is already in the donelist, return true. Otherwise
1448 * add the object to the list and return false.
1450 static bool
1451 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1453 unsigned int i;
1455 for (i = 0; i < dlp->num_used; i++)
1456 if (dlp->objs[i] == obj)
1457 return true;
1459 * Our donelist allocation should always be sufficient. But if
1460 * our threads locking isn't working properly, more shared objects
1461 * could have been loaded since we allocated the list. That should
1462 * never happen, but we'll handle it properly just in case it does.
1464 if (dlp->num_used < dlp->num_alloc)
1465 dlp->objs[dlp->num_used++] = obj;
1466 return false;
1470 * Hash function for symbol table lookup. Don't even think about changing
1471 * this. It is specified by the System V ABI.
1473 unsigned long
1474 elf_hash(const char *name)
1476 const unsigned char *p = (const unsigned char *) name;
1477 unsigned long h = 0;
1478 unsigned long g;
1480 while (*p != '\0') {
1481 h = (h << 4) + *p++;
1482 if ((g = h & 0xf0000000) != 0)
1483 h ^= g >> 24;
1484 h &= ~g;
1486 return h;
1490 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1491 * unsigned in case it's implemented with a wider type.
1493 static uint_fast32_t
1494 gnu_hash(const char *s)
1496 uint_fast32_t h;
1497 unsigned char c;
1499 h = 5381;
1500 for (c = *s; c != '\0'; c = *++s)
1501 h = h * 33 + c;
1502 return (h & 0xffffffff);
1507 * Find the library with the given name, and return its full pathname.
1508 * The returned string is dynamically allocated. Generates an error
1509 * message and returns NULL if the library cannot be found.
1511 * If the second argument is non-NULL, then it refers to an already-
1512 * loaded shared object, whose library search path will be searched.
1514 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1515 * descriptor (which is close-on-exec) will be passed out via the third
1516 * argument.
1518 * The search order is:
1519 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1520 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1521 * LD_LIBRARY_PATH
1522 * DT_RUNPATH in the referencing file
1523 * ldconfig hints (if -z nodefaultlib, filter out default library directories
1524 * from list)
1525 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1527 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1529 static char *
1530 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1532 char *pathname;
1533 char *name;
1534 bool nodeflib, objgiven;
1536 objgiven = refobj != NULL;
1537 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */
1538 if (xname[0] != '/' && !trust) {
1539 _rtld_error("Absolute pathname required for shared object \"%s\"",
1540 xname);
1541 return NULL;
1543 if (objgiven && refobj->z_origin) {
1544 return (origin_subst(__DECONST(char *, xname),
1545 refobj->origin_path));
1546 } else {
1547 return (xstrdup(xname));
1551 if (libmap_disable || !objgiven ||
1552 (name = lm_find(refobj->path, xname)) == NULL)
1553 name = (char *)xname;
1555 dbg(" Searching for \"%s\"", name);
1557 nodeflib = objgiven ? refobj->z_nodeflib : false;
1558 if ((objgiven &&
1559 (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1560 (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1561 (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1562 (pathname = search_library_path(name, ld_library_path)) != NULL ||
1563 (objgiven &&
1564 (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1565 (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1566 (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1567 (objgiven && !nodeflib &&
1568 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1569 return (pathname);
1571 if (objgiven && refobj->path != NULL) {
1572 _rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1573 name, basename(refobj->path));
1574 } else {
1575 _rtld_error("Shared object \"%s\" not found", name);
1577 return NULL;
1581 * Given a symbol number in a referencing object, find the corresponding
1582 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1583 * no definition was found. Returns a pointer to the Obj_Entry of the
1584 * defining object via the reference parameter DEFOBJ_OUT.
1586 const Elf_Sym *
1587 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1588 const Obj_Entry **defobj_out, int flags, SymCache *cache,
1589 RtldLockState *lockstate)
1591 const Elf_Sym *ref;
1592 const Elf_Sym *def;
1593 const Obj_Entry *defobj;
1594 SymLook req;
1595 const char *name;
1596 int res;
1599 * If we have already found this symbol, get the information from
1600 * the cache.
1602 if (symnum >= refobj->dynsymcount)
1603 return NULL; /* Bad object */
1604 if (cache != NULL && cache[symnum].sym != NULL) {
1605 *defobj_out = cache[symnum].obj;
1606 return cache[symnum].sym;
1609 ref = refobj->symtab + symnum;
1610 name = refobj->strtab + ref->st_name;
1611 def = NULL;
1612 defobj = NULL;
1615 * We don't have to do a full scale lookup if the symbol is local.
1616 * We know it will bind to the instance in this load module; to
1617 * which we already have a pointer (ie ref). By not doing a lookup,
1618 * we not only improve performance, but it also avoids unresolvable
1619 * symbols when local symbols are not in the hash table.
1621 * This might occur for TLS module relocations, which simply use
1622 * symbol 0.
1624 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1625 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1626 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1627 symnum);
1629 symlook_init(&req, name);
1630 req.flags = flags;
1631 req.ventry = fetch_ventry(refobj, symnum);
1632 req.lockstate = lockstate;
1633 res = symlook_default(&req, refobj);
1634 if (res == 0) {
1635 def = req.sym_out;
1636 defobj = req.defobj_out;
1638 } else {
1639 def = ref;
1640 defobj = refobj;
1644 * If we found no definition and the reference is weak, treat the
1645 * symbol as having the value zero.
1647 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1648 def = &sym_zero;
1649 defobj = obj_main;
1652 if (def != NULL) {
1653 *defobj_out = defobj;
1654 /* Record the information in the cache to avoid subsequent lookups. */
1655 if (cache != NULL) {
1656 cache[symnum].sym = def;
1657 cache[symnum].obj = defobj;
1659 } else {
1660 if (refobj != &obj_rtld)
1661 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1663 return def;
1667 * Return the search path from the ldconfig hints file, reading it if
1668 * necessary. If nostdlib is true, then the default search paths are
1669 * not added to result.
1671 * Returns NULL if there are problems with the hints file,
1672 * or if the search path there is empty.
1674 static const char *
1675 gethints(bool nostdlib)
1677 static char *hints, *filtered_path;
1678 struct elfhints_hdr hdr;
1679 struct fill_search_info_args sargs, hargs;
1680 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1681 struct dl_serpath *SLPpath, *hintpath;
1682 char *p;
1683 unsigned int SLPndx, hintndx, fndx, fcount;
1684 int fd;
1685 size_t flen;
1686 bool skip;
1688 /* First call, read the hints file */
1689 if (hints == NULL) {
1690 /* Keep from trying again in case the hints file is bad. */
1691 hints = "";
1693 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1694 return (NULL);
1695 if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1696 hdr.magic != ELFHINTS_MAGIC ||
1697 hdr.version != 1) {
1698 close(fd);
1699 return (NULL);
1701 p = xmalloc(hdr.dirlistlen + 1);
1702 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1703 read(fd, p, hdr.dirlistlen + 1) !=
1704 (ssize_t)hdr.dirlistlen + 1) {
1705 free(p);
1706 close(fd);
1707 return (NULL);
1709 hints = p;
1710 close(fd);
1714 * If caller agreed to receive list which includes the default
1715 * paths, we are done. Otherwise, if we still have not
1716 * calculated filtered result, do it now.
1718 if (!nostdlib)
1719 return (hints[0] != '\0' ? hints : NULL);
1720 if (filtered_path != NULL)
1721 goto filt_ret;
1724 * Obtain the list of all configured search paths, and the
1725 * list of the default paths.
1727 * First estimate the size of the results.
1729 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1730 smeta.dls_cnt = 0;
1731 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1732 hmeta.dls_cnt = 0;
1734 sargs.request = RTLD_DI_SERINFOSIZE;
1735 sargs.serinfo = &smeta;
1736 hargs.request = RTLD_DI_SERINFOSIZE;
1737 hargs.serinfo = &hmeta;
1739 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1740 path_enumerate(p, fill_search_info, &hargs);
1742 SLPinfo = xmalloc(smeta.dls_size);
1743 hintinfo = xmalloc(hmeta.dls_size);
1746 * Next fetch both sets of paths.
1748 sargs.request = RTLD_DI_SERINFO;
1749 sargs.serinfo = SLPinfo;
1750 sargs.serpath = &SLPinfo->dls_serpath[0];
1751 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1753 hargs.request = RTLD_DI_SERINFO;
1754 hargs.serinfo = hintinfo;
1755 hargs.serpath = &hintinfo->dls_serpath[0];
1756 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1758 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1759 path_enumerate(p, fill_search_info, &hargs);
1762 * Now calculate the difference between two sets, by excluding
1763 * standard paths from the full set.
1765 fndx = 0;
1766 fcount = 0;
1767 filtered_path = xmalloc(hdr.dirlistlen + 1);
1768 hintpath = &hintinfo->dls_serpath[0];
1769 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1770 skip = false;
1771 SLPpath = &SLPinfo->dls_serpath[0];
1773 * Check each standard path against current.
1775 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1776 /* matched, skip the path */
1777 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1778 skip = true;
1779 break;
1782 if (skip)
1783 continue;
1785 * Not matched against any standard path, add the path
1786 * to result. Separate consecutive paths with ':'.
1788 if (fcount > 0) {
1789 filtered_path[fndx] = ':';
1790 fndx++;
1792 fcount++;
1793 flen = strlen(hintpath->dls_name);
1794 strncpy((filtered_path + fndx), hintpath->dls_name, flen);
1795 fndx += flen;
1797 filtered_path[fndx] = '\0';
1799 free(SLPinfo);
1800 free(hintinfo);
1802 filt_ret:
1803 return (filtered_path[0] != '\0' ? filtered_path : NULL);
1806 static void
1807 init_dag(Obj_Entry *root)
1809 const Needed_Entry *needed;
1810 const Objlist_Entry *elm;
1811 DoneList donelist;
1813 if (root->dag_inited)
1814 return;
1815 donelist_init(&donelist);
1817 /* Root object belongs to own DAG. */
1818 objlist_push_tail(&root->dldags, root);
1819 objlist_push_tail(&root->dagmembers, root);
1820 donelist_check(&donelist, root);
1823 * Add dependencies of root object to DAG in breadth order
1824 * by exploiting the fact that each new object get added
1825 * to the tail of the dagmembers list.
1827 STAILQ_FOREACH(elm, &root->dagmembers, link) {
1828 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1829 if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1830 continue;
1831 objlist_push_tail(&needed->obj->dldags, root);
1832 objlist_push_tail(&root->dagmembers, needed->obj);
1835 root->dag_inited = true;
1838 static void
1839 process_nodelete(Obj_Entry *root)
1841 const Objlist_Entry *elm;
1844 * Walk over object DAG and process every dependent object that
1845 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1846 * which then should have its reference upped separately.
1848 STAILQ_FOREACH(elm, &root->dagmembers, link) {
1849 if (elm->obj != NULL && elm->obj->z_nodelete &&
1850 !elm->obj->ref_nodel) {
1851 dbg("obj %s nodelete", elm->obj->path);
1852 init_dag(elm->obj);
1853 ref_dag(elm->obj);
1854 elm->obj->ref_nodel = true;
1860 * Initialize the dynamic linker. The argument is the address at which
1861 * the dynamic linker has been mapped into memory. The primary task of
1862 * this function is to relocate the dynamic linker.
1864 static void
1865 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1867 Obj_Entry objtmp; /* Temporary rtld object */
1868 const Elf_Ehdr *ehdr;
1869 const Elf_Dyn *dyn_rpath;
1870 const Elf_Dyn *dyn_soname;
1871 const Elf_Dyn *dyn_runpath;
1874 * Conjure up an Obj_Entry structure for the dynamic linker.
1876 * The "path" member can't be initialized yet because string constants
1877 * cannot yet be accessed. Below we will set it correctly.
1879 memset(&objtmp, 0, sizeof(objtmp));
1880 objtmp.path = NULL;
1881 objtmp.rtld = true;
1882 objtmp.mapbase = mapbase;
1883 #ifdef PIC
1884 objtmp.relocbase = mapbase;
1885 #endif
1886 if (RTLD_IS_DYNAMIC()) {
1887 objtmp.dynamic = rtld_dynamic(&objtmp);
1888 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1889 assert(objtmp.needed == NULL);
1890 assert(!objtmp.textrel);
1893 * Temporarily put the dynamic linker entry into the object list, so
1894 * that symbols can be found.
1897 relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1899 ehdr = (Elf_Ehdr *)mapbase;
1900 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1901 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1903 /* Initialize the object list. */
1904 obj_tail = &obj_list;
1906 /* Now that non-local variables can be accesses, copy out obj_rtld. */
1907 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1909 #ifdef ENABLE_OSRELDATE
1910 if (aux_info[AT_OSRELDATE] != NULL)
1911 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1912 #endif
1914 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1916 /* Replace the path with a dynamically allocated copy. */
1917 obj_rtld.path = xstrdup(PATH_RTLD);
1919 r_debug.r_brk = r_debug_state;
1920 r_debug.r_state = RT_CONSISTENT;
1924 * Add the init functions from a needed object list (and its recursive
1925 * needed objects) to "list". This is not used directly; it is a helper
1926 * function for initlist_add_objects(). The write lock must be held
1927 * when this function is called.
1929 static void
1930 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1932 /* Recursively process the successor needed objects. */
1933 if (needed->next != NULL)
1934 initlist_add_neededs(needed->next, list);
1936 /* Process the current needed object. */
1937 if (needed->obj != NULL)
1938 initlist_add_objects(needed->obj, &needed->obj->next, list);
1942 * Scan all of the DAGs rooted in the range of objects from "obj" to
1943 * "tail" and add their init functions to "list". This recurses over
1944 * the DAGs and ensure the proper init ordering such that each object's
1945 * needed libraries are initialized before the object itself. At the
1946 * same time, this function adds the objects to the global finalization
1947 * list "list_fini" in the opposite order. The write lock must be
1948 * held when this function is called.
1950 static void
1951 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1954 if (obj->init_scanned || obj->init_done)
1955 return;
1956 obj->init_scanned = true;
1958 /* Recursively process the successor objects. */
1959 if (&obj->next != tail)
1960 initlist_add_objects(obj->next, tail, list);
1962 /* Recursively process the needed objects. */
1963 if (obj->needed != NULL)
1964 initlist_add_neededs(obj->needed, list);
1965 if (obj->needed_filtees != NULL)
1966 initlist_add_neededs(obj->needed_filtees, list);
1967 if (obj->needed_aux_filtees != NULL)
1968 initlist_add_neededs(obj->needed_aux_filtees, list);
1970 /* Add the object to the init list. */
1971 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1972 obj->init_array != (Elf_Addr)NULL)
1973 objlist_push_tail(list, obj);
1975 /* Add the object to the global fini list in the reverse order. */
1976 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1977 && !obj->on_fini_list) {
1978 objlist_push_head(&list_fini, obj);
1979 obj->on_fini_list = true;
1983 #ifndef FPTR_TARGET
1984 #define FPTR_TARGET(f) ((Elf_Addr) (f))
1985 #endif
1987 static void
1988 free_needed_filtees(Needed_Entry *n)
1990 Needed_Entry *needed, *needed1;
1992 for (needed = n; needed != NULL; needed = needed->next) {
1993 if (needed->obj != NULL) {
1994 dlclose(needed->obj);
1995 needed->obj = NULL;
1998 for (needed = n; needed != NULL; needed = needed1) {
1999 needed1 = needed->next;
2000 free(needed);
2004 static void
2005 unload_filtees(Obj_Entry *obj)
2008 free_needed_filtees(obj->needed_filtees);
2009 obj->needed_filtees = NULL;
2010 free_needed_filtees(obj->needed_aux_filtees);
2011 obj->needed_aux_filtees = NULL;
2012 obj->filtees_loaded = false;
2015 static void
2016 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2017 RtldLockState *lockstate)
2020 for (; needed != NULL; needed = needed->next) {
2021 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2022 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2023 RTLD_LOCAL, lockstate);
2027 static void
2028 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2031 lock_restart_for_upgrade(lockstate);
2032 if (!obj->filtees_loaded) {
2033 load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2034 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2035 obj->filtees_loaded = true;
2039 static int
2040 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2042 Obj_Entry *obj1;
2044 for (; needed != NULL; needed = needed->next) {
2045 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2046 flags & ~RTLD_LO_NOLOAD);
2047 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2048 return (-1);
2050 return (0);
2054 * Given a shared object, traverse its list of needed objects, and load
2055 * each of them. Returns 0 on success. Generates an error message and
2056 * returns -1 on failure.
2058 static int
2059 load_needed_objects(Obj_Entry *first, int flags)
2061 Obj_Entry *obj;
2063 for (obj = first; obj != NULL; obj = obj->next) {
2064 if (process_needed(obj, obj->needed, flags) == -1)
2065 return (-1);
2067 return (0);
2070 static int
2071 load_preload_objects(void)
2073 char *p = ld_preload;
2074 Obj_Entry *obj;
2075 static const char delim[] = " \t:;";
2077 if (p == NULL)
2078 return 0;
2080 p += strspn(p, delim);
2081 while (*p != '\0') {
2082 size_t len = strcspn(p, delim);
2083 char savech;
2084 SymLook req;
2085 int res;
2087 savech = p[len];
2088 p[len] = '\0';
2089 obj = load_object(p, -1, NULL, 0);
2090 if (obj == NULL)
2091 return -1; /* XXX - cleanup */
2092 obj->z_interpose = true;
2093 p[len] = savech;
2094 p += len;
2095 p += strspn(p, delim);
2097 /* Check for the magic tracing function */
2098 symlook_init(&req, RTLD_FUNCTRACE);
2099 res = symlook_obj(&req, obj);
2100 if (res == 0) {
2101 rtld_functrace = (void *)(req.defobj_out->relocbase +
2102 req.sym_out->st_value);
2103 rtld_functrace_obj = req.defobj_out;
2106 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2107 return 0;
2110 static const char *
2111 printable_path(const char *path)
2114 return (path == NULL ? "<unknown>" : path);
2118 * Load a shared object into memory, if it is not already loaded. The
2119 * object may be specified by name or by user-supplied file descriptor
2120 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2121 * duplicate is.
2123 * Returns a pointer to the Obj_Entry for the object. Returns NULL
2124 * on failure.
2126 static Obj_Entry *
2127 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2129 Obj_Entry *obj;
2130 int fd;
2131 struct stat sb;
2132 char *path;
2134 fd = -1;
2135 if (name != NULL) {
2136 for (obj = obj_list->next; obj != NULL; obj = obj->next) {
2137 if (object_match_name(obj, name))
2138 return (obj);
2141 path = find_library(name, refobj, &fd);
2142 if (path == NULL)
2143 return (NULL);
2144 } else
2145 path = NULL;
2147 if (fd >= 0) {
2149 * search_library_pathfds() opens a fresh file descriptor for the
2150 * library, so there is no need to dup().
2152 } else if (fd_u == -1) {
2154 * If we didn't find a match by pathname, or the name is not
2155 * supplied, open the file and check again by device and inode.
2156 * This avoids false mismatches caused by multiple links or ".."
2157 * in pathnames.
2159 * To avoid a race, we open the file and use fstat() rather than
2160 * using stat().
2162 if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2163 _rtld_error("Cannot open \"%s\"", path);
2164 free(path);
2165 return (NULL);
2167 } else {
2168 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2169 if (fd == -1) {
2170 _rtld_error("Cannot dup fd");
2171 free(path);
2172 return (NULL);
2175 if (fstat(fd, &sb) == -1) {
2176 _rtld_error("Cannot fstat \"%s\"", printable_path(path));
2177 close(fd);
2178 free(path);
2179 return NULL;
2181 for (obj = obj_list->next; obj != NULL; obj = obj->next)
2182 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2183 break;
2184 if (obj != NULL && name != NULL) {
2185 object_add_name(obj, name);
2186 free(path);
2187 close(fd);
2188 return obj;
2190 if (flags & RTLD_LO_NOLOAD) {
2191 free(path);
2192 close(fd);
2193 return (NULL);
2196 /* First use of this object, so we must map it in */
2197 obj = do_load_object(fd, name, path, &sb, flags);
2198 if (obj == NULL)
2199 free(path);
2200 close(fd);
2202 return obj;
2205 static Obj_Entry *
2206 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2207 int flags)
2209 Obj_Entry *obj;
2210 struct statfs fs;
2213 * but first, make sure that environment variables haven't been
2214 * used to circumvent the noexec flag on a filesystem.
2216 if (dangerous_ld_env) {
2217 if (fstatfs(fd, &fs) != 0) {
2218 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2219 return NULL;
2221 if (fs.f_flags & MNT_NOEXEC) {
2222 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2223 return NULL;
2226 dbg("loading \"%s\"", printable_path(path));
2227 obj = map_object(fd, printable_path(path), sbp);
2228 if (obj == NULL)
2229 return NULL;
2232 * If DT_SONAME is present in the object, digest_dynamic2 already
2233 * added it to the object names.
2235 if (name != NULL)
2236 object_add_name(obj, name);
2237 obj->path = path;
2238 digest_dynamic(obj, 0);
2239 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2240 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2241 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2242 RTLD_LO_DLOPEN) {
2243 dbg("refusing to load non-loadable \"%s\"", obj->path);
2244 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
2245 munmap(obj->mapbase, obj->mapsize);
2246 obj_free(obj);
2247 return (NULL);
2250 *obj_tail = obj;
2251 obj_tail = &obj->next;
2252 obj_count++;
2253 obj_loads++;
2254 linkmap_add(obj); /* for GDB & dlinfo() */
2255 #if 0
2256 max_stack_flags |= obj->stack_flags;
2257 #endif
2259 dbg(" %p .. %p: %s", obj->mapbase,
2260 obj->mapbase + obj->mapsize - 1, obj->path);
2261 if (obj->textrel)
2262 dbg(" WARNING: %s has impure text", obj->path);
2263 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2264 obj->path);
2266 return obj;
2269 static Obj_Entry *
2270 obj_from_addr(const void *addr)
2272 Obj_Entry *obj;
2274 for (obj = obj_list; obj != NULL; obj = obj->next) {
2275 if (addr < (void *) obj->mapbase)
2276 continue;
2277 if (addr < (void *) (obj->mapbase + obj->mapsize))
2278 return obj;
2280 return NULL;
2284 * If the main program is defined with a .preinit_array section, call
2285 * each function in order. This must occur before the initialization
2286 * of any shared object or the main program.
2288 static void
2289 preinit_main(void)
2291 Elf_Addr *preinit_addr;
2292 int index;
2294 preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2295 if (preinit_addr == NULL)
2296 return;
2298 for (index = 0; index < obj_main->preinit_array_num; index++) {
2299 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2300 dbg("calling preinit function for %s at %p", obj_main->path,
2301 (void *)preinit_addr[index]);
2302 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2303 0, 0, obj_main->path);
2304 call_init_pointer(obj_main, preinit_addr[index]);
2310 * Call the finalization functions for each of the objects in "list"
2311 * belonging to the DAG of "root" and referenced once. If NULL "root"
2312 * is specified, every finalization function will be called regardless
2313 * of the reference count and the list elements won't be freed. All of
2314 * the objects are expected to have non-NULL fini functions.
2316 static void
2317 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2319 Objlist_Entry *elm;
2320 char *saved_msg;
2321 Elf_Addr *fini_addr;
2322 int index;
2324 assert(root == NULL || root->refcount == 1);
2327 * Preserve the current error message since a fini function might
2328 * call into the dynamic linker and overwrite it.
2330 saved_msg = errmsg_save();
2331 do {
2332 STAILQ_FOREACH(elm, list, link) {
2333 if (root != NULL && (elm->obj->refcount != 1 ||
2334 objlist_find(&root->dagmembers, elm->obj) == NULL))
2335 continue;
2337 /* Remove object from fini list to prevent recursive invocation. */
2338 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2340 * XXX: If a dlopen() call references an object while the
2341 * fini function is in progress, we might end up trying to
2342 * unload the referenced object in dlclose() or the object
2343 * won't be unloaded although its fini function has been
2344 * called.
2346 lock_release(rtld_bind_lock, lockstate);
2349 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2350 * When this happens, DT_FINI_ARRAY is processed first.
2351 * It is also processed backwards. It is possible to encounter
2352 * DT_FINI_ARRAY elements with values of 0 or 1, but they need
2353 * to be ignored.
2355 fini_addr = (Elf_Addr *)elm->obj->fini_array;
2356 if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2357 for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2358 if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2359 dbg("calling fini array function for %s at %p",
2360 elm->obj->path, (void *)fini_addr[index]);
2361 LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2362 (void *)fini_addr[index], 0, 0, elm->obj->path);
2363 call_initfini_pointer(elm->obj, fini_addr[index]);
2367 if (elm->obj->fini != (Elf_Addr)NULL) {
2368 dbg("calling fini function for %s at %p", elm->obj->path,
2369 (void *)elm->obj->fini);
2370 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2371 0, 0, elm->obj->path);
2372 call_initfini_pointer(elm->obj, elm->obj->fini);
2374 wlock_acquire(rtld_bind_lock, lockstate);
2375 /* No need to free anything if process is going down. */
2376 if (root != NULL)
2377 free(elm);
2379 * We must restart the list traversal after every fini call
2380 * because a dlclose() call from the fini function or from
2381 * another thread might have modified the reference counts.
2383 break;
2385 } while (elm != NULL);
2386 errmsg_restore(saved_msg);
2390 * Call the initialization functions for each of the objects in
2391 * "list". All of the objects are expected to have non-NULL init
2392 * functions.
2394 static void
2395 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2397 Objlist_Entry *elm;
2398 Obj_Entry *obj;
2399 char *saved_msg;
2400 Elf_Addr *init_addr;
2401 int index;
2404 * Clean init_scanned flag so that objects can be rechecked and
2405 * possibly initialized earlier if any of vectors called below
2406 * cause the change by using dlopen.
2408 for (obj = obj_list; obj != NULL; obj = obj->next)
2409 obj->init_scanned = false;
2412 * Preserve the current error message since an init function might
2413 * call into the dynamic linker and overwrite it.
2415 saved_msg = errmsg_save();
2416 STAILQ_FOREACH(elm, list, link) {
2417 if (elm->obj->init_done) /* Initialized early. */
2418 continue;
2421 * Race: other thread might try to use this object before current
2422 * one completes the initilization. Not much can be done here
2423 * without better locking.
2425 elm->obj->init_done = true;
2426 lock_release(rtld_bind_lock, lockstate);
2429 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2430 * When this happens, DT_INIT is processed first.
2431 * It is possible to encounter DT_INIT_ARRAY elements with values
2432 * of 0 or 1, but they need to be ignored.
2434 if (elm->obj->init != (Elf_Addr)NULL) {
2435 dbg("calling init function for %s at %p", elm->obj->path,
2436 (void *)elm->obj->init);
2437 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2438 0, 0, elm->obj->path);
2439 call_initfini_pointer(elm->obj, elm->obj->init);
2441 init_addr = (Elf_Addr *)elm->obj->init_array;
2442 if (init_addr != NULL) {
2443 for (index = 0; index < elm->obj->init_array_num; index++) {
2444 if (init_addr[index] != 0 && init_addr[index] != 1) {
2445 dbg("calling init array function for %s at %p", elm->obj->path,
2446 (void *)init_addr[index]);
2447 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2448 (void *)init_addr[index], 0, 0, elm->obj->path);
2449 call_init_pointer(elm->obj, init_addr[index]);
2453 wlock_acquire(rtld_bind_lock, lockstate);
2455 errmsg_restore(saved_msg);
2458 static void
2459 objlist_clear(Objlist *list)
2461 Objlist_Entry *elm;
2463 while (!STAILQ_EMPTY(list)) {
2464 elm = STAILQ_FIRST(list);
2465 STAILQ_REMOVE_HEAD(list, link);
2466 free(elm);
2470 static Objlist_Entry *
2471 objlist_find(Objlist *list, const Obj_Entry *obj)
2473 Objlist_Entry *elm;
2475 STAILQ_FOREACH(elm, list, link)
2476 if (elm->obj == obj)
2477 return elm;
2478 return NULL;
2481 static void
2482 objlist_init(Objlist *list)
2484 STAILQ_INIT(list);
2487 static void
2488 objlist_push_head(Objlist *list, Obj_Entry *obj)
2490 Objlist_Entry *elm;
2492 elm = NEW(Objlist_Entry);
2493 elm->obj = obj;
2494 STAILQ_INSERT_HEAD(list, elm, link);
2497 static void
2498 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2500 Objlist_Entry *elm;
2502 elm = NEW(Objlist_Entry);
2503 elm->obj = obj;
2504 STAILQ_INSERT_TAIL(list, elm, link);
2507 static void
2508 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2510 Objlist_Entry *elm, *listelm;
2512 STAILQ_FOREACH(listelm, list, link) {
2513 if (listelm->obj == listobj)
2514 break;
2516 elm = NEW(Objlist_Entry);
2517 elm->obj = obj;
2518 if (listelm != NULL)
2519 STAILQ_INSERT_AFTER(list, listelm, elm, link);
2520 else
2521 STAILQ_INSERT_TAIL(list, elm, link);
2524 static void
2525 objlist_remove(Objlist *list, Obj_Entry *obj)
2527 Objlist_Entry *elm;
2529 if ((elm = objlist_find(list, obj)) != NULL) {
2530 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2531 free(elm);
2536 * Relocate dag rooted in the specified object.
2537 * Returns 0 on success, or -1 on failure.
2540 static int
2541 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2542 int flags, RtldLockState *lockstate)
2544 Objlist_Entry *elm;
2545 int error;
2547 error = 0;
2548 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2549 error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2550 lockstate);
2551 if (error == -1)
2552 break;
2554 return (error);
2558 * Prepare for, or clean after, relocating an object marked with
2559 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only
2560 * segments are remapped read-write. After relocations are done, the
2561 * segment's permissions are returned back to the modes specified in
2562 * the phdrs. If any relocation happened, or always for wired
2563 * program, COW is triggered.
2565 static int
2566 reloc_textrel_prot(Obj_Entry *obj, bool before)
2568 const Elf_Phdr *ph;
2569 void *base;
2570 size_t l, sz;
2571 int prot;
2573 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2574 l--, ph++) {
2575 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2576 continue;
2577 base = obj->relocbase + trunc_page(ph->p_vaddr);
2578 sz = round_page(ph->p_vaddr + ph->p_filesz) -
2579 trunc_page(ph->p_vaddr);
2580 prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2582 * Make sure modified text segments are included in the
2583 * core dump since we modified it. This unfortunately causes the
2584 * entire text segment to core-out but we don't have much of a
2585 * choice. We could try to only reenable core dumps on pages
2586 * in which relocations occured but that is likely most of the text
2587 * pages anyway, and even that would not work because the rest of
2588 * the text pages would wind up as a read-only OBJT_DEFAULT object
2589 * (created due to our modifications) backed by the original OBJT_VNODE
2590 * object, and the ELF coredump code is currently only able to dump
2591 * vnode records for pure vnode-backed mappings, not vnode backings
2592 * to memory objects.
2594 if (before == false)
2595 madvise(base, sz, MADV_CORE);
2596 if (mprotect(base, sz, prot) == -1) {
2597 _rtld_error("%s: Cannot write-%sable text segment: %s",
2598 obj->path, before ? "en" : "dis",
2599 rtld_strerror(errno));
2600 return (-1);
2603 return (0);
2607 * Relocate single object.
2608 * Returns 0 on success, or -1 on failure.
2610 static int
2611 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2612 int flags, RtldLockState *lockstate)
2615 if (obj->relocated)
2616 return (0);
2617 obj->relocated = true;
2618 if (obj != rtldobj)
2619 dbg("relocating \"%s\"", obj->path);
2621 if (obj->symtab == NULL || obj->strtab == NULL ||
2622 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2623 _rtld_error("%s: Shared object has no run-time symbol table",
2624 obj->path);
2625 return (-1);
2628 /* There are relocations to the write-protected text segment. */
2629 if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2630 return (-1);
2632 /* Process the non-PLT non-IFUNC relocations. */
2633 if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2634 return (-1);
2636 /* Re-protected the text segment. */
2637 if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2638 return (-1);
2640 /* Set the special PLT or GOT entries. */
2641 init_pltgot(obj);
2643 /* Process the PLT relocations. */
2644 if (reloc_plt(obj) == -1)
2645 return (-1);
2646 /* Relocate the jump slots if we are doing immediate binding. */
2647 if (obj->bind_now || bind_now)
2648 if (reloc_jmpslots(obj, flags, lockstate) == -1)
2649 return (-1);
2652 * Process the non-PLT IFUNC relocations. The relocations are
2653 * processed in two phases, because IFUNC resolvers may
2654 * reference other symbols, which must be readily processed
2655 * before resolvers are called.
2657 if (obj->non_plt_gnu_ifunc &&
2658 reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2659 return (-1);
2662 * Set up the magic number and version in the Obj_Entry. These
2663 * were checked in the crt1.o from the original ElfKit, so we
2664 * set them for backward compatibility.
2666 obj->magic = RTLD_MAGIC;
2667 obj->version = RTLD_VERSION;
2670 * Set relocated data to read-only status if protection specified
2673 if (obj->relro_size) {
2674 if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2675 _rtld_error("%s: Cannot enforce relro relocation: %s",
2676 obj->path, rtld_strerror(errno));
2677 return (-1);
2680 return (0);
2684 * Relocate newly-loaded shared objects. The argument is a pointer to
2685 * the Obj_Entry for the first such object. All objects from the first
2686 * to the end of the list of objects are relocated. Returns 0 on success,
2687 * or -1 on failure.
2689 static int
2690 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2691 int flags, RtldLockState *lockstate)
2693 Obj_Entry *obj;
2694 int error;
2696 for (error = 0, obj = first; obj != NULL; obj = obj->next) {
2697 error = relocate_object(obj, bind_now, rtldobj, flags,
2698 lockstate);
2699 if (error == -1)
2700 break;
2702 return (error);
2706 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2707 * referencing STT_GNU_IFUNC symbols is postponed till the other
2708 * relocations are done. The indirect functions specified as
2709 * ifunc are allowed to call other symbols, so we need to have
2710 * objects relocated before asking for resolution from indirects.
2712 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2713 * instead of the usual lazy handling of PLT slots. It is
2714 * consistent with how GNU does it.
2716 static int
2717 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2718 RtldLockState *lockstate)
2720 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2721 return (-1);
2722 if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2723 reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2724 return (-1);
2725 return (0);
2728 static int
2729 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2730 RtldLockState *lockstate)
2732 Obj_Entry *obj;
2734 for (obj = first; obj != NULL; obj = obj->next) {
2735 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2736 return (-1);
2738 return (0);
2741 static int
2742 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2743 RtldLockState *lockstate)
2745 Objlist_Entry *elm;
2747 STAILQ_FOREACH(elm, list, link) {
2748 if (resolve_object_ifunc(elm->obj, bind_now, flags,
2749 lockstate) == -1)
2750 return (-1);
2752 return (0);
2756 * Cleanup procedure. It will be called (by the atexit mechanism) just
2757 * before the process exits.
2759 static void
2760 rtld_exit(void)
2762 RtldLockState lockstate;
2764 wlock_acquire(rtld_bind_lock, &lockstate);
2765 dbg("rtld_exit()");
2766 objlist_call_fini(&list_fini, NULL, &lockstate);
2767 /* No need to remove the items from the list, since we are exiting. */
2768 if (!libmap_disable)
2769 lm_fini();
2770 lock_release(rtld_bind_lock, &lockstate);
2774 * Iterate over a search path, translate each element, and invoke the
2775 * callback on the result.
2777 static void *
2778 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2780 const char *trans;
2781 if (path == NULL)
2782 return (NULL);
2784 path += strspn(path, ":;");
2785 while (*path != '\0') {
2786 size_t len;
2787 char *res;
2789 len = strcspn(path, ":;");
2790 trans = lm_findn(NULL, path, len);
2791 if (trans)
2792 res = callback(trans, strlen(trans), arg);
2793 else
2794 res = callback(path, len, arg);
2796 if (res != NULL)
2797 return (res);
2799 path += len;
2800 path += strspn(path, ":;");
2803 return (NULL);
2806 struct try_library_args {
2807 const char *name;
2808 size_t namelen;
2809 char *buffer;
2810 size_t buflen;
2813 static void *
2814 try_library_path(const char *dir, size_t dirlen, void *param)
2816 struct try_library_args *arg;
2818 arg = param;
2819 if (*dir == '/' || trust) {
2820 char *pathname;
2822 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2823 return (NULL);
2825 pathname = arg->buffer;
2826 strncpy(pathname, dir, dirlen);
2827 pathname[dirlen] = '/';
2828 strcpy(pathname + dirlen + 1, arg->name);
2830 dbg(" Trying \"%s\"", pathname);
2831 if (access(pathname, F_OK) == 0) { /* We found it */
2832 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2833 strcpy(pathname, arg->buffer);
2834 return (pathname);
2837 return (NULL);
2840 static char *
2841 search_library_path(const char *name, const char *path)
2843 char *p;
2844 struct try_library_args arg;
2846 if (path == NULL)
2847 return NULL;
2849 arg.name = name;
2850 arg.namelen = strlen(name);
2851 arg.buffer = xmalloc(PATH_MAX);
2852 arg.buflen = PATH_MAX;
2854 p = path_enumerate(path, try_library_path, &arg);
2856 free(arg.buffer);
2858 return (p);
2863 * Finds the library with the given name using the directory descriptors
2864 * listed in the LD_LIBRARY_PATH_FDS environment variable.
2866 * Returns a freshly-opened close-on-exec file descriptor for the library,
2867 * or -1 if the library cannot be found.
2869 static char *
2870 search_library_pathfds(const char *name, const char *path, int *fdp)
2872 char *envcopy, *fdstr, *found, *last_token;
2873 size_t len;
2874 int dirfd, fd;
2876 dbg("%s('%s', '%s', fdp)", __func__, name, path);
2878 /* Don't load from user-specified libdirs into setuid binaries. */
2879 if (!trust)
2880 return (NULL);
2882 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2883 if (path == NULL)
2884 return (NULL);
2886 /* LD_LIBRARY_PATH_FDS only works with relative paths. */
2887 if (name[0] == '/') {
2888 dbg("Absolute path (%s) passed to %s", name, __func__);
2889 return (NULL);
2893 * Use strtok_r() to walk the FD:FD:FD list. This requires a local
2894 * copy of the path, as strtok_r rewrites separator tokens
2895 * with '\0'.
2897 found = NULL;
2898 envcopy = xstrdup(path);
2899 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2900 fdstr = strtok_r(NULL, ":", &last_token)) {
2901 dirfd = parse_libdir(fdstr);
2902 if (dirfd < 0)
2903 break;
2904 fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2905 if (fd >= 0) {
2906 *fdp = fd;
2907 len = strlen(fdstr) + strlen(name) + 3;
2908 found = xmalloc(len);
2909 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2910 _rtld_error("error generating '%d/%s'",
2911 dirfd, name);
2912 die();
2914 dbg("open('%s') => %d", found, fd);
2915 break;
2918 free(envcopy);
2920 return (found);
2925 dlclose(void *handle)
2927 Obj_Entry *root;
2928 RtldLockState lockstate;
2930 wlock_acquire(rtld_bind_lock, &lockstate);
2931 root = dlcheck(handle);
2932 if (root == NULL) {
2933 lock_release(rtld_bind_lock, &lockstate);
2934 return -1;
2936 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2937 root->path);
2939 /* Unreference the object and its dependencies. */
2940 root->dl_refcount--;
2942 if (root->refcount == 1) {
2944 * The object will be no longer referenced, so we must unload it.
2945 * First, call the fini functions.
2947 objlist_call_fini(&list_fini, root, &lockstate);
2949 unref_dag(root);
2951 /* Finish cleaning up the newly-unreferenced objects. */
2952 GDB_STATE(RT_DELETE,&root->linkmap);
2953 unload_object(root);
2954 GDB_STATE(RT_CONSISTENT,NULL);
2955 } else
2956 unref_dag(root);
2958 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2959 lock_release(rtld_bind_lock, &lockstate);
2960 return 0;
2963 char *
2964 dlerror(void)
2966 char *msg = error_message;
2967 error_message = NULL;
2968 return msg;
2971 void *
2972 dlopen(const char *name, int mode)
2975 return (rtld_dlopen(name, -1, mode));
2978 void *
2979 fdlopen(int fd, int mode)
2982 return (rtld_dlopen(NULL, fd, mode));
2985 static void *
2986 rtld_dlopen(const char *name, int fd, int mode)
2988 RtldLockState lockstate;
2989 int lo_flags;
2991 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2992 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2993 if (ld_tracing != NULL) {
2994 rlock_acquire(rtld_bind_lock, &lockstate);
2995 if (sigsetjmp(lockstate.env, 0) != 0)
2996 lock_upgrade(rtld_bind_lock, &lockstate);
2997 environ = (char **)*get_program_var_addr("environ", &lockstate);
2998 lock_release(rtld_bind_lock, &lockstate);
3000 lo_flags = RTLD_LO_DLOPEN;
3001 if (mode & RTLD_NODELETE)
3002 lo_flags |= RTLD_LO_NODELETE;
3003 if (mode & RTLD_NOLOAD)
3004 lo_flags |= RTLD_LO_NOLOAD;
3005 if (ld_tracing != NULL)
3006 lo_flags |= RTLD_LO_TRACE;
3008 return (dlopen_object(name, fd, obj_main, lo_flags,
3009 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3012 static void
3013 dlopen_cleanup(Obj_Entry *obj)
3016 obj->dl_refcount--;
3017 unref_dag(obj);
3018 if (obj->refcount == 0)
3019 unload_object(obj);
3022 static Obj_Entry *
3023 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3024 int mode, RtldLockState *lockstate)
3026 Obj_Entry **old_obj_tail;
3027 Obj_Entry *obj;
3028 Objlist initlist;
3029 RtldLockState mlockstate;
3030 int result;
3032 objlist_init(&initlist);
3034 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3035 wlock_acquire(rtld_bind_lock, &mlockstate);
3036 lockstate = &mlockstate;
3038 GDB_STATE(RT_ADD,NULL);
3040 old_obj_tail = obj_tail;
3041 obj = NULL;
3042 if (name == NULL && fd == -1) {
3043 obj = obj_main;
3044 obj->refcount++;
3045 } else {
3046 obj = load_object(name, fd, refobj, lo_flags);
3049 if (obj) {
3050 obj->dl_refcount++;
3051 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3052 objlist_push_tail(&list_global, obj);
3053 if (*old_obj_tail != NULL) { /* We loaded something new. */
3054 assert(*old_obj_tail == obj);
3055 result = load_needed_objects(obj,
3056 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3057 init_dag(obj);
3058 ref_dag(obj);
3059 if (result != -1)
3060 result = rtld_verify_versions(&obj->dagmembers);
3061 if (result != -1 && ld_tracing)
3062 goto trace;
3063 if (result == -1 || relocate_object_dag(obj,
3064 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3065 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3066 lockstate) == -1) {
3067 dlopen_cleanup(obj);
3068 obj = NULL;
3069 } else if (lo_flags & RTLD_LO_EARLY) {
3071 * Do not call the init functions for early loaded
3072 * filtees. The image is still not initialized enough
3073 * for them to work.
3075 * Our object is found by the global object list and
3076 * will be ordered among all init calls done right
3077 * before transferring control to main.
3079 } else {
3080 /* Make list of init functions to call. */
3081 initlist_add_objects(obj, &obj->next, &initlist);
3084 * Process all no_delete objects here, given them own
3085 * DAGs to prevent their dependencies from being unloaded.
3086 * This has to be done after we have loaded all of the
3087 * dependencies, so that we do not miss any.
3089 if (obj != NULL)
3090 process_nodelete(obj);
3091 } else {
3093 * Bump the reference counts for objects on this DAG. If
3094 * this is the first dlopen() call for the object that was
3095 * already loaded as a dependency, initialize the dag
3096 * starting at it.
3098 init_dag(obj);
3099 ref_dag(obj);
3101 if ((lo_flags & RTLD_LO_TRACE) != 0)
3102 goto trace;
3104 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3105 obj->z_nodelete) && !obj->ref_nodel) {
3106 dbg("obj %s nodelete", obj->path);
3107 ref_dag(obj);
3108 obj->z_nodelete = obj->ref_nodel = true;
3112 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3113 name);
3114 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3116 if (!(lo_flags & RTLD_LO_EARLY)) {
3117 map_stacks_exec(lockstate);
3120 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3121 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3122 lockstate) == -1) {
3123 objlist_clear(&initlist);
3124 dlopen_cleanup(obj);
3125 if (lockstate == &mlockstate)
3126 lock_release(rtld_bind_lock, lockstate);
3127 return (NULL);
3130 if (!(lo_flags & RTLD_LO_EARLY)) {
3131 /* Call the init functions. */
3132 objlist_call_init(&initlist, lockstate);
3134 objlist_clear(&initlist);
3135 if (lockstate == &mlockstate)
3136 lock_release(rtld_bind_lock, lockstate);
3137 return obj;
3138 trace:
3139 trace_loaded_objects(obj);
3140 if (lockstate == &mlockstate)
3141 lock_release(rtld_bind_lock, lockstate);
3142 exit(0);
3145 static void *
3146 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3147 int flags)
3149 DoneList donelist;
3150 const Obj_Entry *obj, *defobj;
3151 const Elf_Sym *def;
3152 SymLook req;
3153 RtldLockState lockstate;
3154 tls_index ti;
3155 int res;
3157 def = NULL;
3158 defobj = NULL;
3159 symlook_init(&req, name);
3160 req.ventry = ve;
3161 req.flags = flags | SYMLOOK_IN_PLT;
3162 req.lockstate = &lockstate;
3164 rlock_acquire(rtld_bind_lock, &lockstate);
3165 if (sigsetjmp(lockstate.env, 0) != 0)
3166 lock_upgrade(rtld_bind_lock, &lockstate);
3167 if (handle == NULL || handle == RTLD_NEXT ||
3168 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3170 if ((obj = obj_from_addr(retaddr)) == NULL) {
3171 _rtld_error("Cannot determine caller's shared object");
3172 lock_release(rtld_bind_lock, &lockstate);
3173 return NULL;
3175 if (handle == NULL) { /* Just the caller's shared object. */
3176 res = symlook_obj(&req, obj);
3177 if (res == 0) {
3178 def = req.sym_out;
3179 defobj = req.defobj_out;
3181 } else if (handle == RTLD_NEXT || /* Objects after caller's */
3182 handle == RTLD_SELF) { /* ... caller included */
3183 if (handle == RTLD_NEXT)
3184 obj = obj->next;
3185 for (; obj != NULL; obj = obj->next) {
3186 res = symlook_obj(&req, obj);
3187 if (res == 0) {
3188 if (def == NULL ||
3189 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3190 def = req.sym_out;
3191 defobj = req.defobj_out;
3192 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3193 break;
3198 * Search the dynamic linker itself, and possibly resolve the
3199 * symbol from there. This is how the application links to
3200 * dynamic linker services such as dlopen.
3202 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3203 res = symlook_obj(&req, &obj_rtld);
3204 if (res == 0) {
3205 def = req.sym_out;
3206 defobj = req.defobj_out;
3209 } else {
3210 assert(handle == RTLD_DEFAULT);
3211 res = symlook_default(&req, obj);
3212 if (res == 0) {
3213 defobj = req.defobj_out;
3214 def = req.sym_out;
3217 } else {
3218 if ((obj = dlcheck(handle)) == NULL) {
3219 lock_release(rtld_bind_lock, &lockstate);
3220 return NULL;
3223 donelist_init(&donelist);
3224 if (obj->mainprog) {
3225 /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3226 res = symlook_global(&req, &donelist);
3227 if (res == 0) {
3228 def = req.sym_out;
3229 defobj = req.defobj_out;
3232 * Search the dynamic linker itself, and possibly resolve the
3233 * symbol from there. This is how the application links to
3234 * dynamic linker services such as dlopen.
3236 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3237 res = symlook_obj(&req, &obj_rtld);
3238 if (res == 0) {
3239 def = req.sym_out;
3240 defobj = req.defobj_out;
3244 else {
3245 /* Search the whole DAG rooted at the given object. */
3246 res = symlook_list(&req, &obj->dagmembers, &donelist);
3247 if (res == 0) {
3248 def = req.sym_out;
3249 defobj = req.defobj_out;
3254 if (def != NULL) {
3255 lock_release(rtld_bind_lock, &lockstate);
3258 * The value required by the caller is derived from the value
3259 * of the symbol. this is simply the relocated value of the
3260 * symbol.
3262 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3263 return (make_function_pointer(def, defobj));
3264 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3265 return (rtld_resolve_ifunc(defobj, def));
3266 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3267 ti.ti_module = defobj->tlsindex;
3268 ti.ti_offset = def->st_value;
3269 return (__tls_get_addr(&ti));
3270 } else
3271 return (defobj->relocbase + def->st_value);
3274 _rtld_error("Undefined symbol \"%s\"", name);
3275 lock_release(rtld_bind_lock, &lockstate);
3276 return NULL;
3279 void *
3280 dlsym(void *handle, const char *name)
3282 return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3283 SYMLOOK_DLSYM);
3286 dlfunc_t
3287 dlfunc(void *handle, const char *name)
3289 union {
3290 void *d;
3291 dlfunc_t f;
3292 } rv;
3294 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3295 SYMLOOK_DLSYM);
3296 return (rv.f);
3299 void *
3300 dlvsym(void *handle, const char *name, const char *version)
3302 Ver_Entry ventry;
3304 ventry.name = version;
3305 ventry.file = NULL;
3306 ventry.hash = elf_hash(version);
3307 ventry.flags= 0;
3308 return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3309 SYMLOOK_DLSYM);
3313 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3315 const Obj_Entry *obj;
3316 RtldLockState lockstate;
3318 rlock_acquire(rtld_bind_lock, &lockstate);
3319 obj = obj_from_addr(addr);
3320 if (obj == NULL) {
3321 _rtld_error("No shared object contains address");
3322 lock_release(rtld_bind_lock, &lockstate);
3323 return (0);
3325 rtld_fill_dl_phdr_info(obj, phdr_info);
3326 lock_release(rtld_bind_lock, &lockstate);
3327 return (1);
3331 dladdr(const void *addr, Dl_info *info)
3333 const Obj_Entry *obj;
3334 const Elf_Sym *def;
3335 void *symbol_addr;
3336 unsigned long symoffset;
3337 RtldLockState lockstate;
3339 rlock_acquire(rtld_bind_lock, &lockstate);
3340 obj = obj_from_addr(addr);
3341 if (obj == NULL) {
3342 _rtld_error("No shared object contains address");
3343 lock_release(rtld_bind_lock, &lockstate);
3344 return 0;
3346 info->dli_fname = obj->path;
3347 info->dli_fbase = obj->mapbase;
3348 info->dli_saddr = NULL;
3349 info->dli_sname = NULL;
3352 * Walk the symbol list looking for the symbol whose address is
3353 * closest to the address sent in.
3355 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3356 def = obj->symtab + symoffset;
3359 * For skip the symbol if st_shndx is either SHN_UNDEF or
3360 * SHN_COMMON.
3362 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3363 continue;
3366 * If the symbol is greater than the specified address, or if it
3367 * is further away from addr than the current nearest symbol,
3368 * then reject it.
3370 symbol_addr = obj->relocbase + def->st_value;
3371 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3372 continue;
3374 /* Update our idea of the nearest symbol. */
3375 info->dli_sname = obj->strtab + def->st_name;
3376 info->dli_saddr = symbol_addr;
3378 /* Exact match? */
3379 if (info->dli_saddr == addr)
3380 break;
3382 lock_release(rtld_bind_lock, &lockstate);
3383 return 1;
3387 dlinfo(void *handle, int request, void *p)
3389 const Obj_Entry *obj;
3390 RtldLockState lockstate;
3391 int error;
3393 rlock_acquire(rtld_bind_lock, &lockstate);
3395 if (handle == NULL || handle == RTLD_SELF) {
3396 void *retaddr;
3398 retaddr = __builtin_return_address(0); /* __GNUC__ only */
3399 if ((obj = obj_from_addr(retaddr)) == NULL)
3400 _rtld_error("Cannot determine caller's shared object");
3401 } else
3402 obj = dlcheck(handle);
3404 if (obj == NULL) {
3405 lock_release(rtld_bind_lock, &lockstate);
3406 return (-1);
3409 error = 0;
3410 switch (request) {
3411 case RTLD_DI_LINKMAP:
3412 *((struct link_map const **)p) = &obj->linkmap;
3413 break;
3414 case RTLD_DI_ORIGIN:
3415 error = rtld_dirname(obj->path, p);
3416 break;
3418 case RTLD_DI_SERINFOSIZE:
3419 case RTLD_DI_SERINFO:
3420 error = do_search_info(obj, request, (struct dl_serinfo *)p);
3421 break;
3423 default:
3424 _rtld_error("Invalid request %d passed to dlinfo()", request);
3425 error = -1;
3428 lock_release(rtld_bind_lock, &lockstate);
3430 return (error);
3433 static void
3434 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3437 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3438 phdr_info->dlpi_name = obj->path;
3439 phdr_info->dlpi_phdr = obj->phdr;
3440 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3441 phdr_info->dlpi_tls_modid = obj->tlsindex;
3442 phdr_info->dlpi_tls_data = obj->tlsinit;
3443 phdr_info->dlpi_adds = obj_loads;
3444 phdr_info->dlpi_subs = obj_loads - obj_count;
3448 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3450 struct dl_phdr_info phdr_info;
3451 const Obj_Entry *obj;
3452 RtldLockState bind_lockstate, phdr_lockstate;
3453 int error;
3455 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3456 rlock_acquire(rtld_bind_lock, &bind_lockstate);
3458 error = 0;
3460 for (obj = obj_list; obj != NULL; obj = obj->next) {
3461 rtld_fill_dl_phdr_info(obj, &phdr_info);
3462 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3463 break;
3466 if (error == 0) {
3467 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3468 error = callback(&phdr_info, sizeof(phdr_info), param);
3471 lock_release(rtld_bind_lock, &bind_lockstate);
3472 lock_release(rtld_phdr_lock, &phdr_lockstate);
3474 return (error);
3477 static void *
3478 fill_search_info(const char *dir, size_t dirlen, void *param)
3480 struct fill_search_info_args *arg;
3482 arg = param;
3484 if (arg->request == RTLD_DI_SERINFOSIZE) {
3485 arg->serinfo->dls_cnt ++;
3486 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3487 } else {
3488 struct dl_serpath *s_entry;
3490 s_entry = arg->serpath;
3491 s_entry->dls_name = arg->strspace;
3492 s_entry->dls_flags = arg->flags;
3494 strncpy(arg->strspace, dir, dirlen);
3495 arg->strspace[dirlen] = '\0';
3497 arg->strspace += dirlen + 1;
3498 arg->serpath++;
3501 return (NULL);
3504 static int
3505 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3507 struct dl_serinfo _info;
3508 struct fill_search_info_args args;
3510 args.request = RTLD_DI_SERINFOSIZE;
3511 args.serinfo = &_info;
3513 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3514 _info.dls_cnt = 0;
3516 path_enumerate(obj->rpath, fill_search_info, &args);
3517 path_enumerate(ld_library_path, fill_search_info, &args);
3518 path_enumerate(obj->runpath, fill_search_info, &args);
3519 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3520 if (!obj->z_nodeflib)
3521 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3524 if (request == RTLD_DI_SERINFOSIZE) {
3525 info->dls_size = _info.dls_size;
3526 info->dls_cnt = _info.dls_cnt;
3527 return (0);
3530 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3531 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3532 return (-1);
3535 args.request = RTLD_DI_SERINFO;
3536 args.serinfo = info;
3537 args.serpath = &info->dls_serpath[0];
3538 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3540 args.flags = LA_SER_RUNPATH;
3541 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3542 return (-1);
3544 args.flags = LA_SER_LIBPATH;
3545 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3546 return (-1);
3548 args.flags = LA_SER_RUNPATH;
3549 if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3550 return (-1);
3552 args.flags = LA_SER_CONFIG;
3553 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3554 != NULL)
3555 return (-1);
3557 args.flags = LA_SER_DEFAULT;
3558 if (!obj->z_nodeflib &&
3559 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3560 return (-1);
3561 return (0);
3564 static int
3565 rtld_dirname(const char *path, char *bname)
3567 const char *endp;
3569 /* Empty or NULL string gets treated as "." */
3570 if (path == NULL || *path == '\0') {
3571 bname[0] = '.';
3572 bname[1] = '\0';
3573 return (0);
3576 /* Strip trailing slashes */
3577 endp = path + strlen(path) - 1;
3578 while (endp > path && *endp == '/')
3579 endp--;
3581 /* Find the start of the dir */
3582 while (endp > path && *endp != '/')
3583 endp--;
3585 /* Either the dir is "/" or there are no slashes */
3586 if (endp == path) {
3587 bname[0] = *endp == '/' ? '/' : '.';
3588 bname[1] = '\0';
3589 return (0);
3590 } else {
3591 do {
3592 endp--;
3593 } while (endp > path && *endp == '/');
3596 if (endp - path + 2 > PATH_MAX)
3598 _rtld_error("Filename is too long: %s", path);
3599 return(-1);
3602 strncpy(bname, path, endp - path + 1);
3603 bname[endp - path + 1] = '\0';
3604 return (0);
3607 static int
3608 rtld_dirname_abs(const char *path, char *base)
3610 char base_rel[PATH_MAX];
3612 if (rtld_dirname(path, base) == -1)
3613 return (-1);
3614 if (base[0] == '/')
3615 return (0);
3616 if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3617 strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3618 strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3619 return (-1);
3620 strcpy(base, base_rel);
3621 return (0);
3624 static void
3625 linkmap_add(Obj_Entry *obj)
3627 struct link_map *l = &obj->linkmap;
3628 struct link_map *prev;
3630 obj->linkmap.l_name = obj->path;
3631 obj->linkmap.l_addr = obj->mapbase;
3632 obj->linkmap.l_ld = obj->dynamic;
3634 if (r_debug.r_map == NULL) {
3635 r_debug.r_map = l;
3636 return;
3640 * Scan to the end of the list, but not past the entry for the
3641 * dynamic linker, which we want to keep at the very end.
3643 for (prev = r_debug.r_map;
3644 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3645 prev = prev->l_next)
3648 /* Link in the new entry. */
3649 l->l_prev = prev;
3650 l->l_next = prev->l_next;
3651 if (l->l_next != NULL)
3652 l->l_next->l_prev = l;
3653 prev->l_next = l;
3656 static void
3657 linkmap_delete(Obj_Entry *obj)
3659 struct link_map *l = &obj->linkmap;
3661 if (l->l_prev == NULL) {
3662 if ((r_debug.r_map = l->l_next) != NULL)
3663 l->l_next->l_prev = NULL;
3664 return;
3667 if ((l->l_prev->l_next = l->l_next) != NULL)
3668 l->l_next->l_prev = l->l_prev;
3672 * Function for the debugger to set a breakpoint on to gain control.
3674 * The two parameters allow the debugger to easily find and determine
3675 * what the runtime loader is doing and to whom it is doing it.
3677 * When the loadhook trap is hit (r_debug_state, set at program
3678 * initialization), the arguments can be found on the stack:
3680 * +8 struct link_map *m
3681 * +4 struct r_debug *rd
3682 * +0 RetAddr
3684 void
3685 r_debug_state(struct r_debug* rd, struct link_map *m)
3688 * The following is a hack to force the compiler to emit calls to
3689 * this function, even when optimizing. If the function is empty,
3690 * the compiler is not obliged to emit any code for calls to it,
3691 * even when marked __noinline. However, gdb depends on those
3692 * calls being made.
3694 __asm __volatile("" : : : "memory");
3698 * A function called after init routines have completed. This can be used to
3699 * break before a program's entry routine is called, and can be used when
3700 * main is not available in the symbol table.
3702 void
3703 _r_debug_postinit(struct link_map *m)
3706 /* See r_debug_state(). */
3707 __asm __volatile("" : : : "memory");
3711 * Get address of the pointer variable in the main program.
3712 * Prefer non-weak symbol over the weak one.
3714 static const void **
3715 get_program_var_addr(const char *name, RtldLockState *lockstate)
3717 SymLook req;
3718 DoneList donelist;
3720 symlook_init(&req, name);
3721 req.lockstate = lockstate;
3722 donelist_init(&donelist);
3723 if (symlook_global(&req, &donelist) != 0)
3724 return (NULL);
3725 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3726 return ((const void **)make_function_pointer(req.sym_out,
3727 req.defobj_out));
3728 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3729 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3730 else
3731 return ((const void **)(req.defobj_out->relocbase +
3732 req.sym_out->st_value));
3736 * Set a pointer variable in the main program to the given value. This
3737 * is used to set key variables such as "environ" before any of the
3738 * init functions are called.
3740 static void
3741 set_program_var(const char *name, const void *value)
3743 const void **addr;
3745 if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3746 dbg("\"%s\": *%p <-- %p", name, addr, value);
3747 *addr = value;
3752 * Search the global objects, including dependencies and main object,
3753 * for the given symbol.
3755 static int
3756 symlook_global(SymLook *req, DoneList *donelist)
3758 SymLook req1;
3759 const Objlist_Entry *elm;
3760 int res;
3762 symlook_init_from_req(&req1, req);
3764 /* Search all objects loaded at program start up. */
3765 if (req->defobj_out == NULL ||
3766 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3767 res = symlook_list(&req1, &list_main, donelist);
3768 if (res == 0 && (req->defobj_out == NULL ||
3769 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3770 req->sym_out = req1.sym_out;
3771 req->defobj_out = req1.defobj_out;
3772 assert(req->defobj_out != NULL);
3776 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3777 STAILQ_FOREACH(elm, &list_global, link) {
3778 if (req->defobj_out != NULL &&
3779 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3780 break;
3781 res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3782 if (res == 0 && (req->defobj_out == NULL ||
3783 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3784 req->sym_out = req1.sym_out;
3785 req->defobj_out = req1.defobj_out;
3786 assert(req->defobj_out != NULL);
3790 return (req->sym_out != NULL ? 0 : ESRCH);
3794 * This is a special version of getenv which is far more efficient
3795 * at finding LD_ environment vars.
3797 static
3798 const char *
3799 _getenv_ld(const char *id)
3801 const char *envp;
3802 int i, j;
3803 int idlen = strlen(id);
3805 if (ld_index == LD_ARY_CACHE)
3806 return(getenv(id));
3807 if (ld_index == 0) {
3808 for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3809 if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3810 ld_ary[j++] = envp;
3812 if (j == 0)
3813 ld_ary[j++] = "";
3814 ld_index = j;
3816 for (i = ld_index - 1; i >= 0; --i) {
3817 if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3818 return(ld_ary[i] + idlen + 1);
3820 return(NULL);
3824 * Given a symbol name in a referencing object, find the corresponding
3825 * definition of the symbol. Returns a pointer to the symbol, or NULL if
3826 * no definition was found. Returns a pointer to the Obj_Entry of the
3827 * defining object via the reference parameter DEFOBJ_OUT.
3829 static int
3830 symlook_default(SymLook *req, const Obj_Entry *refobj)
3832 DoneList donelist;
3833 const Objlist_Entry *elm;
3834 SymLook req1;
3835 int res;
3837 donelist_init(&donelist);
3838 symlook_init_from_req(&req1, req);
3840 /* Look first in the referencing object if linked symbolically. */
3841 if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3842 res = symlook_obj(&req1, refobj);
3843 if (res == 0) {
3844 req->sym_out = req1.sym_out;
3845 req->defobj_out = req1.defobj_out;
3846 assert(req->defobj_out != NULL);
3850 symlook_global(req, &donelist);
3852 /* Search all dlopened DAGs containing the referencing object. */
3853 STAILQ_FOREACH(elm, &refobj->dldags, link) {
3854 if (req->sym_out != NULL &&
3855 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3856 break;
3857 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3858 if (res == 0 && (req->sym_out == NULL ||
3859 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3860 req->sym_out = req1.sym_out;
3861 req->defobj_out = req1.defobj_out;
3862 assert(req->defobj_out != NULL);
3867 * Search the dynamic linker itself, and possibly resolve the
3868 * symbol from there. This is how the application links to
3869 * dynamic linker services such as dlopen.
3871 if (req->sym_out == NULL ||
3872 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3873 res = symlook_obj(&req1, &obj_rtld);
3874 if (res == 0) {
3875 req->sym_out = req1.sym_out;
3876 req->defobj_out = req1.defobj_out;
3877 assert(req->defobj_out != NULL);
3881 return (req->sym_out != NULL ? 0 : ESRCH);
3884 static int
3885 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3887 const Elf_Sym *def;
3888 const Obj_Entry *defobj;
3889 const Objlist_Entry *elm;
3890 SymLook req1;
3891 int res;
3893 def = NULL;
3894 defobj = NULL;
3895 STAILQ_FOREACH(elm, objlist, link) {
3896 if (donelist_check(dlp, elm->obj))
3897 continue;
3898 symlook_init_from_req(&req1, req);
3899 if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3900 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3901 def = req1.sym_out;
3902 defobj = req1.defobj_out;
3903 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3904 break;
3908 if (def != NULL) {
3909 req->sym_out = def;
3910 req->defobj_out = defobj;
3911 return (0);
3913 return (ESRCH);
3917 * Search the chain of DAGS cointed to by the given Needed_Entry
3918 * for a symbol of the given name. Each DAG is scanned completely
3919 * before advancing to the next one. Returns a pointer to the symbol,
3920 * or NULL if no definition was found.
3922 static int
3923 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3925 const Elf_Sym *def;
3926 const Needed_Entry *n;
3927 const Obj_Entry *defobj;
3928 SymLook req1;
3929 int res;
3931 def = NULL;
3932 defobj = NULL;
3933 symlook_init_from_req(&req1, req);
3934 for (n = needed; n != NULL; n = n->next) {
3935 if (n->obj == NULL ||
3936 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3937 continue;
3938 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3939 def = req1.sym_out;
3940 defobj = req1.defobj_out;
3941 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3942 break;
3945 if (def != NULL) {
3946 req->sym_out = def;
3947 req->defobj_out = defobj;
3948 return (0);
3950 return (ESRCH);
3954 * Search the symbol table of a single shared object for a symbol of
3955 * the given name and version, if requested. Returns a pointer to the
3956 * symbol, or NULL if no definition was found. If the object is
3957 * filter, return filtered symbol from filtee.
3959 * The symbol's hash value is passed in for efficiency reasons; that
3960 * eliminates many recomputations of the hash value.
3963 symlook_obj(SymLook *req, const Obj_Entry *obj)
3965 DoneList donelist;
3966 SymLook req1;
3967 int flags, res, mres;
3970 * If there is at least one valid hash at this point, we prefer to
3971 * use the faster GNU version if available.
3973 if (obj->valid_hash_gnu)
3974 mres = symlook_obj1_gnu(req, obj);
3975 else if (obj->valid_hash_sysv)
3976 mres = symlook_obj1_sysv(req, obj);
3977 else
3978 return (EINVAL);
3980 if (mres == 0) {
3981 if (obj->needed_filtees != NULL) {
3982 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3983 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3984 donelist_init(&donelist);
3985 symlook_init_from_req(&req1, req);
3986 res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3987 if (res == 0) {
3988 req->sym_out = req1.sym_out;
3989 req->defobj_out = req1.defobj_out;
3991 return (res);
3993 if (obj->needed_aux_filtees != NULL) {
3994 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3995 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3996 donelist_init(&donelist);
3997 symlook_init_from_req(&req1, req);
3998 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3999 if (res == 0) {
4000 req->sym_out = req1.sym_out;
4001 req->defobj_out = req1.defobj_out;
4002 return (res);
4006 return (mres);
4009 /* Symbol match routine common to both hash functions */
4010 static bool
4011 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4012 const unsigned long symnum)
4014 Elf_Versym verndx;
4015 const Elf_Sym *symp;
4016 const char *strp;
4018 symp = obj->symtab + symnum;
4019 strp = obj->strtab + symp->st_name;
4021 switch (ELF_ST_TYPE(symp->st_info)) {
4022 case STT_FUNC:
4023 case STT_NOTYPE:
4024 case STT_OBJECT:
4025 case STT_COMMON:
4026 case STT_GNU_IFUNC:
4027 if (symp->st_value == 0)
4028 return (false);
4029 /* fallthrough */
4030 case STT_TLS:
4031 if (symp->st_shndx != SHN_UNDEF)
4032 break;
4033 else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4034 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4035 break;
4036 /* fallthrough */
4037 default:
4038 return (false);
4040 if (strcmp(req->name, strp) != 0)
4041 return (false);
4043 if (req->ventry == NULL) {
4044 if (obj->versyms != NULL) {
4045 verndx = VER_NDX(obj->versyms[symnum]);
4046 if (verndx > obj->vernum) {
4047 _rtld_error(
4048 "%s: symbol %s references wrong version %d",
4049 obj->path, obj->strtab + symnum, verndx);
4050 return (false);
4053 * If we are not called from dlsym (i.e. this
4054 * is a normal relocation from unversioned
4055 * binary), accept the symbol immediately if
4056 * it happens to have first version after this
4057 * shared object became versioned. Otherwise,
4058 * if symbol is versioned and not hidden,
4059 * remember it. If it is the only symbol with
4060 * this name exported by the shared object, it
4061 * will be returned as a match by the calling
4062 * function. If symbol is global (verndx < 2)
4063 * accept it unconditionally.
4065 if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4066 verndx == VER_NDX_GIVEN) {
4067 result->sym_out = symp;
4068 return (true);
4070 else if (verndx >= VER_NDX_GIVEN) {
4071 if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4072 == 0) {
4073 if (result->vsymp == NULL)
4074 result->vsymp = symp;
4075 result->vcount++;
4077 return (false);
4080 result->sym_out = symp;
4081 return (true);
4083 if (obj->versyms == NULL) {
4084 if (object_match_name(obj, req->ventry->name)) {
4085 _rtld_error("%s: object %s should provide version %s "
4086 "for symbol %s", obj_rtld.path, obj->path,
4087 req->ventry->name, obj->strtab + symnum);
4088 return (false);
4090 } else {
4091 verndx = VER_NDX(obj->versyms[symnum]);
4092 if (verndx > obj->vernum) {
4093 _rtld_error("%s: symbol %s references wrong version %d",
4094 obj->path, obj->strtab + symnum, verndx);
4095 return (false);
4097 if (obj->vertab[verndx].hash != req->ventry->hash ||
4098 strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4100 * Version does not match. Look if this is a
4101 * global symbol and if it is not hidden. If
4102 * global symbol (verndx < 2) is available,
4103 * use it. Do not return symbol if we are
4104 * called by dlvsym, because dlvsym looks for
4105 * a specific version and default one is not
4106 * what dlvsym wants.
4108 if ((req->flags & SYMLOOK_DLSYM) ||
4109 (verndx >= VER_NDX_GIVEN) ||
4110 (obj->versyms[symnum] & VER_NDX_HIDDEN))
4111 return (false);
4114 result->sym_out = symp;
4115 return (true);
4119 * Search for symbol using SysV hash function.
4120 * obj->buckets is known not to be NULL at this point; the test for this was
4121 * performed with the obj->valid_hash_sysv assignment.
4123 static int
4124 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4126 unsigned long symnum;
4127 Sym_Match_Result matchres;
4129 matchres.sym_out = NULL;
4130 matchres.vsymp = NULL;
4131 matchres.vcount = 0;
4133 for (symnum = obj->buckets[req->hash % obj->nbuckets];
4134 symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4135 if (symnum >= obj->nchains)
4136 return (ESRCH); /* Bad object */
4138 if (matched_symbol(req, obj, &matchres, symnum)) {
4139 req->sym_out = matchres.sym_out;
4140 req->defobj_out = obj;
4141 return (0);
4144 if (matchres.vcount == 1) {
4145 req->sym_out = matchres.vsymp;
4146 req->defobj_out = obj;
4147 return (0);
4149 return (ESRCH);
4152 /* Search for symbol using GNU hash function */
4153 static int
4154 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4156 Elf_Addr bloom_word;
4157 const Elf32_Word *hashval;
4158 Elf32_Word bucket;
4159 Sym_Match_Result matchres;
4160 unsigned int h1, h2;
4161 unsigned long symnum;
4163 matchres.sym_out = NULL;
4164 matchres.vsymp = NULL;
4165 matchres.vcount = 0;
4167 /* Pick right bitmask word from Bloom filter array */
4168 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4169 obj->maskwords_bm_gnu];
4171 /* Calculate modulus word size of gnu hash and its derivative */
4172 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4173 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4175 /* Filter out the "definitely not in set" queries */
4176 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4177 return (ESRCH);
4179 /* Locate hash chain and corresponding value element*/
4180 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4181 if (bucket == 0)
4182 return (ESRCH);
4183 hashval = &obj->chain_zero_gnu[bucket];
4184 do {
4185 if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4186 symnum = hashval - obj->chain_zero_gnu;
4187 if (matched_symbol(req, obj, &matchres, symnum)) {
4188 req->sym_out = matchres.sym_out;
4189 req->defobj_out = obj;
4190 return (0);
4193 } while ((*hashval++ & 1) == 0);
4194 if (matchres.vcount == 1) {
4195 req->sym_out = matchres.vsymp;
4196 req->defobj_out = obj;
4197 return (0);
4199 return (ESRCH);
4202 static void
4203 trace_loaded_objects(Obj_Entry *obj)
4205 const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4206 int c;
4208 if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4209 main_local = "";
4211 if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4212 fmt1 = "\t%o => %p (%x)\n";
4214 if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4215 fmt2 = "\t%o (%x)\n";
4217 list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4219 for (; obj; obj = obj->next) {
4220 Needed_Entry *needed;
4221 char *name, *path;
4222 bool is_lib;
4224 if (list_containers && obj->needed != NULL)
4225 rtld_printf("%s:\n", obj->path);
4226 for (needed = obj->needed; needed; needed = needed->next) {
4227 if (needed->obj != NULL) {
4228 if (needed->obj->traced && !list_containers)
4229 continue;
4230 needed->obj->traced = true;
4231 path = needed->obj->path;
4232 } else
4233 path = "not found";
4235 name = (char *)obj->strtab + needed->name;
4236 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
4238 fmt = is_lib ? fmt1 : fmt2;
4239 while ((c = *fmt++) != '\0') {
4240 switch (c) {
4241 default:
4242 rtld_putchar(c);
4243 continue;
4244 case '\\':
4245 switch (c = *fmt) {
4246 case '\0':
4247 continue;
4248 case 'n':
4249 rtld_putchar('\n');
4250 break;
4251 case 't':
4252 rtld_putchar('\t');
4253 break;
4255 break;
4256 case '%':
4257 switch (c = *fmt) {
4258 case '\0':
4259 continue;
4260 case '%':
4261 default:
4262 rtld_putchar(c);
4263 break;
4264 case 'A':
4265 rtld_putstr(main_local);
4266 break;
4267 case 'a':
4268 rtld_putstr(obj_main->path);
4269 break;
4270 case 'o':
4271 rtld_putstr(name);
4272 break;
4273 case 'p':
4274 rtld_putstr(path);
4275 break;
4276 case 'x':
4277 rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4279 break;
4281 break;
4283 ++fmt;
4290 * Unload a dlopened object and its dependencies from memory and from
4291 * our data structures. It is assumed that the DAG rooted in the
4292 * object has already been unreferenced, and that the object has a
4293 * reference count of 0.
4295 static void
4296 unload_object(Obj_Entry *root)
4298 Obj_Entry *obj;
4299 Obj_Entry **linkp;
4301 assert(root->refcount == 0);
4304 * Pass over the DAG removing unreferenced objects from
4305 * appropriate lists.
4307 unlink_object(root);
4309 /* Unmap all objects that are no longer referenced. */
4310 linkp = &obj_list->next;
4311 while ((obj = *linkp) != NULL) {
4312 if (obj->refcount == 0) {
4313 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4314 obj->path);
4315 dbg("unloading \"%s\"", obj->path);
4316 unload_filtees(root);
4317 munmap(obj->mapbase, obj->mapsize);
4318 linkmap_delete(obj);
4319 *linkp = obj->next;
4320 obj_count--;
4321 obj_free(obj);
4322 } else
4323 linkp = &obj->next;
4325 obj_tail = linkp;
4328 static void
4329 unlink_object(Obj_Entry *root)
4331 Objlist_Entry *elm;
4333 if (root->refcount == 0) {
4334 /* Remove the object from the RTLD_GLOBAL list. */
4335 objlist_remove(&list_global, root);
4337 /* Remove the object from all objects' DAG lists. */
4338 STAILQ_FOREACH(elm, &root->dagmembers, link) {
4339 objlist_remove(&elm->obj->dldags, root);
4340 if (elm->obj != root)
4341 unlink_object(elm->obj);
4346 static void
4347 ref_dag(Obj_Entry *root)
4349 Objlist_Entry *elm;
4351 assert(root->dag_inited);
4352 STAILQ_FOREACH(elm, &root->dagmembers, link)
4353 elm->obj->refcount++;
4356 static void
4357 unref_dag(Obj_Entry *root)
4359 Objlist_Entry *elm;
4361 assert(root->dag_inited);
4362 STAILQ_FOREACH(elm, &root->dagmembers, link)
4363 elm->obj->refcount--;
4367 * Common code for MD __tls_get_addr().
4369 void *
4370 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4372 Elf_Addr* dtv = *dtvp;
4373 RtldLockState lockstate;
4375 /* Check dtv generation in case new modules have arrived */
4376 if (dtv[0] != tls_dtv_generation) {
4377 Elf_Addr* newdtv;
4378 int to_copy;
4380 wlock_acquire(rtld_bind_lock, &lockstate);
4381 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4382 to_copy = dtv[1];
4383 if (to_copy > tls_max_index)
4384 to_copy = tls_max_index;
4385 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4386 newdtv[0] = tls_dtv_generation;
4387 newdtv[1] = tls_max_index;
4388 free(dtv);
4389 lock_release(rtld_bind_lock, &lockstate);
4390 dtv = *dtvp = newdtv;
4393 /* Dynamically allocate module TLS if necessary */
4394 if (!dtv[index + 1]) {
4395 /* Signal safe, wlock will block out signals. */
4396 wlock_acquire(rtld_bind_lock, &lockstate);
4397 if (!dtv[index + 1])
4398 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4399 lock_release(rtld_bind_lock, &lockstate);
4401 return ((void *)(dtv[index + 1] + offset));
4404 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4407 * Allocate the static TLS area. Return a pointer to the TCB. The
4408 * static area is based on negative offsets relative to the tcb.
4410 * The TCB contains an errno pointer for the system call layer, but because
4411 * we are the RTLD we really have no idea how the caller was compiled so
4412 * the information has to be passed in. errno can either be:
4414 * type 0 errno is a simple non-TLS global pointer.
4415 * (special case for e.g. libc_rtld)
4416 * type 1 errno accessed by GOT entry (dynamically linked programs)
4417 * type 2 errno accessed by %gs:OFFSET (statically linked programs)
4419 struct tls_tcb *
4420 allocate_tls(Obj_Entry *objs)
4422 Obj_Entry *obj;
4423 size_t data_size;
4424 size_t dtv_size;
4425 struct tls_tcb *tcb;
4426 Elf_Addr *dtv;
4427 Elf_Addr addr;
4430 * Allocate the new TCB. static TLS storage is placed just before the
4431 * TCB to support the %gs:OFFSET (negative offset) model.
4433 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4434 ~RTLD_STATIC_TLS_ALIGN_MASK;
4435 tcb = malloc(data_size + sizeof(*tcb));
4436 tcb = (void *)((char *)tcb + data_size); /* actual tcb location */
4438 dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4439 dtv = malloc(dtv_size);
4440 bzero(dtv, dtv_size);
4442 #ifdef RTLD_TCB_HAS_SELF_POINTER
4443 tcb->tcb_self = tcb;
4444 #endif
4445 tcb->tcb_dtv = dtv;
4446 tcb->tcb_pthread = NULL;
4448 dtv[0] = tls_dtv_generation;
4449 dtv[1] = tls_max_index;
4451 for (obj = objs; obj; obj = obj->next) {
4452 if (obj->tlsoffset) {
4453 addr = (Elf_Addr)tcb - obj->tlsoffset;
4454 memset((void *)(addr + obj->tlsinitsize),
4455 0, obj->tlssize - obj->tlsinitsize);
4456 if (obj->tlsinit)
4457 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4458 dtv[obj->tlsindex + 1] = addr;
4461 return(tcb);
4464 void
4465 free_tls(struct tls_tcb *tcb)
4467 Elf_Addr *dtv;
4468 int dtv_size, i;
4469 Elf_Addr tls_start, tls_end;
4470 size_t data_size;
4472 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4473 ~RTLD_STATIC_TLS_ALIGN_MASK;
4475 dtv = tcb->tcb_dtv;
4476 dtv_size = dtv[1];
4477 tls_end = (Elf_Addr)tcb;
4478 tls_start = (Elf_Addr)tcb - data_size;
4479 for (i = 0; i < dtv_size; i++) {
4480 if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4481 free((void *)dtv[i+2]);
4484 free(dtv);
4486 free((void*) tls_start);
4489 #else
4490 #error "Unsupported TLS layout"
4491 #endif
4494 * Allocate TLS block for module with given index.
4496 void *
4497 allocate_module_tls(int index)
4499 Obj_Entry* obj;
4500 char* p;
4502 for (obj = obj_list; obj; obj = obj->next) {
4503 if (obj->tlsindex == index)
4504 break;
4506 if (!obj) {
4507 _rtld_error("Can't find module with TLS index %d", index);
4508 die();
4511 p = malloc(obj->tlssize);
4512 if (p == NULL) {
4513 _rtld_error("Cannot allocate TLS block for index %d", index);
4514 die();
4516 memcpy(p, obj->tlsinit, obj->tlsinitsize);
4517 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4519 return p;
4522 bool
4523 allocate_tls_offset(Obj_Entry *obj)
4525 size_t off;
4527 if (obj->tls_done)
4528 return true;
4530 if (obj->tlssize == 0) {
4531 obj->tls_done = true;
4532 return true;
4535 if (obj->tlsindex == 1)
4536 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4537 else
4538 off = calculate_tls_offset(tls_last_offset, tls_last_size,
4539 obj->tlssize, obj->tlsalign);
4542 * If we have already fixed the size of the static TLS block, we
4543 * must stay within that size. When allocating the static TLS, we
4544 * leave a small amount of space spare to be used for dynamically
4545 * loading modules which use static TLS.
4547 if (tls_static_space) {
4548 if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4549 return false;
4552 tls_last_offset = obj->tlsoffset = off;
4553 tls_last_size = obj->tlssize;
4554 obj->tls_done = true;
4556 return true;
4559 void
4560 free_tls_offset(Obj_Entry *obj)
4562 #ifdef RTLD_STATIC_TLS_VARIANT_II
4564 * If we were the last thing to allocate out of the static TLS
4565 * block, we give our space back to the 'allocator'. This is a
4566 * simplistic workaround to allow libGL.so.1 to be loaded and
4567 * unloaded multiple times. We only handle the Variant II
4568 * mechanism for now - this really needs a proper allocator.
4570 if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4571 == calculate_tls_end(tls_last_offset, tls_last_size)) {
4572 tls_last_offset -= obj->tlssize;
4573 tls_last_size = 0;
4575 #endif
4578 struct tls_tcb *
4579 _rtld_allocate_tls(void)
4581 struct tls_tcb *new_tcb;
4582 RtldLockState lockstate;
4584 wlock_acquire(rtld_bind_lock, &lockstate);
4585 new_tcb = allocate_tls(obj_list);
4586 lock_release(rtld_bind_lock, &lockstate);
4587 return (new_tcb);
4590 void
4591 _rtld_free_tls(struct tls_tcb *tcb)
4593 RtldLockState lockstate;
4595 wlock_acquire(rtld_bind_lock, &lockstate);
4596 free_tls(tcb);
4597 lock_release(rtld_bind_lock, &lockstate);
4600 static void
4601 object_add_name(Obj_Entry *obj, const char *name)
4603 Name_Entry *entry;
4604 size_t len;
4606 len = strlen(name);
4607 entry = malloc(sizeof(Name_Entry) + len);
4609 if (entry != NULL) {
4610 strcpy(entry->name, name);
4611 STAILQ_INSERT_TAIL(&obj->names, entry, link);
4615 static int
4616 object_match_name(const Obj_Entry *obj, const char *name)
4618 Name_Entry *entry;
4620 STAILQ_FOREACH(entry, &obj->names, link) {
4621 if (strcmp(name, entry->name) == 0)
4622 return (1);
4624 return (0);
4627 static Obj_Entry *
4628 locate_dependency(const Obj_Entry *obj, const char *name)
4630 const Objlist_Entry *entry;
4631 const Needed_Entry *needed;
4633 STAILQ_FOREACH(entry, &list_main, link) {
4634 if (object_match_name(entry->obj, name))
4635 return entry->obj;
4638 for (needed = obj->needed; needed != NULL; needed = needed->next) {
4639 if (strcmp(obj->strtab + needed->name, name) == 0 ||
4640 (needed->obj != NULL && object_match_name(needed->obj, name))) {
4642 * If there is DT_NEEDED for the name we are looking for,
4643 * we are all set. Note that object might not be found if
4644 * dependency was not loaded yet, so the function can
4645 * return NULL here. This is expected and handled
4646 * properly by the caller.
4648 return (needed->obj);
4651 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4652 obj->path, name);
4653 die();
4656 static int
4657 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4658 const Elf_Vernaux *vna)
4660 const Elf_Verdef *vd;
4661 const char *vername;
4663 vername = refobj->strtab + vna->vna_name;
4664 vd = depobj->verdef;
4665 if (vd == NULL) {
4666 _rtld_error("%s: version %s required by %s not defined",
4667 depobj->path, vername, refobj->path);
4668 return (-1);
4670 for (;;) {
4671 if (vd->vd_version != VER_DEF_CURRENT) {
4672 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4673 depobj->path, vd->vd_version);
4674 return (-1);
4676 if (vna->vna_hash == vd->vd_hash) {
4677 const Elf_Verdaux *aux = (const Elf_Verdaux *)
4678 ((char *)vd + vd->vd_aux);
4679 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4680 return (0);
4682 if (vd->vd_next == 0)
4683 break;
4684 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4686 if (vna->vna_flags & VER_FLG_WEAK)
4687 return (0);
4688 _rtld_error("%s: version %s required by %s not found",
4689 depobj->path, vername, refobj->path);
4690 return (-1);
4693 static int
4694 rtld_verify_object_versions(Obj_Entry *obj)
4696 const Elf_Verneed *vn;
4697 const Elf_Verdef *vd;
4698 const Elf_Verdaux *vda;
4699 const Elf_Vernaux *vna;
4700 const Obj_Entry *depobj;
4701 int maxvernum, vernum;
4703 if (obj->ver_checked)
4704 return (0);
4705 obj->ver_checked = true;
4707 maxvernum = 0;
4709 * Walk over defined and required version records and figure out
4710 * max index used by any of them. Do very basic sanity checking
4711 * while there.
4713 vn = obj->verneed;
4714 while (vn != NULL) {
4715 if (vn->vn_version != VER_NEED_CURRENT) {
4716 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4717 obj->path, vn->vn_version);
4718 return (-1);
4720 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4721 for (;;) {
4722 vernum = VER_NEED_IDX(vna->vna_other);
4723 if (vernum > maxvernum)
4724 maxvernum = vernum;
4725 if (vna->vna_next == 0)
4726 break;
4727 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4729 if (vn->vn_next == 0)
4730 break;
4731 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4734 vd = obj->verdef;
4735 while (vd != NULL) {
4736 if (vd->vd_version != VER_DEF_CURRENT) {
4737 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4738 obj->path, vd->vd_version);
4739 return (-1);
4741 vernum = VER_DEF_IDX(vd->vd_ndx);
4742 if (vernum > maxvernum)
4743 maxvernum = vernum;
4744 if (vd->vd_next == 0)
4745 break;
4746 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4749 if (maxvernum == 0)
4750 return (0);
4753 * Store version information in array indexable by version index.
4754 * Verify that object version requirements are satisfied along the
4755 * way.
4757 obj->vernum = maxvernum + 1;
4758 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4760 vd = obj->verdef;
4761 while (vd != NULL) {
4762 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4763 vernum = VER_DEF_IDX(vd->vd_ndx);
4764 assert(vernum <= maxvernum);
4765 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4766 obj->vertab[vernum].hash = vd->vd_hash;
4767 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4768 obj->vertab[vernum].file = NULL;
4769 obj->vertab[vernum].flags = 0;
4771 if (vd->vd_next == 0)
4772 break;
4773 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4776 vn = obj->verneed;
4777 while (vn != NULL) {
4778 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4779 if (depobj == NULL)
4780 return (-1);
4781 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4782 for (;;) {
4783 if (check_object_provided_version(obj, depobj, vna))
4784 return (-1);
4785 vernum = VER_NEED_IDX(vna->vna_other);
4786 assert(vernum <= maxvernum);
4787 obj->vertab[vernum].hash = vna->vna_hash;
4788 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4789 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4790 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4791 VER_INFO_HIDDEN : 0;
4792 if (vna->vna_next == 0)
4793 break;
4794 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4796 if (vn->vn_next == 0)
4797 break;
4798 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4800 return 0;
4803 static int
4804 rtld_verify_versions(const Objlist *objlist)
4806 Objlist_Entry *entry;
4807 int rc;
4809 rc = 0;
4810 STAILQ_FOREACH(entry, objlist, link) {
4812 * Skip dummy objects or objects that have their version requirements
4813 * already checked.
4815 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4816 continue;
4817 if (rtld_verify_object_versions(entry->obj) == -1) {
4818 rc = -1;
4819 if (ld_tracing == NULL)
4820 break;
4823 if (rc == 0 || ld_tracing != NULL)
4824 rc = rtld_verify_object_versions(&obj_rtld);
4825 return rc;
4828 const Ver_Entry *
4829 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4831 Elf_Versym vernum;
4833 if (obj->vertab) {
4834 vernum = VER_NDX(obj->versyms[symnum]);
4835 if (vernum >= obj->vernum) {
4836 _rtld_error("%s: symbol %s has wrong verneed value %d",
4837 obj->path, obj->strtab + symnum, vernum);
4838 } else if (obj->vertab[vernum].hash != 0) {
4839 return &obj->vertab[vernum];
4842 return NULL;
4846 _rtld_get_stack_prot(void)
4849 return (stack_prot);
4852 static void
4853 map_stacks_exec(RtldLockState *lockstate)
4855 return;
4857 * Stack protection must be implemented in the kernel before the dynamic
4858 * linker can handle PT_GNU_STACK sections.
4859 * The following is the FreeBSD implementation of map_stacks_exec()
4860 * void (*thr_map_stacks_exec)(void);
4862 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4863 * return;
4864 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4865 * get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4866 * if (thr_map_stacks_exec != NULL) {
4867 * stack_prot |= PROT_EXEC;
4868 * thr_map_stacks_exec();
4873 void
4874 symlook_init(SymLook *dst, const char *name)
4877 bzero(dst, sizeof(*dst));
4878 dst->name = name;
4879 dst->hash = elf_hash(name);
4880 dst->hash_gnu = gnu_hash(name);
4883 static void
4884 symlook_init_from_req(SymLook *dst, const SymLook *src)
4887 dst->name = src->name;
4888 dst->hash = src->hash;
4889 dst->hash_gnu = src->hash_gnu;
4890 dst->ventry = src->ventry;
4891 dst->flags = src->flags;
4892 dst->defobj_out = NULL;
4893 dst->sym_out = NULL;
4894 dst->lockstate = src->lockstate;
4899 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4901 static int
4902 parse_libdir(const char *str)
4904 static const int RADIX = 10; /* XXXJA: possibly support hex? */
4905 const char *orig;
4906 int fd;
4907 char c;
4909 orig = str;
4910 fd = 0;
4911 for (c = *str; c != '\0'; c = *++str) {
4912 if (c < '0' || c > '9')
4913 return (-1);
4915 fd *= RADIX;
4916 fd += c - '0';
4919 /* Make sure we actually parsed something. */
4920 if (str == orig) {
4921 _rtld_error("failed to parse directory FD from '%s'", str);
4922 return (-1);
4924 return (fd);
4927 #ifdef ENABLE_OSRELDATE
4929 * Overrides for libc_pic-provided functions.
4933 __getosreldate(void)
4935 size_t len;
4936 int oid[2];
4937 int error, osrel;
4939 if (osreldate != 0)
4940 return (osreldate);
4942 oid[0] = CTL_KERN;
4943 oid[1] = KERN_OSRELDATE;
4944 osrel = 0;
4945 len = sizeof(osrel);
4946 error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4947 if (error == 0 && osrel > 0 && len == sizeof(osrel))
4948 osreldate = osrel;
4949 return (osreldate);
4951 #endif
4954 * No unresolved symbols for rtld.
4956 void
4957 __pthread_cxa_finalize(struct dl_phdr_info *a)
4961 const char *
4962 rtld_strerror(int errnum)
4965 if (errnum < 0 || errnum >= sys_nerr)
4966 return ("Unknown error");
4967 return (sys_errlist[errnum]);