ipfw: Support all possible ICMP types.
[dragonfly.git] / contrib / gcc-4.7 / gcc / tree-sra.c
blob681f3b7fb8fa42b7387480532058956cdf596a2c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
101 /* Global variable describing which aggregate reduction we are performing at
102 the moment. */
103 static enum sra_mode sra_mode;
105 struct assign_link;
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
123 struct access
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
129 HOST_WIDE_INT size;
130 tree base;
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
134 testcase. */
135 tree expr;
136 /* Type. */
137 tree type;
139 /* The statement this access belongs to. */
140 gimple stmt;
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
158 /* Pointers to the first and last element in the linked list of assign
159 links. */
160 struct assign_link *first_link, *last_link;
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
170 /* Is this particular access write access? */
171 unsigned write : 1;
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
203 /* Is this access an artificial one created to scalarize some record
204 entirely? */
205 unsigned grp_total_scalarization : 1;
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
209 possible. */
210 unsigned grp_hint : 1;
212 /* Is the subtree rooted in this access fully covered by scalar
213 replacements? */
214 unsigned grp_covered : 1;
216 /* If set to true, this access and all below it in an access tree must not be
217 scalarized. */
218 unsigned grp_unscalarizable_region : 1;
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
222 access tree. */
223 unsigned grp_unscalarized_data : 1;
225 /* Does this access and/or group contain a write access through a
226 BIT_FIELD_REF? */
227 unsigned grp_partial_lhs : 1;
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
246 /* Set when we discover that this pointer is not safe to dereference in the
247 caller. */
248 unsigned grp_not_necessarilly_dereferenced : 1;
251 typedef struct access *access_p;
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
262 struct assign_link
264 struct access *lacc, *racc;
265 struct assign_link *next;
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
314 /* Predicate to test the special value. */
316 static inline bool
317 no_accesses_p (struct access *access)
319 return access == &no_accesses_representant;
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
326 static struct
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
331 /* Number of created scalar replacements. */
332 int replacements;
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
335 expression. */
336 int exprs;
338 /* Number of statements created by generate_subtree_copies. */
339 int subtree_copies;
341 /* Number of statements created by load_assign_lhs_subreplacements. */
342 int subreplacements;
344 /* Number of times sra_modify_assign has deleted a statement. */
345 int deleted;
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
349 references. */
350 int separate_lhs_rhs_handling;
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
359 /* Number of aggregate parameters that were replaced by one or more of their
360 components. */
361 int aggregate_params_reduced;
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
365 } sra_stats;
367 static void
368 dump_access (FILE *f, struct access *access, bool grp)
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
379 if (grp)
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
396 else
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
405 static void
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
410 int i;
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
415 dump_access (f, access, true);
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
420 access = access->next_sibling;
422 while (access);
425 /* Dump all access trees for a variable, given the pointer to the first root in
426 ACCESS. */
428 static void
429 dump_access_tree (FILE *f, struct access *access)
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
435 /* Return true iff ACC is non-NULL and has subaccesses. */
437 static inline bool
438 access_has_children_p (struct access *acc)
440 return acc && acc->first_child;
443 /* Return true iff ACC is (partly) covered by at least one replacement. */
445 static bool
446 access_has_replacements_p (struct access *acc)
448 struct access *child;
449 if (acc->grp_to_be_replaced)
450 return true;
451 for (child = acc->first_child; child; child = child->next_sibling)
452 if (access_has_replacements_p (child))
453 return true;
454 return false;
457 /* Return a vector of pointers to accesses for the variable given in BASE or
458 NULL if there is none. */
460 static VEC (access_p, heap) *
461 get_base_access_vector (tree base)
463 void **slot;
465 slot = pointer_map_contains (base_access_vec, base);
466 if (!slot)
467 return NULL;
468 else
469 return *(VEC (access_p, heap) **) slot;
472 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
473 in ACCESS. Return NULL if it cannot be found. */
475 static struct access *
476 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
477 HOST_WIDE_INT size)
479 while (access && (access->offset != offset || access->size != size))
481 struct access *child = access->first_child;
483 while (child && (child->offset + child->size <= offset))
484 child = child->next_sibling;
485 access = child;
488 return access;
491 /* Return the first group representative for DECL or NULL if none exists. */
493 static struct access *
494 get_first_repr_for_decl (tree base)
496 VEC (access_p, heap) *access_vec;
498 access_vec = get_base_access_vector (base);
499 if (!access_vec)
500 return NULL;
502 return VEC_index (access_p, access_vec, 0);
505 /* Find an access representative for the variable BASE and given OFFSET and
506 SIZE. Requires that access trees have already been built. Return NULL if
507 it cannot be found. */
509 static struct access *
510 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
511 HOST_WIDE_INT size)
513 struct access *access;
515 access = get_first_repr_for_decl (base);
516 while (access && (access->offset + access->size <= offset))
517 access = access->next_grp;
518 if (!access)
519 return NULL;
521 return find_access_in_subtree (access, offset, size);
524 /* Add LINK to the linked list of assign links of RACC. */
525 static void
526 add_link_to_rhs (struct access *racc, struct assign_link *link)
528 gcc_assert (link->racc == racc);
530 if (!racc->first_link)
532 gcc_assert (!racc->last_link);
533 racc->first_link = link;
535 else
536 racc->last_link->next = link;
538 racc->last_link = link;
539 link->next = NULL;
542 /* Move all link structures in their linked list in OLD_RACC to the linked list
543 in NEW_RACC. */
544 static void
545 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
547 if (!old_racc->first_link)
549 gcc_assert (!old_racc->last_link);
550 return;
553 if (new_racc->first_link)
555 gcc_assert (!new_racc->last_link->next);
556 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
558 new_racc->last_link->next = old_racc->first_link;
559 new_racc->last_link = old_racc->last_link;
561 else
563 gcc_assert (!new_racc->last_link);
565 new_racc->first_link = old_racc->first_link;
566 new_racc->last_link = old_racc->last_link;
568 old_racc->first_link = old_racc->last_link = NULL;
571 /* Add ACCESS to the work queue (which is actually a stack). */
573 static void
574 add_access_to_work_queue (struct access *access)
576 if (!access->grp_queued)
578 gcc_assert (!access->next_queued);
579 access->next_queued = work_queue_head;
580 access->grp_queued = 1;
581 work_queue_head = access;
585 /* Pop an access from the work queue, and return it, assuming there is one. */
587 static struct access *
588 pop_access_from_work_queue (void)
590 struct access *access = work_queue_head;
592 work_queue_head = access->next_queued;
593 access->next_queued = NULL;
594 access->grp_queued = 0;
595 return access;
599 /* Allocate necessary structures. */
601 static void
602 sra_initialize (void)
604 candidate_bitmap = BITMAP_ALLOC (NULL);
605 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
606 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
607 gcc_obstack_init (&name_obstack);
608 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
609 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
610 base_access_vec = pointer_map_create ();
611 memset (&sra_stats, 0, sizeof (sra_stats));
612 encountered_apply_args = false;
613 encountered_recursive_call = false;
614 encountered_unchangable_recursive_call = false;
617 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
619 static bool
620 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
621 void *data ATTRIBUTE_UNUSED)
623 VEC (access_p, heap) *access_vec;
624 access_vec = (VEC (access_p, heap) *) *value;
625 VEC_free (access_p, heap, access_vec);
627 return true;
630 /* Deallocate all general structures. */
632 static void
633 sra_deinitialize (void)
635 BITMAP_FREE (candidate_bitmap);
636 BITMAP_FREE (should_scalarize_away_bitmap);
637 BITMAP_FREE (cannot_scalarize_away_bitmap);
638 free_alloc_pool (access_pool);
639 free_alloc_pool (link_pool);
640 obstack_free (&name_obstack, NULL);
642 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
643 pointer_map_destroy (base_access_vec);
646 /* Remove DECL from candidates for SRA and write REASON to the dump file if
647 there is one. */
648 static void
649 disqualify_candidate (tree decl, const char *reason)
651 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
653 if (dump_file && (dump_flags & TDF_DETAILS))
655 fprintf (dump_file, "! Disqualifying ");
656 print_generic_expr (dump_file, decl, 0);
657 fprintf (dump_file, " - %s\n", reason);
661 /* Return true iff the type contains a field or an element which does not allow
662 scalarization. */
664 static bool
665 type_internals_preclude_sra_p (tree type, const char **msg)
667 tree fld;
668 tree et;
670 switch (TREE_CODE (type))
672 case RECORD_TYPE:
673 case UNION_TYPE:
674 case QUAL_UNION_TYPE:
675 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
676 if (TREE_CODE (fld) == FIELD_DECL)
678 tree ft = TREE_TYPE (fld);
680 if (TREE_THIS_VOLATILE (fld))
682 *msg = "volatile structure field";
683 return true;
685 if (!DECL_FIELD_OFFSET (fld))
687 *msg = "no structure field offset";
688 return true;
690 if (!DECL_SIZE (fld))
692 *msg = "zero structure field size";
693 return true;
695 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
697 *msg = "structure field offset not fixed";
698 return true;
700 if (!host_integerp (DECL_SIZE (fld), 1))
702 *msg = "structure field size not fixed";
703 return true;
705 if (!host_integerp (bit_position (fld), 0))
707 *msg = "structure field size too big";
708 return true;
710 if (AGGREGATE_TYPE_P (ft)
711 && int_bit_position (fld) % BITS_PER_UNIT != 0)
713 *msg = "structure field is bit field";
714 return true;
717 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
718 return true;
721 return false;
723 case ARRAY_TYPE:
724 et = TREE_TYPE (type);
726 if (TYPE_VOLATILE (et))
728 *msg = "element type is volatile";
729 return true;
732 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
733 return true;
735 return false;
737 default:
738 return false;
742 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
743 base variable if it is. Return T if it is not an SSA_NAME. */
745 static tree
746 get_ssa_base_param (tree t)
748 if (TREE_CODE (t) == SSA_NAME)
750 if (SSA_NAME_IS_DEFAULT_DEF (t))
751 return SSA_NAME_VAR (t);
752 else
753 return NULL_TREE;
755 return t;
758 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
759 belongs to, unless the BB has already been marked as a potentially
760 final. */
762 static void
763 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
765 basic_block bb = gimple_bb (stmt);
766 int idx, parm_index = 0;
767 tree parm;
769 if (bitmap_bit_p (final_bbs, bb->index))
770 return;
772 for (parm = DECL_ARGUMENTS (current_function_decl);
773 parm && parm != base;
774 parm = DECL_CHAIN (parm))
775 parm_index++;
777 gcc_assert (parm_index < func_param_count);
779 idx = bb->index * func_param_count + parm_index;
780 if (bb_dereferences[idx] < dist)
781 bb_dereferences[idx] = dist;
784 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
785 the three fields. Also add it to the vector of accesses corresponding to
786 the base. Finally, return the new access. */
788 static struct access *
789 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
791 VEC (access_p, heap) *vec;
792 struct access *access;
793 void **slot;
795 access = (struct access *) pool_alloc (access_pool);
796 memset (access, 0, sizeof (struct access));
797 access->base = base;
798 access->offset = offset;
799 access->size = size;
801 slot = pointer_map_contains (base_access_vec, base);
802 if (slot)
803 vec = (VEC (access_p, heap) *) *slot;
804 else
805 vec = VEC_alloc (access_p, heap, 32);
807 VEC_safe_push (access_p, heap, vec, access);
809 *((struct VEC (access_p,heap) **)
810 pointer_map_insert (base_access_vec, base)) = vec;
812 return access;
815 /* Create and insert access for EXPR. Return created access, or NULL if it is
816 not possible. */
818 static struct access *
819 create_access (tree expr, gimple stmt, bool write)
821 struct access *access;
822 HOST_WIDE_INT offset, size, max_size;
823 tree base = expr;
824 bool ptr, unscalarizable_region = false;
826 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
828 if (sra_mode == SRA_MODE_EARLY_IPA
829 && TREE_CODE (base) == MEM_REF)
831 base = get_ssa_base_param (TREE_OPERAND (base, 0));
832 if (!base)
833 return NULL;
834 ptr = true;
836 else
837 ptr = false;
839 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
840 return NULL;
842 if (sra_mode == SRA_MODE_EARLY_IPA)
844 if (size < 0 || size != max_size)
846 disqualify_candidate (base, "Encountered a variable sized access.");
847 return NULL;
849 if (TREE_CODE (expr) == COMPONENT_REF
850 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
852 disqualify_candidate (base, "Encountered a bit-field access.");
853 return NULL;
855 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
857 if (ptr)
858 mark_parm_dereference (base, offset + size, stmt);
860 else
862 if (size != max_size)
864 size = max_size;
865 unscalarizable_region = true;
867 if (size < 0)
869 disqualify_candidate (base, "Encountered an unconstrained access.");
870 return NULL;
874 access = create_access_1 (base, offset, size);
875 access->expr = expr;
876 access->type = TREE_TYPE (expr);
877 access->write = write;
878 access->grp_unscalarizable_region = unscalarizable_region;
879 access->stmt = stmt;
881 if (TREE_CODE (expr) == COMPONENT_REF
882 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
883 access->non_addressable = 1;
885 return access;
889 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
890 register types or (recursively) records with only these two kinds of fields.
891 It also returns false if any of these records contains a bit-field. */
893 static bool
894 type_consists_of_records_p (tree type)
896 tree fld;
898 if (TREE_CODE (type) != RECORD_TYPE)
899 return false;
901 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
902 if (TREE_CODE (fld) == FIELD_DECL)
904 tree ft = TREE_TYPE (fld);
906 if (DECL_BIT_FIELD (fld))
907 return false;
909 if (!is_gimple_reg_type (ft)
910 && !type_consists_of_records_p (ft))
911 return false;
914 return true;
917 /* Create total_scalarization accesses for all scalar type fields in DECL that
918 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
919 must be the top-most VAR_DECL representing the variable, OFFSET must be the
920 offset of DECL within BASE. REF must be the memory reference expression for
921 the given decl. */
923 static void
924 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
925 tree ref)
927 tree fld, decl_type = TREE_TYPE (decl);
929 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
930 if (TREE_CODE (fld) == FIELD_DECL)
932 HOST_WIDE_INT pos = offset + int_bit_position (fld);
933 tree ft = TREE_TYPE (fld);
934 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
935 NULL_TREE);
937 if (is_gimple_reg_type (ft))
939 struct access *access;
940 HOST_WIDE_INT size;
942 size = tree_low_cst (DECL_SIZE (fld), 1);
943 access = create_access_1 (base, pos, size);
944 access->expr = nref;
945 access->type = ft;
946 access->grp_total_scalarization = 1;
947 /* Accesses for intraprocedural SRA can have their stmt NULL. */
949 else
950 completely_scalarize_record (base, fld, pos, nref);
954 /* Create total_scalarization accesses for all scalar type fields in VAR and
955 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
956 type_consists_of_records_p. */
958 static void
959 completely_scalarize_var (tree var)
961 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
962 struct access *access;
964 access = create_access_1 (var, 0, size);
965 access->expr = var;
966 access->type = TREE_TYPE (var);
967 access->grp_total_scalarization = 1;
969 completely_scalarize_record (var, var, 0, var);
972 /* Search the given tree for a declaration by skipping handled components and
973 exclude it from the candidates. */
975 static void
976 disqualify_base_of_expr (tree t, const char *reason)
978 t = get_base_address (t);
979 if (t
980 && sra_mode == SRA_MODE_EARLY_IPA
981 && TREE_CODE (t) == MEM_REF)
982 t = get_ssa_base_param (TREE_OPERAND (t, 0));
984 if (t && DECL_P (t))
985 disqualify_candidate (t, reason);
988 /* Scan expression EXPR and create access structures for all accesses to
989 candidates for scalarization. Return the created access or NULL if none is
990 created. */
992 static struct access *
993 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
995 struct access *ret = NULL;
996 bool partial_ref;
998 if (TREE_CODE (expr) == BIT_FIELD_REF
999 || TREE_CODE (expr) == IMAGPART_EXPR
1000 || TREE_CODE (expr) == REALPART_EXPR)
1002 expr = TREE_OPERAND (expr, 0);
1003 partial_ref = true;
1005 else
1006 partial_ref = false;
1008 /* We need to dive through V_C_Es in order to get the size of its parameter
1009 and not the result type. Ada produces such statements. We are also
1010 capable of handling the topmost V_C_E but not any of those buried in other
1011 handled components. */
1012 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1013 expr = TREE_OPERAND (expr, 0);
1015 if (contains_view_convert_expr_p (expr))
1017 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1018 "component.");
1019 return NULL;
1022 switch (TREE_CODE (expr))
1024 case MEM_REF:
1025 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1026 && sra_mode != SRA_MODE_EARLY_IPA)
1027 return NULL;
1028 /* fall through */
1029 case VAR_DECL:
1030 case PARM_DECL:
1031 case RESULT_DECL:
1032 case COMPONENT_REF:
1033 case ARRAY_REF:
1034 case ARRAY_RANGE_REF:
1035 ret = create_access (expr, stmt, write);
1036 break;
1038 default:
1039 break;
1042 if (write && partial_ref && ret)
1043 ret->grp_partial_lhs = 1;
1045 return ret;
1048 /* Scan expression EXPR and create access structures for all accesses to
1049 candidates for scalarization. Return true if any access has been inserted.
1050 STMT must be the statement from which the expression is taken, WRITE must be
1051 true if the expression is a store and false otherwise. */
1053 static bool
1054 build_access_from_expr (tree expr, gimple stmt, bool write)
1056 struct access *access;
1058 access = build_access_from_expr_1 (expr, stmt, write);
1059 if (access)
1061 /* This means the aggregate is accesses as a whole in a way other than an
1062 assign statement and thus cannot be removed even if we had a scalar
1063 replacement for everything. */
1064 if (cannot_scalarize_away_bitmap)
1065 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1066 return true;
1068 return false;
1071 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1072 modes in which it matters, return true iff they have been disqualified. RHS
1073 may be NULL, in that case ignore it. If we scalarize an aggregate in
1074 intra-SRA we may need to add statements after each statement. This is not
1075 possible if a statement unconditionally has to end the basic block. */
1076 static bool
1077 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1079 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1080 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1082 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1083 if (rhs)
1084 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1085 return true;
1087 return false;
1090 /* Return true if EXP is a memory reference less aligned than ALIGN. This is
1091 invoked only on strict-alignment targets. */
1093 static bool
1094 tree_non_aligned_mem_p (tree exp, unsigned int align)
1096 unsigned int exp_align;
1098 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1099 exp = TREE_OPERAND (exp, 0);
1101 if (TREE_CODE (exp) == SSA_NAME || is_gimple_min_invariant (exp))
1102 return false;
1104 /* get_object_alignment will fall back to BITS_PER_UNIT if it cannot
1105 compute an explicit alignment. Pretend that dereferenced pointers
1106 are always aligned on strict-alignment targets. */
1107 if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF)
1108 exp_align = get_object_or_type_alignment (exp);
1109 else
1110 exp_align = get_object_alignment (exp);
1112 if (exp_align < align)
1113 return true;
1115 return false;
1118 /* Return true if EXP is a memory reference less aligned than what the access
1119 ACC would require. This is invoked only on strict-alignment targets. */
1121 static bool
1122 tree_non_aligned_mem_for_access_p (tree exp, struct access *acc)
1124 unsigned int acc_align;
1126 /* The alignment of the access is that of its expression. However, it may
1127 have been artificially increased, e.g. by a local alignment promotion,
1128 so we cap it to the alignment of the type of the base, on the grounds
1129 that valid sub-accesses cannot be more aligned than that. */
1130 acc_align = get_object_alignment (acc->expr);
1131 if (acc->base && acc_align > TYPE_ALIGN (TREE_TYPE (acc->base)))
1132 acc_align = TYPE_ALIGN (TREE_TYPE (acc->base));
1134 return tree_non_aligned_mem_p (exp, acc_align);
1137 /* Scan expressions occuring in STMT, create access structures for all accesses
1138 to candidates for scalarization and remove those candidates which occur in
1139 statements or expressions that prevent them from being split apart. Return
1140 true if any access has been inserted. */
1142 static bool
1143 build_accesses_from_assign (gimple stmt)
1145 tree lhs, rhs;
1146 struct access *lacc, *racc;
1148 if (!gimple_assign_single_p (stmt)
1149 /* Scope clobbers don't influence scalarization. */
1150 || gimple_clobber_p (stmt))
1151 return false;
1153 lhs = gimple_assign_lhs (stmt);
1154 rhs = gimple_assign_rhs1 (stmt);
1156 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1157 return false;
1159 racc = build_access_from_expr_1 (rhs, stmt, false);
1160 lacc = build_access_from_expr_1 (lhs, stmt, true);
1162 if (lacc)
1164 lacc->grp_assignment_write = 1;
1165 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (rhs, lacc))
1166 lacc->grp_unscalarizable_region = 1;
1169 if (racc)
1171 racc->grp_assignment_read = 1;
1172 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1173 && !is_gimple_reg_type (racc->type))
1174 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1175 if (STRICT_ALIGNMENT && tree_non_aligned_mem_for_access_p (lhs, racc))
1176 racc->grp_unscalarizable_region = 1;
1179 if (lacc && racc
1180 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1181 && !lacc->grp_unscalarizable_region
1182 && !racc->grp_unscalarizable_region
1183 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1184 /* FIXME: Turn the following line into an assert after PR 40058 is
1185 fixed. */
1186 && lacc->size == racc->size
1187 && useless_type_conversion_p (lacc->type, racc->type))
1189 struct assign_link *link;
1191 link = (struct assign_link *) pool_alloc (link_pool);
1192 memset (link, 0, sizeof (struct assign_link));
1194 link->lacc = lacc;
1195 link->racc = racc;
1197 add_link_to_rhs (racc, link);
1200 return lacc || racc;
1203 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1204 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1206 static bool
1207 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1208 void *data ATTRIBUTE_UNUSED)
1210 op = get_base_address (op);
1211 if (op
1212 && DECL_P (op))
1213 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1215 return false;
1218 /* Return true iff callsite CALL has at least as many actual arguments as there
1219 are formal parameters of the function currently processed by IPA-SRA. */
1221 static inline bool
1222 callsite_has_enough_arguments_p (gimple call)
1224 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1227 /* Scan function and look for interesting expressions and create access
1228 structures for them. Return true iff any access is created. */
1230 static bool
1231 scan_function (void)
1233 basic_block bb;
1234 bool ret = false;
1236 FOR_EACH_BB (bb)
1238 gimple_stmt_iterator gsi;
1239 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1241 gimple stmt = gsi_stmt (gsi);
1242 tree t;
1243 unsigned i;
1245 if (final_bbs && stmt_can_throw_external (stmt))
1246 bitmap_set_bit (final_bbs, bb->index);
1247 switch (gimple_code (stmt))
1249 case GIMPLE_RETURN:
1250 t = gimple_return_retval (stmt);
1251 if (t != NULL_TREE)
1252 ret |= build_access_from_expr (t, stmt, false);
1253 if (final_bbs)
1254 bitmap_set_bit (final_bbs, bb->index);
1255 break;
1257 case GIMPLE_ASSIGN:
1258 ret |= build_accesses_from_assign (stmt);
1259 break;
1261 case GIMPLE_CALL:
1262 for (i = 0; i < gimple_call_num_args (stmt); i++)
1263 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1264 stmt, false);
1266 if (sra_mode == SRA_MODE_EARLY_IPA)
1268 tree dest = gimple_call_fndecl (stmt);
1269 int flags = gimple_call_flags (stmt);
1271 if (dest)
1273 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1274 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1275 encountered_apply_args = true;
1276 if (cgraph_get_node (dest)
1277 == cgraph_get_node (current_function_decl))
1279 encountered_recursive_call = true;
1280 if (!callsite_has_enough_arguments_p (stmt))
1281 encountered_unchangable_recursive_call = true;
1285 if (final_bbs
1286 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1287 bitmap_set_bit (final_bbs, bb->index);
1290 t = gimple_call_lhs (stmt);
1291 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1292 ret |= build_access_from_expr (t, stmt, true);
1293 break;
1295 case GIMPLE_ASM:
1296 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1297 asm_visit_addr);
1298 if (final_bbs)
1299 bitmap_set_bit (final_bbs, bb->index);
1301 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1303 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1304 ret |= build_access_from_expr (t, stmt, false);
1306 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1308 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1309 ret |= build_access_from_expr (t, stmt, true);
1311 break;
1313 default:
1314 break;
1319 return ret;
1322 /* Helper of QSORT function. There are pointers to accesses in the array. An
1323 access is considered smaller than another if it has smaller offset or if the
1324 offsets are the same but is size is bigger. */
1326 static int
1327 compare_access_positions (const void *a, const void *b)
1329 const access_p *fp1 = (const access_p *) a;
1330 const access_p *fp2 = (const access_p *) b;
1331 const access_p f1 = *fp1;
1332 const access_p f2 = *fp2;
1334 if (f1->offset != f2->offset)
1335 return f1->offset < f2->offset ? -1 : 1;
1337 if (f1->size == f2->size)
1339 if (f1->type == f2->type)
1340 return 0;
1341 /* Put any non-aggregate type before any aggregate type. */
1342 else if (!is_gimple_reg_type (f1->type)
1343 && is_gimple_reg_type (f2->type))
1344 return 1;
1345 else if (is_gimple_reg_type (f1->type)
1346 && !is_gimple_reg_type (f2->type))
1347 return -1;
1348 /* Put any complex or vector type before any other scalar type. */
1349 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1350 && TREE_CODE (f1->type) != VECTOR_TYPE
1351 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1352 || TREE_CODE (f2->type) == VECTOR_TYPE))
1353 return 1;
1354 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1355 || TREE_CODE (f1->type) == VECTOR_TYPE)
1356 && TREE_CODE (f2->type) != COMPLEX_TYPE
1357 && TREE_CODE (f2->type) != VECTOR_TYPE)
1358 return -1;
1359 /* Put the integral type with the bigger precision first. */
1360 else if (INTEGRAL_TYPE_P (f1->type)
1361 && INTEGRAL_TYPE_P (f2->type))
1362 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1363 /* Put any integral type with non-full precision last. */
1364 else if (INTEGRAL_TYPE_P (f1->type)
1365 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1366 != TYPE_PRECISION (f1->type)))
1367 return 1;
1368 else if (INTEGRAL_TYPE_P (f2->type)
1369 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1370 != TYPE_PRECISION (f2->type)))
1371 return -1;
1372 /* Stabilize the sort. */
1373 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1376 /* We want the bigger accesses first, thus the opposite operator in the next
1377 line: */
1378 return f1->size > f2->size ? -1 : 1;
1382 /* Append a name of the declaration to the name obstack. A helper function for
1383 make_fancy_name. */
1385 static void
1386 make_fancy_decl_name (tree decl)
1388 char buffer[32];
1390 tree name = DECL_NAME (decl);
1391 if (name)
1392 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1393 IDENTIFIER_LENGTH (name));
1394 else
1396 sprintf (buffer, "D%u", DECL_UID (decl));
1397 obstack_grow (&name_obstack, buffer, strlen (buffer));
1401 /* Helper for make_fancy_name. */
1403 static void
1404 make_fancy_name_1 (tree expr)
1406 char buffer[32];
1407 tree index;
1409 if (DECL_P (expr))
1411 make_fancy_decl_name (expr);
1412 return;
1415 switch (TREE_CODE (expr))
1417 case COMPONENT_REF:
1418 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1419 obstack_1grow (&name_obstack, '$');
1420 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1421 break;
1423 case ARRAY_REF:
1424 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1425 obstack_1grow (&name_obstack, '$');
1426 /* Arrays with only one element may not have a constant as their
1427 index. */
1428 index = TREE_OPERAND (expr, 1);
1429 if (TREE_CODE (index) != INTEGER_CST)
1430 break;
1431 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1432 obstack_grow (&name_obstack, buffer, strlen (buffer));
1433 break;
1435 case ADDR_EXPR:
1436 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1437 break;
1439 case MEM_REF:
1440 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1441 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1443 obstack_1grow (&name_obstack, '$');
1444 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1445 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1446 obstack_grow (&name_obstack, buffer, strlen (buffer));
1448 break;
1450 case BIT_FIELD_REF:
1451 case REALPART_EXPR:
1452 case IMAGPART_EXPR:
1453 gcc_unreachable (); /* we treat these as scalars. */
1454 break;
1455 default:
1456 break;
1460 /* Create a human readable name for replacement variable of ACCESS. */
1462 static char *
1463 make_fancy_name (tree expr)
1465 make_fancy_name_1 (expr);
1466 obstack_1grow (&name_obstack, '\0');
1467 return XOBFINISH (&name_obstack, char *);
1470 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1471 EXP_TYPE at the given OFFSET. If BASE is something for which
1472 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1473 to insert new statements either before or below the current one as specified
1474 by INSERT_AFTER. This function is not capable of handling bitfields. */
1476 tree
1477 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1478 tree exp_type, gimple_stmt_iterator *gsi,
1479 bool insert_after)
1481 tree prev_base = base;
1482 tree off;
1483 HOST_WIDE_INT base_offset;
1484 unsigned HOST_WIDE_INT misalign;
1485 unsigned int align;
1487 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1489 base = get_addr_base_and_unit_offset (base, &base_offset);
1491 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1492 offset such as array[var_index]. */
1493 if (!base)
1495 gimple stmt;
1496 tree tmp, addr;
1498 gcc_checking_assert (gsi);
1499 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1500 add_referenced_var (tmp);
1501 tmp = make_ssa_name (tmp, NULL);
1502 addr = build_fold_addr_expr (unshare_expr (prev_base));
1503 STRIP_USELESS_TYPE_CONVERSION (addr);
1504 stmt = gimple_build_assign (tmp, addr);
1505 gimple_set_location (stmt, loc);
1506 SSA_NAME_DEF_STMT (tmp) = stmt;
1507 if (insert_after)
1508 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1509 else
1510 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1511 update_stmt (stmt);
1513 off = build_int_cst (reference_alias_ptr_type (prev_base),
1514 offset / BITS_PER_UNIT);
1515 base = tmp;
1517 else if (TREE_CODE (base) == MEM_REF)
1519 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1520 base_offset + offset / BITS_PER_UNIT);
1521 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1522 base = unshare_expr (TREE_OPERAND (base, 0));
1524 else
1526 off = build_int_cst (reference_alias_ptr_type (base),
1527 base_offset + offset / BITS_PER_UNIT);
1528 base = build_fold_addr_expr (unshare_expr (base));
1531 /* If prev_base were always an originally performed access
1532 we can extract more optimistic alignment information
1533 by looking at the access mode. That would constrain the
1534 alignment of base + base_offset which we would need to
1535 adjust according to offset. */
1536 align = get_pointer_alignment_1 (base, &misalign);
1537 if (misalign == 0
1538 && (TREE_CODE (prev_base) == MEM_REF
1539 || TREE_CODE (prev_base) == TARGET_MEM_REF))
1540 align = MAX (align, TYPE_ALIGN (TREE_TYPE (prev_base)));
1541 misalign += (double_int_sext (tree_to_double_int (off),
1542 TYPE_PRECISION (TREE_TYPE (off))).low
1543 * BITS_PER_UNIT);
1544 misalign = misalign & (align - 1);
1545 if (misalign != 0)
1546 align = (misalign & -misalign);
1547 if (align < TYPE_ALIGN (exp_type))
1548 exp_type = build_aligned_type (exp_type, align);
1550 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1553 DEF_VEC_ALLOC_P_STACK (tree);
1554 #define VEC_tree_stack_alloc(alloc) VEC_stack_alloc (tree, alloc)
1556 /* Construct a memory reference to a part of an aggregate BASE at the given
1557 OFFSET and of the type of MODEL. In case this is a chain of references
1558 to component, the function will replicate the chain of COMPONENT_REFs of
1559 the expression of MODEL to access it. GSI and INSERT_AFTER have the same
1560 meaning as in build_ref_for_offset. */
1562 static tree
1563 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1564 struct access *model, gimple_stmt_iterator *gsi,
1565 bool insert_after)
1567 tree type = model->type, t;
1568 VEC(tree,stack) *cr_stack = NULL;
1570 if (TREE_CODE (model->expr) == COMPONENT_REF)
1572 tree expr = model->expr;
1574 /* Create a stack of the COMPONENT_REFs so later we can walk them in
1575 order from inner to outer. */
1576 cr_stack = VEC_alloc (tree, stack, 6);
1578 do {
1579 tree field = TREE_OPERAND (expr, 1);
1580 tree cr_offset = component_ref_field_offset (expr);
1581 HOST_WIDE_INT bit_pos
1582 = tree_low_cst (cr_offset, 1) * BITS_PER_UNIT
1583 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
1585 /* We can be called with a model different from the one associated
1586 with BASE so we need to avoid going up the chain too far. */
1587 if (offset - bit_pos < 0)
1588 break;
1590 offset -= bit_pos;
1591 VEC_safe_push (tree, stack, cr_stack, expr);
1593 expr = TREE_OPERAND (expr, 0);
1594 type = TREE_TYPE (expr);
1595 } while (TREE_CODE (expr) == COMPONENT_REF);
1598 t = build_ref_for_offset (loc, base, offset, type, gsi, insert_after);
1600 if (TREE_CODE (model->expr) == COMPONENT_REF)
1602 unsigned i;
1603 tree expr;
1605 /* Now replicate the chain of COMPONENT_REFs from inner to outer. */
1606 FOR_EACH_VEC_ELT_REVERSE (tree, cr_stack, i, expr)
1608 tree field = TREE_OPERAND (expr, 1);
1609 t = fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (field), t, field,
1610 TREE_OPERAND (expr, 2));
1613 VEC_free (tree, stack, cr_stack);
1616 return t;
1619 /* Construct a memory reference consisting of component_refs and array_refs to
1620 a part of an aggregate *RES (which is of type TYPE). The requested part
1621 should have type EXP_TYPE at be the given OFFSET. This function might not
1622 succeed, it returns true when it does and only then *RES points to something
1623 meaningful. This function should be used only to build expressions that we
1624 might need to present to user (e.g. in warnings). In all other situations,
1625 build_ref_for_model or build_ref_for_offset should be used instead. */
1627 static bool
1628 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1629 tree exp_type)
1631 while (1)
1633 tree fld;
1634 tree tr_size, index, minidx;
1635 HOST_WIDE_INT el_size;
1637 if (offset == 0 && exp_type
1638 && types_compatible_p (exp_type, type))
1639 return true;
1641 switch (TREE_CODE (type))
1643 case UNION_TYPE:
1644 case QUAL_UNION_TYPE:
1645 case RECORD_TYPE:
1646 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1648 HOST_WIDE_INT pos, size;
1649 tree expr, *expr_ptr;
1651 if (TREE_CODE (fld) != FIELD_DECL)
1652 continue;
1654 pos = int_bit_position (fld);
1655 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1656 tr_size = DECL_SIZE (fld);
1657 if (!tr_size || !host_integerp (tr_size, 1))
1658 continue;
1659 size = tree_low_cst (tr_size, 1);
1660 if (size == 0)
1662 if (pos != offset)
1663 continue;
1665 else if (pos > offset || (pos + size) <= offset)
1666 continue;
1668 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1669 NULL_TREE);
1670 expr_ptr = &expr;
1671 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1672 offset - pos, exp_type))
1674 *res = expr;
1675 return true;
1678 return false;
1680 case ARRAY_TYPE:
1681 tr_size = TYPE_SIZE (TREE_TYPE (type));
1682 if (!tr_size || !host_integerp (tr_size, 1))
1683 return false;
1684 el_size = tree_low_cst (tr_size, 1);
1686 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1687 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1688 return false;
1689 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1690 if (!integer_zerop (minidx))
1691 index = int_const_binop (PLUS_EXPR, index, minidx);
1692 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1693 NULL_TREE, NULL_TREE);
1694 offset = offset % el_size;
1695 type = TREE_TYPE (type);
1696 break;
1698 default:
1699 if (offset != 0)
1700 return false;
1702 if (exp_type)
1703 return false;
1704 else
1705 return true;
1710 /* Return true iff TYPE is stdarg va_list type. */
1712 static inline bool
1713 is_va_list_type (tree type)
1715 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1718 /* Print message to dump file why a variable was rejected. */
1720 static void
1721 reject (tree var, const char *msg)
1723 if (dump_file && (dump_flags & TDF_DETAILS))
1725 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1726 print_generic_expr (dump_file, var, 0);
1727 fprintf (dump_file, "\n");
1731 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1732 those with type which is suitable for scalarization. */
1734 static bool
1735 find_var_candidates (void)
1737 tree var, type;
1738 referenced_var_iterator rvi;
1739 bool ret = false;
1740 const char *msg;
1742 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1744 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1745 continue;
1746 type = TREE_TYPE (var);
1748 if (!AGGREGATE_TYPE_P (type))
1750 reject (var, "not aggregate");
1751 continue;
1753 if (needs_to_live_in_memory (var))
1755 reject (var, "needs to live in memory");
1756 continue;
1758 if (TREE_THIS_VOLATILE (var))
1760 reject (var, "is volatile");
1761 continue;
1763 if (!COMPLETE_TYPE_P (type))
1765 reject (var, "has incomplete type");
1766 continue;
1768 if (!host_integerp (TYPE_SIZE (type), 1))
1770 reject (var, "type size not fixed");
1771 continue;
1773 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1775 reject (var, "type size is zero");
1776 continue;
1778 if (type_internals_preclude_sra_p (type, &msg))
1780 reject (var, msg);
1781 continue;
1783 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1784 we also want to schedule it rather late. Thus we ignore it in
1785 the early pass. */
1786 (sra_mode == SRA_MODE_EARLY_INTRA
1787 && is_va_list_type (type)))
1789 reject (var, "is va_list");
1790 continue;
1793 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1795 if (dump_file && (dump_flags & TDF_DETAILS))
1797 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1798 print_generic_expr (dump_file, var, 0);
1799 fprintf (dump_file, "\n");
1801 ret = true;
1804 return ret;
1807 /* Sort all accesses for the given variable, check for partial overlaps and
1808 return NULL if there are any. If there are none, pick a representative for
1809 each combination of offset and size and create a linked list out of them.
1810 Return the pointer to the first representative and make sure it is the first
1811 one in the vector of accesses. */
1813 static struct access *
1814 sort_and_splice_var_accesses (tree var)
1816 int i, j, access_count;
1817 struct access *res, **prev_acc_ptr = &res;
1818 VEC (access_p, heap) *access_vec;
1819 bool first = true;
1820 HOST_WIDE_INT low = -1, high = 0;
1822 access_vec = get_base_access_vector (var);
1823 if (!access_vec)
1824 return NULL;
1825 access_count = VEC_length (access_p, access_vec);
1827 /* Sort by <OFFSET, SIZE>. */
1828 VEC_qsort (access_p, access_vec, compare_access_positions);
1830 i = 0;
1831 while (i < access_count)
1833 struct access *access = VEC_index (access_p, access_vec, i);
1834 bool grp_write = access->write;
1835 bool grp_read = !access->write;
1836 bool grp_scalar_write = access->write
1837 && is_gimple_reg_type (access->type);
1838 bool grp_scalar_read = !access->write
1839 && is_gimple_reg_type (access->type);
1840 bool grp_assignment_read = access->grp_assignment_read;
1841 bool grp_assignment_write = access->grp_assignment_write;
1842 bool multiple_scalar_reads = false;
1843 bool total_scalarization = access->grp_total_scalarization;
1844 bool grp_partial_lhs = access->grp_partial_lhs;
1845 bool first_scalar = is_gimple_reg_type (access->type);
1846 bool unscalarizable_region = access->grp_unscalarizable_region;
1848 if (first || access->offset >= high)
1850 first = false;
1851 low = access->offset;
1852 high = access->offset + access->size;
1854 else if (access->offset > low && access->offset + access->size > high)
1855 return NULL;
1856 else
1857 gcc_assert (access->offset >= low
1858 && access->offset + access->size <= high);
1860 j = i + 1;
1861 while (j < access_count)
1863 struct access *ac2 = VEC_index (access_p, access_vec, j);
1864 if (ac2->offset != access->offset || ac2->size != access->size)
1865 break;
1866 if (ac2->write)
1868 grp_write = true;
1869 grp_scalar_write = (grp_scalar_write
1870 || is_gimple_reg_type (ac2->type));
1872 else
1874 grp_read = true;
1875 if (is_gimple_reg_type (ac2->type))
1877 if (grp_scalar_read)
1878 multiple_scalar_reads = true;
1879 else
1880 grp_scalar_read = true;
1883 grp_assignment_read |= ac2->grp_assignment_read;
1884 grp_assignment_write |= ac2->grp_assignment_write;
1885 grp_partial_lhs |= ac2->grp_partial_lhs;
1886 unscalarizable_region |= ac2->grp_unscalarizable_region;
1887 total_scalarization |= ac2->grp_total_scalarization;
1888 relink_to_new_repr (access, ac2);
1890 /* If there are both aggregate-type and scalar-type accesses with
1891 this combination of size and offset, the comparison function
1892 should have put the scalars first. */
1893 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1894 ac2->group_representative = access;
1895 j++;
1898 i = j;
1900 access->group_representative = access;
1901 access->grp_write = grp_write;
1902 access->grp_read = grp_read;
1903 access->grp_scalar_read = grp_scalar_read;
1904 access->grp_scalar_write = grp_scalar_write;
1905 access->grp_assignment_read = grp_assignment_read;
1906 access->grp_assignment_write = grp_assignment_write;
1907 access->grp_hint = multiple_scalar_reads || total_scalarization;
1908 access->grp_total_scalarization = total_scalarization;
1909 access->grp_partial_lhs = grp_partial_lhs;
1910 access->grp_unscalarizable_region = unscalarizable_region;
1911 if (access->first_link)
1912 add_access_to_work_queue (access);
1914 *prev_acc_ptr = access;
1915 prev_acc_ptr = &access->next_grp;
1918 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1919 return res;
1922 /* Create a variable for the given ACCESS which determines the type, name and a
1923 few other properties. Return the variable declaration and store it also to
1924 ACCESS->replacement. */
1926 static tree
1927 create_access_replacement (struct access *access, bool rename)
1929 tree repl;
1931 repl = create_tmp_var (access->type, "SR");
1932 add_referenced_var (repl);
1933 if (rename)
1934 mark_sym_for_renaming (repl);
1936 if (!access->grp_partial_lhs
1937 && (TREE_CODE (access->type) == COMPLEX_TYPE
1938 || TREE_CODE (access->type) == VECTOR_TYPE))
1939 DECL_GIMPLE_REG_P (repl) = 1;
1941 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1942 DECL_ARTIFICIAL (repl) = 1;
1943 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1945 if (DECL_NAME (access->base)
1946 && !DECL_IGNORED_P (access->base)
1947 && !DECL_ARTIFICIAL (access->base))
1949 char *pretty_name = make_fancy_name (access->expr);
1950 tree debug_expr = unshare_expr (access->expr), d;
1952 DECL_NAME (repl) = get_identifier (pretty_name);
1953 obstack_free (&name_obstack, pretty_name);
1955 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1956 as DECL_DEBUG_EXPR isn't considered when looking for still
1957 used SSA_NAMEs and thus they could be freed. All debug info
1958 generation cares is whether something is constant or variable
1959 and that get_ref_base_and_extent works properly on the
1960 expression. */
1961 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1962 switch (TREE_CODE (d))
1964 case ARRAY_REF:
1965 case ARRAY_RANGE_REF:
1966 if (TREE_OPERAND (d, 1)
1967 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1968 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1969 if (TREE_OPERAND (d, 3)
1970 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1971 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1972 /* FALLTHRU */
1973 case COMPONENT_REF:
1974 if (TREE_OPERAND (d, 2)
1975 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1976 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1977 break;
1978 default:
1979 break;
1981 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1982 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1983 if (access->grp_no_warning)
1984 TREE_NO_WARNING (repl) = 1;
1985 else
1986 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1988 else
1989 TREE_NO_WARNING (repl) = 1;
1991 if (dump_file)
1993 fprintf (dump_file, "Created a replacement for ");
1994 print_generic_expr (dump_file, access->base, 0);
1995 fprintf (dump_file, " offset: %u, size: %u: ",
1996 (unsigned) access->offset, (unsigned) access->size);
1997 print_generic_expr (dump_file, repl, 0);
1998 fprintf (dump_file, "\n");
2000 sra_stats.replacements++;
2002 return repl;
2005 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2007 static inline tree
2008 get_access_replacement (struct access *access)
2010 gcc_assert (access->grp_to_be_replaced);
2012 if (!access->replacement_decl)
2013 access->replacement_decl = create_access_replacement (access, true);
2014 return access->replacement_decl;
2017 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
2018 not mark it for renaming. */
2020 static inline tree
2021 get_unrenamed_access_replacement (struct access *access)
2023 gcc_assert (!access->grp_to_be_replaced);
2025 if (!access->replacement_decl)
2026 access->replacement_decl = create_access_replacement (access, false);
2027 return access->replacement_decl;
2031 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2032 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2033 to it is not "within" the root. Return false iff some accesses partially
2034 overlap. */
2036 static bool
2037 build_access_subtree (struct access **access)
2039 struct access *root = *access, *last_child = NULL;
2040 HOST_WIDE_INT limit = root->offset + root->size;
2042 *access = (*access)->next_grp;
2043 while (*access && (*access)->offset + (*access)->size <= limit)
2045 if (!last_child)
2046 root->first_child = *access;
2047 else
2048 last_child->next_sibling = *access;
2049 last_child = *access;
2051 if (!build_access_subtree (access))
2052 return false;
2055 if (*access && (*access)->offset < limit)
2056 return false;
2058 return true;
2061 /* Build a tree of access representatives, ACCESS is the pointer to the first
2062 one, others are linked in a list by the next_grp field. Return false iff
2063 some accesses partially overlap. */
2065 static bool
2066 build_access_trees (struct access *access)
2068 while (access)
2070 struct access *root = access;
2072 if (!build_access_subtree (&access))
2073 return false;
2074 root->next_grp = access;
2076 return true;
2079 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2080 array. */
2082 static bool
2083 expr_with_var_bounded_array_refs_p (tree expr)
2085 while (handled_component_p (expr))
2087 if (TREE_CODE (expr) == ARRAY_REF
2088 && !host_integerp (array_ref_low_bound (expr), 0))
2089 return true;
2090 expr = TREE_OPERAND (expr, 0);
2092 return false;
2095 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2096 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2097 sorts of access flags appropriately along the way, notably always set
2098 grp_read and grp_assign_read according to MARK_READ and grp_write when
2099 MARK_WRITE is true.
2101 Creating a replacement for a scalar access is considered beneficial if its
2102 grp_hint is set (this means we are either attempting total scalarization or
2103 there is more than one direct read access) or according to the following
2104 table:
2106 Access written to through a scalar type (once or more times)
2108 | Written to in an assignment statement
2110 | | Access read as scalar _once_
2111 | | |
2112 | | | Read in an assignment statement
2113 | | | |
2114 | | | | Scalarize Comment
2115 -----------------------------------------------------------------------------
2116 0 0 0 0 No access for the scalar
2117 0 0 0 1 No access for the scalar
2118 0 0 1 0 No Single read - won't help
2119 0 0 1 1 No The same case
2120 0 1 0 0 No access for the scalar
2121 0 1 0 1 No access for the scalar
2122 0 1 1 0 Yes s = *g; return s.i;
2123 0 1 1 1 Yes The same case as above
2124 1 0 0 0 No Won't help
2125 1 0 0 1 Yes s.i = 1; *g = s;
2126 1 0 1 0 Yes s.i = 5; g = s.i;
2127 1 0 1 1 Yes The same case as above
2128 1 1 0 0 No Won't help.
2129 1 1 0 1 Yes s.i = 1; *g = s;
2130 1 1 1 0 Yes s = *g; return s.i;
2131 1 1 1 1 Yes Any of the above yeses */
2133 static bool
2134 analyze_access_subtree (struct access *root, struct access *parent,
2135 bool allow_replacements)
2137 struct access *child;
2138 HOST_WIDE_INT limit = root->offset + root->size;
2139 HOST_WIDE_INT covered_to = root->offset;
2140 bool scalar = is_gimple_reg_type (root->type);
2141 bool hole = false, sth_created = false;
2143 if (parent)
2145 if (parent->grp_read)
2146 root->grp_read = 1;
2147 if (parent->grp_assignment_read)
2148 root->grp_assignment_read = 1;
2149 if (parent->grp_write)
2150 root->grp_write = 1;
2151 if (parent->grp_assignment_write)
2152 root->grp_assignment_write = 1;
2153 if (parent->grp_total_scalarization)
2154 root->grp_total_scalarization = 1;
2157 if (root->grp_unscalarizable_region)
2158 allow_replacements = false;
2160 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2161 allow_replacements = false;
2163 for (child = root->first_child; child; child = child->next_sibling)
2165 hole |= covered_to < child->offset;
2166 sth_created |= analyze_access_subtree (child, root,
2167 allow_replacements && !scalar);
2169 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2170 root->grp_total_scalarization &= child->grp_total_scalarization;
2171 if (child->grp_covered)
2172 covered_to += child->size;
2173 else
2174 hole = true;
2177 if (allow_replacements && scalar && !root->first_child
2178 && (root->grp_hint
2179 || ((root->grp_scalar_read || root->grp_assignment_read)
2180 && (root->grp_scalar_write || root->grp_assignment_write))))
2182 bool new_integer_type;
2183 /* Always create access replacements that cover the whole access.
2184 For integral types this means the precision has to match.
2185 Avoid assumptions based on the integral type kind, too. */
2186 if (INTEGRAL_TYPE_P (root->type)
2187 && (TREE_CODE (root->type) != INTEGER_TYPE
2188 || TYPE_PRECISION (root->type) != root->size)
2189 /* But leave bitfield accesses alone. */
2190 && (TREE_CODE (root->expr) != COMPONENT_REF
2191 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2193 tree rt = root->type;
2194 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2195 && (root->size % BITS_PER_UNIT) == 0);
2196 root->type = build_nonstandard_integer_type (root->size,
2197 TYPE_UNSIGNED (rt));
2198 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2199 root->base, root->offset,
2200 root->type, NULL, false);
2201 new_integer_type = true;
2203 else
2204 new_integer_type = false;
2206 if (dump_file && (dump_flags & TDF_DETAILS))
2208 fprintf (dump_file, "Marking ");
2209 print_generic_expr (dump_file, root->base, 0);
2210 fprintf (dump_file, " offset: %u, size: %u ",
2211 (unsigned) root->offset, (unsigned) root->size);
2212 fprintf (dump_file, " to be replaced%s.\n",
2213 new_integer_type ? " with an integer": "");
2216 root->grp_to_be_replaced = 1;
2217 sth_created = true;
2218 hole = false;
2220 else
2222 if (covered_to < limit)
2223 hole = true;
2224 if (scalar)
2225 root->grp_total_scalarization = 0;
2228 if (sth_created
2229 && (!hole || root->grp_total_scalarization))
2231 root->grp_covered = 1;
2232 return true;
2234 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2235 root->grp_unscalarized_data = 1; /* not covered and written to */
2236 if (sth_created)
2237 return true;
2238 return false;
2241 /* Analyze all access trees linked by next_grp by the means of
2242 analyze_access_subtree. */
2243 static bool
2244 analyze_access_trees (struct access *access)
2246 bool ret = false;
2248 while (access)
2250 if (analyze_access_subtree (access, NULL, true))
2251 ret = true;
2252 access = access->next_grp;
2255 return ret;
2258 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2259 SIZE would conflict with an already existing one. If exactly such a child
2260 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2262 static bool
2263 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2264 HOST_WIDE_INT size, struct access **exact_match)
2266 struct access *child;
2268 for (child = lacc->first_child; child; child = child->next_sibling)
2270 if (child->offset == norm_offset && child->size == size)
2272 *exact_match = child;
2273 return true;
2276 if (child->offset < norm_offset + size
2277 && child->offset + child->size > norm_offset)
2278 return true;
2281 return false;
2284 /* Create a new child access of PARENT, with all properties just like MODEL
2285 except for its offset and with its grp_write false and grp_read true.
2286 Return the new access or NULL if it cannot be created. Note that this access
2287 is created long after all splicing and sorting, it's not located in any
2288 access vector and is automatically a representative of its group. */
2290 static struct access *
2291 create_artificial_child_access (struct access *parent, struct access *model,
2292 HOST_WIDE_INT new_offset)
2294 struct access *access;
2295 struct access **child;
2296 tree expr = parent->base;
2298 gcc_assert (!model->grp_unscalarizable_region);
2300 access = (struct access *) pool_alloc (access_pool);
2301 memset (access, 0, sizeof (struct access));
2302 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2303 model->type))
2305 access->grp_no_warning = true;
2306 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2307 new_offset, model, NULL, false);
2310 access->base = parent->base;
2311 access->expr = expr;
2312 access->offset = new_offset;
2313 access->size = model->size;
2314 access->type = model->type;
2315 access->grp_write = true;
2316 access->grp_read = false;
2318 child = &parent->first_child;
2319 while (*child && (*child)->offset < new_offset)
2320 child = &(*child)->next_sibling;
2322 access->next_sibling = *child;
2323 *child = access;
2325 return access;
2329 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2330 true if any new subaccess was created. Additionally, if RACC is a scalar
2331 access but LACC is not, change the type of the latter, if possible. */
2333 static bool
2334 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2336 struct access *rchild;
2337 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2338 bool ret = false;
2340 if (is_gimple_reg_type (lacc->type)
2341 || lacc->grp_unscalarizable_region
2342 || racc->grp_unscalarizable_region)
2343 return false;
2345 if (is_gimple_reg_type (racc->type))
2347 if (!lacc->first_child && !racc->first_child)
2349 tree t = lacc->base;
2351 lacc->type = racc->type;
2352 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2353 lacc->offset, racc->type))
2354 lacc->expr = t;
2355 else
2357 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2358 lacc->base, lacc->offset,
2359 racc, NULL, false);
2360 lacc->grp_no_warning = true;
2363 return false;
2366 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2368 struct access *new_acc = NULL;
2369 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2371 if (rchild->grp_unscalarizable_region)
2372 continue;
2374 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2375 &new_acc))
2377 if (new_acc)
2379 rchild->grp_hint = 1;
2380 new_acc->grp_hint |= new_acc->grp_read;
2381 if (rchild->first_child)
2382 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2384 continue;
2387 rchild->grp_hint = 1;
2388 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2389 if (new_acc)
2391 ret = true;
2392 if (racc->first_child)
2393 propagate_subaccesses_across_link (new_acc, rchild);
2397 return ret;
2400 /* Propagate all subaccesses across assignment links. */
2402 static void
2403 propagate_all_subaccesses (void)
2405 while (work_queue_head)
2407 struct access *racc = pop_access_from_work_queue ();
2408 struct assign_link *link;
2410 gcc_assert (racc->first_link);
2412 for (link = racc->first_link; link; link = link->next)
2414 struct access *lacc = link->lacc;
2416 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2417 continue;
2418 lacc = lacc->group_representative;
2419 if (propagate_subaccesses_across_link (lacc, racc)
2420 && lacc->first_link)
2421 add_access_to_work_queue (lacc);
2426 /* Go through all accesses collected throughout the (intraprocedural) analysis
2427 stage, exclude overlapping ones, identify representatives and build trees
2428 out of them, making decisions about scalarization on the way. Return true
2429 iff there are any to-be-scalarized variables after this stage. */
2431 static bool
2432 analyze_all_variable_accesses (void)
2434 int res = 0;
2435 bitmap tmp = BITMAP_ALLOC (NULL);
2436 bitmap_iterator bi;
2437 unsigned i, max_total_scalarization_size;
2439 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2440 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2442 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2443 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2444 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2446 tree var = referenced_var (i);
2448 if (TREE_CODE (var) == VAR_DECL
2449 && type_consists_of_records_p (TREE_TYPE (var)))
2451 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2452 <= max_total_scalarization_size)
2454 completely_scalarize_var (var);
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2457 fprintf (dump_file, "Will attempt to totally scalarize ");
2458 print_generic_expr (dump_file, var, 0);
2459 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2462 else if (dump_file && (dump_flags & TDF_DETAILS))
2464 fprintf (dump_file, "Too big to totally scalarize: ");
2465 print_generic_expr (dump_file, var, 0);
2466 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2471 bitmap_copy (tmp, candidate_bitmap);
2472 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2474 tree var = referenced_var (i);
2475 struct access *access;
2477 access = sort_and_splice_var_accesses (var);
2478 if (!access || !build_access_trees (access))
2479 disqualify_candidate (var,
2480 "No or inhibitingly overlapping accesses.");
2483 propagate_all_subaccesses ();
2485 bitmap_copy (tmp, candidate_bitmap);
2486 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2488 tree var = referenced_var (i);
2489 struct access *access = get_first_repr_for_decl (var);
2491 if (analyze_access_trees (access))
2493 res++;
2494 if (dump_file && (dump_flags & TDF_DETAILS))
2496 fprintf (dump_file, "\nAccess trees for ");
2497 print_generic_expr (dump_file, var, 0);
2498 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2499 dump_access_tree (dump_file, access);
2500 fprintf (dump_file, "\n");
2503 else
2504 disqualify_candidate (var, "No scalar replacements to be created.");
2507 BITMAP_FREE (tmp);
2509 if (res)
2511 statistics_counter_event (cfun, "Scalarized aggregates", res);
2512 return true;
2514 else
2515 return false;
2518 /* Generate statements copying scalar replacements of accesses within a subtree
2519 into or out of AGG. ACCESS, all its children, siblings and their children
2520 are to be processed. AGG is an aggregate type expression (can be a
2521 declaration but does not have to be, it can for example also be a mem_ref or
2522 a series of handled components). TOP_OFFSET is the offset of the processed
2523 subtree which has to be subtracted from offsets of individual accesses to
2524 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2525 replacements in the interval <start_offset, start_offset + chunk_size>,
2526 otherwise copy all. GSI is a statement iterator used to place the new
2527 statements. WRITE should be true when the statements should write from AGG
2528 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2529 statements will be added after the current statement in GSI, they will be
2530 added before the statement otherwise. */
2532 static void
2533 generate_subtree_copies (struct access *access, tree agg,
2534 HOST_WIDE_INT top_offset,
2535 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2536 gimple_stmt_iterator *gsi, bool write,
2537 bool insert_after, location_t loc)
2541 if (chunk_size && access->offset >= start_offset + chunk_size)
2542 return;
2544 if (access->grp_to_be_replaced
2545 && (chunk_size == 0
2546 || access->offset + access->size > start_offset))
2548 tree expr, repl = get_access_replacement (access);
2549 gimple stmt;
2551 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2552 access, gsi, insert_after);
2554 if (write)
2556 if (access->grp_partial_lhs)
2557 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2558 !insert_after,
2559 insert_after ? GSI_NEW_STMT
2560 : GSI_SAME_STMT);
2561 stmt = gimple_build_assign (repl, expr);
2563 else
2565 TREE_NO_WARNING (repl) = 1;
2566 if (access->grp_partial_lhs)
2567 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2568 !insert_after,
2569 insert_after ? GSI_NEW_STMT
2570 : GSI_SAME_STMT);
2571 stmt = gimple_build_assign (expr, repl);
2573 gimple_set_location (stmt, loc);
2575 if (insert_after)
2576 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2577 else
2578 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2579 update_stmt (stmt);
2580 sra_stats.subtree_copies++;
2583 if (access->first_child)
2584 generate_subtree_copies (access->first_child, agg, top_offset,
2585 start_offset, chunk_size, gsi,
2586 write, insert_after, loc);
2588 access = access->next_sibling;
2590 while (access);
2593 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2594 the root of the subtree to be processed. GSI is the statement iterator used
2595 for inserting statements which are added after the current statement if
2596 INSERT_AFTER is true or before it otherwise. */
2598 static void
2599 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2600 bool insert_after, location_t loc)
2603 struct access *child;
2605 if (access->grp_to_be_replaced)
2607 gimple stmt;
2609 stmt = gimple_build_assign (get_access_replacement (access),
2610 build_zero_cst (access->type));
2611 if (insert_after)
2612 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2613 else
2614 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2615 update_stmt (stmt);
2616 gimple_set_location (stmt, loc);
2619 for (child = access->first_child; child; child = child->next_sibling)
2620 init_subtree_with_zero (child, gsi, insert_after, loc);
2623 /* Search for an access representative for the given expression EXPR and
2624 return it or NULL if it cannot be found. */
2626 static struct access *
2627 get_access_for_expr (tree expr)
2629 HOST_WIDE_INT offset, size, max_size;
2630 tree base;
2632 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2633 a different size than the size of its argument and we need the latter
2634 one. */
2635 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2636 expr = TREE_OPERAND (expr, 0);
2638 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2639 if (max_size == -1 || !DECL_P (base))
2640 return NULL;
2642 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2643 return NULL;
2645 return get_var_base_offset_size_access (base, offset, max_size);
2648 /* Replace the expression EXPR with a scalar replacement if there is one and
2649 generate other statements to do type conversion or subtree copying if
2650 necessary. GSI is used to place newly created statements, WRITE is true if
2651 the expression is being written to (it is on a LHS of a statement or output
2652 in an assembly statement). */
2654 static bool
2655 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2657 location_t loc;
2658 struct access *access;
2659 tree type, bfr;
2661 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2663 bfr = *expr;
2664 expr = &TREE_OPERAND (*expr, 0);
2666 else
2667 bfr = NULL_TREE;
2669 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2670 expr = &TREE_OPERAND (*expr, 0);
2671 access = get_access_for_expr (*expr);
2672 if (!access)
2673 return false;
2674 type = TREE_TYPE (*expr);
2676 loc = gimple_location (gsi_stmt (*gsi));
2677 if (access->grp_to_be_replaced)
2679 tree repl = get_access_replacement (access);
2680 /* If we replace a non-register typed access simply use the original
2681 access expression to extract the scalar component afterwards.
2682 This happens if scalarizing a function return value or parameter
2683 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2684 gcc.c-torture/compile/20011217-1.c.
2686 We also want to use this when accessing a complex or vector which can
2687 be accessed as a different type too, potentially creating a need for
2688 type conversion (see PR42196) and when scalarized unions are involved
2689 in assembler statements (see PR42398). */
2690 if (!useless_type_conversion_p (type, access->type))
2692 tree ref;
2694 ref = build_ref_for_model (loc, access->base, access->offset, access,
2695 NULL, false);
2697 if (write)
2699 gimple stmt;
2701 if (access->grp_partial_lhs)
2702 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2703 false, GSI_NEW_STMT);
2704 stmt = gimple_build_assign (repl, ref);
2705 gimple_set_location (stmt, loc);
2706 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2708 else
2710 gimple stmt;
2712 if (access->grp_partial_lhs)
2713 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2714 true, GSI_SAME_STMT);
2715 stmt = gimple_build_assign (ref, repl);
2716 gimple_set_location (stmt, loc);
2717 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2720 else
2721 *expr = repl;
2722 sra_stats.exprs++;
2725 if (access->first_child)
2727 HOST_WIDE_INT start_offset, chunk_size;
2728 if (bfr
2729 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2730 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2732 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2733 start_offset = access->offset
2734 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2736 else
2737 start_offset = chunk_size = 0;
2739 generate_subtree_copies (access->first_child, access->base, 0,
2740 start_offset, chunk_size, gsi, write, write,
2741 loc);
2743 return true;
2746 /* Where scalar replacements of the RHS have been written to when a replacement
2747 of a LHS of an assigments cannot be direclty loaded from a replacement of
2748 the RHS. */
2749 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2750 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2751 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2753 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2754 base aggregate if there are unscalarized data or directly to LHS of the
2755 statement that is pointed to by GSI otherwise. */
2757 static enum unscalarized_data_handling
2758 handle_unscalarized_data_in_subtree (struct access *top_racc,
2759 gimple_stmt_iterator *gsi)
2761 if (top_racc->grp_unscalarized_data)
2763 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2764 gsi, false, false,
2765 gimple_location (gsi_stmt (*gsi)));
2766 return SRA_UDH_RIGHT;
2768 else
2770 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2771 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2772 0, 0, gsi, false, false,
2773 gimple_location (gsi_stmt (*gsi)));
2774 return SRA_UDH_LEFT;
2779 /* Try to generate statements to load all sub-replacements in an access subtree
2780 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2781 If that is not possible, refresh the TOP_RACC base aggregate and load the
2782 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2783 copied. NEW_GSI is stmt iterator used for statement insertions after the
2784 original assignment, OLD_GSI is used to insert statements before the
2785 assignment. *REFRESHED keeps the information whether we have needed to
2786 refresh replacements of the LHS and from which side of the assignments this
2787 takes place. */
2789 static void
2790 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2791 HOST_WIDE_INT left_offset,
2792 gimple_stmt_iterator *old_gsi,
2793 gimple_stmt_iterator *new_gsi,
2794 enum unscalarized_data_handling *refreshed)
2796 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2797 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2799 if (lacc->grp_to_be_replaced)
2801 struct access *racc;
2802 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2803 gimple stmt;
2804 tree rhs;
2806 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2807 if (racc && racc->grp_to_be_replaced)
2809 rhs = get_access_replacement (racc);
2810 if (!useless_type_conversion_p (lacc->type, racc->type))
2811 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2813 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2814 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2815 true, GSI_SAME_STMT);
2817 else
2819 /* No suitable access on the right hand side, need to load from
2820 the aggregate. See if we have to update it first... */
2821 if (*refreshed == SRA_UDH_NONE)
2822 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2823 old_gsi);
2825 if (*refreshed == SRA_UDH_LEFT)
2826 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2827 new_gsi, true);
2828 else
2829 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2830 new_gsi, true);
2831 if (lacc->grp_partial_lhs)
2832 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2833 false, GSI_NEW_STMT);
2836 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2837 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2838 gimple_set_location (stmt, loc);
2839 update_stmt (stmt);
2840 sra_stats.subreplacements++;
2842 else if (*refreshed == SRA_UDH_NONE
2843 && lacc->grp_read && !lacc->grp_covered)
2844 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2845 old_gsi);
2847 if (lacc->first_child)
2848 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2849 old_gsi, new_gsi, refreshed);
2853 /* Result code for SRA assignment modification. */
2854 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2855 SRA_AM_MODIFIED, /* stmt changed but not
2856 removed */
2857 SRA_AM_REMOVED }; /* stmt eliminated */
2859 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2860 to the assignment and GSI is the statement iterator pointing at it. Returns
2861 the same values as sra_modify_assign. */
2863 static enum assignment_mod_result
2864 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2866 tree lhs = gimple_assign_lhs (*stmt);
2867 struct access *acc;
2868 location_t loc;
2870 acc = get_access_for_expr (lhs);
2871 if (!acc)
2872 return SRA_AM_NONE;
2874 if (gimple_clobber_p (*stmt))
2876 /* Remove clobbers of fully scalarized variables, otherwise
2877 do nothing. */
2878 if (acc->grp_covered)
2880 unlink_stmt_vdef (*stmt);
2881 gsi_remove (gsi, true);
2882 return SRA_AM_REMOVED;
2884 else
2885 return SRA_AM_NONE;
2888 loc = gimple_location (*stmt);
2889 if (VEC_length (constructor_elt,
2890 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2892 /* I have never seen this code path trigger but if it can happen the
2893 following should handle it gracefully. */
2894 if (access_has_children_p (acc))
2895 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2896 true, true, loc);
2897 return SRA_AM_MODIFIED;
2900 if (acc->grp_covered)
2902 init_subtree_with_zero (acc, gsi, false, loc);
2903 unlink_stmt_vdef (*stmt);
2904 gsi_remove (gsi, true);
2905 return SRA_AM_REMOVED;
2907 else
2909 init_subtree_with_zero (acc, gsi, true, loc);
2910 return SRA_AM_MODIFIED;
2914 /* Create and return a new suitable default definition SSA_NAME for RACC which
2915 is an access describing an uninitialized part of an aggregate that is being
2916 loaded. */
2918 static tree
2919 get_repl_default_def_ssa_name (struct access *racc)
2921 tree repl, decl;
2923 decl = get_unrenamed_access_replacement (racc);
2925 repl = gimple_default_def (cfun, decl);
2926 if (!repl)
2928 repl = make_ssa_name (decl, gimple_build_nop ());
2929 set_default_def (decl, repl);
2932 return repl;
2935 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2936 somewhere in it. */
2938 static inline bool
2939 contains_bitfld_comp_ref_p (const_tree ref)
2941 while (handled_component_p (ref))
2943 if (TREE_CODE (ref) == COMPONENT_REF
2944 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2945 return true;
2946 ref = TREE_OPERAND (ref, 0);
2949 return false;
2952 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2953 bit-field field declaration somewhere in it. */
2955 static inline bool
2956 contains_vce_or_bfcref_p (const_tree ref)
2958 while (handled_component_p (ref))
2960 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2961 || (TREE_CODE (ref) == COMPONENT_REF
2962 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2963 return true;
2964 ref = TREE_OPERAND (ref, 0);
2967 return false;
2970 /* Examine both sides of the assignment statement pointed to by STMT, replace
2971 them with a scalare replacement if there is one and generate copying of
2972 replacements if scalarized aggregates have been used in the assignment. GSI
2973 is used to hold generated statements for type conversions and subtree
2974 copying. */
2976 static enum assignment_mod_result
2977 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2979 struct access *lacc, *racc;
2980 tree lhs, rhs;
2981 bool modify_this_stmt = false;
2982 bool force_gimple_rhs = false;
2983 location_t loc;
2984 gimple_stmt_iterator orig_gsi = *gsi;
2986 if (!gimple_assign_single_p (*stmt))
2987 return SRA_AM_NONE;
2988 lhs = gimple_assign_lhs (*stmt);
2989 rhs = gimple_assign_rhs1 (*stmt);
2991 if (TREE_CODE (rhs) == CONSTRUCTOR)
2992 return sra_modify_constructor_assign (stmt, gsi);
2994 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2995 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2996 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2998 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2999 gsi, false);
3000 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
3001 gsi, true);
3002 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3005 lacc = get_access_for_expr (lhs);
3006 racc = get_access_for_expr (rhs);
3007 if (!lacc && !racc)
3008 return SRA_AM_NONE;
3010 loc = gimple_location (*stmt);
3011 if (lacc && lacc->grp_to_be_replaced)
3013 lhs = get_access_replacement (lacc);
3014 gimple_assign_set_lhs (*stmt, lhs);
3015 modify_this_stmt = true;
3016 if (lacc->grp_partial_lhs)
3017 force_gimple_rhs = true;
3018 sra_stats.exprs++;
3021 if (racc && racc->grp_to_be_replaced)
3023 rhs = get_access_replacement (racc);
3024 modify_this_stmt = true;
3025 if (racc->grp_partial_lhs)
3026 force_gimple_rhs = true;
3027 sra_stats.exprs++;
3029 else if (racc
3030 && !racc->grp_unscalarized_data
3031 && TREE_CODE (lhs) == SSA_NAME
3032 && !access_has_replacements_p (racc))
3034 rhs = get_repl_default_def_ssa_name (racc);
3035 modify_this_stmt = true;
3036 sra_stats.exprs++;
3039 if (modify_this_stmt)
3041 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3043 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3044 ??? This should move to fold_stmt which we simply should
3045 call after building a VIEW_CONVERT_EXPR here. */
3046 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3047 && !contains_bitfld_comp_ref_p (lhs))
3049 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3050 gimple_assign_set_lhs (*stmt, lhs);
3052 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3053 && !contains_vce_or_bfcref_p (rhs))
3054 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3056 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3058 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3059 rhs);
3060 if (is_gimple_reg_type (TREE_TYPE (lhs))
3061 && TREE_CODE (lhs) != SSA_NAME)
3062 force_gimple_rhs = true;
3067 /* From this point on, the function deals with assignments in between
3068 aggregates when at least one has scalar reductions of some of its
3069 components. There are three possible scenarios: Both the LHS and RHS have
3070 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3072 In the first case, we would like to load the LHS components from RHS
3073 components whenever possible. If that is not possible, we would like to
3074 read it directly from the RHS (after updating it by storing in it its own
3075 components). If there are some necessary unscalarized data in the LHS,
3076 those will be loaded by the original assignment too. If neither of these
3077 cases happen, the original statement can be removed. Most of this is done
3078 by load_assign_lhs_subreplacements.
3080 In the second case, we would like to store all RHS scalarized components
3081 directly into LHS and if they cover the aggregate completely, remove the
3082 statement too. In the third case, we want the LHS components to be loaded
3083 directly from the RHS (DSE will remove the original statement if it
3084 becomes redundant).
3086 This is a bit complex but manageable when types match and when unions do
3087 not cause confusion in a way that we cannot really load a component of LHS
3088 from the RHS or vice versa (the access representing this level can have
3089 subaccesses that are accessible only through a different union field at a
3090 higher level - different from the one used in the examined expression).
3091 Unions are fun.
3093 Therefore, I specially handle a fourth case, happening when there is a
3094 specific type cast or it is impossible to locate a scalarized subaccess on
3095 the other side of the expression. If that happens, I simply "refresh" the
3096 RHS by storing in it is scalarized components leave the original statement
3097 there to do the copying and then load the scalar replacements of the LHS.
3098 This is what the first branch does. */
3100 if (modify_this_stmt
3101 || gimple_has_volatile_ops (*stmt)
3102 || contains_vce_or_bfcref_p (rhs)
3103 || contains_vce_or_bfcref_p (lhs))
3105 if (access_has_children_p (racc))
3106 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3107 gsi, false, false, loc);
3108 if (access_has_children_p (lacc))
3109 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
3110 gsi, true, true, loc);
3111 sra_stats.separate_lhs_rhs_handling++;
3113 /* This gimplification must be done after generate_subtree_copies,
3114 lest we insert the subtree copies in the middle of the gimplified
3115 sequence. */
3116 if (force_gimple_rhs)
3117 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3118 true, GSI_SAME_STMT);
3119 if (gimple_assign_rhs1 (*stmt) != rhs)
3121 modify_this_stmt = true;
3122 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3123 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3126 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3128 else
3130 if (access_has_children_p (lacc)
3131 && access_has_children_p (racc)
3132 /* When an access represents an unscalarizable region, it usually
3133 represents accesses with variable offset and thus must not be used
3134 to generate new memory accesses. */
3135 && !lacc->grp_unscalarizable_region
3136 && !racc->grp_unscalarizable_region)
3138 gimple_stmt_iterator orig_gsi = *gsi;
3139 enum unscalarized_data_handling refreshed;
3141 if (lacc->grp_read && !lacc->grp_covered)
3142 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
3143 else
3144 refreshed = SRA_UDH_NONE;
3146 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3147 &orig_gsi, gsi, &refreshed);
3148 if (refreshed != SRA_UDH_RIGHT)
3150 gsi_next (gsi);
3151 unlink_stmt_vdef (*stmt);
3152 gsi_remove (&orig_gsi, true);
3153 sra_stats.deleted++;
3154 return SRA_AM_REMOVED;
3157 else
3159 if (access_has_children_p (racc)
3160 && !racc->grp_unscalarized_data)
3162 if (dump_file)
3164 fprintf (dump_file, "Removing load: ");
3165 print_gimple_stmt (dump_file, *stmt, 0, 0);
3167 generate_subtree_copies (racc->first_child, lhs,
3168 racc->offset, 0, 0, gsi,
3169 false, false, loc);
3170 gcc_assert (*stmt == gsi_stmt (*gsi));
3171 unlink_stmt_vdef (*stmt);
3172 gsi_remove (gsi, true);
3173 sra_stats.deleted++;
3174 return SRA_AM_REMOVED;
3176 /* Restore the aggregate RHS from its components so the
3177 prevailing aggregate copy does the right thing. */
3178 if (access_has_children_p (racc))
3179 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3180 gsi, false, false, loc);
3181 /* Re-load the components of the aggregate copy destination.
3182 But use the RHS aggregate to load from to expose more
3183 optimization opportunities. */
3184 if (access_has_children_p (lacc))
3185 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3186 0, 0, gsi, true, true, loc);
3189 return SRA_AM_NONE;
3193 /* Traverse the function body and all modifications as decided in
3194 analyze_all_variable_accesses. Return true iff the CFG has been
3195 changed. */
3197 static bool
3198 sra_modify_function_body (void)
3200 bool cfg_changed = false;
3201 basic_block bb;
3203 FOR_EACH_BB (bb)
3205 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3206 while (!gsi_end_p (gsi))
3208 gimple stmt = gsi_stmt (gsi);
3209 enum assignment_mod_result assign_result;
3210 bool modified = false, deleted = false;
3211 tree *t;
3212 unsigned i;
3214 switch (gimple_code (stmt))
3216 case GIMPLE_RETURN:
3217 t = gimple_return_retval_ptr (stmt);
3218 if (*t != NULL_TREE)
3219 modified |= sra_modify_expr (t, &gsi, false);
3220 break;
3222 case GIMPLE_ASSIGN:
3223 assign_result = sra_modify_assign (&stmt, &gsi);
3224 modified |= assign_result == SRA_AM_MODIFIED;
3225 deleted = assign_result == SRA_AM_REMOVED;
3226 break;
3228 case GIMPLE_CALL:
3229 /* Operands must be processed before the lhs. */
3230 for (i = 0; i < gimple_call_num_args (stmt); i++)
3232 t = gimple_call_arg_ptr (stmt, i);
3233 modified |= sra_modify_expr (t, &gsi, false);
3236 if (gimple_call_lhs (stmt))
3238 t = gimple_call_lhs_ptr (stmt);
3239 modified |= sra_modify_expr (t, &gsi, true);
3241 break;
3243 case GIMPLE_ASM:
3244 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3246 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3247 modified |= sra_modify_expr (t, &gsi, false);
3249 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3251 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3252 modified |= sra_modify_expr (t, &gsi, true);
3254 break;
3256 default:
3257 break;
3260 if (modified)
3262 update_stmt (stmt);
3263 if (maybe_clean_eh_stmt (stmt)
3264 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3265 cfg_changed = true;
3267 if (!deleted)
3268 gsi_next (&gsi);
3272 return cfg_changed;
3275 /* Generate statements initializing scalar replacements of parts of function
3276 parameters. */
3278 static void
3279 initialize_parameter_reductions (void)
3281 gimple_stmt_iterator gsi;
3282 gimple_seq seq = NULL;
3283 tree parm;
3285 for (parm = DECL_ARGUMENTS (current_function_decl);
3286 parm;
3287 parm = DECL_CHAIN (parm))
3289 VEC (access_p, heap) *access_vec;
3290 struct access *access;
3292 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3293 continue;
3294 access_vec = get_base_access_vector (parm);
3295 if (!access_vec)
3296 continue;
3298 if (!seq)
3300 seq = gimple_seq_alloc ();
3301 gsi = gsi_start (seq);
3304 for (access = VEC_index (access_p, access_vec, 0);
3305 access;
3306 access = access->next_grp)
3307 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3308 EXPR_LOCATION (parm));
3311 if (seq)
3312 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3315 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3316 it reveals there are components of some aggregates to be scalarized, it runs
3317 the required transformations. */
3318 static unsigned int
3319 perform_intra_sra (void)
3321 int ret = 0;
3322 sra_initialize ();
3324 if (!find_var_candidates ())
3325 goto out;
3327 if (!scan_function ())
3328 goto out;
3330 if (!analyze_all_variable_accesses ())
3331 goto out;
3333 if (sra_modify_function_body ())
3334 ret = TODO_update_ssa | TODO_cleanup_cfg;
3335 else
3336 ret = TODO_update_ssa;
3337 initialize_parameter_reductions ();
3339 statistics_counter_event (cfun, "Scalar replacements created",
3340 sra_stats.replacements);
3341 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3342 statistics_counter_event (cfun, "Subtree copy stmts",
3343 sra_stats.subtree_copies);
3344 statistics_counter_event (cfun, "Subreplacement stmts",
3345 sra_stats.subreplacements);
3346 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3347 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3348 sra_stats.separate_lhs_rhs_handling);
3350 out:
3351 sra_deinitialize ();
3352 return ret;
3355 /* Perform early intraprocedural SRA. */
3356 static unsigned int
3357 early_intra_sra (void)
3359 sra_mode = SRA_MODE_EARLY_INTRA;
3360 return perform_intra_sra ();
3363 /* Perform "late" intraprocedural SRA. */
3364 static unsigned int
3365 late_intra_sra (void)
3367 sra_mode = SRA_MODE_INTRA;
3368 return perform_intra_sra ();
3372 static bool
3373 gate_intra_sra (void)
3375 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3379 struct gimple_opt_pass pass_sra_early =
3382 GIMPLE_PASS,
3383 "esra", /* name */
3384 gate_intra_sra, /* gate */
3385 early_intra_sra, /* execute */
3386 NULL, /* sub */
3387 NULL, /* next */
3388 0, /* static_pass_number */
3389 TV_TREE_SRA, /* tv_id */
3390 PROP_cfg | PROP_ssa, /* properties_required */
3391 0, /* properties_provided */
3392 0, /* properties_destroyed */
3393 0, /* todo_flags_start */
3394 TODO_update_ssa
3395 | TODO_ggc_collect
3396 | TODO_verify_ssa /* todo_flags_finish */
3400 struct gimple_opt_pass pass_sra =
3403 GIMPLE_PASS,
3404 "sra", /* name */
3405 gate_intra_sra, /* gate */
3406 late_intra_sra, /* execute */
3407 NULL, /* sub */
3408 NULL, /* next */
3409 0, /* static_pass_number */
3410 TV_TREE_SRA, /* tv_id */
3411 PROP_cfg | PROP_ssa, /* properties_required */
3412 0, /* properties_provided */
3413 0, /* properties_destroyed */
3414 TODO_update_address_taken, /* todo_flags_start */
3415 TODO_update_ssa
3416 | TODO_ggc_collect
3417 | TODO_verify_ssa /* todo_flags_finish */
3422 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3423 parameter. */
3425 static bool
3426 is_unused_scalar_param (tree parm)
3428 tree name;
3429 return (is_gimple_reg (parm)
3430 && (!(name = gimple_default_def (cfun, parm))
3431 || has_zero_uses (name)));
3434 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3435 examine whether there are any direct or otherwise infeasible ones. If so,
3436 return true, otherwise return false. PARM must be a gimple register with a
3437 non-NULL default definition. */
3439 static bool
3440 ptr_parm_has_direct_uses (tree parm)
3442 imm_use_iterator ui;
3443 gimple stmt;
3444 tree name = gimple_default_def (cfun, parm);
3445 bool ret = false;
3447 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3449 int uses_ok = 0;
3450 use_operand_p use_p;
3452 if (is_gimple_debug (stmt))
3453 continue;
3455 /* Valid uses include dereferences on the lhs and the rhs. */
3456 if (gimple_has_lhs (stmt))
3458 tree lhs = gimple_get_lhs (stmt);
3459 while (handled_component_p (lhs))
3460 lhs = TREE_OPERAND (lhs, 0);
3461 if (TREE_CODE (lhs) == MEM_REF
3462 && TREE_OPERAND (lhs, 0) == name
3463 && integer_zerop (TREE_OPERAND (lhs, 1))
3464 && types_compatible_p (TREE_TYPE (lhs),
3465 TREE_TYPE (TREE_TYPE (name)))
3466 && !TREE_THIS_VOLATILE (lhs))
3467 uses_ok++;
3469 if (gimple_assign_single_p (stmt))
3471 tree rhs = gimple_assign_rhs1 (stmt);
3472 while (handled_component_p (rhs))
3473 rhs = TREE_OPERAND (rhs, 0);
3474 if (TREE_CODE (rhs) == MEM_REF
3475 && TREE_OPERAND (rhs, 0) == name
3476 && integer_zerop (TREE_OPERAND (rhs, 1))
3477 && types_compatible_p (TREE_TYPE (rhs),
3478 TREE_TYPE (TREE_TYPE (name)))
3479 && !TREE_THIS_VOLATILE (rhs))
3480 uses_ok++;
3482 else if (is_gimple_call (stmt))
3484 unsigned i;
3485 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3487 tree arg = gimple_call_arg (stmt, i);
3488 while (handled_component_p (arg))
3489 arg = TREE_OPERAND (arg, 0);
3490 if (TREE_CODE (arg) == MEM_REF
3491 && TREE_OPERAND (arg, 0) == name
3492 && integer_zerop (TREE_OPERAND (arg, 1))
3493 && types_compatible_p (TREE_TYPE (arg),
3494 TREE_TYPE (TREE_TYPE (name)))
3495 && !TREE_THIS_VOLATILE (arg))
3496 uses_ok++;
3500 /* If the number of valid uses does not match the number of
3501 uses in this stmt there is an unhandled use. */
3502 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3503 --uses_ok;
3505 if (uses_ok != 0)
3506 ret = true;
3508 if (ret)
3509 BREAK_FROM_IMM_USE_STMT (ui);
3512 return ret;
3515 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3516 them in candidate_bitmap. Note that these do not necessarily include
3517 parameter which are unused and thus can be removed. Return true iff any
3518 such candidate has been found. */
3520 static bool
3521 find_param_candidates (void)
3523 tree parm;
3524 int count = 0;
3525 bool ret = false;
3526 const char *msg;
3528 for (parm = DECL_ARGUMENTS (current_function_decl);
3529 parm;
3530 parm = DECL_CHAIN (parm))
3532 tree type = TREE_TYPE (parm);
3534 count++;
3536 if (TREE_THIS_VOLATILE (parm)
3537 || TREE_ADDRESSABLE (parm)
3538 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3539 continue;
3541 if (is_unused_scalar_param (parm))
3543 ret = true;
3544 continue;
3547 if (POINTER_TYPE_P (type))
3549 type = TREE_TYPE (type);
3551 if (TREE_CODE (type) == FUNCTION_TYPE
3552 || TYPE_VOLATILE (type)
3553 || (TREE_CODE (type) == ARRAY_TYPE
3554 && TYPE_NONALIASED_COMPONENT (type))
3555 || !is_gimple_reg (parm)
3556 || is_va_list_type (type)
3557 || ptr_parm_has_direct_uses (parm))
3558 continue;
3560 else if (!AGGREGATE_TYPE_P (type))
3561 continue;
3563 if (!COMPLETE_TYPE_P (type)
3564 || !host_integerp (TYPE_SIZE (type), 1)
3565 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3566 || (AGGREGATE_TYPE_P (type)
3567 && type_internals_preclude_sra_p (type, &msg)))
3568 continue;
3570 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3571 ret = true;
3572 if (dump_file && (dump_flags & TDF_DETAILS))
3574 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3575 print_generic_expr (dump_file, parm, 0);
3576 fprintf (dump_file, "\n");
3580 func_param_count = count;
3581 return ret;
3584 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3585 maybe_modified. */
3587 static bool
3588 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3589 void *data)
3591 struct access *repr = (struct access *) data;
3593 repr->grp_maybe_modified = 1;
3594 return true;
3597 /* Analyze what representatives (in linked lists accessible from
3598 REPRESENTATIVES) can be modified by side effects of statements in the
3599 current function. */
3601 static void
3602 analyze_modified_params (VEC (access_p, heap) *representatives)
3604 int i;
3606 for (i = 0; i < func_param_count; i++)
3608 struct access *repr;
3610 for (repr = VEC_index (access_p, representatives, i);
3611 repr;
3612 repr = repr->next_grp)
3614 struct access *access;
3615 bitmap visited;
3616 ao_ref ar;
3618 if (no_accesses_p (repr))
3619 continue;
3620 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3621 || repr->grp_maybe_modified)
3622 continue;
3624 ao_ref_init (&ar, repr->expr);
3625 visited = BITMAP_ALLOC (NULL);
3626 for (access = repr; access; access = access->next_sibling)
3628 /* All accesses are read ones, otherwise grp_maybe_modified would
3629 be trivially set. */
3630 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3631 mark_maybe_modified, repr, &visited);
3632 if (repr->grp_maybe_modified)
3633 break;
3635 BITMAP_FREE (visited);
3640 /* Propagate distances in bb_dereferences in the opposite direction than the
3641 control flow edges, in each step storing the maximum of the current value
3642 and the minimum of all successors. These steps are repeated until the table
3643 stabilizes. Note that BBs which might terminate the functions (according to
3644 final_bbs bitmap) never updated in this way. */
3646 static void
3647 propagate_dereference_distances (void)
3649 VEC (basic_block, heap) *queue;
3650 basic_block bb;
3652 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3653 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3654 FOR_EACH_BB (bb)
3656 VEC_quick_push (basic_block, queue, bb);
3657 bb->aux = bb;
3660 while (!VEC_empty (basic_block, queue))
3662 edge_iterator ei;
3663 edge e;
3664 bool change = false;
3665 int i;
3667 bb = VEC_pop (basic_block, queue);
3668 bb->aux = NULL;
3670 if (bitmap_bit_p (final_bbs, bb->index))
3671 continue;
3673 for (i = 0; i < func_param_count; i++)
3675 int idx = bb->index * func_param_count + i;
3676 bool first = true;
3677 HOST_WIDE_INT inh = 0;
3679 FOR_EACH_EDGE (e, ei, bb->succs)
3681 int succ_idx = e->dest->index * func_param_count + i;
3683 if (e->src == EXIT_BLOCK_PTR)
3684 continue;
3686 if (first)
3688 first = false;
3689 inh = bb_dereferences [succ_idx];
3691 else if (bb_dereferences [succ_idx] < inh)
3692 inh = bb_dereferences [succ_idx];
3695 if (!first && bb_dereferences[idx] < inh)
3697 bb_dereferences[idx] = inh;
3698 change = true;
3702 if (change && !bitmap_bit_p (final_bbs, bb->index))
3703 FOR_EACH_EDGE (e, ei, bb->preds)
3705 if (e->src->aux)
3706 continue;
3708 e->src->aux = e->src;
3709 VEC_quick_push (basic_block, queue, e->src);
3713 VEC_free (basic_block, heap, queue);
3716 /* Dump a dereferences TABLE with heading STR to file F. */
3718 static void
3719 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3721 basic_block bb;
3723 fprintf (dump_file, str);
3724 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3726 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3727 if (bb != EXIT_BLOCK_PTR)
3729 int i;
3730 for (i = 0; i < func_param_count; i++)
3732 int idx = bb->index * func_param_count + i;
3733 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3736 fprintf (f, "\n");
3738 fprintf (dump_file, "\n");
3741 /* Determine what (parts of) parameters passed by reference that are not
3742 assigned to are not certainly dereferenced in this function and thus the
3743 dereferencing cannot be safely moved to the caller without potentially
3744 introducing a segfault. Mark such REPRESENTATIVES as
3745 grp_not_necessarilly_dereferenced.
3747 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3748 part is calculated rather than simple booleans are calculated for each
3749 pointer parameter to handle cases when only a fraction of the whole
3750 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3751 an example).
3753 The maximum dereference distances for each pointer parameter and BB are
3754 already stored in bb_dereference. This routine simply propagates these
3755 values upwards by propagate_dereference_distances and then compares the
3756 distances of individual parameters in the ENTRY BB to the equivalent
3757 distances of each representative of a (fraction of a) parameter. */
3759 static void
3760 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3762 int i;
3764 if (dump_file && (dump_flags & TDF_DETAILS))
3765 dump_dereferences_table (dump_file,
3766 "Dereference table before propagation:\n",
3767 bb_dereferences);
3769 propagate_dereference_distances ();
3771 if (dump_file && (dump_flags & TDF_DETAILS))
3772 dump_dereferences_table (dump_file,
3773 "Dereference table after propagation:\n",
3774 bb_dereferences);
3776 for (i = 0; i < func_param_count; i++)
3778 struct access *repr = VEC_index (access_p, representatives, i);
3779 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3781 if (!repr || no_accesses_p (repr))
3782 continue;
3786 if ((repr->offset + repr->size) > bb_dereferences[idx])
3787 repr->grp_not_necessarilly_dereferenced = 1;
3788 repr = repr->next_grp;
3790 while (repr);
3794 /* Return the representative access for the parameter declaration PARM if it is
3795 a scalar passed by reference which is not written to and the pointer value
3796 is not used directly. Thus, if it is legal to dereference it in the caller
3797 and we can rule out modifications through aliases, such parameter should be
3798 turned into one passed by value. Return NULL otherwise. */
3800 static struct access *
3801 unmodified_by_ref_scalar_representative (tree parm)
3803 int i, access_count;
3804 struct access *repr;
3805 VEC (access_p, heap) *access_vec;
3807 access_vec = get_base_access_vector (parm);
3808 gcc_assert (access_vec);
3809 repr = VEC_index (access_p, access_vec, 0);
3810 if (repr->write)
3811 return NULL;
3812 repr->group_representative = repr;
3814 access_count = VEC_length (access_p, access_vec);
3815 for (i = 1; i < access_count; i++)
3817 struct access *access = VEC_index (access_p, access_vec, i);
3818 if (access->write)
3819 return NULL;
3820 access->group_representative = repr;
3821 access->next_sibling = repr->next_sibling;
3822 repr->next_sibling = access;
3825 repr->grp_read = 1;
3826 repr->grp_scalar_ptr = 1;
3827 return repr;
3830 /* Return true iff this access precludes IPA-SRA of the parameter it is
3831 associated with. */
3833 static bool
3834 access_precludes_ipa_sra_p (struct access *access)
3836 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3837 is incompatible assign in a call statement (and possibly even in asm
3838 statements). This can be relaxed by using a new temporary but only for
3839 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3840 intraprocedural SRA we deal with this by keeping the old aggregate around,
3841 something we cannot do in IPA-SRA.) */
3842 if (access->write
3843 && (is_gimple_call (access->stmt)
3844 || gimple_code (access->stmt) == GIMPLE_ASM))
3845 return true;
3847 if (STRICT_ALIGNMENT
3848 && tree_non_aligned_mem_p (access->expr, TYPE_ALIGN (access->type)))
3849 return true;
3851 return false;
3855 /* Sort collected accesses for parameter PARM, identify representatives for
3856 each accessed region and link them together. Return NULL if there are
3857 different but overlapping accesses, return the special ptr value meaning
3858 there are no accesses for this parameter if that is the case and return the
3859 first representative otherwise. Set *RO_GRP if there is a group of accesses
3860 with only read (i.e. no write) accesses. */
3862 static struct access *
3863 splice_param_accesses (tree parm, bool *ro_grp)
3865 int i, j, access_count, group_count;
3866 int agg_size, total_size = 0;
3867 struct access *access, *res, **prev_acc_ptr = &res;
3868 VEC (access_p, heap) *access_vec;
3870 access_vec = get_base_access_vector (parm);
3871 if (!access_vec)
3872 return &no_accesses_representant;
3873 access_count = VEC_length (access_p, access_vec);
3875 VEC_qsort (access_p, access_vec, compare_access_positions);
3877 i = 0;
3878 total_size = 0;
3879 group_count = 0;
3880 while (i < access_count)
3882 bool modification;
3883 tree a1_alias_type;
3884 access = VEC_index (access_p, access_vec, i);
3885 modification = access->write;
3886 if (access_precludes_ipa_sra_p (access))
3887 return NULL;
3888 a1_alias_type = reference_alias_ptr_type (access->expr);
3890 /* Access is about to become group representative unless we find some
3891 nasty overlap which would preclude us from breaking this parameter
3892 apart. */
3894 j = i + 1;
3895 while (j < access_count)
3897 struct access *ac2 = VEC_index (access_p, access_vec, j);
3898 if (ac2->offset != access->offset)
3900 /* All or nothing law for parameters. */
3901 if (access->offset + access->size > ac2->offset)
3902 return NULL;
3903 else
3904 break;
3906 else if (ac2->size != access->size)
3907 return NULL;
3909 if (access_precludes_ipa_sra_p (ac2)
3910 || (ac2->type != access->type
3911 && (TREE_ADDRESSABLE (ac2->type)
3912 || TREE_ADDRESSABLE (access->type)))
3913 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3914 return NULL;
3916 modification |= ac2->write;
3917 ac2->group_representative = access;
3918 ac2->next_sibling = access->next_sibling;
3919 access->next_sibling = ac2;
3920 j++;
3923 group_count++;
3924 access->grp_maybe_modified = modification;
3925 if (!modification)
3926 *ro_grp = true;
3927 *prev_acc_ptr = access;
3928 prev_acc_ptr = &access->next_grp;
3929 total_size += access->size;
3930 i = j;
3933 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3934 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3935 else
3936 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3937 if (total_size >= agg_size)
3938 return NULL;
3940 gcc_assert (group_count > 0);
3941 return res;
3944 /* Decide whether parameters with representative accesses given by REPR should
3945 be reduced into components. */
3947 static int
3948 decide_one_param_reduction (struct access *repr)
3950 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3951 bool by_ref;
3952 tree parm;
3954 parm = repr->base;
3955 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3956 gcc_assert (cur_parm_size > 0);
3958 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3960 by_ref = true;
3961 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3963 else
3965 by_ref = false;
3966 agg_size = cur_parm_size;
3969 if (dump_file)
3971 struct access *acc;
3972 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3973 print_generic_expr (dump_file, parm, 0);
3974 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3975 for (acc = repr; acc; acc = acc->next_grp)
3976 dump_access (dump_file, acc, true);
3979 total_size = 0;
3980 new_param_count = 0;
3982 for (; repr; repr = repr->next_grp)
3984 gcc_assert (parm == repr->base);
3986 /* Taking the address of a non-addressable field is verboten. */
3987 if (by_ref && repr->non_addressable)
3988 return 0;
3990 /* Do not decompose a non-BLKmode param in a way that would
3991 create BLKmode params. Especially for by-reference passing
3992 (thus, pointer-type param) this is hardly worthwhile. */
3993 if (DECL_MODE (parm) != BLKmode
3994 && TYPE_MODE (repr->type) == BLKmode)
3995 return 0;
3997 if (!by_ref || (!repr->grp_maybe_modified
3998 && !repr->grp_not_necessarilly_dereferenced))
3999 total_size += repr->size;
4000 else
4001 total_size += cur_parm_size;
4003 new_param_count++;
4006 gcc_assert (new_param_count > 0);
4008 if (optimize_function_for_size_p (cfun))
4009 parm_size_limit = cur_parm_size;
4010 else
4011 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
4012 * cur_parm_size);
4014 if (total_size < agg_size
4015 && total_size <= parm_size_limit)
4017 if (dump_file)
4018 fprintf (dump_file, " ....will be split into %i components\n",
4019 new_param_count);
4020 return new_param_count;
4022 else
4023 return 0;
4026 /* The order of the following enums is important, we need to do extra work for
4027 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4028 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
4029 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
4031 /* Identify representatives of all accesses to all candidate parameters for
4032 IPA-SRA. Return result based on what representatives have been found. */
4034 static enum ipa_splicing_result
4035 splice_all_param_accesses (VEC (access_p, heap) **representatives)
4037 enum ipa_splicing_result result = NO_GOOD_ACCESS;
4038 tree parm;
4039 struct access *repr;
4041 *representatives = VEC_alloc (access_p, heap, func_param_count);
4043 for (parm = DECL_ARGUMENTS (current_function_decl);
4044 parm;
4045 parm = DECL_CHAIN (parm))
4047 if (is_unused_scalar_param (parm))
4049 VEC_quick_push (access_p, *representatives,
4050 &no_accesses_representant);
4051 if (result == NO_GOOD_ACCESS)
4052 result = UNUSED_PARAMS;
4054 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4055 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4056 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4058 repr = unmodified_by_ref_scalar_representative (parm);
4059 VEC_quick_push (access_p, *representatives, repr);
4060 if (repr)
4061 result = UNMODIF_BY_REF_ACCESSES;
4063 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4065 bool ro_grp = false;
4066 repr = splice_param_accesses (parm, &ro_grp);
4067 VEC_quick_push (access_p, *representatives, repr);
4069 if (repr && !no_accesses_p (repr))
4071 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4073 if (ro_grp)
4074 result = UNMODIF_BY_REF_ACCESSES;
4075 else if (result < MODIF_BY_REF_ACCESSES)
4076 result = MODIF_BY_REF_ACCESSES;
4078 else if (result < BY_VAL_ACCESSES)
4079 result = BY_VAL_ACCESSES;
4081 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4082 result = UNUSED_PARAMS;
4084 else
4085 VEC_quick_push (access_p, *representatives, NULL);
4088 if (result == NO_GOOD_ACCESS)
4090 VEC_free (access_p, heap, *representatives);
4091 *representatives = NULL;
4092 return NO_GOOD_ACCESS;
4095 return result;
4098 /* Return the index of BASE in PARMS. Abort if it is not found. */
4100 static inline int
4101 get_param_index (tree base, VEC(tree, heap) *parms)
4103 int i, len;
4105 len = VEC_length (tree, parms);
4106 for (i = 0; i < len; i++)
4107 if (VEC_index (tree, parms, i) == base)
4108 return i;
4109 gcc_unreachable ();
4112 /* Convert the decisions made at the representative level into compact
4113 parameter adjustments. REPRESENTATIVES are pointers to first
4114 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4115 final number of adjustments. */
4117 static ipa_parm_adjustment_vec
4118 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
4119 int adjustments_count)
4121 VEC (tree, heap) *parms;
4122 ipa_parm_adjustment_vec adjustments;
4123 tree parm;
4124 int i;
4126 gcc_assert (adjustments_count > 0);
4127 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4128 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
4129 parm = DECL_ARGUMENTS (current_function_decl);
4130 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4132 struct access *repr = VEC_index (access_p, representatives, i);
4134 if (!repr || no_accesses_p (repr))
4136 struct ipa_parm_adjustment *adj;
4138 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4139 memset (adj, 0, sizeof (*adj));
4140 adj->base_index = get_param_index (parm, parms);
4141 adj->base = parm;
4142 if (!repr)
4143 adj->copy_param = 1;
4144 else
4145 adj->remove_param = 1;
4147 else
4149 struct ipa_parm_adjustment *adj;
4150 int index = get_param_index (parm, parms);
4152 for (; repr; repr = repr->next_grp)
4154 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4155 memset (adj, 0, sizeof (*adj));
4156 gcc_assert (repr->base == parm);
4157 adj->base_index = index;
4158 adj->base = repr->base;
4159 adj->type = repr->type;
4160 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
4161 adj->offset = repr->offset;
4162 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4163 && (repr->grp_maybe_modified
4164 || repr->grp_not_necessarilly_dereferenced));
4169 VEC_free (tree, heap, parms);
4170 return adjustments;
4173 /* Analyze the collected accesses and produce a plan what to do with the
4174 parameters in the form of adjustments, NULL meaning nothing. */
4176 static ipa_parm_adjustment_vec
4177 analyze_all_param_acesses (void)
4179 enum ipa_splicing_result repr_state;
4180 bool proceed = false;
4181 int i, adjustments_count = 0;
4182 VEC (access_p, heap) *representatives;
4183 ipa_parm_adjustment_vec adjustments;
4185 repr_state = splice_all_param_accesses (&representatives);
4186 if (repr_state == NO_GOOD_ACCESS)
4187 return NULL;
4189 /* If there are any parameters passed by reference which are not modified
4190 directly, we need to check whether they can be modified indirectly. */
4191 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4193 analyze_caller_dereference_legality (representatives);
4194 analyze_modified_params (representatives);
4197 for (i = 0; i < func_param_count; i++)
4199 struct access *repr = VEC_index (access_p, representatives, i);
4201 if (repr && !no_accesses_p (repr))
4203 if (repr->grp_scalar_ptr)
4205 adjustments_count++;
4206 if (repr->grp_not_necessarilly_dereferenced
4207 || repr->grp_maybe_modified)
4208 VEC_replace (access_p, representatives, i, NULL);
4209 else
4211 proceed = true;
4212 sra_stats.scalar_by_ref_to_by_val++;
4215 else
4217 int new_components = decide_one_param_reduction (repr);
4219 if (new_components == 0)
4221 VEC_replace (access_p, representatives, i, NULL);
4222 adjustments_count++;
4224 else
4226 adjustments_count += new_components;
4227 sra_stats.aggregate_params_reduced++;
4228 sra_stats.param_reductions_created += new_components;
4229 proceed = true;
4233 else
4235 if (no_accesses_p (repr))
4237 proceed = true;
4238 sra_stats.deleted_unused_parameters++;
4240 adjustments_count++;
4244 if (!proceed && dump_file)
4245 fprintf (dump_file, "NOT proceeding to change params.\n");
4247 if (proceed)
4248 adjustments = turn_representatives_into_adjustments (representatives,
4249 adjustments_count);
4250 else
4251 adjustments = NULL;
4253 VEC_free (access_p, heap, representatives);
4254 return adjustments;
4257 /* If a parameter replacement identified by ADJ does not yet exist in the form
4258 of declaration, create it and record it, otherwise return the previously
4259 created one. */
4261 static tree
4262 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4264 tree repl;
4265 if (!adj->new_ssa_base)
4267 char *pretty_name = make_fancy_name (adj->base);
4269 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4270 DECL_NAME (repl) = get_identifier (pretty_name);
4271 obstack_free (&name_obstack, pretty_name);
4273 add_referenced_var (repl);
4274 adj->new_ssa_base = repl;
4276 else
4277 repl = adj->new_ssa_base;
4278 return repl;
4281 /* Find the first adjustment for a particular parameter BASE in a vector of
4282 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4283 adjustment. */
4285 static struct ipa_parm_adjustment *
4286 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4288 int i, len;
4290 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4291 for (i = 0; i < len; i++)
4293 struct ipa_parm_adjustment *adj;
4295 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4296 if (!adj->copy_param && adj->base == base)
4297 return adj;
4300 return NULL;
4303 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4304 removed because its value is not used, replace the SSA_NAME with a one
4305 relating to a created VAR_DECL together all of its uses and return true.
4306 ADJUSTMENTS is a pointer to an adjustments vector. */
4308 static bool
4309 replace_removed_params_ssa_names (gimple stmt,
4310 ipa_parm_adjustment_vec adjustments)
4312 struct ipa_parm_adjustment *adj;
4313 tree lhs, decl, repl, name;
4315 if (gimple_code (stmt) == GIMPLE_PHI)
4316 lhs = gimple_phi_result (stmt);
4317 else if (is_gimple_assign (stmt))
4318 lhs = gimple_assign_lhs (stmt);
4319 else if (is_gimple_call (stmt))
4320 lhs = gimple_call_lhs (stmt);
4321 else
4322 gcc_unreachable ();
4324 if (TREE_CODE (lhs) != SSA_NAME)
4325 return false;
4326 decl = SSA_NAME_VAR (lhs);
4327 if (TREE_CODE (decl) != PARM_DECL)
4328 return false;
4330 adj = get_adjustment_for_base (adjustments, decl);
4331 if (!adj)
4332 return false;
4334 repl = get_replaced_param_substitute (adj);
4335 name = make_ssa_name (repl, stmt);
4337 if (dump_file)
4339 fprintf (dump_file, "replacing an SSA name of a removed param ");
4340 print_generic_expr (dump_file, lhs, 0);
4341 fprintf (dump_file, " with ");
4342 print_generic_expr (dump_file, name, 0);
4343 fprintf (dump_file, "\n");
4346 if (is_gimple_assign (stmt))
4347 gimple_assign_set_lhs (stmt, name);
4348 else if (is_gimple_call (stmt))
4349 gimple_call_set_lhs (stmt, name);
4350 else
4351 gimple_phi_set_result (stmt, name);
4353 replace_uses_by (lhs, name);
4354 release_ssa_name (lhs);
4355 return true;
4358 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4359 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4360 specifies whether the function should care about type incompatibility the
4361 current and new expressions. If it is false, the function will leave
4362 incompatibility issues to the caller. Return true iff the expression
4363 was modified. */
4365 static bool
4366 sra_ipa_modify_expr (tree *expr, bool convert,
4367 ipa_parm_adjustment_vec adjustments)
4369 int i, len;
4370 struct ipa_parm_adjustment *adj, *cand = NULL;
4371 HOST_WIDE_INT offset, size, max_size;
4372 tree base, src;
4374 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4376 if (TREE_CODE (*expr) == BIT_FIELD_REF
4377 || TREE_CODE (*expr) == IMAGPART_EXPR
4378 || TREE_CODE (*expr) == REALPART_EXPR)
4380 expr = &TREE_OPERAND (*expr, 0);
4381 convert = true;
4384 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4385 if (!base || size == -1 || max_size == -1)
4386 return false;
4388 if (TREE_CODE (base) == MEM_REF)
4390 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4391 base = TREE_OPERAND (base, 0);
4394 base = get_ssa_base_param (base);
4395 if (!base || TREE_CODE (base) != PARM_DECL)
4396 return false;
4398 for (i = 0; i < len; i++)
4400 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4402 if (adj->base == base &&
4403 (adj->offset == offset || adj->remove_param))
4405 cand = adj;
4406 break;
4409 if (!cand || cand->copy_param || cand->remove_param)
4410 return false;
4412 if (cand->by_ref)
4413 src = build_simple_mem_ref (cand->reduction);
4414 else
4415 src = cand->reduction;
4417 if (dump_file && (dump_flags & TDF_DETAILS))
4419 fprintf (dump_file, "About to replace expr ");
4420 print_generic_expr (dump_file, *expr, 0);
4421 fprintf (dump_file, " with ");
4422 print_generic_expr (dump_file, src, 0);
4423 fprintf (dump_file, "\n");
4426 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4428 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4429 *expr = vce;
4431 else
4432 *expr = src;
4433 return true;
4436 /* If the statement pointed to by STMT_PTR contains any expressions that need
4437 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4438 potential type incompatibilities (GSI is used to accommodate conversion
4439 statements and must point to the statement). Return true iff the statement
4440 was modified. */
4442 static bool
4443 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4444 ipa_parm_adjustment_vec adjustments)
4446 gimple stmt = *stmt_ptr;
4447 tree *lhs_p, *rhs_p;
4448 bool any;
4450 if (!gimple_assign_single_p (stmt))
4451 return false;
4453 rhs_p = gimple_assign_rhs1_ptr (stmt);
4454 lhs_p = gimple_assign_lhs_ptr (stmt);
4456 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4457 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4458 if (any)
4460 tree new_rhs = NULL_TREE;
4462 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4464 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4466 /* V_C_Es of constructors can cause trouble (PR 42714). */
4467 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4468 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4469 else
4470 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4472 else
4473 new_rhs = fold_build1_loc (gimple_location (stmt),
4474 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4475 *rhs_p);
4477 else if (REFERENCE_CLASS_P (*rhs_p)
4478 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4479 && !is_gimple_reg (*lhs_p))
4480 /* This can happen when an assignment in between two single field
4481 structures is turned into an assignment in between two pointers to
4482 scalars (PR 42237). */
4483 new_rhs = *rhs_p;
4485 if (new_rhs)
4487 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4488 true, GSI_SAME_STMT);
4490 gimple_assign_set_rhs_from_tree (gsi, tmp);
4493 return true;
4496 return false;
4499 /* Traverse the function body and all modifications as described in
4500 ADJUSTMENTS. Return true iff the CFG has been changed. */
4502 static bool
4503 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4505 bool cfg_changed = false;
4506 basic_block bb;
4508 FOR_EACH_BB (bb)
4510 gimple_stmt_iterator gsi;
4512 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4513 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4515 gsi = gsi_start_bb (bb);
4516 while (!gsi_end_p (gsi))
4518 gimple stmt = gsi_stmt (gsi);
4519 bool modified = false;
4520 tree *t;
4521 unsigned i;
4523 switch (gimple_code (stmt))
4525 case GIMPLE_RETURN:
4526 t = gimple_return_retval_ptr (stmt);
4527 if (*t != NULL_TREE)
4528 modified |= sra_ipa_modify_expr (t, true, adjustments);
4529 break;
4531 case GIMPLE_ASSIGN:
4532 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4533 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4534 break;
4536 case GIMPLE_CALL:
4537 /* Operands must be processed before the lhs. */
4538 for (i = 0; i < gimple_call_num_args (stmt); i++)
4540 t = gimple_call_arg_ptr (stmt, i);
4541 modified |= sra_ipa_modify_expr (t, true, adjustments);
4544 if (gimple_call_lhs (stmt))
4546 t = gimple_call_lhs_ptr (stmt);
4547 modified |= sra_ipa_modify_expr (t, false, adjustments);
4548 modified |= replace_removed_params_ssa_names (stmt,
4549 adjustments);
4551 break;
4553 case GIMPLE_ASM:
4554 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4556 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4557 modified |= sra_ipa_modify_expr (t, true, adjustments);
4559 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4561 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4562 modified |= sra_ipa_modify_expr (t, false, adjustments);
4564 break;
4566 default:
4567 break;
4570 if (modified)
4572 update_stmt (stmt);
4573 if (maybe_clean_eh_stmt (stmt)
4574 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4575 cfg_changed = true;
4577 gsi_next (&gsi);
4581 return cfg_changed;
4584 /* Call gimple_debug_bind_reset_value on all debug statements describing
4585 gimple register parameters that are being removed or replaced. */
4587 static void
4588 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4590 int i, len;
4591 gimple_stmt_iterator *gsip = NULL, gsi;
4593 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4595 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4596 gsip = &gsi;
4598 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4599 for (i = 0; i < len; i++)
4601 struct ipa_parm_adjustment *adj;
4602 imm_use_iterator ui;
4603 gimple stmt, def_temp;
4604 tree name, vexpr, copy = NULL_TREE;
4605 use_operand_p use_p;
4607 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4608 if (adj->copy_param || !is_gimple_reg (adj->base))
4609 continue;
4610 name = gimple_default_def (cfun, adj->base);
4611 vexpr = NULL;
4612 if (name)
4613 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4615 /* All other users must have been removed by
4616 ipa_sra_modify_function_body. */
4617 gcc_assert (is_gimple_debug (stmt));
4618 if (vexpr == NULL && gsip != NULL)
4620 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4621 vexpr = make_node (DEBUG_EXPR_DECL);
4622 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4623 NULL);
4624 DECL_ARTIFICIAL (vexpr) = 1;
4625 TREE_TYPE (vexpr) = TREE_TYPE (name);
4626 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4627 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4629 if (vexpr)
4631 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4632 SET_USE (use_p, vexpr);
4634 else
4635 gimple_debug_bind_reset_value (stmt);
4636 update_stmt (stmt);
4638 /* Create a VAR_DECL for debug info purposes. */
4639 if (!DECL_IGNORED_P (adj->base))
4641 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4642 VAR_DECL, DECL_NAME (adj->base),
4643 TREE_TYPE (adj->base));
4644 if (DECL_PT_UID_SET_P (adj->base))
4645 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4646 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4647 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4648 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4649 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4650 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4651 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4652 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4653 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4654 SET_DECL_RTL (copy, 0);
4655 TREE_USED (copy) = 1;
4656 DECL_CONTEXT (copy) = current_function_decl;
4657 add_referenced_var (copy);
4658 add_local_decl (cfun, copy);
4659 DECL_CHAIN (copy) =
4660 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4661 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4663 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4665 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4666 if (vexpr)
4667 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4668 else
4669 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4670 NULL);
4671 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4676 /* Return false iff all callers have at least as many actual arguments as there
4677 are formal parameters in the current function. */
4679 static bool
4680 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4681 void *data ATTRIBUTE_UNUSED)
4683 struct cgraph_edge *cs;
4684 for (cs = node->callers; cs; cs = cs->next_caller)
4685 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4686 return true;
4688 return false;
4691 /* Convert all callers of NODE. */
4693 static bool
4694 convert_callers_for_node (struct cgraph_node *node,
4695 void *data)
4697 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4698 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4699 struct cgraph_edge *cs;
4701 for (cs = node->callers; cs; cs = cs->next_caller)
4703 current_function_decl = cs->caller->decl;
4704 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4706 if (dump_file)
4707 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4708 cs->caller->uid, cs->callee->uid,
4709 xstrdup (cgraph_node_name (cs->caller)),
4710 xstrdup (cgraph_node_name (cs->callee)));
4712 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4714 pop_cfun ();
4717 for (cs = node->callers; cs; cs = cs->next_caller)
4718 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4719 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4720 compute_inline_parameters (cs->caller, true);
4721 BITMAP_FREE (recomputed_callers);
4723 return true;
4726 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4728 static void
4729 convert_callers (struct cgraph_node *node, tree old_decl,
4730 ipa_parm_adjustment_vec adjustments)
4732 tree old_cur_fndecl = current_function_decl;
4733 basic_block this_block;
4735 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4736 adjustments, false);
4738 current_function_decl = old_cur_fndecl;
4740 if (!encountered_recursive_call)
4741 return;
4743 FOR_EACH_BB (this_block)
4745 gimple_stmt_iterator gsi;
4747 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4749 gimple stmt = gsi_stmt (gsi);
4750 tree call_fndecl;
4751 if (gimple_code (stmt) != GIMPLE_CALL)
4752 continue;
4753 call_fndecl = gimple_call_fndecl (stmt);
4754 if (call_fndecl == old_decl)
4756 if (dump_file)
4757 fprintf (dump_file, "Adjusting recursive call");
4758 gimple_call_set_fndecl (stmt, node->decl);
4759 ipa_modify_call_arguments (NULL, stmt, adjustments);
4764 return;
4767 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4768 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4770 static bool
4771 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4773 struct cgraph_node *new_node;
4774 bool cfg_changed;
4775 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4777 rebuild_cgraph_edges ();
4778 free_dominance_info (CDI_DOMINATORS);
4779 pop_cfun ();
4780 current_function_decl = NULL_TREE;
4782 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4783 false, NULL, NULL, "isra");
4784 VEC_free (cgraph_edge_p, heap, redirect_callers);
4786 current_function_decl = new_node->decl;
4787 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4789 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4790 cfg_changed = ipa_sra_modify_function_body (adjustments);
4791 sra_ipa_reset_debug_stmts (adjustments);
4792 convert_callers (new_node, node->decl, adjustments);
4793 cgraph_make_node_local (new_node);
4794 return cfg_changed;
4797 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4798 attributes, return true otherwise. NODE is the cgraph node of the current
4799 function. */
4801 static bool
4802 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4804 if (!cgraph_node_can_be_local_p (node))
4806 if (dump_file)
4807 fprintf (dump_file, "Function not local to this compilation unit.\n");
4808 return false;
4811 if (!node->local.can_change_signature)
4813 if (dump_file)
4814 fprintf (dump_file, "Function can not change signature.\n");
4815 return false;
4818 if (!tree_versionable_function_p (node->decl))
4820 if (dump_file)
4821 fprintf (dump_file, "Function is not versionable.\n");
4822 return false;
4825 if (DECL_VIRTUAL_P (current_function_decl))
4827 if (dump_file)
4828 fprintf (dump_file, "Function is a virtual method.\n");
4829 return false;
4832 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4833 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4835 if (dump_file)
4836 fprintf (dump_file, "Function too big to be made truly local.\n");
4837 return false;
4840 if (!node->callers)
4842 if (dump_file)
4843 fprintf (dump_file,
4844 "Function has no callers in this compilation unit.\n");
4845 return false;
4848 if (cfun->stdarg)
4850 if (dump_file)
4851 fprintf (dump_file, "Function uses stdarg. \n");
4852 return false;
4855 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4856 return false;
4858 return true;
4861 /* Perform early interprocedural SRA. */
4863 static unsigned int
4864 ipa_early_sra (void)
4866 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4867 ipa_parm_adjustment_vec adjustments;
4868 int ret = 0;
4870 if (!ipa_sra_preliminary_function_checks (node))
4871 return 0;
4873 sra_initialize ();
4874 sra_mode = SRA_MODE_EARLY_IPA;
4876 if (!find_param_candidates ())
4878 if (dump_file)
4879 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4880 goto simple_out;
4883 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4884 NULL, true))
4886 if (dump_file)
4887 fprintf (dump_file, "There are callers with insufficient number of "
4888 "arguments.\n");
4889 goto simple_out;
4892 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4893 func_param_count
4894 * last_basic_block_for_function (cfun));
4895 final_bbs = BITMAP_ALLOC (NULL);
4897 scan_function ();
4898 if (encountered_apply_args)
4900 if (dump_file)
4901 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4902 goto out;
4905 if (encountered_unchangable_recursive_call)
4907 if (dump_file)
4908 fprintf (dump_file, "Function calls itself with insufficient "
4909 "number of arguments.\n");
4910 goto out;
4913 adjustments = analyze_all_param_acesses ();
4914 if (!adjustments)
4915 goto out;
4916 if (dump_file)
4917 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4919 if (modify_function (node, adjustments))
4920 ret = TODO_update_ssa | TODO_cleanup_cfg;
4921 else
4922 ret = TODO_update_ssa;
4923 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4925 statistics_counter_event (cfun, "Unused parameters deleted",
4926 sra_stats.deleted_unused_parameters);
4927 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4928 sra_stats.scalar_by_ref_to_by_val);
4929 statistics_counter_event (cfun, "Aggregate parameters broken up",
4930 sra_stats.aggregate_params_reduced);
4931 statistics_counter_event (cfun, "Aggregate parameter components created",
4932 sra_stats.param_reductions_created);
4934 out:
4935 BITMAP_FREE (final_bbs);
4936 free (bb_dereferences);
4937 simple_out:
4938 sra_deinitialize ();
4939 return ret;
4942 /* Return if early ipa sra shall be performed. */
4943 static bool
4944 ipa_early_sra_gate (void)
4946 return flag_ipa_sra && dbg_cnt (eipa_sra);
4949 struct gimple_opt_pass pass_early_ipa_sra =
4952 GIMPLE_PASS,
4953 "eipa_sra", /* name */
4954 ipa_early_sra_gate, /* gate */
4955 ipa_early_sra, /* execute */
4956 NULL, /* sub */
4957 NULL, /* next */
4958 0, /* static_pass_number */
4959 TV_IPA_SRA, /* tv_id */
4960 0, /* properties_required */
4961 0, /* properties_provided */
4962 0, /* properties_destroyed */
4963 0, /* todo_flags_start */
4964 TODO_dump_cgraph /* todo_flags_finish */