Merge commit 'crater/master'
[dragonfly.git] / sys / dev / video / bktr / bktr_tuner.c
blob40e06213e65d8c111a25dc4f350fa00448e4ac4d
1 /*-
2 * 1. Redistributions of source code must retain the
3 * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Amancio Hasty and
17 * Roger Hardiman
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bktr/bktr_tuner.c,v 1.20 2005/11/13 13:26:37 netchild Exp $
34 * $DragonFly: src/sys/dev/video/bktr/bktr_tuner.c,v 1.10 2007/10/03 19:27:08 swildner Exp $
39 * This is part of the Driver for Video Capture Cards (Frame grabbers)
40 * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
41 * chipset.
42 * Copyright Roger Hardiman and Amancio Hasty.
44 * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/bus.h>
51 #include <sys/selinfo.h>
53 #include <bus/pci/pcivar.h>
55 #include <dev/video/meteor/ioctl_meteor.h>
56 #include <dev/video/bktr/ioctl_bt848.h> /* extensions to ioctl_meteor.h */
57 #include <dev/video/bktr/bktr_reg.h>
58 #include <dev/video/bktr/bktr_tuner.h>
59 #include <dev/video/bktr/bktr_card.h>
60 #include <dev/video/bktr/bktr_core.h>
64 #if defined( TUNER_AFC )
65 #define AFC_DELAY 10000 /* 10 millisend delay */
66 #define AFC_BITS 0x07
67 #define AFC_FREQ_MINUS_125 0x00
68 #define AFC_FREQ_MINUS_62 0x01
69 #define AFC_FREQ_CENTERED 0x02
70 #define AFC_FREQ_PLUS_62 0x03
71 #define AFC_FREQ_PLUS_125 0x04
72 #define AFC_MAX_STEP (5 * FREQFACTOR) /* no more than 5 MHz */
73 #endif /* TUNER_AFC */
76 #define TTYPE_XXX 0
77 #define TTYPE_NTSC 1
78 #define TTYPE_NTSC_J 2
79 #define TTYPE_PAL 3
80 #define TTYPE_PAL_M 4
81 #define TTYPE_PAL_N 5
82 #define TTYPE_SECAM 6
84 #define TSA552x_CB_MSB (0x80)
85 #define TSA552x_CB_CP (1<<6) /* set this for fast tuning */
86 #define TSA552x_CB_T2 (1<<5) /* test mode - Normally set to 0 */
87 #define TSA552x_CB_T1 (1<<4) /* test mode - Normally set to 0 */
88 #define TSA552x_CB_T0 (1<<3) /* test mode - Normally set to 1 */
89 #define TSA552x_CB_RSA (1<<2) /* 0 for 31.25 khz, 1 for 62.5 kHz */
90 #define TSA552x_CB_RSB (1<<1) /* 0 for FM 50kHz steps, 1 = Use RSA*/
91 #define TSA552x_CB_OS (1<<0) /* Set to 0 for normal operation */
93 #define TSA552x_RADIO (TSA552x_CB_MSB | \
94 TSA552x_CB_T0)
96 /* raise the charge pump voltage for fast tuning */
97 #define TSA552x_FCONTROL (TSA552x_CB_MSB | \
98 TSA552x_CB_CP | \
99 TSA552x_CB_T0 | \
100 TSA552x_CB_RSA | \
101 TSA552x_CB_RSB)
103 /* lower the charge pump voltage for better residual oscillator FM */
104 #define TSA552x_SCONTROL (TSA552x_CB_MSB | \
105 TSA552x_CB_T0 | \
106 TSA552x_CB_RSA | \
107 TSA552x_CB_RSB)
109 /* The control value for the ALPS TSCH5 Tuner */
110 #define TSCH5_FCONTROL 0x82
111 #define TSCH5_RADIO 0x86
113 /* The control value for the ALPS TSBH1 Tuner */
114 #define TSBH1_FCONTROL 0xce
117 static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
120 static const struct TUNER tuners[] = {
121 /* XXX FIXME: fill in the band-switch crosspoints */
122 /* NO_TUNER */
123 { "<no>", /* the 'name' */
124 TTYPE_XXX, /* input type */
125 { 0x00, /* control byte for Tuner PLL */
126 0x00,
127 0x00,
128 0x00 },
129 { 0x00, 0x00 }, /* band-switch crosspoints */
130 { 0x00, 0x00, 0x00,0x00} }, /* the band-switch values */
132 /* TEMIC_NTSC */
133 { "Temic NTSC", /* the 'name' */
134 TTYPE_NTSC, /* input type */
135 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
136 TSA552x_SCONTROL,
137 TSA552x_SCONTROL,
138 0x00 },
139 { 0x00, 0x00}, /* band-switch crosspoints */
140 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
142 /* TEMIC_PAL */
143 { "Temic PAL", /* the 'name' */
144 TTYPE_PAL, /* input type */
145 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
146 TSA552x_SCONTROL,
147 TSA552x_SCONTROL,
148 0x00 },
149 { 0x00, 0x00 }, /* band-switch crosspoints */
150 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
152 /* TEMIC_SECAM */
153 { "Temic SECAM", /* the 'name' */
154 TTYPE_SECAM, /* input type */
155 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
156 TSA552x_SCONTROL,
157 TSA552x_SCONTROL,
158 0x00 },
159 { 0x00, 0x00 }, /* band-switch crosspoints */
160 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
162 /* PHILIPS_NTSC */
163 { "Philips NTSC", /* the 'name' */
164 TTYPE_NTSC, /* input type */
165 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
166 TSA552x_SCONTROL,
167 TSA552x_SCONTROL,
168 0x00 },
169 { 0x00, 0x00 }, /* band-switch crosspoints */
170 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
172 /* PHILIPS_PAL */
173 { "Philips PAL", /* the 'name' */
174 TTYPE_PAL, /* input type */
175 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
176 TSA552x_SCONTROL,
177 TSA552x_SCONTROL,
178 0x00 },
179 { 0x00, 0x00 }, /* band-switch crosspoints */
180 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
182 /* PHILIPS_SECAM */
183 { "Philips SECAM", /* the 'name' */
184 TTYPE_SECAM, /* input type */
185 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
186 TSA552x_SCONTROL,
187 TSA552x_SCONTROL,
188 0x00 },
189 { 0x00, 0x00 }, /* band-switch crosspoints */
190 { 0xa7, 0x97, 0x37, 0x00 } }, /* the band-switch values */
192 /* TEMIC_PAL I */
193 { "Temic PAL I", /* the 'name' */
194 TTYPE_PAL, /* input type */
195 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
196 TSA552x_SCONTROL,
197 TSA552x_SCONTROL,
198 0x00 },
199 { 0x00, 0x00 }, /* band-switch crosspoints */
200 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
202 /* PHILIPS_PALI */
203 { "Philips PAL I", /* the 'name' */
204 TTYPE_PAL, /* input type */
205 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
206 TSA552x_SCONTROL,
207 TSA552x_SCONTROL,
208 0x00 },
209 { 0x00, 0x00 }, /* band-switch crosspoints */
210 { 0xa0, 0x90, 0x30,0x00 } }, /* the band-switch values */
212 /* PHILIPS_FR1236_NTSC */
213 { "Philips FR1236 NTSC FM", /* the 'name' */
214 TTYPE_NTSC, /* input type */
215 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
216 TSA552x_FCONTROL,
217 TSA552x_FCONTROL,
218 TSA552x_RADIO },
219 { 0x00, 0x00 }, /* band-switch crosspoints */
220 { 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */
222 /* PHILIPS_FR1216_PAL */
223 { "Philips FR1216 PAL FM" , /* the 'name' */
224 TTYPE_PAL, /* input type */
225 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
226 TSA552x_FCONTROL,
227 TSA552x_FCONTROL,
228 TSA552x_RADIO },
229 { 0x00, 0x00 }, /* band-switch crosspoints */
230 { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */
232 /* PHILIPS_FR1236_SECAM */
233 { "Philips FR1236 SECAM FM", /* the 'name' */
234 TTYPE_SECAM, /* input type */
235 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
236 TSA552x_FCONTROL,
237 TSA552x_FCONTROL,
238 TSA552x_RADIO },
239 { 0x00, 0x00 }, /* band-switch crosspoints */
240 { 0xa7, 0x97, 0x37, 0xa4 } }, /* the band-switch values */
242 /* ALPS TSCH5 NTSC */
243 { "ALPS TSCH5 NTSC FM", /* the 'name' */
244 TTYPE_NTSC, /* input type */
245 { TSCH5_FCONTROL, /* control byte for Tuner PLL */
246 TSCH5_FCONTROL,
247 TSCH5_FCONTROL,
248 TSCH5_RADIO },
249 { 0x00, 0x00 }, /* band-switch crosspoints */
250 { 0x14, 0x12, 0x11, 0x04 } }, /* the band-switch values */
252 /* ALPS TSBH1 NTSC */
253 { "ALPS TSBH1 NTSC", /* the 'name' */
254 TTYPE_NTSC, /* input type */
255 { TSBH1_FCONTROL, /* control byte for Tuner PLL */
256 TSBH1_FCONTROL,
257 TSBH1_FCONTROL,
258 0x00 },
259 { 0x00, 0x00 }, /* band-switch crosspoints */
260 { 0x01, 0x02, 0x08, 0x00 } }, /* the band-switch values */
262 /* MT2032 Microtune */
263 { "MT2032", /* the 'name' */
264 TTYPE_PAL, /* input type */
265 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
266 TSA552x_SCONTROL,
267 TSA552x_SCONTROL,
268 0x00 },
269 { 0x00, 0x00 }, /* band-switch crosspoints */
270 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
272 /* LG TPI8PSB12P PAL */
273 { "LG TPI8PSB12P PAL", /* the 'name' */
274 TTYPE_PAL, /* input type */
275 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
276 TSA552x_SCONTROL,
277 TSA552x_SCONTROL,
278 0x00 },
279 { 0x00, 0x00 }, /* band-switch crosspoints */
280 { 0xa0, 0x90, 0x30, 0x8e } }, /* the band-switch values */
284 /* scaling factor for frequencies expressed as ints */
285 #define FREQFACTOR 16
288 * Format:
289 * entry 0: MAX legal channel
290 * entry 1: IF frequency
291 * expressed as fi{mHz} * 16,
292 * eg 45.75mHz == 45.75 * 16 = 732
293 * entry 2: [place holder/future]
294 * entry 3: base of channel record 0
295 * entry 3 + (x*3): base of channel record 'x'
296 * entry LAST: NULL channel entry marking end of records
298 * Record:
299 * int 0: base channel
300 * int 1: frequency of base channel,
301 * expressed as fb{mHz} * 16,
302 * int 2: offset frequency between channels,
303 * expressed as fo{mHz} * 16,
307 * North American Broadcast Channels:
309 * 2: 55.25 mHz - 4: 67.25 mHz
310 * 5: 77.25 mHz - 6: 83.25 mHz
311 * 7: 175.25 mHz - 13: 211.25 mHz
312 * 14: 471.25 mHz - 83: 885.25 mHz
314 * IF freq: 45.75 mHz
316 #define OFFSET 6.00
317 static int nabcst[] = {
318 83, (int)( 45.75 * FREQFACTOR), 0,
319 14, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
320 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
321 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
322 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
325 #undef OFFSET
328 * North American Cable Channels, IRC:
330 * 2: 55.25 mHz - 4: 67.25 mHz
331 * 5: 77.25 mHz - 6: 83.25 mHz
332 * 7: 175.25 mHz - 13: 211.25 mHz
333 * 14: 121.25 mHz - 22: 169.25 mHz
334 * 23: 217.25 mHz - 94: 643.25 mHz
335 * 95: 91.25 mHz - 99: 115.25 mHz
337 * IF freq: 45.75 mHz
339 #define OFFSET 6.00
340 static int irccable[] = {
341 116, (int)( 45.75 * FREQFACTOR), 0,
342 100, (int)(649.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
343 95, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
344 23, (int)(217.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
345 14, (int)(121.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
346 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
347 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
348 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
351 #undef OFFSET
354 * North American Cable Channels, HRC:
356 * 2: 54 mHz - 4: 66 mHz
357 * 5: 78 mHz - 6: 84 mHz
358 * 7: 174 mHz - 13: 210 mHz
359 * 14: 120 mHz - 22: 168 mHz
360 * 23: 216 mHz - 94: 642 mHz
361 * 95: 90 mHz - 99: 114 mHz
363 * IF freq: 45.75 mHz
365 #define OFFSET 6.00
366 static int hrccable[] = {
367 116, (int)( 45.75 * FREQFACTOR), 0,
368 100, (int)(648.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
369 95, (int)( 90.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
370 23, (int)(216.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
371 14, (int)(120.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
372 7, (int)(174.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
373 5, (int)( 78.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
374 2, (int)( 54.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
377 #undef OFFSET
380 * Western European broadcast channels:
382 * (there are others that appear to vary between countries - rmt)
384 * here's the table Philips provides:
385 * caution, some of the offsets don't compute...
387 * 1 4525 700 N21
389 * 2 4825 700 E2
390 * 3 5525 700 E3
391 * 4 6225 700 E4
393 * 5 17525 700 E5
394 * 6 18225 700 E6
395 * 7 18925 700 E7
396 * 8 19625 700 E8
397 * 9 20325 700 E9
398 * 10 21025 700 E10
399 * 11 21725 700 E11
400 * 12 22425 700 E12
402 * 13 5375 700 ITA
403 * 14 6225 700 ITB
405 * 15 8225 700 ITC
407 * 16 17525 700 ITD
408 * 17 18325 700 ITE
410 * 18 19225 700 ITF
411 * 19 20125 700 ITG
412 * 20 21025 700 ITH
414 * 21 47125 800 E21
415 * 22 47925 800 E22
416 * 23 48725 800 E23
417 * 24 49525 800 E24
418 * 25 50325 800 E25
419 * 26 51125 800 E26
420 * 27 51925 800 E27
421 * 28 52725 800 E28
422 * 29 53525 800 E29
423 * 30 54325 800 E30
424 * 31 55125 800 E31
425 * 32 55925 800 E32
426 * 33 56725 800 E33
427 * 34 57525 800 E34
428 * 35 58325 800 E35
429 * 36 59125 800 E36
430 * 37 59925 800 E37
431 * 38 60725 800 E38
432 * 39 61525 800 E39
433 * 40 62325 800 E40
434 * 41 63125 800 E41
435 * 42 63925 800 E42
436 * 43 64725 800 E43
437 * 44 65525 800 E44
438 * 45 66325 800 E45
439 * 46 67125 800 E46
440 * 47 67925 800 E47
441 * 48 68725 800 E48
442 * 49 69525 800 E49
443 * 50 70325 800 E50
444 * 51 71125 800 E51
445 * 52 71925 800 E52
446 * 53 72725 800 E53
447 * 54 73525 800 E54
448 * 55 74325 800 E55
449 * 56 75125 800 E56
450 * 57 75925 800 E57
451 * 58 76725 800 E58
452 * 59 77525 800 E59
453 * 60 78325 800 E60
454 * 61 79125 800 E61
455 * 62 79925 800 E62
456 * 63 80725 800 E63
457 * 64 81525 800 E64
458 * 65 82325 800 E65
459 * 66 83125 800 E66
460 * 67 83925 800 E67
461 * 68 84725 800 E68
462 * 69 85525 800 E69
464 * 70 4575 800 IA
465 * 71 5375 800 IB
466 * 72 6175 800 IC
468 * 74 6925 700 S01
469 * 75 7625 700 S02
470 * 76 8325 700 S03
472 * 80 10525 700 S1
473 * 81 11225 700 S2
474 * 82 11925 700 S3
475 * 83 12625 700 S4
476 * 84 13325 700 S5
477 * 85 14025 700 S6
478 * 86 14725 700 S7
479 * 87 15425 700 S8
480 * 88 16125 700 S9
481 * 89 16825 700 S10
482 * 90 23125 700 S11
483 * 91 23825 700 S12
484 * 92 24525 700 S13
485 * 93 25225 700 S14
486 * 94 25925 700 S15
487 * 95 26625 700 S16
488 * 96 27325 700 S17
489 * 97 28025 700 S18
490 * 98 28725 700 S19
491 * 99 29425 700 S20
494 * Channels S21 - S41 are taken from
495 * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
497 * 100 30325 800 S21
498 * 101 31125 800 S22
499 * 102 31925 800 S23
500 * 103 32725 800 S24
501 * 104 33525 800 S25
502 * 105 34325 800 S26
503 * 106 35125 800 S27
504 * 107 35925 800 S28
505 * 108 36725 800 S29
506 * 109 37525 800 S30
507 * 110 38325 800 S31
508 * 111 39125 800 S32
509 * 112 39925 800 S33
510 * 113 40725 800 S34
511 * 114 41525 800 S35
512 * 115 42325 800 S36
513 * 116 43125 800 S37
514 * 117 43925 800 S38
515 * 118 44725 800 S39
516 * 119 45525 800 S40
517 * 120 46325 800 S41
519 * 121 3890 000 IFFREQ
522 static int weurope[] = {
523 121, (int)( 38.90 * FREQFACTOR), 0,
524 100, (int)(303.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
525 90, (int)(231.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
526 80, (int)(105.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
527 74, (int)( 69.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
528 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
529 17, (int)(183.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
530 16, (int)(175.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
531 15, (int)(82.25 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
532 13, (int)(53.75 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
533 5, (int)(175.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
534 2, (int)(48.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
539 * Japanese Broadcast Channels:
541 * 1: 91.25MHz - 3: 103.25MHz
542 * 4: 171.25MHz - 7: 189.25MHz
543 * 8: 193.25MHz - 12: 217.25MHz (VHF)
544 * 13: 471.25MHz - 62: 765.25MHz (UHF)
546 * IF freq: 45.75 mHz
547 * OR
548 * IF freq: 58.75 mHz
550 #define OFFSET 6.00
551 #define IF_FREQ 45.75
552 static int jpnbcst[] = {
553 62, (int)(IF_FREQ * FREQFACTOR), 0,
554 13, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
555 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
556 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
557 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
560 #undef IF_FREQ
561 #undef OFFSET
564 * Japanese Cable Channels:
566 * 1: 91.25MHz - 3: 103.25MHz
567 * 4: 171.25MHz - 7: 189.25MHz
568 * 8: 193.25MHz - 12: 217.25MHz
569 * 13: 109.25MHz - 21: 157.25MHz
570 * 22: 165.25MHz
571 * 23: 223.25MHz - 63: 463.25MHz
573 * IF freq: 45.75 mHz
575 #define OFFSET 6.00
576 #define IF_FREQ 45.75
577 static int jpncable[] = {
578 63, (int)(IF_FREQ * FREQFACTOR), 0,
579 23, (int)(223.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
580 22, (int)(165.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
581 13, (int)(109.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
582 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
583 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
584 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
587 #undef IF_FREQ
588 #undef OFFSET
591 * xUSSR Broadcast Channels:
593 * 1: 49.75MHz - 2: 59.25MHz
594 * 3: 77.25MHz - 5: 93.25MHz
595 * 6: 175.25MHz - 12: 223.25MHz
596 * 13-20 - not exist
597 * 21: 471.25MHz - 34: 575.25MHz
598 * 35: 583.25MHz - 69: 855.25MHz
600 * Cable channels
602 * 70: 111.25MHz - 77: 167.25MHz
603 * 78: 231.25MHz -107: 463.25MHz
605 * IF freq: 38.90 MHz
607 #define IF_FREQ 38.90
608 static int xussr[] = {
609 107, (int)(IF_FREQ * FREQFACTOR), 0,
610 78, (int)(231.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
611 70, (int)(111.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
612 35, (int)(583.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
613 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
614 6, (int)(175.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
615 3, (int)( 77.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
616 1, (int)( 49.75 * FREQFACTOR), (int)(9.50 * FREQFACTOR),
619 #undef IF_FREQ
622 * Australian broadcast channels
624 #define OFFSET 7.00
625 #define IF_FREQ 38.90
626 static int australia[] = {
627 83, (int)(IF_FREQ * FREQFACTOR), 0,
628 28, (int)(527.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
629 10, (int)(209.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
630 6, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
631 4, (int)( 95.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
632 3, (int)( 86.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
633 1, (int)( 57.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
636 #undef OFFSET
637 #undef IF_FREQ
640 * France broadcast channels
642 #define OFFSET 8.00
643 #define IF_FREQ 38.90
644 static int france[] = {
645 69, (int)(IF_FREQ * FREQFACTOR), 0,
646 21, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
647 5, (int)(176.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
648 4, (int)( 63.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 4 */
649 3, (int)( 60.50 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 3 */
650 1, (int)( 47.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 1 2 */
653 #undef OFFSET
654 #undef IF_FREQ
656 static struct {
657 int *ptr;
658 char name[BT848_MAX_CHNLSET_NAME_LEN];
659 } freqTable[] = {
660 {NULL, ""},
661 {nabcst, "nabcst"},
662 {irccable, "cableirc"},
663 {hrccable, "cablehrc"},
664 {weurope, "weurope"},
665 {jpnbcst, "jpnbcst"},
666 {jpncable, "jpncable"},
667 {xussr, "xussr"},
668 {australia, "australia"},
669 {france, "france"},
673 #define TBL_CHNL freqTable[ bktr->tuner.chnlset ].ptr[ x ]
674 #define TBL_BASE_FREQ freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
675 #define TBL_OFFSET freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
676 static int
677 frequency_lookup( bktr_ptr_t bktr, int channel )
679 int x;
681 /* check for "> MAX channel" */
682 x = 0;
683 if ( channel > TBL_CHNL )
684 return( -1 );
686 /* search the table for data */
687 for ( x = 3; TBL_CHNL; x += 3 ) {
688 if ( channel >= TBL_CHNL ) {
689 return( TBL_BASE_FREQ +
690 ((channel - TBL_CHNL) * TBL_OFFSET) );
694 /* not found, must be below the MIN channel */
695 return( -1 );
697 #undef TBL_OFFSET
698 #undef TBL_BASE_FREQ
699 #undef TBL_CHNL
702 #define TBL_IF (bktr->format_params == BT848_IFORM_F_NTSCJ || \
703 bktr->format_params == BT848_IFORM_F_NTSCM ? \
704 nabcst[1] : weurope[1])
707 /* Initialise the tuner structures in the bktr_softc */
708 /* This is needed as the tuner details are no longer globally declared */
710 void select_tuner( bktr_ptr_t bktr, int tuner_type ) {
711 if (tuner_type < Bt848_MAX_TUNER) {
712 bktr->card.tuner = &tuners[ tuner_type ];
713 } else {
714 bktr->card.tuner = NULL;
719 * Tuner Notes:
720 * Programming the tuner properly is quite complicated.
721 * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
722 * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
723 * 87.5 Mhz to 108.0 Mhz.
725 * RF and IF. RF = radio frequencies, it is the transmitted signal.
726 * IF is the Intermediate Frequency (the offset from the base
727 * signal where the video, color, audio and NICAM signals are.
729 * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
730 * NICAM at 32.348 Mhz.
731 * Strangely enough, there is an IF (intermediate frequency) for
732 * FM Radio which is 10.7 Mhz.
734 * The tuner also works in Bands. Philips bands are
735 * FM radio band 87.50 to 108.00 MHz
736 * Low band 45.75 to 170.00 MHz
737 * Mid band 170.00 to 450.00 MHz
738 * High band 450.00 to 855.25 MHz
741 * Now we need to set the PLL on the tuner to the required freuqncy.
742 * It has a programmable divisor.
743 * For TV we want
744 * N = 16 (freq RF(pc) + freq IF(pc)) pc is picture carrier and RF and IF
745 * are in MHz.
747 * For RADIO we want a different equation.
748 * freq IF is 10.70 MHz (so the data sheet tells me)
749 * N = (freq RF + freq IF) / step size
750 * The step size must be set to 50 khz (so the data sheet tells me)
751 * (note this is 50 kHz, the other things are in MHz)
752 * so we end up with N = 20x(freq RF + 10.7)
756 #define LOW_BAND 0
757 #define MID_BAND 1
758 #define HIGH_BAND 2
759 #define FM_RADIO_BAND 3
762 /* Check if these are correct for other than Philips PAL */
763 #define STATUSBIT_COLD 0x80
764 #define STATUSBIT_LOCK 0x40
765 #define STATUSBIT_TV 0x20
766 #define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
767 #define STATUSBIT_ADC 0x07
770 * set the frequency of the tuner
771 * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
772 * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
773 * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
777 tv_freq( bktr_ptr_t bktr, int frequency, int type )
779 const struct TUNER* tuner;
780 u_char addr;
781 u_char control;
782 u_char band;
783 int N;
784 int band_select = 0;
785 #if defined( TEST_TUNER_AFC )
786 int oldFrequency, afcDelta;
787 #endif
789 tuner = bktr->card.tuner;
790 if ( tuner == NULL )
791 return( -1 );
793 if (tuner == &tuners[TUNER_MT2032]) {
794 mt2032_set_tv_freq(bktr, frequency);
795 return 0;
797 if (type == TV_FREQUENCY) {
799 * select the band based on frequency
800 * XXX FIXME: get the cross-over points from the tuner struct
802 if ( frequency < (160 * FREQFACTOR ) )
803 band_select = LOW_BAND;
804 else if ( frequency < (454 * FREQFACTOR ) )
805 band_select = MID_BAND;
806 else
807 band_select = HIGH_BAND;
809 #if defined( TEST_TUNER_AFC )
810 if ( bktr->tuner.afc )
811 frequency -= 4;
812 #endif
814 * N = 16 * { fRF(pc) + fIF(pc) }
815 * or N = 16* fRF(pc) + 16*fIF(pc) }
816 * where:
817 * pc is picture carrier, fRF & fIF are in MHz
819 * fortunatly, frequency is passed in as MHz * 16
820 * and the TBL_IF frequency is also stored in MHz * 16
822 N = frequency + TBL_IF;
824 /* set the address of the PLL */
825 addr = bktr->card.tuner_pllAddr;
826 control = tuner->pllControl[ band_select ];
827 band = tuner->bandAddrs[ band_select ];
829 if(!(band && control)) /* Don't try to set un- */
830 return(-1); /* supported modes. */
832 if ( frequency > bktr->tuner.frequency ) {
833 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
834 i2cWrite( bktr, addr, control, band );
836 else {
837 i2cWrite( bktr, addr, control, band );
838 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
841 #if defined( TUNER_AFC )
842 if ( bktr->tuner.afc == TRUE ) {
843 #if defined( TEST_TUNER_AFC )
844 oldFrequency = frequency;
845 #endif
846 if ( (N = do_afc( bktr, addr, N )) < 0 ) {
847 /* AFC failed, restore requested frequency */
848 N = frequency + TBL_IF;
849 #if defined( TEST_TUNER_AFC )
850 kprintf("%s: do_afc: failed to lock\n",
851 bktr_name(bktr));
852 #endif
853 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
855 else
856 frequency = N - TBL_IF;
857 #if defined( TEST_TUNER_AFC )
858 kprintf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
859 afcDelta = frequency - oldFrequency;
860 kprintf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
861 #endif
863 #endif /* TUNER_AFC */
865 bktr->tuner.frequency = frequency;
868 if ( type == FM_RADIO_FREQUENCY ) {
869 band_select = FM_RADIO_BAND;
872 * N = { fRF(pc) + fIF(pc) }/step_size
873 * The step size is 50kHz for FM radio.
874 * (eg after 102.35MHz comes 102.40 MHz)
875 * fIF is 10.7 MHz (as detailed in the specs)
877 * frequency is passed in as MHz * 100
879 * So, we have N = (frequency/100 + 10.70) /(50/1000)
881 N = (frequency + 1070)/5;
883 /* set the address of the PLL */
884 addr = bktr->card.tuner_pllAddr;
885 control = tuner->pllControl[ band_select ];
886 band = tuner->bandAddrs[ band_select ];
888 if(!(band && control)) /* Don't try to set un- */
889 return(-1); /* supported modes. */
891 band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
892 * the ioctls RADIO_SETMODE
893 * and RADIO_GETMODE */
895 i2cWrite( bktr, addr, control, band );
896 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
898 bktr->tuner.frequency = (N * 5) - 1070;
904 return( 0 );
909 #if defined( TUNER_AFC )
914 do_afc( bktr_ptr_t bktr, int addr, int frequency )
916 int step;
917 int status;
918 int origFrequency;
920 origFrequency = frequency;
922 /* wait for first setting to take effect */
923 tsleep( BKTR_SLEEP, 0, "tuning", hz/8 );
925 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
926 return( -1 );
928 #if defined( TEST_TUNER_AFC )
929 kprintf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
930 #endif
931 for ( step = 0; step < AFC_MAX_STEP; ++step ) {
932 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
933 goto fubar;
934 if ( !(status & 0x40) ) {
935 #if defined( TEST_TUNER_AFC )
936 kprintf( "%s: no lock!\n", bktr_name(bktr) );
937 #endif
938 goto fubar;
941 switch( status & AFC_BITS ) {
942 case AFC_FREQ_CENTERED:
943 #if defined( TEST_TUNER_AFC )
944 kprintf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
945 #endif
946 return( frequency );
948 case AFC_FREQ_MINUS_125:
949 case AFC_FREQ_MINUS_62:
950 #if defined( TEST_TUNER_AFC )
951 kprintf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
952 #endif
953 --frequency;
954 break;
956 case AFC_FREQ_PLUS_62:
957 case AFC_FREQ_PLUS_125:
958 #if defined( TEST_TUNER_AFC )
959 kprintf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
960 #endif
961 ++frequency;
962 break;
965 i2cWrite( bktr, addr,
966 (frequency>>8) & 0x7f, frequency & 0xff );
967 DELAY( AFC_DELAY );
970 fubar:
971 i2cWrite( bktr, addr,
972 (origFrequency>>8) & 0x7f, origFrequency & 0xff );
974 return( -1 );
976 #endif /* TUNER_AFC */
977 #undef TBL_IF
981 * Get the Tuner status and signal strength
983 int get_tuner_status( bktr_ptr_t bktr ) {
984 if (bktr->card.tuner == &tuners[TUNER_MT2032])
985 return 0;
986 return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
990 * set the channel of the tuner
993 tv_channel( bktr_ptr_t bktr, int channel )
995 int frequency;
997 /* calculate the frequency according to tuner type */
998 if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
999 return( -1 );
1001 /* set the new frequency */
1002 if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
1003 return( -1 );
1005 /* OK to update records */
1006 return( (bktr->tuner.channel = channel) );
1010 * get channelset name
1013 tuner_getchnlset(struct bktr_chnlset *chnlset)
1015 if (( chnlset->index < CHNLSET_MIN ) ||
1016 ( chnlset->index > CHNLSET_MAX ))
1017 return( EINVAL );
1019 memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1020 BT848_MAX_CHNLSET_NAME_LEN);
1022 chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1023 return( 0 );
1029 #define TDA9887_ADDR 0x86
1031 static int
1032 TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1034 u_char addr = TDA9887_ADDR;
1036 i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1037 i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1039 /* PAL BG: 0x09 PAL I: 0x0a NTSC: 0x04 */
1040 #ifdef MT2032_NTSC
1041 i2cWrite(bktr, addr, 2, 0x04);
1042 #else
1043 i2cWrite(bktr, addr, 2, 0x09);
1044 #endif
1045 return 0;
1050 #define MT2032_OPTIMIZE_VCO 1
1052 /* holds the value of XOGC register after init */
1053 static int MT2032_XOGC = 4;
1055 /* card.tuner_pllAddr not set during init */
1056 #define MT2032_ADDR 0xc0
1058 #ifndef MT2032_ADDR
1059 #define MT2032_ADDR (bktr->card.tuner_pllAddr)
1060 #endif
1062 static int
1063 _MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1065 int ch;
1067 if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1068 if (bootverbose)
1069 kprintf("%s: MT2032 write failed (i2c addr %#x)\n",
1070 bktr_name(bktr), MT2032_ADDR);
1071 return -1;
1073 if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1074 if (bootverbose)
1075 kprintf("%s: MT2032 get register %d failed\n",
1076 bktr_name(bktr), regNum);
1077 return -1;
1079 return ch;
1082 static void
1083 _MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1085 i2cWrite(bktr, MT2032_ADDR, regNum, data);
1088 #define MT2032_GetRegister(r) _MT2032_GetRegister(bktr,r)
1089 #define MT2032_SetRegister(r,d) _MT2032_SetRegister(bktr,r,d)
1092 int
1093 mt2032_init(bktr_ptr_t bktr)
1095 u_char rdbuf[22];
1096 int xogc, xok = 0;
1097 int i;
1098 int x;
1100 TDA9887_init(bktr, 0);
1102 for (i = 0; i < 21; i++) {
1103 if ((x = MT2032_GetRegister(i)) == -1)
1104 break;
1105 rdbuf[i] = x;
1107 if (i < 21)
1108 return -1;
1110 kprintf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
1111 bktr_name(bktr),
1112 rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1113 if (rdbuf[0x13] != 4) {
1114 kprintf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
1115 return -1;
1118 /* Initialize Registers per spec. */
1119 MT2032_SetRegister(2, 0xff);
1120 MT2032_SetRegister(3, 0x0f);
1121 MT2032_SetRegister(4, 0x1f);
1122 MT2032_SetRegister(6, 0xe4);
1123 MT2032_SetRegister(7, 0x8f);
1124 MT2032_SetRegister(8, 0xc3);
1125 MT2032_SetRegister(9, 0x4e);
1126 MT2032_SetRegister(10, 0xec);
1127 MT2032_SetRegister(13, 0x32);
1129 /* Adjust XOGC (register 7), wait for XOK */
1130 xogc = 7;
1131 do {
1132 DELAY(10000);
1133 xok = MT2032_GetRegister(0x0e) & 0x01;
1134 if (xok == 1) {
1135 break;
1137 xogc--;
1138 if (xogc == 3) {
1139 xogc = 4; /* min. 4 per spec */
1140 break;
1142 MT2032_SetRegister(7, 0x88 + xogc);
1143 } while (xok != 1);
1145 TDA9887_init(bktr, 1);
1147 MT2032_XOGC = xogc;
1149 return 0;
1152 static int
1153 MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1155 int n1 = 1, n2, f;
1157 f1 = f1 / 1000; /* scale to kHz to avoid 32bit overflows */
1158 f2 = f2 / 1000;
1159 spectrum_from /= 1000;
1160 spectrum_to /= 1000;
1162 do {
1163 n2 = -n1;
1164 f = n1 * (f1 - f2);
1165 do {
1166 n2--;
1167 f = f - f2;
1168 if ((f > spectrum_from) && (f < spectrum_to)) {
1169 return 1;
1171 } while ((f > (f2 - spectrum_to)) || (n2 > -5));
1172 n1++;
1173 } while (n1 < 5);
1175 return 0;
1178 static int
1179 MT2032_ComputeFreq(
1180 int rfin,
1181 int if1,
1182 int if2,
1183 int spectrum_from,
1184 int spectrum_to,
1185 unsigned char *buf,
1186 int *ret_sel,
1187 int xogc
1189 { /* all in Hz */
1190 int fref, lo1, lo1n, lo1a, s, sel;
1191 int lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
1192 lo2num, lo2freq;
1193 int nLO1adjust;
1195 fref = 5250 * 1000; /* 5.25MHz */
1197 /* per spec 2.3.1 */
1198 desired_lo1 = rfin + if1;
1199 lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1200 lo1freq = lo1 * fref;
1201 desired_lo2 = lo1freq - rfin - if2;
1203 /* per spec 2.3.2 */
1204 for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1205 if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1206 break;
1208 if (lo1freq < desired_lo1) {
1209 lo1 += nLO1adjust;
1210 } else {
1211 lo1 -= nLO1adjust;
1214 lo1freq = lo1 * fref;
1215 desired_lo2 = lo1freq - rfin - if2;
1218 /* per spec 2.3.3 */
1219 s = lo1freq / 1000 / 1000;
1221 if (MT2032_OPTIMIZE_VCO) {
1222 if (s > 1890) {
1223 sel = 0;
1224 } else if (s > 1720) {
1225 sel = 1;
1226 } else if (s > 1530) {
1227 sel = 2;
1228 } else if (s > 1370) {
1229 sel = 3;
1230 } else {
1231 sel = 4;/* >1090 */
1233 } else {
1234 if (s > 1790) {
1235 sel = 0;/* <1958 */
1236 } else if (s > 1617) {
1237 sel = 1;
1238 } else if (s > 1449) {
1239 sel = 2;
1240 } else if (s > 1291) {
1241 sel = 3;
1242 } else {
1243 sel = 4;/* >1090 */
1247 *ret_sel = sel;
1249 /* per spec 2.3.4 */
1250 lo1n = lo1 / 8;
1251 lo1a = lo1 - (lo1n * 8);
1252 lo2 = desired_lo2 / fref;
1253 lo2n = lo2 / 8;
1254 lo2a = lo2 - (lo2n * 8);
1255 /* scale to fit in 32bit arith */
1256 lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
1257 lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
1259 if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1260 lo2a > 7 || lo2n < 17 || lo2n > 30) {
1261 kprintf("MT2032: parameter out of range\n");
1262 return -1;
1264 /* set up MT2032 register map for transfer over i2c */
1265 buf[0] = lo1n - 1;
1266 buf[1] = lo1a | (sel << 4);
1267 buf[2] = 0x86; /* LOGC */
1268 buf[3] = 0x0f; /* reserved */
1269 buf[4] = 0x1f;
1270 buf[5] = (lo2n - 1) | (lo2a << 5);
1271 if (rfin < 400 * 1000 * 1000) {
1272 buf[6] = 0xe4;
1273 } else {
1274 buf[6] = 0xf4; /* set PKEN per rev 1.2 */
1277 buf[7] = 8 + xogc;
1278 buf[8] = 0xc3; /* reserved */
1279 buf[9] = 0x4e; /* reserved */
1280 buf[10] = 0xec; /* reserved */
1281 buf[11] = (lo2num & 0xff);
1282 buf[12] = (lo2num >> 8) | 0x80; /* Lo2RST */
1284 return 0;
1287 static int
1288 MT2032_CheckLOLock(bktr_ptr_t bktr)
1290 int t, lock = 0;
1291 for (t = 0; t < 10; t++) {
1292 lock = MT2032_GetRegister(0x0e) & 0x06;
1293 if (lock == 6) {
1294 break;
1296 DELAY(1000);
1298 return lock;
1301 static int
1302 MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1304 int tad1, lo1a;
1306 tad1 = MT2032_GetRegister(0x0f) & 0x07;
1308 if (tad1 == 0) {
1309 return lock;
1311 if (tad1 == 1) {
1312 return lock;
1314 if (tad1 == 2) {
1315 if (sel == 0) {
1316 return lock;
1317 } else {
1318 sel--;
1320 } else {
1321 if (sel < 4) {
1322 sel++;
1323 } else {
1324 return lock;
1327 lo1a = MT2032_GetRegister(0x01) & 0x07;
1328 MT2032_SetRegister(0x01, lo1a | (sel << 4));
1329 lock = MT2032_CheckLOLock(bktr);
1330 return lock;
1333 static int
1334 MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1336 u_char buf[21];
1337 int lint_try, sel, lock = 0;
1339 if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1340 return -1;
1342 TDA9887_init(bktr, 0);
1344 /* send only the relevant registers per Rev. 1.2 */
1345 MT2032_SetRegister(0, buf[0x00]);
1346 MT2032_SetRegister(1, buf[0x01]);
1347 MT2032_SetRegister(2, buf[0x02]);
1349 MT2032_SetRegister(5, buf[0x05]);
1350 MT2032_SetRegister(6, buf[0x06]);
1351 MT2032_SetRegister(7, buf[0x07]);
1353 MT2032_SetRegister(11, buf[0x0B]);
1354 MT2032_SetRegister(12, buf[0x0C]);
1356 /* wait for PLLs to lock (per manual), retry LINT if not. */
1357 for (lint_try = 0; lint_try < 2; lint_try++) {
1358 lock = MT2032_CheckLOLock(bktr);
1360 if (MT2032_OPTIMIZE_VCO) {
1361 lock = MT2032_OptimizeVCO(bktr, sel, lock);
1363 if (lock == 6) {
1364 break;
1366 /* set LINT to re-init PLLs */
1367 MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1368 DELAY(10000);
1369 MT2032_SetRegister(7, 8 + MT2032_XOGC);
1371 if (lock != 6)
1372 kprintf("%s: PLL didn't lock\n", bktr_name(bktr));
1374 MT2032_SetRegister(2, 0x20);
1376 TDA9887_init(bktr, 1);
1377 return 0;
1380 static void
1381 mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1383 int if2,from,to;
1384 int stat, tad;
1386 #ifdef MT2032_NTSC
1387 from=40750*1000;
1388 to=46750*1000;
1389 if2=45750*1000;
1390 #else
1391 from=32900*1000;
1392 to=39900*1000;
1393 if2=38900*1000;
1394 #endif
1396 if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1397 1090*1000*1000, if2, from, to) == 0) {
1398 bktr->tuner.frequency = freq;
1399 stat = MT2032_GetRegister(0x0e);
1400 tad = MT2032_GetRegister(0x0f);
1401 if (bootverbose)
1402 kprintf("%s: frequency set to %d, st = %#x, tad = %#x\n",
1403 bktr_name(bktr), freq*62500, stat, tad);