ipfw: Support all possible ICMP types.
[dragonfly.git] / contrib / gcc-4.7 / gcc / reload1.c
blob9154f0ba932e9935ae1d6933b66bd5e08f9d3baf
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
265 struct elim_table
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
285 static struct elim_table *reg_eliminate = 0;
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
331 VEC(reg_equivs_t,gc) *reg_equivs;
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
348 /* Number of labels in the current function. */
350 static int num_labels;
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int allocate_reload_reg (struct insn_chain *, int, int);
400 static int conflicts_with_override (rtx);
401 static void failed_reload (rtx, int);
402 static int set_reload_reg (int, int);
403 static void choose_reload_regs_init (struct insn_chain *, rtx *);
404 static void choose_reload_regs (struct insn_chain *);
405 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
406 rtx, int);
407 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
408 int);
409 static void do_input_reload (struct insn_chain *, struct reload *, int);
410 static void do_output_reload (struct insn_chain *, struct reload *, int);
411 static void emit_reload_insns (struct insn_chain *);
412 static void delete_output_reload (rtx, int, int, rtx);
413 static void delete_address_reloads (rtx, rtx);
414 static void delete_address_reloads_1 (rtx, rtx, rtx);
415 static void inc_for_reload (rtx, rtx, rtx, int);
416 #ifdef AUTO_INC_DEC
417 static void add_auto_inc_notes (rtx, rtx);
418 #endif
419 static void substitute (rtx *, const_rtx, rtx);
420 static bool gen_reload_chain_without_interm_reg_p (int, int);
421 static int reloads_conflict (int, int);
422 static rtx gen_reload (rtx, rtx, int, enum reload_type);
423 static rtx emit_insn_if_valid_for_reload (rtx);
425 /* Initialize the reload pass. This is called at the beginning of compilation
426 and may be called again if the target is reinitialized. */
428 void
429 init_reload (void)
431 int i;
433 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
434 Set spill_indirect_levels to the number of levels such addressing is
435 permitted, zero if it is not permitted at all. */
437 rtx tem
438 = gen_rtx_MEM (Pmode,
439 gen_rtx_PLUS (Pmode,
440 gen_rtx_REG (Pmode,
441 LAST_VIRTUAL_REGISTER + 1),
442 GEN_INT (4)));
443 spill_indirect_levels = 0;
445 while (memory_address_p (QImode, tem))
447 spill_indirect_levels++;
448 tem = gen_rtx_MEM (Pmode, tem);
451 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
453 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
454 indirect_symref_ok = memory_address_p (QImode, tem);
456 /* See if reg+reg is a valid (and offsettable) address. */
458 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
460 tem = gen_rtx_PLUS (Pmode,
461 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
462 gen_rtx_REG (Pmode, i));
464 /* This way, we make sure that reg+reg is an offsettable address. */
465 tem = plus_constant (tem, 4);
467 if (memory_address_p (QImode, tem))
469 double_reg_address_ok = 1;
470 break;
474 /* Initialize obstack for our rtl allocation. */
475 gcc_obstack_init (&reload_obstack);
476 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
478 INIT_REG_SET (&spilled_pseudos);
479 INIT_REG_SET (&changed_allocation_pseudos);
480 INIT_REG_SET (&pseudos_counted);
483 /* List of insn chains that are currently unused. */
484 static struct insn_chain *unused_insn_chains = 0;
486 /* Allocate an empty insn_chain structure. */
487 struct insn_chain *
488 new_insn_chain (void)
490 struct insn_chain *c;
492 if (unused_insn_chains == 0)
494 c = XOBNEW (&reload_obstack, struct insn_chain);
495 INIT_REG_SET (&c->live_throughout);
496 INIT_REG_SET (&c->dead_or_set);
498 else
500 c = unused_insn_chains;
501 unused_insn_chains = c->next;
503 c->is_caller_save_insn = 0;
504 c->need_operand_change = 0;
505 c->need_reload = 0;
506 c->need_elim = 0;
507 return c;
510 /* Small utility function to set all regs in hard reg set TO which are
511 allocated to pseudos in regset FROM. */
513 void
514 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
516 unsigned int regno;
517 reg_set_iterator rsi;
519 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
521 int r = reg_renumber[regno];
523 if (r < 0)
525 /* reload_combine uses the information from DF_LIVE_IN,
526 which might still contain registers that have not
527 actually been allocated since they have an
528 equivalence. */
529 gcc_assert (ira_conflicts_p || reload_completed);
531 else
532 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
536 /* Replace all pseudos found in LOC with their corresponding
537 equivalences. */
539 static void
540 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
542 rtx x = *loc;
543 enum rtx_code code;
544 const char *fmt;
545 int i, j;
547 if (! x)
548 return;
550 code = GET_CODE (x);
551 if (code == REG)
553 unsigned int regno = REGNO (x);
555 if (regno < FIRST_PSEUDO_REGISTER)
556 return;
558 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
559 if (x != *loc)
561 *loc = x;
562 replace_pseudos_in (loc, mem_mode, usage);
563 return;
566 if (reg_equiv_constant (regno))
567 *loc = reg_equiv_constant (regno);
568 else if (reg_equiv_invariant (regno))
569 *loc = reg_equiv_invariant (regno);
570 else if (reg_equiv_mem (regno))
571 *loc = reg_equiv_mem (regno);
572 else if (reg_equiv_address (regno))
573 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
574 else
576 gcc_assert (!REG_P (regno_reg_rtx[regno])
577 || REGNO (regno_reg_rtx[regno]) != regno);
578 *loc = regno_reg_rtx[regno];
581 return;
583 else if (code == MEM)
585 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
586 return;
589 /* Process each of our operands recursively. */
590 fmt = GET_RTX_FORMAT (code);
591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
592 if (*fmt == 'e')
593 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
594 else if (*fmt == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
599 /* Determine if the current function has an exception receiver block
600 that reaches the exit block via non-exceptional edges */
602 static bool
603 has_nonexceptional_receiver (void)
605 edge e;
606 edge_iterator ei;
607 basic_block *tos, *worklist, bb;
609 /* If we're not optimizing, then just err on the safe side. */
610 if (!optimize)
611 return true;
613 /* First determine which blocks can reach exit via normal paths. */
614 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
616 FOR_EACH_BB (bb)
617 bb->flags &= ~BB_REACHABLE;
619 /* Place the exit block on our worklist. */
620 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
621 *tos++ = EXIT_BLOCK_PTR;
623 /* Iterate: find everything reachable from what we've already seen. */
624 while (tos != worklist)
626 bb = *--tos;
628 FOR_EACH_EDGE (e, ei, bb->preds)
629 if (!(e->flags & EDGE_ABNORMAL))
631 basic_block src = e->src;
633 if (!(src->flags & BB_REACHABLE))
635 src->flags |= BB_REACHABLE;
636 *tos++ = src;
640 free (worklist);
642 /* Now see if there's a reachable block with an exceptional incoming
643 edge. */
644 FOR_EACH_BB (bb)
645 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
646 return true;
648 /* No exceptional block reached exit unexceptionally. */
649 return false;
652 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
653 zero elements) to MAX_REG_NUM elements.
655 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
656 void
657 grow_reg_equivs (void)
659 int old_size = VEC_length (reg_equivs_t, reg_equivs);
660 int max_regno = max_reg_num ();
661 int i;
663 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
664 for (i = old_size; i < max_regno; i++)
666 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
667 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
673 /* Global variables used by reload and its subroutines. */
675 /* The current basic block while in calculate_elim_costs_all_insns. */
676 static basic_block elim_bb;
678 /* Set during calculate_needs if an insn needs register elimination. */
679 static int something_needs_elimination;
680 /* Set during calculate_needs if an insn needs an operand changed. */
681 static int something_needs_operands_changed;
682 /* Set by alter_regs if we spilled a register to the stack. */
683 static bool something_was_spilled;
685 /* Nonzero means we couldn't get enough spill regs. */
686 static int failure;
688 /* Temporary array of pseudo-register number. */
689 static int *temp_pseudo_reg_arr;
691 /* Main entry point for the reload pass.
693 FIRST is the first insn of the function being compiled.
695 GLOBAL nonzero means we were called from global_alloc
696 and should attempt to reallocate any pseudoregs that we
697 displace from hard regs we will use for reloads.
698 If GLOBAL is zero, we do not have enough information to do that,
699 so any pseudo reg that is spilled must go to the stack.
701 Return value is TRUE if reload likely left dead insns in the
702 stream and a DCE pass should be run to elimiante them. Else the
703 return value is FALSE. */
705 bool
706 reload (rtx first, int global)
708 int i, n;
709 rtx insn;
710 struct elim_table *ep;
711 basic_block bb;
712 bool inserted;
714 /* Make sure even insns with volatile mem refs are recognizable. */
715 init_recog ();
717 failure = 0;
719 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
721 /* Make sure that the last insn in the chain
722 is not something that needs reloading. */
723 emit_note (NOTE_INSN_DELETED);
725 /* Enable find_equiv_reg to distinguish insns made by reload. */
726 reload_first_uid = get_max_uid ();
728 #ifdef SECONDARY_MEMORY_NEEDED
729 /* Initialize the secondary memory table. */
730 clear_secondary_mem ();
731 #endif
733 /* We don't have a stack slot for any spill reg yet. */
734 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
735 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
737 /* Initialize the save area information for caller-save, in case some
738 are needed. */
739 init_save_areas ();
741 /* Compute which hard registers are now in use
742 as homes for pseudo registers.
743 This is done here rather than (eg) in global_alloc
744 because this point is reached even if not optimizing. */
745 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
746 mark_home_live (i);
748 /* A function that has a nonlocal label that can reach the exit
749 block via non-exceptional paths must save all call-saved
750 registers. */
751 if (cfun->has_nonlocal_label
752 && has_nonexceptional_receiver ())
753 crtl->saves_all_registers = 1;
755 if (crtl->saves_all_registers)
756 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
757 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
758 df_set_regs_ever_live (i, true);
760 /* Find all the pseudo registers that didn't get hard regs
761 but do have known equivalent constants or memory slots.
762 These include parameters (known equivalent to parameter slots)
763 and cse'd or loop-moved constant memory addresses.
765 Record constant equivalents in reg_equiv_constant
766 so they will be substituted by find_reloads.
767 Record memory equivalents in reg_mem_equiv so they can
768 be substituted eventually by altering the REG-rtx's. */
770 grow_reg_equivs ();
771 reg_old_renumber = XCNEWVEC (short, max_regno);
772 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
773 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
774 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
776 CLEAR_HARD_REG_SET (bad_spill_regs_global);
778 init_eliminable_invariants (first, true);
779 init_elim_table ();
781 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
782 stack slots to the pseudos that lack hard regs or equivalents.
783 Do not touch virtual registers. */
785 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
786 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
787 temp_pseudo_reg_arr[n++] = i;
789 if (ira_conflicts_p)
790 /* Ask IRA to order pseudo-registers for better stack slot
791 sharing. */
792 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
794 for (i = 0; i < n; i++)
795 alter_reg (temp_pseudo_reg_arr[i], -1, false);
797 /* If we have some registers we think can be eliminated, scan all insns to
798 see if there is an insn that sets one of these registers to something
799 other than itself plus a constant. If so, the register cannot be
800 eliminated. Doing this scan here eliminates an extra pass through the
801 main reload loop in the most common case where register elimination
802 cannot be done. */
803 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
804 if (INSN_P (insn))
805 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
807 maybe_fix_stack_asms ();
809 insns_need_reload = 0;
810 something_needs_elimination = 0;
812 /* Initialize to -1, which means take the first spill register. */
813 last_spill_reg = -1;
815 /* Spill any hard regs that we know we can't eliminate. */
816 CLEAR_HARD_REG_SET (used_spill_regs);
817 /* There can be multiple ways to eliminate a register;
818 they should be listed adjacently.
819 Elimination for any register fails only if all possible ways fail. */
820 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
822 int from = ep->from;
823 int can_eliminate = 0;
826 can_eliminate |= ep->can_eliminate;
827 ep++;
829 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
830 if (! can_eliminate)
831 spill_hard_reg (from, 1);
834 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
835 if (frame_pointer_needed)
836 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
837 #endif
838 finish_spills (global);
840 /* From now on, we may need to generate moves differently. We may also
841 allow modifications of insns which cause them to not be recognized.
842 Any such modifications will be cleaned up during reload itself. */
843 reload_in_progress = 1;
845 /* This loop scans the entire function each go-round
846 and repeats until one repetition spills no additional hard regs. */
847 for (;;)
849 int something_changed;
850 int did_spill;
851 HOST_WIDE_INT starting_frame_size;
853 starting_frame_size = get_frame_size ();
854 something_was_spilled = false;
856 set_initial_elim_offsets ();
857 set_initial_label_offsets ();
859 /* For each pseudo register that has an equivalent location defined,
860 try to eliminate any eliminable registers (such as the frame pointer)
861 assuming initial offsets for the replacement register, which
862 is the normal case.
864 If the resulting location is directly addressable, substitute
865 the MEM we just got directly for the old REG.
867 If it is not addressable but is a constant or the sum of a hard reg
868 and constant, it is probably not addressable because the constant is
869 out of range, in that case record the address; we will generate
870 hairy code to compute the address in a register each time it is
871 needed. Similarly if it is a hard register, but one that is not
872 valid as an address register.
874 If the location is not addressable, but does not have one of the
875 above forms, assign a stack slot. We have to do this to avoid the
876 potential of producing lots of reloads if, e.g., a location involves
877 a pseudo that didn't get a hard register and has an equivalent memory
878 location that also involves a pseudo that didn't get a hard register.
880 Perhaps at some point we will improve reload_when_needed handling
881 so this problem goes away. But that's very hairy. */
883 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
884 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
886 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
887 NULL_RTX);
889 if (strict_memory_address_addr_space_p
890 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
891 MEM_ADDR_SPACE (x)))
892 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
893 else if (CONSTANT_P (XEXP (x, 0))
894 || (REG_P (XEXP (x, 0))
895 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
896 || (GET_CODE (XEXP (x, 0)) == PLUS
897 && REG_P (XEXP (XEXP (x, 0), 0))
898 && (REGNO (XEXP (XEXP (x, 0), 0))
899 < FIRST_PSEUDO_REGISTER)
900 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
901 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
902 else
904 /* Make a new stack slot. Then indicate that something
905 changed so we go back and recompute offsets for
906 eliminable registers because the allocation of memory
907 below might change some offset. reg_equiv_{mem,address}
908 will be set up for this pseudo on the next pass around
909 the loop. */
910 reg_equiv_memory_loc (i) = 0;
911 reg_equiv_init (i) = 0;
912 alter_reg (i, -1, true);
916 if (caller_save_needed)
917 setup_save_areas ();
919 /* If we allocated another stack slot, redo elimination bookkeeping. */
920 if (something_was_spilled || starting_frame_size != get_frame_size ())
921 continue;
922 if (starting_frame_size && crtl->stack_alignment_needed)
924 /* If we have a stack frame, we must align it now. The
925 stack size may be a part of the offset computation for
926 register elimination. So if this changes the stack size,
927 then repeat the elimination bookkeeping. We don't
928 realign when there is no stack, as that will cause a
929 stack frame when none is needed should
930 STARTING_FRAME_OFFSET not be already aligned to
931 STACK_BOUNDARY. */
932 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
933 if (starting_frame_size != get_frame_size ())
934 continue;
937 if (caller_save_needed)
939 save_call_clobbered_regs ();
940 /* That might have allocated new insn_chain structures. */
941 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
944 calculate_needs_all_insns (global);
946 if (! ira_conflicts_p)
947 /* Don't do it for IRA. We need this info because we don't
948 change live_throughout and dead_or_set for chains when IRA
949 is used. */
950 CLEAR_REG_SET (&spilled_pseudos);
952 did_spill = 0;
954 something_changed = 0;
956 /* If we allocated any new memory locations, make another pass
957 since it might have changed elimination offsets. */
958 if (something_was_spilled || starting_frame_size != get_frame_size ())
959 something_changed = 1;
961 /* Even if the frame size remained the same, we might still have
962 changed elimination offsets, e.g. if find_reloads called
963 force_const_mem requiring the back end to allocate a constant
964 pool base register that needs to be saved on the stack. */
965 else if (!verify_initial_elim_offsets ())
966 something_changed = 1;
969 HARD_REG_SET to_spill;
970 CLEAR_HARD_REG_SET (to_spill);
971 update_eliminables (&to_spill);
972 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
974 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
975 if (TEST_HARD_REG_BIT (to_spill, i))
977 spill_hard_reg (i, 1);
978 did_spill = 1;
980 /* Regardless of the state of spills, if we previously had
981 a register that we thought we could eliminate, but now can
982 not eliminate, we must run another pass.
984 Consider pseudos which have an entry in reg_equiv_* which
985 reference an eliminable register. We must make another pass
986 to update reg_equiv_* so that we do not substitute in the
987 old value from when we thought the elimination could be
988 performed. */
989 something_changed = 1;
993 select_reload_regs ();
994 if (failure)
995 goto failed;
997 if (insns_need_reload != 0 || did_spill)
998 something_changed |= finish_spills (global);
1000 if (! something_changed)
1001 break;
1003 if (caller_save_needed)
1004 delete_caller_save_insns ();
1006 obstack_free (&reload_obstack, reload_firstobj);
1009 /* If global-alloc was run, notify it of any register eliminations we have
1010 done. */
1011 if (global)
1012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1013 if (ep->can_eliminate)
1014 mark_elimination (ep->from, ep->to);
1016 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1017 If that insn didn't set the register (i.e., it copied the register to
1018 memory), just delete that insn instead of the equivalencing insn plus
1019 anything now dead. If we call delete_dead_insn on that insn, we may
1020 delete the insn that actually sets the register if the register dies
1021 there and that is incorrect. */
1023 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1025 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1027 rtx list;
1028 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1030 rtx equiv_insn = XEXP (list, 0);
1032 /* If we already deleted the insn or if it may trap, we can't
1033 delete it. The latter case shouldn't happen, but can
1034 if an insn has a variable address, gets a REG_EH_REGION
1035 note added to it, and then gets converted into a load
1036 from a constant address. */
1037 if (NOTE_P (equiv_insn)
1038 || can_throw_internal (equiv_insn))
1040 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1041 delete_dead_insn (equiv_insn);
1042 else
1043 SET_INSN_DELETED (equiv_insn);
1048 /* Use the reload registers where necessary
1049 by generating move instructions to move the must-be-register
1050 values into or out of the reload registers. */
1052 if (insns_need_reload != 0 || something_needs_elimination
1053 || something_needs_operands_changed)
1055 HOST_WIDE_INT old_frame_size = get_frame_size ();
1057 reload_as_needed (global);
1059 gcc_assert (old_frame_size == get_frame_size ());
1061 gcc_assert (verify_initial_elim_offsets ());
1064 /* If we were able to eliminate the frame pointer, show that it is no
1065 longer live at the start of any basic block. If it ls live by
1066 virtue of being in a pseudo, that pseudo will be marked live
1067 and hence the frame pointer will be known to be live via that
1068 pseudo. */
1070 if (! frame_pointer_needed)
1071 FOR_EACH_BB (bb)
1072 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1074 /* Come here (with failure set nonzero) if we can't get enough spill
1075 regs. */
1076 failed:
1078 CLEAR_REG_SET (&changed_allocation_pseudos);
1079 CLEAR_REG_SET (&spilled_pseudos);
1080 reload_in_progress = 0;
1082 /* Now eliminate all pseudo regs by modifying them into
1083 their equivalent memory references.
1084 The REG-rtx's for the pseudos are modified in place,
1085 so all insns that used to refer to them now refer to memory.
1087 For a reg that has a reg_equiv_address, all those insns
1088 were changed by reloading so that no insns refer to it any longer;
1089 but the DECL_RTL of a variable decl may refer to it,
1090 and if so this causes the debugging info to mention the variable. */
1092 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1094 rtx addr = 0;
1096 if (reg_equiv_mem (i))
1097 addr = XEXP (reg_equiv_mem (i), 0);
1099 if (reg_equiv_address (i))
1100 addr = reg_equiv_address (i);
1102 if (addr)
1104 if (reg_renumber[i] < 0)
1106 rtx reg = regno_reg_rtx[i];
1108 REG_USERVAR_P (reg) = 0;
1109 PUT_CODE (reg, MEM);
1110 XEXP (reg, 0) = addr;
1111 if (reg_equiv_memory_loc (i))
1112 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1113 else
1114 MEM_ATTRS (reg) = 0;
1115 MEM_NOTRAP_P (reg) = 1;
1117 else if (reg_equiv_mem (i))
1118 XEXP (reg_equiv_mem (i), 0) = addr;
1121 /* We don't want complex addressing modes in debug insns
1122 if simpler ones will do, so delegitimize equivalences
1123 in debug insns. */
1124 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1126 rtx reg = regno_reg_rtx[i];
1127 rtx equiv = 0;
1128 df_ref use, next;
1130 if (reg_equiv_constant (i))
1131 equiv = reg_equiv_constant (i);
1132 else if (reg_equiv_invariant (i))
1133 equiv = reg_equiv_invariant (i);
1134 else if (reg && MEM_P (reg))
1135 equiv = targetm.delegitimize_address (reg);
1136 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1137 equiv = reg;
1139 if (equiv == reg)
1140 continue;
1142 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1144 insn = DF_REF_INSN (use);
1146 /* Make sure the next ref is for a different instruction,
1147 so that we're not affected by the rescan. */
1148 next = DF_REF_NEXT_REG (use);
1149 while (next && DF_REF_INSN (next) == insn)
1150 next = DF_REF_NEXT_REG (next);
1152 if (DEBUG_INSN_P (insn))
1154 if (!equiv)
1156 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1157 df_insn_rescan_debug_internal (insn);
1159 else
1160 INSN_VAR_LOCATION_LOC (insn)
1161 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1162 reg, equiv);
1168 /* We must set reload_completed now since the cleanup_subreg_operands call
1169 below will re-recognize each insn and reload may have generated insns
1170 which are only valid during and after reload. */
1171 reload_completed = 1;
1173 /* Make a pass over all the insns and delete all USEs which we inserted
1174 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1175 notes. Delete all CLOBBER insns, except those that refer to the return
1176 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1177 from misarranging variable-array code, and simplify (subreg (reg))
1178 operands. Strip and regenerate REG_INC notes that may have been moved
1179 around. */
1181 for (insn = first; insn; insn = NEXT_INSN (insn))
1182 if (INSN_P (insn))
1184 rtx *pnote;
1186 if (CALL_P (insn))
1187 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1188 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1190 if ((GET_CODE (PATTERN (insn)) == USE
1191 /* We mark with QImode USEs introduced by reload itself. */
1192 && (GET_MODE (insn) == QImode
1193 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1194 || (GET_CODE (PATTERN (insn)) == CLOBBER
1195 && (!MEM_P (XEXP (PATTERN (insn), 0))
1196 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1197 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1198 && XEXP (XEXP (PATTERN (insn), 0), 0)
1199 != stack_pointer_rtx))
1200 && (!REG_P (XEXP (PATTERN (insn), 0))
1201 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1203 delete_insn (insn);
1204 continue;
1207 /* Some CLOBBERs may survive until here and still reference unassigned
1208 pseudos with const equivalent, which may in turn cause ICE in later
1209 passes if the reference remains in place. */
1210 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1211 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1212 VOIDmode, PATTERN (insn));
1214 /* Discard obvious no-ops, even without -O. This optimization
1215 is fast and doesn't interfere with debugging. */
1216 if (NONJUMP_INSN_P (insn)
1217 && GET_CODE (PATTERN (insn)) == SET
1218 && REG_P (SET_SRC (PATTERN (insn)))
1219 && REG_P (SET_DEST (PATTERN (insn)))
1220 && (REGNO (SET_SRC (PATTERN (insn)))
1221 == REGNO (SET_DEST (PATTERN (insn)))))
1223 delete_insn (insn);
1224 continue;
1227 pnote = &REG_NOTES (insn);
1228 while (*pnote != 0)
1230 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1231 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1232 || REG_NOTE_KIND (*pnote) == REG_INC)
1233 *pnote = XEXP (*pnote, 1);
1234 else
1235 pnote = &XEXP (*pnote, 1);
1238 #ifdef AUTO_INC_DEC
1239 add_auto_inc_notes (insn, PATTERN (insn));
1240 #endif
1242 /* Simplify (subreg (reg)) if it appears as an operand. */
1243 cleanup_subreg_operands (insn);
1245 /* Clean up invalid ASMs so that they don't confuse later passes.
1246 See PR 21299. */
1247 if (asm_noperands (PATTERN (insn)) >= 0)
1249 extract_insn (insn);
1250 if (!constrain_operands (1))
1252 error_for_asm (insn,
1253 "%<asm%> operand has impossible constraints");
1254 delete_insn (insn);
1255 continue;
1260 /* If we are doing generic stack checking, give a warning if this
1261 function's frame size is larger than we expect. */
1262 if (flag_stack_check == GENERIC_STACK_CHECK)
1264 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1265 static int verbose_warned = 0;
1267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1268 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1269 size += UNITS_PER_WORD;
1271 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1273 warning (0, "frame size too large for reliable stack checking");
1274 if (! verbose_warned)
1276 warning (0, "try reducing the number of local variables");
1277 verbose_warned = 1;
1282 free (temp_pseudo_reg_arr);
1284 /* Indicate that we no longer have known memory locations or constants. */
1285 free_reg_equiv ();
1287 free (reg_max_ref_width);
1288 free (reg_old_renumber);
1289 free (pseudo_previous_regs);
1290 free (pseudo_forbidden_regs);
1292 CLEAR_HARD_REG_SET (used_spill_regs);
1293 for (i = 0; i < n_spills; i++)
1294 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1296 /* Free all the insn_chain structures at once. */
1297 obstack_free (&reload_obstack, reload_startobj);
1298 unused_insn_chains = 0;
1300 inserted = fixup_abnormal_edges ();
1302 /* We've possibly turned single trapping insn into multiple ones. */
1303 if (cfun->can_throw_non_call_exceptions)
1305 sbitmap blocks;
1306 blocks = sbitmap_alloc (last_basic_block);
1307 sbitmap_ones (blocks);
1308 find_many_sub_basic_blocks (blocks);
1309 sbitmap_free (blocks);
1312 if (inserted)
1313 commit_edge_insertions ();
1315 /* Replacing pseudos with their memory equivalents might have
1316 created shared rtx. Subsequent passes would get confused
1317 by this, so unshare everything here. */
1318 unshare_all_rtl_again (first);
1320 #ifdef STACK_BOUNDARY
1321 /* init_emit has set the alignment of the hard frame pointer
1322 to STACK_BOUNDARY. It is very likely no longer valid if
1323 the hard frame pointer was used for register allocation. */
1324 if (!frame_pointer_needed)
1325 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1326 #endif
1328 VEC_free (rtx_p, heap, substitute_stack);
1330 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1332 reload_completed = !failure;
1334 return need_dce;
1337 /* Yet another special case. Unfortunately, reg-stack forces people to
1338 write incorrect clobbers in asm statements. These clobbers must not
1339 cause the register to appear in bad_spill_regs, otherwise we'll call
1340 fatal_insn later. We clear the corresponding regnos in the live
1341 register sets to avoid this.
1342 The whole thing is rather sick, I'm afraid. */
1344 static void
1345 maybe_fix_stack_asms (void)
1347 #ifdef STACK_REGS
1348 const char *constraints[MAX_RECOG_OPERANDS];
1349 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1350 struct insn_chain *chain;
1352 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1354 int i, noperands;
1355 HARD_REG_SET clobbered, allowed;
1356 rtx pat;
1358 if (! INSN_P (chain->insn)
1359 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1360 continue;
1361 pat = PATTERN (chain->insn);
1362 if (GET_CODE (pat) != PARALLEL)
1363 continue;
1365 CLEAR_HARD_REG_SET (clobbered);
1366 CLEAR_HARD_REG_SET (allowed);
1368 /* First, make a mask of all stack regs that are clobbered. */
1369 for (i = 0; i < XVECLEN (pat, 0); i++)
1371 rtx t = XVECEXP (pat, 0, i);
1372 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1373 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1376 /* Get the operand values and constraints out of the insn. */
1377 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1378 constraints, operand_mode, NULL);
1380 /* For every operand, see what registers are allowed. */
1381 for (i = 0; i < noperands; i++)
1383 const char *p = constraints[i];
1384 /* For every alternative, we compute the class of registers allowed
1385 for reloading in CLS, and merge its contents into the reg set
1386 ALLOWED. */
1387 int cls = (int) NO_REGS;
1389 for (;;)
1391 char c = *p;
1393 if (c == '\0' || c == ',' || c == '#')
1395 /* End of one alternative - mark the regs in the current
1396 class, and reset the class. */
1397 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1398 cls = NO_REGS;
1399 p++;
1400 if (c == '#')
1401 do {
1402 c = *p++;
1403 } while (c != '\0' && c != ',');
1404 if (c == '\0')
1405 break;
1406 continue;
1409 switch (c)
1411 case '=': case '+': case '*': case '%': case '?': case '!':
1412 case '0': case '1': case '2': case '3': case '4': case '<':
1413 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1414 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1415 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1416 case TARGET_MEM_CONSTRAINT:
1417 break;
1419 case 'p':
1420 cls = (int) reg_class_subunion[cls]
1421 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1422 ADDRESS, SCRATCH)];
1423 break;
1425 case 'g':
1426 case 'r':
1427 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1428 break;
1430 default:
1431 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1432 cls = (int) reg_class_subunion[cls]
1433 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1434 ADDRESS, SCRATCH)];
1435 else
1436 cls = (int) reg_class_subunion[cls]
1437 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1439 p += CONSTRAINT_LEN (c, p);
1442 /* Those of the registers which are clobbered, but allowed by the
1443 constraints, must be usable as reload registers. So clear them
1444 out of the life information. */
1445 AND_HARD_REG_SET (allowed, clobbered);
1446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1447 if (TEST_HARD_REG_BIT (allowed, i))
1449 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1450 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1454 #endif
1457 /* Copy the global variables n_reloads and rld into the corresponding elts
1458 of CHAIN. */
1459 static void
1460 copy_reloads (struct insn_chain *chain)
1462 chain->n_reloads = n_reloads;
1463 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1464 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1465 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1468 /* Walk the chain of insns, and determine for each whether it needs reloads
1469 and/or eliminations. Build the corresponding insns_need_reload list, and
1470 set something_needs_elimination as appropriate. */
1471 static void
1472 calculate_needs_all_insns (int global)
1474 struct insn_chain **pprev_reload = &insns_need_reload;
1475 struct insn_chain *chain, *next = 0;
1477 something_needs_elimination = 0;
1479 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1480 for (chain = reload_insn_chain; chain != 0; chain = next)
1482 rtx insn = chain->insn;
1484 next = chain->next;
1486 /* Clear out the shortcuts. */
1487 chain->n_reloads = 0;
1488 chain->need_elim = 0;
1489 chain->need_reload = 0;
1490 chain->need_operand_change = 0;
1492 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1493 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1494 what effects this has on the known offsets at labels. */
1496 if (LABEL_P (insn) || JUMP_P (insn)
1497 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1498 set_label_offsets (insn, insn, 0);
1500 if (INSN_P (insn))
1502 rtx old_body = PATTERN (insn);
1503 int old_code = INSN_CODE (insn);
1504 rtx old_notes = REG_NOTES (insn);
1505 int did_elimination = 0;
1506 int operands_changed = 0;
1507 rtx set = single_set (insn);
1509 /* Skip insns that only set an equivalence. */
1510 if (set && REG_P (SET_DEST (set))
1511 && reg_renumber[REGNO (SET_DEST (set))] < 0
1512 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1513 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1514 && reg_equiv_init (REGNO (SET_DEST (set))))
1515 continue;
1517 /* If needed, eliminate any eliminable registers. */
1518 if (num_eliminable || num_eliminable_invariants)
1519 did_elimination = eliminate_regs_in_insn (insn, 0);
1521 /* Analyze the instruction. */
1522 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1523 global, spill_reg_order);
1525 /* If a no-op set needs more than one reload, this is likely
1526 to be something that needs input address reloads. We
1527 can't get rid of this cleanly later, and it is of no use
1528 anyway, so discard it now.
1529 We only do this when expensive_optimizations is enabled,
1530 since this complements reload inheritance / output
1531 reload deletion, and it can make debugging harder. */
1532 if (flag_expensive_optimizations && n_reloads > 1)
1534 rtx set = single_set (insn);
1535 if (set
1537 ((SET_SRC (set) == SET_DEST (set)
1538 && REG_P (SET_SRC (set))
1539 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1540 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1541 && reg_renumber[REGNO (SET_SRC (set))] < 0
1542 && reg_renumber[REGNO (SET_DEST (set))] < 0
1543 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1544 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1545 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1546 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1548 if (ira_conflicts_p)
1549 /* Inform IRA about the insn deletion. */
1550 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1551 REGNO (SET_SRC (set)));
1552 delete_insn (insn);
1553 /* Delete it from the reload chain. */
1554 if (chain->prev)
1555 chain->prev->next = next;
1556 else
1557 reload_insn_chain = next;
1558 if (next)
1559 next->prev = chain->prev;
1560 chain->next = unused_insn_chains;
1561 unused_insn_chains = chain;
1562 continue;
1565 if (num_eliminable)
1566 update_eliminable_offsets ();
1568 /* Remember for later shortcuts which insns had any reloads or
1569 register eliminations. */
1570 chain->need_elim = did_elimination;
1571 chain->need_reload = n_reloads > 0;
1572 chain->need_operand_change = operands_changed;
1574 /* Discard any register replacements done. */
1575 if (did_elimination)
1577 obstack_free (&reload_obstack, reload_insn_firstobj);
1578 PATTERN (insn) = old_body;
1579 INSN_CODE (insn) = old_code;
1580 REG_NOTES (insn) = old_notes;
1581 something_needs_elimination = 1;
1584 something_needs_operands_changed |= operands_changed;
1586 if (n_reloads != 0)
1588 copy_reloads (chain);
1589 *pprev_reload = chain;
1590 pprev_reload = &chain->next_need_reload;
1594 *pprev_reload = 0;
1597 /* This function is called from the register allocator to set up estimates
1598 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1599 an invariant. The structure is similar to calculate_needs_all_insns. */
1601 void
1602 calculate_elim_costs_all_insns (void)
1604 int *reg_equiv_init_cost;
1605 basic_block bb;
1606 int i;
1608 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1609 init_elim_table ();
1610 init_eliminable_invariants (get_insns (), false);
1612 set_initial_elim_offsets ();
1613 set_initial_label_offsets ();
1615 FOR_EACH_BB (bb)
1617 rtx insn;
1618 elim_bb = bb;
1620 FOR_BB_INSNS (bb, insn)
1622 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1623 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1624 what effects this has on the known offsets at labels. */
1626 if (LABEL_P (insn) || JUMP_P (insn)
1627 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1628 set_label_offsets (insn, insn, 0);
1630 if (INSN_P (insn))
1632 rtx set = single_set (insn);
1634 /* Skip insns that only set an equivalence. */
1635 if (set && REG_P (SET_DEST (set))
1636 && reg_renumber[REGNO (SET_DEST (set))] < 0
1637 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1638 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1640 unsigned regno = REGNO (SET_DEST (set));
1641 rtx init = reg_equiv_init (regno);
1642 if (init)
1644 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1645 false, true);
1646 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1647 int freq = REG_FREQ_FROM_BB (bb);
1649 reg_equiv_init_cost[regno] = cost * freq;
1650 continue;
1653 /* If needed, eliminate any eliminable registers. */
1654 if (num_eliminable || num_eliminable_invariants)
1655 elimination_costs_in_insn (insn);
1657 if (num_eliminable)
1658 update_eliminable_offsets ();
1662 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1664 if (reg_equiv_invariant (i))
1666 if (reg_equiv_init (i))
1668 int cost = reg_equiv_init_cost[i];
1669 if (dump_file)
1670 fprintf (dump_file,
1671 "Reg %d has equivalence, initial gains %d\n", i, cost);
1672 if (cost != 0)
1673 ira_adjust_equiv_reg_cost (i, cost);
1675 else
1677 if (dump_file)
1678 fprintf (dump_file,
1679 "Reg %d had equivalence, but can't be eliminated\n",
1681 ira_adjust_equiv_reg_cost (i, 0);
1686 free (reg_equiv_init_cost);
1687 free (offsets_known_at);
1688 free (offsets_at);
1689 offsets_at = NULL;
1690 offsets_known_at = NULL;
1693 /* Comparison function for qsort to decide which of two reloads
1694 should be handled first. *P1 and *P2 are the reload numbers. */
1696 static int
1697 reload_reg_class_lower (const void *r1p, const void *r2p)
1699 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1700 int t;
1702 /* Consider required reloads before optional ones. */
1703 t = rld[r1].optional - rld[r2].optional;
1704 if (t != 0)
1705 return t;
1707 /* Count all solitary classes before non-solitary ones. */
1708 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1709 - (reg_class_size[(int) rld[r1].rclass] == 1));
1710 if (t != 0)
1711 return t;
1713 /* Aside from solitaires, consider all multi-reg groups first. */
1714 t = rld[r2].nregs - rld[r1].nregs;
1715 if (t != 0)
1716 return t;
1718 /* Consider reloads in order of increasing reg-class number. */
1719 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1720 if (t != 0)
1721 return t;
1723 /* If reloads are equally urgent, sort by reload number,
1724 so that the results of qsort leave nothing to chance. */
1725 return r1 - r2;
1728 /* The cost of spilling each hard reg. */
1729 static int spill_cost[FIRST_PSEUDO_REGISTER];
1731 /* When spilling multiple hard registers, we use SPILL_COST for the first
1732 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1733 only the first hard reg for a multi-reg pseudo. */
1734 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1736 /* Map of hard regno to pseudo regno currently occupying the hard
1737 reg. */
1738 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1740 /* Update the spill cost arrays, considering that pseudo REG is live. */
1742 static void
1743 count_pseudo (int reg)
1745 int freq = REG_FREQ (reg);
1746 int r = reg_renumber[reg];
1747 int nregs;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1751 /* Ignore spilled pseudo-registers which can be here only if IRA
1752 is used. */
1753 || (ira_conflicts_p && r < 0))
1754 return;
1756 SET_REGNO_REG_SET (&pseudos_counted, reg);
1758 gcc_assert (r >= 0);
1760 spill_add_cost[r] += freq;
1761 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1762 while (nregs-- > 0)
1764 hard_regno_to_pseudo_regno[r + nregs] = reg;
1765 spill_cost[r + nregs] += freq;
1769 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1770 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1772 static void
1773 order_regs_for_reload (struct insn_chain *chain)
1775 unsigned i;
1776 HARD_REG_SET used_by_pseudos;
1777 HARD_REG_SET used_by_pseudos2;
1778 reg_set_iterator rsi;
1780 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1782 memset (spill_cost, 0, sizeof spill_cost);
1783 memset (spill_add_cost, 0, sizeof spill_add_cost);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1785 hard_regno_to_pseudo_regno[i] = -1;
1787 /* Count number of uses of each hard reg by pseudo regs allocated to it
1788 and then order them by decreasing use. First exclude hard registers
1789 that are live in or across this insn. */
1791 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1792 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1793 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1794 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1796 /* Now find out which pseudos are allocated to it, and update
1797 hard_reg_n_uses. */
1798 CLEAR_REG_SET (&pseudos_counted);
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1803 count_pseudo (i);
1805 EXECUTE_IF_SET_IN_REG_SET
1806 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1808 count_pseudo (i);
1810 CLEAR_REG_SET (&pseudos_counted);
1813 /* Vector of reload-numbers showing the order in which the reloads should
1814 be processed. */
1815 static short reload_order[MAX_RELOADS];
1817 /* This is used to keep track of the spill regs used in one insn. */
1818 static HARD_REG_SET used_spill_regs_local;
1820 /* We decided to spill hard register SPILLED, which has a size of
1821 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1822 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1823 update SPILL_COST/SPILL_ADD_COST. */
1825 static void
1826 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1828 int freq = REG_FREQ (reg);
1829 int r = reg_renumber[reg];
1830 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1832 /* Ignore spilled pseudo-registers which can be here only if IRA is
1833 used. */
1834 if ((ira_conflicts_p && r < 0)
1835 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1849 /* Find reload register to use for reload number ORDER. */
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1873 int other = reload_order[k];
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1896 for (j = 1; j < this_nregs; j++)
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1903 if (! ok)
1904 continue;
1906 if (ira_conflicts_p)
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1926 best_reg = regno;
1927 for (j = 0;; j++)
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1934 continue;
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1954 best_reg = regno;
1955 best_cost = this_cost;
1959 if (best_reg == -1)
1960 return 0;
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1980 for (i = 0; i < rl->nregs; i++)
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1987 return 1;
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1999 int i;
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2030 /* Compute the order of preference for hard registers to spill. */
2032 order_regs_for_reload (chain);
2034 for (i = 0; i < n_reloads; i++)
2036 int r = reload_order[i];
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2058 static void
2059 select_reload_regs (void)
2061 struct insn_chain *chain;
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2074 struct insn_chain *c = reload_insn_chain;
2076 while (c != 0)
2078 while (c != 0 && c->is_caller_save_insn)
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2095 if (c != 0)
2096 c = c->next;
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2115 if (dump_file)
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2120 fatal_insn ("this is the insn:", insn);
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2127 static void
2128 delete_dead_insn (rtx insn)
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2147 SET_INSN_DELETED (insn);
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2194 something_was_spilled = true;
2196 if (ira_conflicts_p)
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2204 if (x)
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2217 rtx stack_slot;
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2224 stack_slot = x;
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2253 /* Allocate a bigger slot. */
2254 else
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2260 if (spill_stack_slot[from_reg])
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2318 int i, lim;
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2331 void
2332 mark_home_live (int regno)
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2338 /* This function handles the tracking of elimination offsets around branches.
2340 X is a piece of RTL being scanned.
2342 INSN is the insn that it came from, if any.
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2356 switch (code)
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2362 x = XEXP (x, 0);
2364 /* ... fall through ... */
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2402 return;
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2407 /* ... fall through ... */
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2447 switch (GET_CODE (SET_SRC (x)))
2449 case PC:
2450 case RETURN:
2451 return;
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2471 default:
2472 break;
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2482 default:
2483 break;
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2498 if (MEM_P (x))
2499 return -1;
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2514 return 0;
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2557 if (! current_function_decl)
2558 return x;
2560 switch (code)
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_FIXED:
2565 case CONST_VECTOR:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2577 case REG:
2578 regno = REGNO (x);
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (ep->to_rtx, ep->previous_offset);
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2603 return x;
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (XEXP (x, 1),
2644 ep->previous_offset));
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2696 return x;
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2719 return
2720 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2724 /* ... fall through ... */
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748 return x;
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2771 /* ... fall through ... */
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 return x;
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2813 return x;
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && !paradoxical_subreg_p (x)
2844 && reg_equivs
2845 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 new_rtx = SUBREG_REG (x);
2849 else
2850 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852 if (new_rtx != SUBREG_REG (x))
2854 int x_size = GET_MODE_SIZE (GET_MODE (x));
2855 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857 if (MEM_P (new_rtx)
2858 && ((x_size < new_size
2859 #ifdef WORD_REGISTER_OPERATIONS
2860 /* On these machines, combine can create rtl of the form
2861 (set (subreg:m1 (reg:m2 R) 0) ...)
2862 where m1 < m2, and expects something interesting to
2863 happen to the entire word. Moreover, it will use the
2864 (reg:m2 R) later, expecting all bits to be preserved.
2865 So if the number of words is the same, preserve the
2866 subreg so that push_reload can see it. */
2867 && ! ((x_size - 1) / UNITS_PER_WORD
2868 == (new_size -1 ) / UNITS_PER_WORD)
2869 #endif
2871 || x_size == new_size)
2873 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2874 else
2875 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2878 return x;
2880 case MEM:
2881 /* Our only special processing is to pass the mode of the MEM to our
2882 recursive call and copy the flags. While we are here, handle this
2883 case more efficiently. */
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2886 for_costs);
2887 if (for_costs
2888 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2889 && !memory_address_p (GET_MODE (x), new_rtx))
2890 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892 return replace_equiv_address_nv (x, new_rtx);
2894 case USE:
2895 /* Handle insn_list USE that a call to a pure function may generate. */
2896 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2897 for_costs);
2898 if (new_rtx != XEXP (x, 0))
2899 return gen_rtx_USE (GET_MODE (x), new_rtx);
2900 return x;
2902 case CLOBBER:
2903 case ASM_OPERANDS:
2904 gcc_assert (insn && DEBUG_INSN_P (insn));
2905 break;
2907 case SET:
2908 gcc_unreachable ();
2910 default:
2911 break;
2914 /* Process each of our operands recursively. If any have changed, make a
2915 copy of the rtx. */
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 if (*fmt == 'e')
2921 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, i) && ! copied)
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2928 XEXP (x, i) = new_rtx;
2930 else if (*fmt == 'E')
2932 int copied_vec = 0;
2933 for (j = 0; j < XVECLEN (x, i); j++)
2935 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2940 XVEC (x, i)->elem);
2941 if (! copied)
2943 x = shallow_copy_rtx (x);
2944 copied = 1;
2946 XVEC (x, i) = new_v;
2947 copied_vec = 1;
2949 XVECEXP (x, i, j) = new_rtx;
2954 return x;
2958 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2963 /* Scan rtx X for modifications of elimination target registers. Update
2964 the table of eliminables to reflect the changed state. MEM_MODE is
2965 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967 static void
2968 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 enum rtx_code code = GET_CODE (x);
2971 struct elim_table *ep;
2972 int regno;
2973 int i, j;
2974 const char *fmt;
2976 switch (code)
2978 case CONST_INT:
2979 case CONST_DOUBLE:
2980 case CONST_FIXED:
2981 case CONST_VECTOR:
2982 case CONST:
2983 case SYMBOL_REF:
2984 case CODE_LABEL:
2985 case PC:
2986 case CC0:
2987 case ASM_INPUT:
2988 case ADDR_VEC:
2989 case ADDR_DIFF_VEC:
2990 case RETURN:
2991 return;
2993 case REG:
2994 regno = REGNO (x);
2996 /* First handle the case where we encounter a bare register that
2997 is eliminable. Replace it with a PLUS. */
2998 if (regno < FIRST_PSEUDO_REGISTER)
3000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3001 ep++)
3002 if (ep->from_rtx == x && ep->can_eliminate)
3004 if (! mem_mode)
3005 ep->ref_outside_mem = 1;
3006 return;
3010 else if (reg_renumber[regno] < 0
3011 && reg_equivs != 0
3012 && reg_equiv_constant (regno)
3013 && ! function_invariant_p (reg_equiv_constant (regno)))
3014 elimination_effects (reg_equiv_constant (regno), mem_mode);
3015 return;
3017 case PRE_INC:
3018 case POST_INC:
3019 case PRE_DEC:
3020 case POST_DEC:
3021 case POST_MODIFY:
3022 case PRE_MODIFY:
3023 /* If we modify the source of an elimination rule, disable it. */
3024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3025 if (ep->from_rtx == XEXP (x, 0))
3026 ep->can_eliminate = 0;
3028 /* If we modify the target of an elimination rule by adding a constant,
3029 update its offset. If we modify the target in any other way, we'll
3030 have to disable the rule as well. */
3031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3032 if (ep->to_rtx == XEXP (x, 0))
3034 int size = GET_MODE_SIZE (mem_mode);
3036 /* If more bytes than MEM_MODE are pushed, account for them. */
3037 #ifdef PUSH_ROUNDING
3038 if (ep->to_rtx == stack_pointer_rtx)
3039 size = PUSH_ROUNDING (size);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 ep->offset += size;
3043 else if (code == PRE_INC || code == POST_INC)
3044 ep->offset -= size;
3045 else if (code == PRE_MODIFY || code == POST_MODIFY)
3047 if (GET_CODE (XEXP (x, 1)) == PLUS
3048 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3049 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3050 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3051 else
3052 ep->can_eliminate = 0;
3056 /* These two aren't unary operators. */
3057 if (code == POST_MODIFY || code == PRE_MODIFY)
3058 break;
3060 /* Fall through to generic unary operation case. */
3061 case STRICT_LOW_PART:
3062 case NEG: case NOT:
3063 case SIGN_EXTEND: case ZERO_EXTEND:
3064 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3065 case FLOAT: case FIX:
3066 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3067 case ABS:
3068 case SQRT:
3069 case FFS:
3070 case CLZ:
3071 case CTZ:
3072 case POPCOUNT:
3073 case PARITY:
3074 case BSWAP:
3075 elimination_effects (XEXP (x, 0), mem_mode);
3076 return;
3078 case SUBREG:
3079 if (REG_P (SUBREG_REG (x))
3080 && (GET_MODE_SIZE (GET_MODE (x))
3081 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3082 && reg_equivs != 0
3083 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3084 return;
3086 elimination_effects (SUBREG_REG (x), mem_mode);
3087 return;
3089 case USE:
3090 /* If using a register that is the source of an eliminate we still
3091 think can be performed, note it cannot be performed since we don't
3092 know how this register is used. */
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3094 if (ep->from_rtx == XEXP (x, 0))
3095 ep->can_eliminate = 0;
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3100 case CLOBBER:
3101 /* If clobbering a register that is the replacement register for an
3102 elimination we still think can be performed, note that it cannot
3103 be performed. Otherwise, we need not be concerned about it. */
3104 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3105 if (ep->to_rtx == XEXP (x, 0))
3106 ep->can_eliminate = 0;
3108 elimination_effects (XEXP (x, 0), mem_mode);
3109 return;
3111 case SET:
3112 /* Check for setting a register that we know about. */
3113 if (REG_P (SET_DEST (x)))
3115 /* See if this is setting the replacement register for an
3116 elimination.
3118 If DEST is the hard frame pointer, we do nothing because we
3119 assume that all assignments to the frame pointer are for
3120 non-local gotos and are being done at a time when they are valid
3121 and do not disturb anything else. Some machines want to
3122 eliminate a fake argument pointer (or even a fake frame pointer)
3123 with either the real frame or the stack pointer. Assignments to
3124 the hard frame pointer must not prevent this elimination. */
3126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3127 ep++)
3128 if (ep->to_rtx == SET_DEST (x)
3129 && SET_DEST (x) != hard_frame_pointer_rtx)
3131 /* If it is being incremented, adjust the offset. Otherwise,
3132 this elimination can't be done. */
3133 rtx src = SET_SRC (x);
3135 if (GET_CODE (src) == PLUS
3136 && XEXP (src, 0) == SET_DEST (x)
3137 && CONST_INT_P (XEXP (src, 1)))
3138 ep->offset -= INTVAL (XEXP (src, 1));
3139 else
3140 ep->can_eliminate = 0;
3144 elimination_effects (SET_DEST (x), VOIDmode);
3145 elimination_effects (SET_SRC (x), VOIDmode);
3146 return;
3148 case MEM:
3149 /* Our only special processing is to pass the mode of the MEM to our
3150 recursive call. */
3151 elimination_effects (XEXP (x, 0), GET_MODE (x));
3152 return;
3154 default:
3155 break;
3158 fmt = GET_RTX_FORMAT (code);
3159 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3161 if (*fmt == 'e')
3162 elimination_effects (XEXP (x, i), mem_mode);
3163 else if (*fmt == 'E')
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 elimination_effects (XVECEXP (x, i, j), mem_mode);
3169 /* Descend through rtx X and verify that no references to eliminable registers
3170 remain. If any do remain, mark the involved register as not
3171 eliminable. */
3173 static void
3174 check_eliminable_occurrences (rtx x)
3176 const char *fmt;
3177 int i;
3178 enum rtx_code code;
3180 if (x == 0)
3181 return;
3183 code = GET_CODE (x);
3185 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3187 struct elim_table *ep;
3189 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3190 if (ep->from_rtx == x)
3191 ep->can_eliminate = 0;
3192 return;
3195 fmt = GET_RTX_FORMAT (code);
3196 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3198 if (*fmt == 'e')
3199 check_eliminable_occurrences (XEXP (x, i));
3200 else if (*fmt == 'E')
3202 int j;
3203 for (j = 0; j < XVECLEN (x, i); j++)
3204 check_eliminable_occurrences (XVECEXP (x, i, j));
3209 /* Scan INSN and eliminate all eliminable registers in it.
3211 If REPLACE is nonzero, do the replacement destructively. Also
3212 delete the insn as dead it if it is setting an eliminable register.
3214 If REPLACE is zero, do all our allocations in reload_obstack.
3216 If no eliminations were done and this insn doesn't require any elimination
3217 processing (these are not identical conditions: it might be updating sp,
3218 but not referencing fp; this needs to be seen during reload_as_needed so
3219 that the offset between fp and sp can be taken into consideration), zero
3220 is returned. Otherwise, 1 is returned. */
3222 static int
3223 eliminate_regs_in_insn (rtx insn, int replace)
3225 int icode = recog_memoized (insn);
3226 rtx old_body = PATTERN (insn);
3227 int insn_is_asm = asm_noperands (old_body) >= 0;
3228 rtx old_set = single_set (insn);
3229 rtx new_body;
3230 int val = 0;
3231 int i;
3232 rtx substed_operand[MAX_RECOG_OPERANDS];
3233 rtx orig_operand[MAX_RECOG_OPERANDS];
3234 struct elim_table *ep;
3235 rtx plus_src, plus_cst_src;
3237 if (! insn_is_asm && icode < 0)
3239 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3240 || GET_CODE (PATTERN (insn)) == CLOBBER
3241 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3242 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3243 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3244 || DEBUG_INSN_P (insn));
3245 if (DEBUG_INSN_P (insn))
3246 INSN_VAR_LOCATION_LOC (insn)
3247 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3248 return 0;
3251 if (old_set != 0 && REG_P (SET_DEST (old_set))
3252 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3254 /* Check for setting an eliminable register. */
3255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3259 /* If this is setting the frame pointer register to the
3260 hardware frame pointer register and this is an elimination
3261 that will be done (tested above), this insn is really
3262 adjusting the frame pointer downward to compensate for
3263 the adjustment done before a nonlocal goto. */
3264 if (ep->from == FRAME_POINTER_REGNUM
3265 && ep->to == HARD_FRAME_POINTER_REGNUM)
3267 rtx base = SET_SRC (old_set);
3268 rtx base_insn = insn;
3269 HOST_WIDE_INT offset = 0;
3271 while (base != ep->to_rtx)
3273 rtx prev_insn, prev_set;
3275 if (GET_CODE (base) == PLUS
3276 && CONST_INT_P (XEXP (base, 1)))
3278 offset += INTVAL (XEXP (base, 1));
3279 base = XEXP (base, 0);
3281 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3282 && (prev_set = single_set (prev_insn)) != 0
3283 && rtx_equal_p (SET_DEST (prev_set), base))
3285 base = SET_SRC (prev_set);
3286 base_insn = prev_insn;
3288 else
3289 break;
3292 if (base == ep->to_rtx)
3294 rtx src
3295 = plus_constant (ep->to_rtx, offset - ep->offset);
3297 new_body = old_body;
3298 if (! replace)
3300 new_body = copy_insn (old_body);
3301 if (REG_NOTES (insn))
3302 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3304 PATTERN (insn) = new_body;
3305 old_set = single_set (insn);
3307 /* First see if this insn remains valid when we
3308 make the change. If not, keep the INSN_CODE
3309 the same and let reload fit it up. */
3310 validate_change (insn, &SET_SRC (old_set), src, 1);
3311 validate_change (insn, &SET_DEST (old_set),
3312 ep->to_rtx, 1);
3313 if (! apply_change_group ())
3315 SET_SRC (old_set) = src;
3316 SET_DEST (old_set) = ep->to_rtx;
3319 val = 1;
3320 goto done;
3323 #endif
3325 /* In this case this insn isn't serving a useful purpose. We
3326 will delete it in reload_as_needed once we know that this
3327 elimination is, in fact, being done.
3329 If REPLACE isn't set, we can't delete this insn, but needn't
3330 process it since it won't be used unless something changes. */
3331 if (replace)
3333 delete_dead_insn (insn);
3334 return 1;
3336 val = 1;
3337 goto done;
3341 /* We allow one special case which happens to work on all machines we
3342 currently support: a single set with the source or a REG_EQUAL
3343 note being a PLUS of an eliminable register and a constant. */
3344 plus_src = plus_cst_src = 0;
3345 if (old_set && REG_P (SET_DEST (old_set)))
3347 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3348 plus_src = SET_SRC (old_set);
3349 /* First see if the source is of the form (plus (...) CST). */
3350 if (plus_src
3351 && CONST_INT_P (XEXP (plus_src, 1)))
3352 plus_cst_src = plus_src;
3353 else if (REG_P (SET_SRC (old_set))
3354 || plus_src)
3356 /* Otherwise, see if we have a REG_EQUAL note of the form
3357 (plus (...) CST). */
3358 rtx links;
3359 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3361 if ((REG_NOTE_KIND (links) == REG_EQUAL
3362 || REG_NOTE_KIND (links) == REG_EQUIV)
3363 && GET_CODE (XEXP (links, 0)) == PLUS
3364 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3366 plus_cst_src = XEXP (links, 0);
3367 break;
3372 /* Check that the first operand of the PLUS is a hard reg or
3373 the lowpart subreg of one. */
3374 if (plus_cst_src)
3376 rtx reg = XEXP (plus_cst_src, 0);
3377 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3378 reg = SUBREG_REG (reg);
3380 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3381 plus_cst_src = 0;
3384 if (plus_cst_src)
3386 rtx reg = XEXP (plus_cst_src, 0);
3387 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3389 if (GET_CODE (reg) == SUBREG)
3390 reg = SUBREG_REG (reg);
3392 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3393 if (ep->from_rtx == reg && ep->can_eliminate)
3395 rtx to_rtx = ep->to_rtx;
3396 offset += ep->offset;
3397 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3399 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3400 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3401 to_rtx);
3402 /* If we have a nonzero offset, and the source is already
3403 a simple REG, the following transformation would
3404 increase the cost of the insn by replacing a simple REG
3405 with (plus (reg sp) CST). So try only when we already
3406 had a PLUS before. */
3407 if (offset == 0 || plus_src)
3409 rtx new_src = plus_constant (to_rtx, offset);
3411 new_body = old_body;
3412 if (! replace)
3414 new_body = copy_insn (old_body);
3415 if (REG_NOTES (insn))
3416 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3418 PATTERN (insn) = new_body;
3419 old_set = single_set (insn);
3421 /* First see if this insn remains valid when we make the
3422 change. If not, try to replace the whole pattern with
3423 a simple set (this may help if the original insn was a
3424 PARALLEL that was only recognized as single_set due to
3425 REG_UNUSED notes). If this isn't valid either, keep
3426 the INSN_CODE the same and let reload fix it up. */
3427 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3429 rtx new_pat = gen_rtx_SET (VOIDmode,
3430 SET_DEST (old_set), new_src);
3432 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3433 SET_SRC (old_set) = new_src;
3436 else
3437 break;
3439 val = 1;
3440 /* This can't have an effect on elimination offsets, so skip right
3441 to the end. */
3442 goto done;
3446 /* Determine the effects of this insn on elimination offsets. */
3447 elimination_effects (old_body, VOIDmode);
3449 /* Eliminate all eliminable registers occurring in operands that
3450 can be handled by reload. */
3451 extract_insn (insn);
3452 for (i = 0; i < recog_data.n_operands; i++)
3454 orig_operand[i] = recog_data.operand[i];
3455 substed_operand[i] = recog_data.operand[i];
3457 /* For an asm statement, every operand is eliminable. */
3458 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3460 bool is_set_src, in_plus;
3462 /* Check for setting a register that we know about. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i]))
3466 /* If we are assigning to a register that can be eliminated, it
3467 must be as part of a PARALLEL, since the code above handles
3468 single SETs. We must indicate that we can no longer
3469 eliminate this reg. */
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3471 ep++)
3472 if (ep->from_rtx == orig_operand[i])
3473 ep->can_eliminate = 0;
3476 /* Companion to the above plus substitution, we can allow
3477 invariants as the source of a plain move. */
3478 is_set_src = false;
3479 if (old_set
3480 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3481 is_set_src = true;
3482 in_plus = false;
3483 if (plus_src
3484 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3485 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3486 in_plus = true;
3488 substed_operand[i]
3489 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3490 replace ? insn : NULL_RTX,
3491 is_set_src || in_plus, false);
3492 if (substed_operand[i] != orig_operand[i])
3493 val = 1;
3494 /* Terminate the search in check_eliminable_occurrences at
3495 this point. */
3496 *recog_data.operand_loc[i] = 0;
3498 /* If an output operand changed from a REG to a MEM and INSN is an
3499 insn, write a CLOBBER insn. */
3500 if (recog_data.operand_type[i] != OP_IN
3501 && REG_P (orig_operand[i])
3502 && MEM_P (substed_operand[i])
3503 && replace)
3504 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3508 for (i = 0; i < recog_data.n_dups; i++)
3509 *recog_data.dup_loc[i]
3510 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3512 /* If any eliminable remain, they aren't eliminable anymore. */
3513 check_eliminable_occurrences (old_body);
3515 /* Substitute the operands; the new values are in the substed_operand
3516 array. */
3517 for (i = 0; i < recog_data.n_operands; i++)
3518 *recog_data.operand_loc[i] = substed_operand[i];
3519 for (i = 0; i < recog_data.n_dups; i++)
3520 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3522 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3523 re-recognize the insn. We do this in case we had a simple addition
3524 but now can do this as a load-address. This saves an insn in this
3525 common case.
3526 If re-recognition fails, the old insn code number will still be used,
3527 and some register operands may have changed into PLUS expressions.
3528 These will be handled by find_reloads by loading them into a register
3529 again. */
3531 if (val)
3533 /* If we aren't replacing things permanently and we changed something,
3534 make another copy to ensure that all the RTL is new. Otherwise
3535 things can go wrong if find_reload swaps commutative operands
3536 and one is inside RTL that has been copied while the other is not. */
3537 new_body = old_body;
3538 if (! replace)
3540 new_body = copy_insn (old_body);
3541 if (REG_NOTES (insn))
3542 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3544 PATTERN (insn) = new_body;
3546 /* If we had a move insn but now we don't, rerecognize it. This will
3547 cause spurious re-recognition if the old move had a PARALLEL since
3548 the new one still will, but we can't call single_set without
3549 having put NEW_BODY into the insn and the re-recognition won't
3550 hurt in this rare case. */
3551 /* ??? Why this huge if statement - why don't we just rerecognize the
3552 thing always? */
3553 if (! insn_is_asm
3554 && old_set != 0
3555 && ((REG_P (SET_SRC (old_set))
3556 && (GET_CODE (new_body) != SET
3557 || !REG_P (SET_SRC (new_body))))
3558 /* If this was a load from or store to memory, compare
3559 the MEM in recog_data.operand to the one in the insn.
3560 If they are not equal, then rerecognize the insn. */
3561 || (old_set != 0
3562 && ((MEM_P (SET_SRC (old_set))
3563 && SET_SRC (old_set) != recog_data.operand[1])
3564 || (MEM_P (SET_DEST (old_set))
3565 && SET_DEST (old_set) != recog_data.operand[0])))
3566 /* If this was an add insn before, rerecognize. */
3567 || GET_CODE (SET_SRC (old_set)) == PLUS))
3569 int new_icode = recog (PATTERN (insn), insn, 0);
3570 if (new_icode >= 0)
3571 INSN_CODE (insn) = new_icode;
3575 /* Restore the old body. If there were any changes to it, we made a copy
3576 of it while the changes were still in place, so we'll correctly return
3577 a modified insn below. */
3578 if (! replace)
3580 /* Restore the old body. */
3581 for (i = 0; i < recog_data.n_operands; i++)
3582 /* Restoring a top-level match_parallel would clobber the new_body
3583 we installed in the insn. */
3584 if (recog_data.operand_loc[i] != &PATTERN (insn))
3585 *recog_data.operand_loc[i] = orig_operand[i];
3586 for (i = 0; i < recog_data.n_dups; i++)
3587 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3590 /* Update all elimination pairs to reflect the status after the current
3591 insn. The changes we make were determined by the earlier call to
3592 elimination_effects.
3594 We also detect cases where register elimination cannot be done,
3595 namely, if a register would be both changed and referenced outside a MEM
3596 in the resulting insn since such an insn is often undefined and, even if
3597 not, we cannot know what meaning will be given to it. Note that it is
3598 valid to have a register used in an address in an insn that changes it
3599 (presumably with a pre- or post-increment or decrement).
3601 If anything changes, return nonzero. */
3603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3605 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3606 ep->can_eliminate = 0;
3608 ep->ref_outside_mem = 0;
3610 if (ep->previous_offset != ep->offset)
3611 val = 1;
3614 done:
3615 /* If we changed something, perform elimination in REG_NOTES. This is
3616 needed even when REPLACE is zero because a REG_DEAD note might refer
3617 to a register that we eliminate and could cause a different number
3618 of spill registers to be needed in the final reload pass than in
3619 the pre-passes. */
3620 if (val && REG_NOTES (insn) != 0)
3621 REG_NOTES (insn)
3622 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3623 false);
3625 return val;
3628 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3629 register allocator. INSN is the instruction we need to examine, we perform
3630 eliminations in its operands and record cases where eliminating a reg with
3631 an invariant equivalence would add extra cost. */
3633 static void
3634 elimination_costs_in_insn (rtx insn)
3636 int icode = recog_memoized (insn);
3637 rtx old_body = PATTERN (insn);
3638 int insn_is_asm = asm_noperands (old_body) >= 0;
3639 rtx old_set = single_set (insn);
3640 int i;
3641 rtx orig_operand[MAX_RECOG_OPERANDS];
3642 rtx orig_dup[MAX_RECOG_OPERANDS];
3643 struct elim_table *ep;
3644 rtx plus_src, plus_cst_src;
3645 bool sets_reg_p;
3647 if (! insn_is_asm && icode < 0)
3649 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3650 || GET_CODE (PATTERN (insn)) == CLOBBER
3651 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3653 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3654 || DEBUG_INSN_P (insn));
3655 return;
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3710 for (i = 0; i < recog_data.n_operands; i++)
3712 orig_operand[i] = recog_data.operand[i];
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3717 bool is_set_src, in_plus;
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (&SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3777 ep->ref_outside_mem = 0;
3780 return;
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3789 static void
3790 update_eliminable_offsets (void)
3792 struct elim_table *ep;
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3820 unsigned int i;
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3849 static bool
3850 verify_initial_elim_offsets (void)
3852 HOST_WIDE_INT t;
3854 if (!num_eliminable)
3855 return true;
3857 #ifdef ELIMINABLE_REGS
3859 struct elim_table *ep;
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3874 return true;
3877 /* Reset all offsets on eliminable registers to their initial values. */
3879 static void
3880 set_initial_elim_offsets (void)
3882 struct elim_table *ep = reg_eliminate;
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3895 num_not_at_initial_offset = 0;
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3903 set_label_offsets (label, NULL_RTX, 1);
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3913 static void
3914 set_initial_label_offsets (void)
3916 rtx x;
3917 memset (offsets_known_at, 0, num_labels);
3919 for (x = forced_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3923 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3924 if (XEXP (x, 0))
3925 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3927 for_each_eh_label (set_initial_eh_label_offset);
3930 /* Set all elimination offsets to the known values for the code label given
3931 by INSN. */
3933 static void
3934 set_offsets_for_label (rtx insn)
3936 unsigned int i;
3937 int label_nr = CODE_LABEL_NUMBER (insn);
3938 struct elim_table *ep;
3940 num_not_at_initial_offset = 0;
3941 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3943 ep->offset = ep->previous_offset
3944 = offsets_at[label_nr - first_label_num][i];
3945 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3946 num_not_at_initial_offset++;
3950 /* See if anything that happened changes which eliminations are valid.
3951 For example, on the SPARC, whether or not the frame pointer can
3952 be eliminated can depend on what registers have been used. We need
3953 not check some conditions again (such as flag_omit_frame_pointer)
3954 since they can't have changed. */
3956 static void
3957 update_eliminables (HARD_REG_SET *pset)
3959 int previous_frame_pointer_needed = frame_pointer_needed;
3960 struct elim_table *ep;
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3964 && targetm.frame_pointer_required ())
3965 #ifdef ELIMINABLE_REGS
3966 || ! targetm.can_eliminate (ep->from, ep->to)
3967 #endif
3969 ep->can_eliminate = 0;
3971 /* Look for the case where we have discovered that we can't replace
3972 register A with register B and that means that we will now be
3973 trying to replace register A with register C. This means we can
3974 no longer replace register C with register B and we need to disable
3975 such an elimination, if it exists. This occurs often with A == ap,
3976 B == sp, and C == fp. */
3978 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3980 struct elim_table *op;
3981 int new_to = -1;
3983 if (! ep->can_eliminate && ep->can_eliminate_previous)
3985 /* Find the current elimination for ep->from, if there is a
3986 new one. */
3987 for (op = reg_eliminate;
3988 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3989 if (op->from == ep->from && op->can_eliminate)
3991 new_to = op->to;
3992 break;
3995 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3996 disable it. */
3997 for (op = reg_eliminate;
3998 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3999 if (op->from == new_to && op->to == ep->to)
4000 op->can_eliminate = 0;
4004 /* See if any registers that we thought we could eliminate the previous
4005 time are no longer eliminable. If so, something has changed and we
4006 must spill the register. Also, recompute the number of eliminable
4007 registers and see if the frame pointer is needed; it is if there is
4008 no elimination of the frame pointer that we can perform. */
4010 frame_pointer_needed = 1;
4011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4013 if (ep->can_eliminate
4014 && ep->from == FRAME_POINTER_REGNUM
4015 && ep->to != HARD_FRAME_POINTER_REGNUM
4016 && (! SUPPORTS_STACK_ALIGNMENT
4017 || ! crtl->stack_realign_needed))
4018 frame_pointer_needed = 0;
4020 if (! ep->can_eliminate && ep->can_eliminate_previous)
4022 ep->can_eliminate_previous = 0;
4023 SET_HARD_REG_BIT (*pset, ep->from);
4024 num_eliminable--;
4028 /* If we didn't need a frame pointer last time, but we do now, spill
4029 the hard frame pointer. */
4030 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4031 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4034 /* Return true if X is used as the target register of an elimination. */
4036 bool
4037 elimination_target_reg_p (rtx x)
4039 struct elim_table *ep;
4041 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4042 if (ep->to_rtx == x && ep->can_eliminate)
4043 return true;
4045 return false;
4048 /* Initialize the table of registers to eliminate.
4049 Pre-condition: global flag frame_pointer_needed has been set before
4050 calling this function. */
4052 static void
4053 init_elim_table (void)
4055 struct elim_table *ep;
4056 #ifdef ELIMINABLE_REGS
4057 const struct elim_table_1 *ep1;
4058 #endif
4060 if (!reg_eliminate)
4061 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4063 num_eliminable = 0;
4065 #ifdef ELIMINABLE_REGS
4066 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4067 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4069 ep->from = ep1->from;
4070 ep->to = ep1->to;
4071 ep->can_eliminate = ep->can_eliminate_previous
4072 = (targetm.can_eliminate (ep->from, ep->to)
4073 && ! (ep->to == STACK_POINTER_REGNUM
4074 && frame_pointer_needed
4075 && (! SUPPORTS_STACK_ALIGNMENT
4076 || ! stack_realign_fp)));
4078 #else
4079 reg_eliminate[0].from = reg_eliminate_1[0].from;
4080 reg_eliminate[0].to = reg_eliminate_1[0].to;
4081 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4082 = ! frame_pointer_needed;
4083 #endif
4085 /* Count the number of eliminable registers and build the FROM and TO
4086 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4087 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4088 We depend on this. */
4089 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4091 num_eliminable += ep->can_eliminate;
4092 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4093 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4097 /* Find all the pseudo registers that didn't get hard regs
4098 but do have known equivalent constants or memory slots.
4099 These include parameters (known equivalent to parameter slots)
4100 and cse'd or loop-moved constant memory addresses.
4102 Record constant equivalents in reg_equiv_constant
4103 so they will be substituted by find_reloads.
4104 Record memory equivalents in reg_mem_equiv so they can
4105 be substituted eventually by altering the REG-rtx's. */
4107 static void
4108 init_eliminable_invariants (rtx first, bool do_subregs)
4110 int i;
4111 rtx insn;
4113 grow_reg_equivs ();
4114 if (do_subregs)
4115 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4116 else
4117 reg_max_ref_width = NULL;
4119 num_eliminable_invariants = 0;
4121 first_label_num = get_first_label_num ();
4122 num_labels = max_label_num () - first_label_num;
4124 /* Allocate the tables used to store offset information at labels. */
4125 offsets_known_at = XNEWVEC (char, num_labels);
4126 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4128 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4129 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4130 find largest such for each pseudo. FIRST is the head of the insn
4131 list. */
4133 for (insn = first; insn; insn = NEXT_INSN (insn))
4135 rtx set = single_set (insn);
4137 /* We may introduce USEs that we want to remove at the end, so
4138 we'll mark them with QImode. Make sure there are no
4139 previously-marked insns left by say regmove. */
4140 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4141 && GET_MODE (insn) != VOIDmode)
4142 PUT_MODE (insn, VOIDmode);
4144 if (do_subregs && NONDEBUG_INSN_P (insn))
4145 scan_paradoxical_subregs (PATTERN (insn));
4147 if (set != 0 && REG_P (SET_DEST (set)))
4149 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4150 rtx x;
4152 if (! note)
4153 continue;
4155 i = REGNO (SET_DEST (set));
4156 x = XEXP (note, 0);
4158 if (i <= LAST_VIRTUAL_REGISTER)
4159 continue;
4161 /* If flag_pic and we have constant, verify it's legitimate. */
4162 if (!CONSTANT_P (x)
4163 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4165 /* It can happen that a REG_EQUIV note contains a MEM
4166 that is not a legitimate memory operand. As later
4167 stages of reload assume that all addresses found
4168 in the reg_equiv_* arrays were originally legitimate,
4169 we ignore such REG_EQUIV notes. */
4170 if (memory_operand (x, VOIDmode))
4172 /* Always unshare the equivalence, so we can
4173 substitute into this insn without touching the
4174 equivalence. */
4175 reg_equiv_memory_loc (i) = copy_rtx (x);
4177 else if (function_invariant_p (x))
4179 enum machine_mode mode;
4181 mode = GET_MODE (SET_DEST (set));
4182 if (GET_CODE (x) == PLUS)
4184 /* This is PLUS of frame pointer and a constant,
4185 and might be shared. Unshare it. */
4186 reg_equiv_invariant (i) = copy_rtx (x);
4187 num_eliminable_invariants++;
4189 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4191 reg_equiv_invariant (i) = x;
4192 num_eliminable_invariants++;
4194 else if (targetm.legitimate_constant_p (mode, x))
4195 reg_equiv_constant (i) = x;
4196 else
4198 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4199 if (! reg_equiv_memory_loc (i))
4200 reg_equiv_init (i) = NULL_RTX;
4203 else
4205 reg_equiv_init (i) = NULL_RTX;
4206 continue;
4209 else
4210 reg_equiv_init (i) = NULL_RTX;
4214 if (dump_file)
4215 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4216 if (reg_equiv_init (i))
4218 fprintf (dump_file, "init_insns for %u: ", i);
4219 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4220 fprintf (dump_file, "\n");
4224 /* Indicate that we no longer have known memory locations or constants.
4225 Free all data involved in tracking these. */
4227 static void
4228 free_reg_equiv (void)
4230 int i;
4233 free (offsets_known_at);
4234 free (offsets_at);
4235 offsets_at = 0;
4236 offsets_known_at = 0;
4238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4239 if (reg_equiv_alt_mem_list (i))
4240 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4241 VEC_free (reg_equivs_t, gc, reg_equivs);
4242 reg_equivs = NULL;
4246 /* Kick all pseudos out of hard register REGNO.
4248 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4249 because we found we can't eliminate some register. In the case, no pseudos
4250 are allowed to be in the register, even if they are only in a block that
4251 doesn't require spill registers, unlike the case when we are spilling this
4252 hard reg to produce another spill register.
4254 Return nonzero if any pseudos needed to be kicked out. */
4256 static void
4257 spill_hard_reg (unsigned int regno, int cant_eliminate)
4259 int i;
4261 if (cant_eliminate)
4263 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4264 df_set_regs_ever_live (regno, true);
4267 /* Spill every pseudo reg that was allocated to this reg
4268 or to something that overlaps this reg. */
4270 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4271 if (reg_renumber[i] >= 0
4272 && (unsigned int) reg_renumber[i] <= regno
4273 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4274 SET_REGNO_REG_SET (&spilled_pseudos, i);
4277 /* After find_reload_regs has been run for all insn that need reloads,
4278 and/or spill_hard_regs was called, this function is used to actually
4279 spill pseudo registers and try to reallocate them. It also sets up the
4280 spill_regs array for use by choose_reload_regs. */
4282 static int
4283 finish_spills (int global)
4285 struct insn_chain *chain;
4286 int something_changed = 0;
4287 unsigned i;
4288 reg_set_iterator rsi;
4290 /* Build the spill_regs array for the function. */
4291 /* If there are some registers still to eliminate and one of the spill regs
4292 wasn't ever used before, additional stack space may have to be
4293 allocated to store this register. Thus, we may have changed the offset
4294 between the stack and frame pointers, so mark that something has changed.
4296 One might think that we need only set VAL to 1 if this is a call-used
4297 register. However, the set of registers that must be saved by the
4298 prologue is not identical to the call-used set. For example, the
4299 register used by the call insn for the return PC is a call-used register,
4300 but must be saved by the prologue. */
4302 n_spills = 0;
4303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4304 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4306 spill_reg_order[i] = n_spills;
4307 spill_regs[n_spills++] = i;
4308 if (num_eliminable && ! df_regs_ever_live_p (i))
4309 something_changed = 1;
4310 df_set_regs_ever_live (i, true);
4312 else
4313 spill_reg_order[i] = -1;
4315 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4316 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4318 /* Record the current hard register the pseudo is allocated to
4319 in pseudo_previous_regs so we avoid reallocating it to the
4320 same hard reg in a later pass. */
4321 gcc_assert (reg_renumber[i] >= 0);
4323 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4324 /* Mark it as no longer having a hard register home. */
4325 reg_renumber[i] = -1;
4326 if (ira_conflicts_p)
4327 /* Inform IRA about the change. */
4328 ira_mark_allocation_change (i);
4329 /* We will need to scan everything again. */
4330 something_changed = 1;
4333 /* Retry global register allocation if possible. */
4334 if (global && ira_conflicts_p)
4336 unsigned int n;
4338 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4339 /* For every insn that needs reloads, set the registers used as spill
4340 regs in pseudo_forbidden_regs for every pseudo live across the
4341 insn. */
4342 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4344 EXECUTE_IF_SET_IN_REG_SET
4345 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4347 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4348 chain->used_spill_regs);
4350 EXECUTE_IF_SET_IN_REG_SET
4351 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4353 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4354 chain->used_spill_regs);
4358 /* Retry allocating the pseudos spilled in IRA and the
4359 reload. For each reg, merge the various reg sets that
4360 indicate which hard regs can't be used, and call
4361 ira_reassign_pseudos. */
4362 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4363 if (reg_old_renumber[i] != reg_renumber[i])
4365 if (reg_renumber[i] < 0)
4366 temp_pseudo_reg_arr[n++] = i;
4367 else
4368 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4370 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4371 bad_spill_regs_global,
4372 pseudo_forbidden_regs, pseudo_previous_regs,
4373 &spilled_pseudos))
4374 something_changed = 1;
4376 /* Fix up the register information in the insn chain.
4377 This involves deleting those of the spilled pseudos which did not get
4378 a new hard register home from the live_{before,after} sets. */
4379 for (chain = reload_insn_chain; chain; chain = chain->next)
4381 HARD_REG_SET used_by_pseudos;
4382 HARD_REG_SET used_by_pseudos2;
4384 if (! ira_conflicts_p)
4386 /* Don't do it for IRA because IRA and the reload still can
4387 assign hard registers to the spilled pseudos on next
4388 reload iterations. */
4389 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4390 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4392 /* Mark any unallocated hard regs as available for spills. That
4393 makes inheritance work somewhat better. */
4394 if (chain->need_reload)
4396 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4397 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4398 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4400 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4401 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4402 /* Value of chain->used_spill_regs from previous iteration
4403 may be not included in the value calculated here because
4404 of possible removing caller-saves insns (see function
4405 delete_caller_save_insns. */
4406 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4407 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4411 CLEAR_REG_SET (&changed_allocation_pseudos);
4412 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4413 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4415 int regno = reg_renumber[i];
4416 if (reg_old_renumber[i] == regno)
4417 continue;
4419 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4421 alter_reg (i, reg_old_renumber[i], false);
4422 reg_old_renumber[i] = regno;
4423 if (dump_file)
4425 if (regno == -1)
4426 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4427 else
4428 fprintf (dump_file, " Register %d now in %d.\n\n",
4429 i, reg_renumber[i]);
4433 return something_changed;
4436 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4438 static void
4439 scan_paradoxical_subregs (rtx x)
4441 int i;
4442 const char *fmt;
4443 enum rtx_code code = GET_CODE (x);
4445 switch (code)
4447 case REG:
4448 case CONST_INT:
4449 case CONST:
4450 case SYMBOL_REF:
4451 case LABEL_REF:
4452 case CONST_DOUBLE:
4453 case CONST_FIXED:
4454 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4455 case CC0:
4456 case PC:
4457 case USE:
4458 case CLOBBER:
4459 return;
4461 case SUBREG:
4462 if (REG_P (SUBREG_REG (x))
4463 && (GET_MODE_SIZE (GET_MODE (x))
4464 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4466 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4467 = GET_MODE_SIZE (GET_MODE (x));
4468 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4470 return;
4472 default:
4473 break;
4476 fmt = GET_RTX_FORMAT (code);
4477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4479 if (fmt[i] == 'e')
4480 scan_paradoxical_subregs (XEXP (x, i));
4481 else if (fmt[i] == 'E')
4483 int j;
4484 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4485 scan_paradoxical_subregs (XVECEXP (x, i, j));
4490 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4491 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4492 and apply the corresponding narrowing subreg to *OTHER_PTR.
4493 Return true if the operands were changed, false otherwise. */
4495 static bool
4496 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4498 rtx op, inner, other, tem;
4500 op = *op_ptr;
4501 if (!paradoxical_subreg_p (op))
4502 return false;
4503 inner = SUBREG_REG (op);
4505 other = *other_ptr;
4506 tem = gen_lowpart_common (GET_MODE (inner), other);
4507 if (!tem)
4508 return false;
4510 /* If the lowpart operation turned a hard register into a subreg,
4511 rather than simplifying it to another hard register, then the
4512 mode change cannot be properly represented. For example, OTHER
4513 might be valid in its current mode, but not in the new one. */
4514 if (GET_CODE (tem) == SUBREG
4515 && REG_P (other)
4516 && HARD_REGISTER_P (other))
4517 return false;
4519 *op_ptr = inner;
4520 *other_ptr = tem;
4521 return true;
4524 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4525 examine all of the reload insns between PREV and NEXT exclusive, and
4526 annotate all that may trap. */
4528 static void
4529 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4531 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4532 if (note == NULL)
4533 return;
4534 if (!insn_could_throw_p (insn))
4535 remove_note (insn, note);
4536 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4539 /* Reload pseudo-registers into hard regs around each insn as needed.
4540 Additional register load insns are output before the insn that needs it
4541 and perhaps store insns after insns that modify the reloaded pseudo reg.
4543 reg_last_reload_reg and reg_reloaded_contents keep track of
4544 which registers are already available in reload registers.
4545 We update these for the reloads that we perform,
4546 as the insns are scanned. */
4548 static void
4549 reload_as_needed (int live_known)
4551 struct insn_chain *chain;
4552 #if defined (AUTO_INC_DEC)
4553 int i;
4554 #endif
4555 rtx x, marker;
4557 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4558 memset (spill_reg_store, 0, sizeof spill_reg_store);
4559 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4560 INIT_REG_SET (&reg_has_output_reload);
4561 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4562 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4564 set_initial_elim_offsets ();
4566 /* Generate a marker insn that we will move around. */
4567 marker = emit_note (NOTE_INSN_DELETED);
4568 unlink_insn_chain (marker, marker);
4570 for (chain = reload_insn_chain; chain; chain = chain->next)
4572 rtx prev = 0;
4573 rtx insn = chain->insn;
4574 rtx old_next = NEXT_INSN (insn);
4575 #ifdef AUTO_INC_DEC
4576 rtx old_prev = PREV_INSN (insn);
4577 #endif
4579 /* If we pass a label, copy the offsets from the label information
4580 into the current offsets of each elimination. */
4581 if (LABEL_P (insn))
4582 set_offsets_for_label (insn);
4584 else if (INSN_P (insn))
4586 regset_head regs_to_forget;
4587 INIT_REG_SET (&regs_to_forget);
4588 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4590 /* If this is a USE and CLOBBER of a MEM, ensure that any
4591 references to eliminable registers have been removed. */
4593 if ((GET_CODE (PATTERN (insn)) == USE
4594 || GET_CODE (PATTERN (insn)) == CLOBBER)
4595 && MEM_P (XEXP (PATTERN (insn), 0)))
4596 XEXP (XEXP (PATTERN (insn), 0), 0)
4597 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4598 GET_MODE (XEXP (PATTERN (insn), 0)),
4599 NULL_RTX);
4601 /* If we need to do register elimination processing, do so.
4602 This might delete the insn, in which case we are done. */
4603 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4605 eliminate_regs_in_insn (insn, 1);
4606 if (NOTE_P (insn))
4608 update_eliminable_offsets ();
4609 CLEAR_REG_SET (&regs_to_forget);
4610 continue;
4614 /* If need_elim is nonzero but need_reload is zero, one might think
4615 that we could simply set n_reloads to 0. However, find_reloads
4616 could have done some manipulation of the insn (such as swapping
4617 commutative operands), and these manipulations are lost during
4618 the first pass for every insn that needs register elimination.
4619 So the actions of find_reloads must be redone here. */
4621 if (! chain->need_elim && ! chain->need_reload
4622 && ! chain->need_operand_change)
4623 n_reloads = 0;
4624 /* First find the pseudo regs that must be reloaded for this insn.
4625 This info is returned in the tables reload_... (see reload.h).
4626 Also modify the body of INSN by substituting RELOAD
4627 rtx's for those pseudo regs. */
4628 else
4630 CLEAR_REG_SET (&reg_has_output_reload);
4631 CLEAR_HARD_REG_SET (reg_is_output_reload);
4633 find_reloads (insn, 1, spill_indirect_levels, live_known,
4634 spill_reg_order);
4637 if (n_reloads > 0)
4639 rtx next = NEXT_INSN (insn);
4640 rtx p;
4642 /* ??? PREV can get deleted by reload inheritance.
4643 Work around this by emitting a marker note. */
4644 prev = PREV_INSN (insn);
4645 reorder_insns_nobb (marker, marker, prev);
4647 /* Now compute which reload regs to reload them into. Perhaps
4648 reusing reload regs from previous insns, or else output
4649 load insns to reload them. Maybe output store insns too.
4650 Record the choices of reload reg in reload_reg_rtx. */
4651 choose_reload_regs (chain);
4653 /* Generate the insns to reload operands into or out of
4654 their reload regs. */
4655 emit_reload_insns (chain);
4657 /* Substitute the chosen reload regs from reload_reg_rtx
4658 into the insn's body (or perhaps into the bodies of other
4659 load and store insn that we just made for reloading
4660 and that we moved the structure into). */
4661 subst_reloads (insn);
4663 prev = PREV_INSN (marker);
4664 unlink_insn_chain (marker, marker);
4666 /* Adjust the exception region notes for loads and stores. */
4667 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4668 fixup_eh_region_note (insn, prev, next);
4670 /* Adjust the location of REG_ARGS_SIZE. */
4671 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4672 if (p)
4674 remove_note (insn, p);
4675 fixup_args_size_notes (prev, PREV_INSN (next),
4676 INTVAL (XEXP (p, 0)));
4679 /* If this was an ASM, make sure that all the reload insns
4680 we have generated are valid. If not, give an error
4681 and delete them. */
4682 if (asm_noperands (PATTERN (insn)) >= 0)
4683 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4684 if (p != insn && INSN_P (p)
4685 && GET_CODE (PATTERN (p)) != USE
4686 && (recog_memoized (p) < 0
4687 || (extract_insn (p), ! constrain_operands (1))))
4689 error_for_asm (insn,
4690 "%<asm%> operand requires "
4691 "impossible reload");
4692 delete_insn (p);
4696 if (num_eliminable && chain->need_elim)
4697 update_eliminable_offsets ();
4699 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4700 is no longer validly lying around to save a future reload.
4701 Note that this does not detect pseudos that were reloaded
4702 for this insn in order to be stored in
4703 (obeying register constraints). That is correct; such reload
4704 registers ARE still valid. */
4705 forget_marked_reloads (&regs_to_forget);
4706 CLEAR_REG_SET (&regs_to_forget);
4708 /* There may have been CLOBBER insns placed after INSN. So scan
4709 between INSN and NEXT and use them to forget old reloads. */
4710 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4711 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4712 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4714 #ifdef AUTO_INC_DEC
4715 /* Likewise for regs altered by auto-increment in this insn.
4716 REG_INC notes have been changed by reloading:
4717 find_reloads_address_1 records substitutions for them,
4718 which have been performed by subst_reloads above. */
4719 for (i = n_reloads - 1; i >= 0; i--)
4721 rtx in_reg = rld[i].in_reg;
4722 if (in_reg)
4724 enum rtx_code code = GET_CODE (in_reg);
4725 /* PRE_INC / PRE_DEC will have the reload register ending up
4726 with the same value as the stack slot, but that doesn't
4727 hold true for POST_INC / POST_DEC. Either we have to
4728 convert the memory access to a true POST_INC / POST_DEC,
4729 or we can't use the reload register for inheritance. */
4730 if ((code == POST_INC || code == POST_DEC)
4731 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4732 REGNO (rld[i].reg_rtx))
4733 /* Make sure it is the inc/dec pseudo, and not
4734 some other (e.g. output operand) pseudo. */
4735 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4736 == REGNO (XEXP (in_reg, 0))))
4739 rtx reload_reg = rld[i].reg_rtx;
4740 enum machine_mode mode = GET_MODE (reload_reg);
4741 int n = 0;
4742 rtx p;
4744 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4746 /* We really want to ignore REG_INC notes here, so
4747 use PATTERN (p) as argument to reg_set_p . */
4748 if (reg_set_p (reload_reg, PATTERN (p)))
4749 break;
4750 n = count_occurrences (PATTERN (p), reload_reg, 0);
4751 if (! n)
4752 continue;
4753 if (n == 1)
4755 rtx replace_reg
4756 = gen_rtx_fmt_e (code, mode, reload_reg);
4758 validate_replace_rtx_group (reload_reg,
4759 replace_reg, p);
4760 n = verify_changes (0);
4762 /* We must also verify that the constraints
4763 are met after the replacement. Make sure
4764 extract_insn is only called for an insn
4765 where the replacements were found to be
4766 valid so far. */
4767 if (n)
4769 extract_insn (p);
4770 n = constrain_operands (1);
4773 /* If the constraints were not met, then
4774 undo the replacement, else confirm it. */
4775 if (!n)
4776 cancel_changes (0);
4777 else
4778 confirm_change_group ();
4780 break;
4782 if (n == 1)
4784 add_reg_note (p, REG_INC, reload_reg);
4785 /* Mark this as having an output reload so that the
4786 REG_INC processing code below won't invalidate
4787 the reload for inheritance. */
4788 SET_HARD_REG_BIT (reg_is_output_reload,
4789 REGNO (reload_reg));
4790 SET_REGNO_REG_SET (&reg_has_output_reload,
4791 REGNO (XEXP (in_reg, 0)));
4793 else
4794 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4795 NULL);
4797 else if ((code == PRE_INC || code == PRE_DEC)
4798 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 REGNO (rld[i].reg_rtx))
4800 /* Make sure it is the inc/dec pseudo, and not
4801 some other (e.g. output operand) pseudo. */
4802 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4803 == REGNO (XEXP (in_reg, 0))))
4805 SET_HARD_REG_BIT (reg_is_output_reload,
4806 REGNO (rld[i].reg_rtx));
4807 SET_REGNO_REG_SET (&reg_has_output_reload,
4808 REGNO (XEXP (in_reg, 0)));
4810 else if (code == PRE_INC || code == PRE_DEC
4811 || code == POST_INC || code == POST_DEC)
4813 int in_regno = REGNO (XEXP (in_reg, 0));
4815 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4817 int in_hard_regno;
4818 bool forget_p = true;
4820 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4821 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4822 in_hard_regno))
4824 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4825 x != old_next;
4826 x = NEXT_INSN (x))
4827 if (x == reg_reloaded_insn[in_hard_regno])
4829 forget_p = false;
4830 break;
4833 /* If for some reasons, we didn't set up
4834 reg_last_reload_reg in this insn,
4835 invalidate inheritance from previous
4836 insns for the incremented/decremented
4837 register. Such registers will be not in
4838 reg_has_output_reload. Invalidate it
4839 also if the corresponding element in
4840 reg_reloaded_insn is also
4841 invalidated. */
4842 if (forget_p)
4843 forget_old_reloads_1 (XEXP (in_reg, 0),
4844 NULL_RTX, NULL);
4849 /* If a pseudo that got a hard register is auto-incremented,
4850 we must purge records of copying it into pseudos without
4851 hard registers. */
4852 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4853 if (REG_NOTE_KIND (x) == REG_INC)
4855 /* See if this pseudo reg was reloaded in this insn.
4856 If so, its last-reload info is still valid
4857 because it is based on this insn's reload. */
4858 for (i = 0; i < n_reloads; i++)
4859 if (rld[i].out == XEXP (x, 0))
4860 break;
4862 if (i == n_reloads)
4863 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4865 #endif
4867 /* A reload reg's contents are unknown after a label. */
4868 if (LABEL_P (insn))
4869 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4871 /* Don't assume a reload reg is still good after a call insn
4872 if it is a call-used reg, or if it contains a value that will
4873 be partially clobbered by the call. */
4874 else if (CALL_P (insn))
4876 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4877 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4879 /* If this is a call to a setjmp-type function, we must not
4880 reuse any reload reg contents across the call; that will
4881 just be clobbered by other uses of the register in later
4882 code, before the longjmp. */
4883 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4884 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4888 /* Clean up. */
4889 free (reg_last_reload_reg);
4890 CLEAR_REG_SET (&reg_has_output_reload);
4893 /* Discard all record of any value reloaded from X,
4894 or reloaded in X from someplace else;
4895 unless X is an output reload reg of the current insn.
4897 X may be a hard reg (the reload reg)
4898 or it may be a pseudo reg that was reloaded from.
4900 When DATA is non-NULL just mark the registers in regset
4901 to be forgotten later. */
4903 static void
4904 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4905 void *data)
4907 unsigned int regno;
4908 unsigned int nr;
4909 regset regs = (regset) data;
4911 /* note_stores does give us subregs of hard regs,
4912 subreg_regno_offset requires a hard reg. */
4913 while (GET_CODE (x) == SUBREG)
4915 /* We ignore the subreg offset when calculating the regno,
4916 because we are using the entire underlying hard register
4917 below. */
4918 x = SUBREG_REG (x);
4921 if (!REG_P (x))
4922 return;
4924 regno = REGNO (x);
4926 if (regno >= FIRST_PSEUDO_REGISTER)
4927 nr = 1;
4928 else
4930 unsigned int i;
4932 nr = hard_regno_nregs[regno][GET_MODE (x)];
4933 /* Storing into a spilled-reg invalidates its contents.
4934 This can happen if a block-local pseudo is allocated to that reg
4935 and it wasn't spilled because this block's total need is 0.
4936 Then some insn might have an optional reload and use this reg. */
4937 if (!regs)
4938 for (i = 0; i < nr; i++)
4939 /* But don't do this if the reg actually serves as an output
4940 reload reg in the current instruction. */
4941 if (n_reloads == 0
4942 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4944 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4945 spill_reg_store[regno + i] = 0;
4949 if (regs)
4950 while (nr-- > 0)
4951 SET_REGNO_REG_SET (regs, regno + nr);
4952 else
4954 /* Since value of X has changed,
4955 forget any value previously copied from it. */
4957 while (nr-- > 0)
4958 /* But don't forget a copy if this is the output reload
4959 that establishes the copy's validity. */
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4962 reg_last_reload_reg[regno + nr] = 0;
4966 /* Forget the reloads marked in regset by previous function. */
4967 static void
4968 forget_marked_reloads (regset regs)
4970 unsigned int reg;
4971 reg_set_iterator rsi;
4972 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4974 if (reg < FIRST_PSEUDO_REGISTER
4975 /* But don't do this if the reg actually serves as an output
4976 reload reg in the current instruction. */
4977 && (n_reloads == 0
4978 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4980 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4981 spill_reg_store[reg] = 0;
4983 if (n_reloads == 0
4984 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4985 reg_last_reload_reg[reg] = 0;
4989 /* The following HARD_REG_SETs indicate when each hard register is
4990 used for a reload of various parts of the current insn. */
4992 /* If reg is unavailable for all reloads. */
4993 static HARD_REG_SET reload_reg_unavailable;
4994 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4995 static HARD_REG_SET reload_reg_used;
4996 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5003 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5004 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5005 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5006 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5007 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5008 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5009 static HARD_REG_SET reload_reg_used_in_op_addr;
5010 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5011 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5012 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5013 static HARD_REG_SET reload_reg_used_in_insn;
5014 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5015 static HARD_REG_SET reload_reg_used_in_other_addr;
5017 /* If reg is in use as a reload reg for any sort of reload. */
5018 static HARD_REG_SET reload_reg_used_at_all;
5020 /* If reg is use as an inherited reload. We just mark the first register
5021 in the group. */
5022 static HARD_REG_SET reload_reg_used_for_inherit;
5024 /* Records which hard regs are used in any way, either as explicit use or
5025 by being allocated to a pseudo during any point of the current insn. */
5026 static HARD_REG_SET reg_used_in_insn;
5028 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5029 TYPE. MODE is used to indicate how many consecutive regs are
5030 actually used. */
5032 static void
5033 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5034 enum machine_mode mode)
5036 switch (type)
5038 case RELOAD_OTHER:
5039 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5040 break;
5042 case RELOAD_FOR_INPUT_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5044 break;
5046 case RELOAD_FOR_INPADDR_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5048 break;
5050 case RELOAD_FOR_OUTPUT_ADDRESS:
5051 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5052 break;
5054 case RELOAD_FOR_OUTADDR_ADDRESS:
5055 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5056 break;
5058 case RELOAD_FOR_OPERAND_ADDRESS:
5059 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5060 break;
5062 case RELOAD_FOR_OPADDR_ADDR:
5063 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5064 break;
5066 case RELOAD_FOR_OTHER_ADDRESS:
5067 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5068 break;
5070 case RELOAD_FOR_INPUT:
5071 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5072 break;
5074 case RELOAD_FOR_OUTPUT:
5075 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5076 break;
5078 case RELOAD_FOR_INSN:
5079 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5080 break;
5083 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5086 /* Similarly, but show REGNO is no longer in use for a reload. */
5088 static void
5089 clear_reload_reg_in_use (unsigned int regno, int opnum,
5090 enum reload_type type, enum machine_mode mode)
5092 unsigned int nregs = hard_regno_nregs[regno][mode];
5093 unsigned int start_regno, end_regno, r;
5094 int i;
5095 /* A complication is that for some reload types, inheritance might
5096 allow multiple reloads of the same types to share a reload register.
5097 We set check_opnum if we have to check only reloads with the same
5098 operand number, and check_any if we have to check all reloads. */
5099 int check_opnum = 0;
5100 int check_any = 0;
5101 HARD_REG_SET *used_in_set;
5103 switch (type)
5105 case RELOAD_OTHER:
5106 used_in_set = &reload_reg_used;
5107 break;
5109 case RELOAD_FOR_INPUT_ADDRESS:
5110 used_in_set = &reload_reg_used_in_input_addr[opnum];
5111 break;
5113 case RELOAD_FOR_INPADDR_ADDRESS:
5114 check_opnum = 1;
5115 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5116 break;
5118 case RELOAD_FOR_OUTPUT_ADDRESS:
5119 used_in_set = &reload_reg_used_in_output_addr[opnum];
5120 break;
5122 case RELOAD_FOR_OUTADDR_ADDRESS:
5123 check_opnum = 1;
5124 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5125 break;
5127 case RELOAD_FOR_OPERAND_ADDRESS:
5128 used_in_set = &reload_reg_used_in_op_addr;
5129 break;
5131 case RELOAD_FOR_OPADDR_ADDR:
5132 check_any = 1;
5133 used_in_set = &reload_reg_used_in_op_addr_reload;
5134 break;
5136 case RELOAD_FOR_OTHER_ADDRESS:
5137 used_in_set = &reload_reg_used_in_other_addr;
5138 check_any = 1;
5139 break;
5141 case RELOAD_FOR_INPUT:
5142 used_in_set = &reload_reg_used_in_input[opnum];
5143 break;
5145 case RELOAD_FOR_OUTPUT:
5146 used_in_set = &reload_reg_used_in_output[opnum];
5147 break;
5149 case RELOAD_FOR_INSN:
5150 used_in_set = &reload_reg_used_in_insn;
5151 break;
5152 default:
5153 gcc_unreachable ();
5155 /* We resolve conflicts with remaining reloads of the same type by
5156 excluding the intervals of reload registers by them from the
5157 interval of freed reload registers. Since we only keep track of
5158 one set of interval bounds, we might have to exclude somewhat
5159 more than what would be necessary if we used a HARD_REG_SET here.
5160 But this should only happen very infrequently, so there should
5161 be no reason to worry about it. */
5163 start_regno = regno;
5164 end_regno = regno + nregs;
5165 if (check_opnum || check_any)
5167 for (i = n_reloads - 1; i >= 0; i--)
5169 if (rld[i].when_needed == type
5170 && (check_any || rld[i].opnum == opnum)
5171 && rld[i].reg_rtx)
5173 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5174 unsigned int conflict_end
5175 = end_hard_regno (rld[i].mode, conflict_start);
5177 /* If there is an overlap with the first to-be-freed register,
5178 adjust the interval start. */
5179 if (conflict_start <= start_regno && conflict_end > start_regno)
5180 start_regno = conflict_end;
5181 /* Otherwise, if there is a conflict with one of the other
5182 to-be-freed registers, adjust the interval end. */
5183 if (conflict_start > start_regno && conflict_start < end_regno)
5184 end_regno = conflict_start;
5189 for (r = start_regno; r < end_regno; r++)
5190 CLEAR_HARD_REG_BIT (*used_in_set, r);
5193 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5194 specified by OPNUM and TYPE. */
5196 static int
5197 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5199 int i;
5201 /* In use for a RELOAD_OTHER means it's not available for anything. */
5202 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5204 return 0;
5206 switch (type)
5208 case RELOAD_OTHER:
5209 /* In use for anything means we can't use it for RELOAD_OTHER. */
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5214 return 0;
5216 for (i = 0; i < reload_n_operands; i++)
5217 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5218 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5223 return 0;
5225 return 1;
5227 case RELOAD_FOR_INPUT:
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5230 return 0;
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5233 return 0;
5235 /* If it is used for some other input, can't use it. */
5236 for (i = 0; i < reload_n_operands; i++)
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5238 return 0;
5240 /* If it is used in a later operand's address, can't use it. */
5241 for (i = opnum + 1; i < reload_n_operands; i++)
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5243 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5244 return 0;
5246 return 1;
5248 case RELOAD_FOR_INPUT_ADDRESS:
5249 /* Can't use a register if it is used for an input address for this
5250 operand or used as an input in an earlier one. */
5251 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5252 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5253 return 0;
5255 for (i = 0; i < opnum; i++)
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5257 return 0;
5259 return 1;
5261 case RELOAD_FOR_INPADDR_ADDRESS:
5262 /* Can't use a register if it is used for an input address
5263 for this operand or used as an input in an earlier
5264 one. */
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5266 return 0;
5268 for (i = 0; i < opnum; i++)
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5270 return 0;
5272 return 1;
5274 case RELOAD_FOR_OUTPUT_ADDRESS:
5275 /* Can't use a register if it is used for an output address for this
5276 operand or used as an output in this or a later operand. Note
5277 that multiple output operands are emitted in reverse order, so
5278 the conflicting ones are those with lower indices. */
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5280 return 0;
5282 for (i = 0; i <= opnum; i++)
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5284 return 0;
5286 return 1;
5288 case RELOAD_FOR_OUTADDR_ADDRESS:
5289 /* Can't use a register if it is used for an output address
5290 for this operand or used as an output in this or a
5291 later operand. Note that multiple output operands are
5292 emitted in reverse order, so the conflicting ones are
5293 those with lower indices. */
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5295 return 0;
5297 for (i = 0; i <= opnum; i++)
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5299 return 0;
5301 return 1;
5303 case RELOAD_FOR_OPERAND_ADDRESS:
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5306 return 0;
5308 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5309 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5311 case RELOAD_FOR_OPADDR_ADDR:
5312 for (i = 0; i < reload_n_operands; i++)
5313 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5314 return 0;
5316 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5318 case RELOAD_FOR_OUTPUT:
5319 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5320 outputs, or an operand address for this or an earlier output.
5321 Note that multiple output operands are emitted in reverse order,
5322 so the conflicting ones are those with higher indices. */
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5324 return 0;
5326 for (i = 0; i < reload_n_operands; i++)
5327 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5328 return 0;
5330 for (i = opnum; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5332 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5333 return 0;
5335 return 1;
5337 case RELOAD_FOR_INSN:
5338 for (i = 0; i < reload_n_operands; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5340 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5341 return 0;
5343 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5344 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5346 case RELOAD_FOR_OTHER_ADDRESS:
5347 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5349 default:
5350 gcc_unreachable ();
5354 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5355 the number RELOADNUM, is still available in REGNO at the end of the insn.
5357 We can assume that the reload reg was already tested for availability
5358 at the time it is needed, and we should not check this again,
5359 in case the reg has already been marked in use. */
5361 static int
5362 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5364 int opnum = rld[reloadnum].opnum;
5365 enum reload_type type = rld[reloadnum].when_needed;
5366 int i;
5368 /* See if there is a reload with the same type for this operand, using
5369 the same register. This case is not handled by the code below. */
5370 for (i = reloadnum + 1; i < n_reloads; i++)
5372 rtx reg;
5373 int nregs;
5375 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5376 continue;
5377 reg = rld[i].reg_rtx;
5378 if (reg == NULL_RTX)
5379 continue;
5380 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5381 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5382 return 0;
5385 switch (type)
5387 case RELOAD_OTHER:
5388 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5389 its value must reach the end. */
5390 return 1;
5392 /* If this use is for part of the insn,
5393 its value reaches if no subsequent part uses the same register.
5394 Just like the above function, don't try to do this with lots
5395 of fallthroughs. */
5397 case RELOAD_FOR_OTHER_ADDRESS:
5398 /* Here we check for everything else, since these don't conflict
5399 with anything else and everything comes later. */
5401 for (i = 0; i < reload_n_operands; i++)
5402 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5403 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5404 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5405 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5407 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5408 return 0;
5410 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5411 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5412 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5413 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5415 case RELOAD_FOR_INPUT_ADDRESS:
5416 case RELOAD_FOR_INPADDR_ADDRESS:
5417 /* Similar, except that we check only for this and subsequent inputs
5418 and the address of only subsequent inputs and we do not need
5419 to check for RELOAD_OTHER objects since they are known not to
5420 conflict. */
5422 for (i = opnum; i < reload_n_operands; i++)
5423 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5424 return 0;
5426 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5427 could be killed if the register is also used by reload with type
5428 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5429 if (type == RELOAD_FOR_INPADDR_ADDRESS
5430 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5431 return 0;
5433 for (i = opnum + 1; i < reload_n_operands; i++)
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5436 return 0;
5438 for (i = 0; i < reload_n_operands; i++)
5439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5442 return 0;
5444 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5445 return 0;
5447 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5448 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5449 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5451 case RELOAD_FOR_INPUT:
5452 /* Similar to input address, except we start at the next operand for
5453 both input and input address and we do not check for
5454 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5455 would conflict. */
5457 for (i = opnum + 1; i < reload_n_operands; i++)
5458 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5459 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5461 return 0;
5463 /* ... fall through ... */
5465 case RELOAD_FOR_OPERAND_ADDRESS:
5466 /* Check outputs and their addresses. */
5468 for (i = 0; i < reload_n_operands; i++)
5469 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5471 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5472 return 0;
5474 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5476 case RELOAD_FOR_OPADDR_ADDR:
5477 for (i = 0; i < reload_n_operands; i++)
5478 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5479 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5481 return 0;
5483 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5484 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5485 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5487 case RELOAD_FOR_INSN:
5488 /* These conflict with other outputs with RELOAD_OTHER. So
5489 we need only check for output addresses. */
5491 opnum = reload_n_operands;
5493 /* ... fall through ... */
5495 case RELOAD_FOR_OUTPUT:
5496 case RELOAD_FOR_OUTPUT_ADDRESS:
5497 case RELOAD_FOR_OUTADDR_ADDRESS:
5498 /* We already know these can't conflict with a later output. So the
5499 only thing to check are later output addresses.
5500 Note that multiple output operands are emitted in reverse order,
5501 so the conflicting ones are those with lower indices. */
5502 for (i = 0; i < opnum; i++)
5503 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5504 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5505 return 0;
5507 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5508 could be killed if the register is also used by reload with type
5509 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5510 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5511 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5512 return 0;
5514 return 1;
5516 default:
5517 gcc_unreachable ();
5521 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5522 every register in REG. */
5524 static bool
5525 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5527 unsigned int i;
5529 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5530 if (!reload_reg_reaches_end_p (i, reloadnum))
5531 return false;
5532 return true;
5536 /* Returns whether R1 and R2 are uniquely chained: the value of one
5537 is used by the other, and that value is not used by any other
5538 reload for this insn. This is used to partially undo the decision
5539 made in find_reloads when in the case of multiple
5540 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5541 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5542 reloads. This code tries to avoid the conflict created by that
5543 change. It might be cleaner to explicitly keep track of which
5544 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5545 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5546 this after the fact. */
5547 static bool
5548 reloads_unique_chain_p (int r1, int r2)
5550 int i;
5552 /* We only check input reloads. */
5553 if (! rld[r1].in || ! rld[r2].in)
5554 return false;
5556 /* Avoid anything with output reloads. */
5557 if (rld[r1].out || rld[r2].out)
5558 return false;
5560 /* "chained" means one reload is a component of the other reload,
5561 not the same as the other reload. */
5562 if (rld[r1].opnum != rld[r2].opnum
5563 || rtx_equal_p (rld[r1].in, rld[r2].in)
5564 || rld[r1].optional || rld[r2].optional
5565 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5566 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5567 return false;
5569 for (i = 0; i < n_reloads; i ++)
5570 /* Look for input reloads that aren't our two */
5571 if (i != r1 && i != r2 && rld[i].in)
5573 /* If our reload is mentioned at all, it isn't a simple chain. */
5574 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5575 return false;
5577 return true;
5580 /* The recursive function change all occurrences of WHAT in *WHERE
5581 to REPL. */
5582 static void
5583 substitute (rtx *where, const_rtx what, rtx repl)
5585 const char *fmt;
5586 int i;
5587 enum rtx_code code;
5589 if (*where == 0)
5590 return;
5592 if (*where == what || rtx_equal_p (*where, what))
5594 /* Record the location of the changed rtx. */
5595 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5596 *where = repl;
5597 return;
5600 code = GET_CODE (*where);
5601 fmt = GET_RTX_FORMAT (code);
5602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5604 if (fmt[i] == 'E')
5606 int j;
5608 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5609 substitute (&XVECEXP (*where, i, j), what, repl);
5611 else if (fmt[i] == 'e')
5612 substitute (&XEXP (*where, i), what, repl);
5616 /* The function returns TRUE if chain of reload R1 and R2 (in any
5617 order) can be evaluated without usage of intermediate register for
5618 the reload containing another reload. It is important to see
5619 gen_reload to understand what the function is trying to do. As an
5620 example, let us have reload chain
5622 r2: const
5623 r1: <something> + const
5625 and reload R2 got reload reg HR. The function returns true if
5626 there is a correct insn HR = HR + <something>. Otherwise,
5627 gen_reload will use intermediate register (and this is the reload
5628 reg for R1) to reload <something>.
5630 We need this function to find a conflict for chain reloads. In our
5631 example, if HR = HR + <something> is incorrect insn, then we cannot
5632 use HR as a reload register for R2. If we do use it then we get a
5633 wrong code:
5635 HR = const
5636 HR = <something>
5637 HR = HR + HR
5640 static bool
5641 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5643 /* Assume other cases in gen_reload are not possible for
5644 chain reloads or do need an intermediate hard registers. */
5645 bool result = true;
5646 int regno, n, code;
5647 rtx out, in, insn;
5648 rtx last = get_last_insn ();
5650 /* Make r2 a component of r1. */
5651 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5653 n = r1;
5654 r1 = r2;
5655 r2 = n;
5657 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5658 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5659 gcc_assert (regno >= 0);
5660 out = gen_rtx_REG (rld[r1].mode, regno);
5661 in = rld[r1].in;
5662 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5664 /* If IN is a paradoxical SUBREG, remove it and try to put the
5665 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5666 strip_paradoxical_subreg (&in, &out);
5668 if (GET_CODE (in) == PLUS
5669 && (REG_P (XEXP (in, 0))
5670 || GET_CODE (XEXP (in, 0)) == SUBREG
5671 || MEM_P (XEXP (in, 0)))
5672 && (REG_P (XEXP (in, 1))
5673 || GET_CODE (XEXP (in, 1)) == SUBREG
5674 || CONSTANT_P (XEXP (in, 1))
5675 || MEM_P (XEXP (in, 1))))
5677 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5678 code = recog_memoized (insn);
5679 result = false;
5681 if (code >= 0)
5683 extract_insn (insn);
5684 /* We want constrain operands to treat this insn strictly in
5685 its validity determination, i.e., the way it would after
5686 reload has completed. */
5687 result = constrain_operands (1);
5690 delete_insns_since (last);
5693 /* Restore the original value at each changed address within R1. */
5694 while (!VEC_empty (rtx_p, substitute_stack))
5696 rtx *where = VEC_pop (rtx_p, substitute_stack);
5697 *where = rld[r2].in;
5700 return result;
5703 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5704 Return 0 otherwise.
5706 This function uses the same algorithm as reload_reg_free_p above. */
5708 static int
5709 reloads_conflict (int r1, int r2)
5711 enum reload_type r1_type = rld[r1].when_needed;
5712 enum reload_type r2_type = rld[r2].when_needed;
5713 int r1_opnum = rld[r1].opnum;
5714 int r2_opnum = rld[r2].opnum;
5716 /* RELOAD_OTHER conflicts with everything. */
5717 if (r2_type == RELOAD_OTHER)
5718 return 1;
5720 /* Otherwise, check conflicts differently for each type. */
5722 switch (r1_type)
5724 case RELOAD_FOR_INPUT:
5725 return (r2_type == RELOAD_FOR_INSN
5726 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5727 || r2_type == RELOAD_FOR_OPADDR_ADDR
5728 || r2_type == RELOAD_FOR_INPUT
5729 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5730 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5731 && r2_opnum > r1_opnum));
5733 case RELOAD_FOR_INPUT_ADDRESS:
5734 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5735 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5737 case RELOAD_FOR_INPADDR_ADDRESS:
5738 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5739 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5741 case RELOAD_FOR_OUTPUT_ADDRESS:
5742 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5743 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5745 case RELOAD_FOR_OUTADDR_ADDRESS:
5746 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5747 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5749 case RELOAD_FOR_OPERAND_ADDRESS:
5750 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5751 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5752 && (!reloads_unique_chain_p (r1, r2)
5753 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5755 case RELOAD_FOR_OPADDR_ADDR:
5756 return (r2_type == RELOAD_FOR_INPUT
5757 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5759 case RELOAD_FOR_OUTPUT:
5760 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5761 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5762 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5763 && r2_opnum >= r1_opnum));
5765 case RELOAD_FOR_INSN:
5766 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5767 || r2_type == RELOAD_FOR_INSN
5768 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5770 case RELOAD_FOR_OTHER_ADDRESS:
5771 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5773 case RELOAD_OTHER:
5774 return 1;
5776 default:
5777 gcc_unreachable ();
5781 /* Indexed by reload number, 1 if incoming value
5782 inherited from previous insns. */
5783 static char reload_inherited[MAX_RELOADS];
5785 /* For an inherited reload, this is the insn the reload was inherited from,
5786 if we know it. Otherwise, this is 0. */
5787 static rtx reload_inheritance_insn[MAX_RELOADS];
5789 /* If nonzero, this is a place to get the value of the reload,
5790 rather than using reload_in. */
5791 static rtx reload_override_in[MAX_RELOADS];
5793 /* For each reload, the hard register number of the register used,
5794 or -1 if we did not need a register for this reload. */
5795 static int reload_spill_index[MAX_RELOADS];
5797 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5798 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5800 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5801 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5803 /* Subroutine of free_for_value_p, used to check a single register.
5804 START_REGNO is the starting regno of the full reload register
5805 (possibly comprising multiple hard registers) that we are considering. */
5807 static int
5808 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5809 enum reload_type type, rtx value, rtx out,
5810 int reloadnum, int ignore_address_reloads)
5812 int time1;
5813 /* Set if we see an input reload that must not share its reload register
5814 with any new earlyclobber, but might otherwise share the reload
5815 register with an output or input-output reload. */
5816 int check_earlyclobber = 0;
5817 int i;
5818 int copy = 0;
5820 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5821 return 0;
5823 if (out == const0_rtx)
5825 copy = 1;
5826 out = NULL_RTX;
5829 /* We use some pseudo 'time' value to check if the lifetimes of the
5830 new register use would overlap with the one of a previous reload
5831 that is not read-only or uses a different value.
5832 The 'time' used doesn't have to be linear in any shape or form, just
5833 monotonic.
5834 Some reload types use different 'buckets' for each operand.
5835 So there are MAX_RECOG_OPERANDS different time values for each
5836 such reload type.
5837 We compute TIME1 as the time when the register for the prospective
5838 new reload ceases to be live, and TIME2 for each existing
5839 reload as the time when that the reload register of that reload
5840 becomes live.
5841 Where there is little to be gained by exact lifetime calculations,
5842 we just make conservative assumptions, i.e. a longer lifetime;
5843 this is done in the 'default:' cases. */
5844 switch (type)
5846 case RELOAD_FOR_OTHER_ADDRESS:
5847 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5848 time1 = copy ? 0 : 1;
5849 break;
5850 case RELOAD_OTHER:
5851 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5852 break;
5853 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5854 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5855 respectively, to the time values for these, we get distinct time
5856 values. To get distinct time values for each operand, we have to
5857 multiply opnum by at least three. We round that up to four because
5858 multiply by four is often cheaper. */
5859 case RELOAD_FOR_INPADDR_ADDRESS:
5860 time1 = opnum * 4 + 2;
5861 break;
5862 case RELOAD_FOR_INPUT_ADDRESS:
5863 time1 = opnum * 4 + 3;
5864 break;
5865 case RELOAD_FOR_INPUT:
5866 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5867 executes (inclusive). */
5868 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5869 break;
5870 case RELOAD_FOR_OPADDR_ADDR:
5871 /* opnum * 4 + 4
5872 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5873 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5874 break;
5875 case RELOAD_FOR_OPERAND_ADDRESS:
5876 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5877 is executed. */
5878 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5879 break;
5880 case RELOAD_FOR_OUTADDR_ADDRESS:
5881 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5882 break;
5883 case RELOAD_FOR_OUTPUT_ADDRESS:
5884 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5885 break;
5886 default:
5887 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5890 for (i = 0; i < n_reloads; i++)
5892 rtx reg = rld[i].reg_rtx;
5893 if (reg && REG_P (reg)
5894 && ((unsigned) regno - true_regnum (reg)
5895 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5896 && i != reloadnum)
5898 rtx other_input = rld[i].in;
5900 /* If the other reload loads the same input value, that
5901 will not cause a conflict only if it's loading it into
5902 the same register. */
5903 if (true_regnum (reg) != start_regno)
5904 other_input = NULL_RTX;
5905 if (! other_input || ! rtx_equal_p (other_input, value)
5906 || rld[i].out || out)
5908 int time2;
5909 switch (rld[i].when_needed)
5911 case RELOAD_FOR_OTHER_ADDRESS:
5912 time2 = 0;
5913 break;
5914 case RELOAD_FOR_INPADDR_ADDRESS:
5915 /* find_reloads makes sure that a
5916 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5917 by at most one - the first -
5918 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5919 address reload is inherited, the address address reload
5920 goes away, so we can ignore this conflict. */
5921 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5922 && ignore_address_reloads
5923 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5924 Then the address address is still needed to store
5925 back the new address. */
5926 && ! rld[reloadnum].out)
5927 continue;
5928 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5929 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5930 reloads go away. */
5931 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5932 && ignore_address_reloads
5933 /* Unless we are reloading an auto_inc expression. */
5934 && ! rld[reloadnum].out)
5935 continue;
5936 time2 = rld[i].opnum * 4 + 2;
5937 break;
5938 case RELOAD_FOR_INPUT_ADDRESS:
5939 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5940 && ignore_address_reloads
5941 && ! rld[reloadnum].out)
5942 continue;
5943 time2 = rld[i].opnum * 4 + 3;
5944 break;
5945 case RELOAD_FOR_INPUT:
5946 time2 = rld[i].opnum * 4 + 4;
5947 check_earlyclobber = 1;
5948 break;
5949 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5950 == MAX_RECOG_OPERAND * 4 */
5951 case RELOAD_FOR_OPADDR_ADDR:
5952 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5953 && ignore_address_reloads
5954 && ! rld[reloadnum].out)
5955 continue;
5956 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5957 break;
5958 case RELOAD_FOR_OPERAND_ADDRESS:
5959 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5960 check_earlyclobber = 1;
5961 break;
5962 case RELOAD_FOR_INSN:
5963 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5964 break;
5965 case RELOAD_FOR_OUTPUT:
5966 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5967 instruction is executed. */
5968 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5969 break;
5970 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5971 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5972 value. */
5973 case RELOAD_FOR_OUTADDR_ADDRESS:
5974 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5975 && ignore_address_reloads
5976 && ! rld[reloadnum].out)
5977 continue;
5978 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5979 break;
5980 case RELOAD_FOR_OUTPUT_ADDRESS:
5981 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5982 break;
5983 case RELOAD_OTHER:
5984 /* If there is no conflict in the input part, handle this
5985 like an output reload. */
5986 if (! rld[i].in || rtx_equal_p (other_input, value))
5988 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5989 /* Earlyclobbered outputs must conflict with inputs. */
5990 if (earlyclobber_operand_p (rld[i].out))
5991 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5993 break;
5995 time2 = 1;
5996 /* RELOAD_OTHER might be live beyond instruction execution,
5997 but this is not obvious when we set time2 = 1. So check
5998 here if there might be a problem with the new reload
5999 clobbering the register used by the RELOAD_OTHER. */
6000 if (out)
6001 return 0;
6002 break;
6003 default:
6004 return 0;
6006 if ((time1 >= time2
6007 && (! rld[i].in || rld[i].out
6008 || ! rtx_equal_p (other_input, value)))
6009 || (out && rld[reloadnum].out_reg
6010 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6011 return 0;
6016 /* Earlyclobbered outputs must conflict with inputs. */
6017 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6018 return 0;
6020 return 1;
6023 /* Return 1 if the value in reload reg REGNO, as used by a reload
6024 needed for the part of the insn specified by OPNUM and TYPE,
6025 may be used to load VALUE into it.
6027 MODE is the mode in which the register is used, this is needed to
6028 determine how many hard regs to test.
6030 Other read-only reloads with the same value do not conflict
6031 unless OUT is nonzero and these other reloads have to live while
6032 output reloads live.
6033 If OUT is CONST0_RTX, this is a special case: it means that the
6034 test should not be for using register REGNO as reload register, but
6035 for copying from register REGNO into the reload register.
6037 RELOADNUM is the number of the reload we want to load this value for;
6038 a reload does not conflict with itself.
6040 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6041 reloads that load an address for the very reload we are considering.
6043 The caller has to make sure that there is no conflict with the return
6044 register. */
6046 static int
6047 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6048 enum reload_type type, rtx value, rtx out, int reloadnum,
6049 int ignore_address_reloads)
6051 int nregs = hard_regno_nregs[regno][mode];
6052 while (nregs-- > 0)
6053 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6054 value, out, reloadnum,
6055 ignore_address_reloads))
6056 return 0;
6057 return 1;
6060 /* Return nonzero if the rtx X is invariant over the current function. */
6061 /* ??? Actually, the places where we use this expect exactly what is
6062 tested here, and not everything that is function invariant. In
6063 particular, the frame pointer and arg pointer are special cased;
6064 pic_offset_table_rtx is not, and we must not spill these things to
6065 memory. */
6068 function_invariant_p (const_rtx x)
6070 if (CONSTANT_P (x))
6071 return 1;
6072 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6073 return 1;
6074 if (GET_CODE (x) == PLUS
6075 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6076 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6077 return 1;
6078 return 0;
6081 /* Determine whether the reload reg X overlaps any rtx'es used for
6082 overriding inheritance. Return nonzero if so. */
6084 static int
6085 conflicts_with_override (rtx x)
6087 int i;
6088 for (i = 0; i < n_reloads; i++)
6089 if (reload_override_in[i]
6090 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6091 return 1;
6092 return 0;
6095 /* Give an error message saying we failed to find a reload for INSN,
6096 and clear out reload R. */
6097 static void
6098 failed_reload (rtx insn, int r)
6100 if (asm_noperands (PATTERN (insn)) < 0)
6101 /* It's the compiler's fault. */
6102 fatal_insn ("could not find a spill register", insn);
6104 /* It's the user's fault; the operand's mode and constraint
6105 don't match. Disable this reload so we don't crash in final. */
6106 error_for_asm (insn,
6107 "%<asm%> operand constraint incompatible with operand size");
6108 rld[r].in = 0;
6109 rld[r].out = 0;
6110 rld[r].reg_rtx = 0;
6111 rld[r].optional = 1;
6112 rld[r].secondary_p = 1;
6115 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6116 for reload R. If it's valid, get an rtx for it. Return nonzero if
6117 successful. */
6118 static int
6119 set_reload_reg (int i, int r)
6121 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6122 parameter. */
6123 int regno ATTRIBUTE_UNUSED;
6124 rtx reg = spill_reg_rtx[i];
6126 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6127 spill_reg_rtx[i] = reg
6128 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6130 regno = true_regnum (reg);
6132 /* Detect when the reload reg can't hold the reload mode.
6133 This used to be one `if', but Sequent compiler can't handle that. */
6134 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6136 enum machine_mode test_mode = VOIDmode;
6137 if (rld[r].in)
6138 test_mode = GET_MODE (rld[r].in);
6139 /* If rld[r].in has VOIDmode, it means we will load it
6140 in whatever mode the reload reg has: to wit, rld[r].mode.
6141 We have already tested that for validity. */
6142 /* Aside from that, we need to test that the expressions
6143 to reload from or into have modes which are valid for this
6144 reload register. Otherwise the reload insns would be invalid. */
6145 if (! (rld[r].in != 0 && test_mode != VOIDmode
6146 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6147 if (! (rld[r].out != 0
6148 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6150 /* The reg is OK. */
6151 last_spill_reg = i;
6153 /* Mark as in use for this insn the reload regs we use
6154 for this. */
6155 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6156 rld[r].when_needed, rld[r].mode);
6158 rld[r].reg_rtx = reg;
6159 reload_spill_index[r] = spill_regs[i];
6160 return 1;
6163 return 0;
6166 /* Find a spill register to use as a reload register for reload R.
6167 LAST_RELOAD is nonzero if this is the last reload for the insn being
6168 processed.
6170 Set rld[R].reg_rtx to the register allocated.
6172 We return 1 if successful, or 0 if we couldn't find a spill reg and
6173 we didn't change anything. */
6175 static int
6176 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6177 int last_reload)
6179 int i, pass, count;
6181 /* If we put this reload ahead, thinking it is a group,
6182 then insist on finding a group. Otherwise we can grab a
6183 reg that some other reload needs.
6184 (That can happen when we have a 68000 DATA_OR_FP_REG
6185 which is a group of data regs or one fp reg.)
6186 We need not be so restrictive if there are no more reloads
6187 for this insn.
6189 ??? Really it would be nicer to have smarter handling
6190 for that kind of reg class, where a problem like this is normal.
6191 Perhaps those classes should be avoided for reloading
6192 by use of more alternatives. */
6194 int force_group = rld[r].nregs > 1 && ! last_reload;
6196 /* If we want a single register and haven't yet found one,
6197 take any reg in the right class and not in use.
6198 If we want a consecutive group, here is where we look for it.
6200 We use three passes so we can first look for reload regs to
6201 reuse, which are already in use for other reloads in this insn,
6202 and only then use additional registers which are not "bad", then
6203 finally any register.
6205 I think that maximizing reuse is needed to make sure we don't
6206 run out of reload regs. Suppose we have three reloads, and
6207 reloads A and B can share regs. These need two regs.
6208 Suppose A and B are given different regs.
6209 That leaves none for C. */
6210 for (pass = 0; pass < 3; pass++)
6212 /* I is the index in spill_regs.
6213 We advance it round-robin between insns to use all spill regs
6214 equally, so that inherited reloads have a chance
6215 of leapfrogging each other. */
6217 i = last_spill_reg;
6219 for (count = 0; count < n_spills; count++)
6221 int rclass = (int) rld[r].rclass;
6222 int regnum;
6224 i++;
6225 if (i >= n_spills)
6226 i -= n_spills;
6227 regnum = spill_regs[i];
6229 if ((reload_reg_free_p (regnum, rld[r].opnum,
6230 rld[r].when_needed)
6231 || (rld[r].in
6232 /* We check reload_reg_used to make sure we
6233 don't clobber the return register. */
6234 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6235 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6236 rld[r].when_needed, rld[r].in,
6237 rld[r].out, r, 1)))
6238 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6239 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6240 /* Look first for regs to share, then for unshared. But
6241 don't share regs used for inherited reloads; they are
6242 the ones we want to preserve. */
6243 && (pass
6244 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6245 regnum)
6246 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6247 regnum))))
6249 int nr = hard_regno_nregs[regnum][rld[r].mode];
6251 /* During the second pass we want to avoid reload registers
6252 which are "bad" for this reload. */
6253 if (pass == 1
6254 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6255 continue;
6257 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6258 (on 68000) got us two FP regs. If NR is 1,
6259 we would reject both of them. */
6260 if (force_group)
6261 nr = rld[r].nregs;
6262 /* If we need only one reg, we have already won. */
6263 if (nr == 1)
6265 /* But reject a single reg if we demand a group. */
6266 if (force_group)
6267 continue;
6268 break;
6270 /* Otherwise check that as many consecutive regs as we need
6271 are available here. */
6272 while (nr > 1)
6274 int regno = regnum + nr - 1;
6275 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6276 && spill_reg_order[regno] >= 0
6277 && reload_reg_free_p (regno, rld[r].opnum,
6278 rld[r].when_needed)))
6279 break;
6280 nr--;
6282 if (nr == 1)
6283 break;
6287 /* If we found something on the current pass, omit later passes. */
6288 if (count < n_spills)
6289 break;
6292 /* We should have found a spill register by now. */
6293 if (count >= n_spills)
6294 return 0;
6296 /* I is the index in SPILL_REG_RTX of the reload register we are to
6297 allocate. Get an rtx for it and find its register number. */
6299 return set_reload_reg (i, r);
6302 /* Initialize all the tables needed to allocate reload registers.
6303 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6304 is the array we use to restore the reg_rtx field for every reload. */
6306 static void
6307 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6309 int i;
6311 for (i = 0; i < n_reloads; i++)
6312 rld[i].reg_rtx = save_reload_reg_rtx[i];
6314 memset (reload_inherited, 0, MAX_RELOADS);
6315 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6316 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6318 CLEAR_HARD_REG_SET (reload_reg_used);
6319 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6325 CLEAR_HARD_REG_SET (reg_used_in_insn);
6327 HARD_REG_SET tmp;
6328 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6329 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6330 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6331 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6332 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6333 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6336 for (i = 0; i < reload_n_operands; i++)
6338 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6339 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6340 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6341 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6342 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6343 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6346 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6348 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6350 for (i = 0; i < n_reloads; i++)
6351 /* If we have already decided to use a certain register,
6352 don't use it in another way. */
6353 if (rld[i].reg_rtx)
6354 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6355 rld[i].when_needed, rld[i].mode);
6358 /* Assign hard reg targets for the pseudo-registers we must reload
6359 into hard regs for this insn.
6360 Also output the instructions to copy them in and out of the hard regs.
6362 For machines with register classes, we are responsible for
6363 finding a reload reg in the proper class. */
6365 static void
6366 choose_reload_regs (struct insn_chain *chain)
6368 rtx insn = chain->insn;
6369 int i, j;
6370 unsigned int max_group_size = 1;
6371 enum reg_class group_class = NO_REGS;
6372 int pass, win, inheritance;
6374 rtx save_reload_reg_rtx[MAX_RELOADS];
6376 /* In order to be certain of getting the registers we need,
6377 we must sort the reloads into order of increasing register class.
6378 Then our grabbing of reload registers will parallel the process
6379 that provided the reload registers.
6381 Also note whether any of the reloads wants a consecutive group of regs.
6382 If so, record the maximum size of the group desired and what
6383 register class contains all the groups needed by this insn. */
6385 for (j = 0; j < n_reloads; j++)
6387 reload_order[j] = j;
6388 if (rld[j].reg_rtx != NULL_RTX)
6390 gcc_assert (REG_P (rld[j].reg_rtx)
6391 && HARD_REGISTER_P (rld[j].reg_rtx));
6392 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6394 else
6395 reload_spill_index[j] = -1;
6397 if (rld[j].nregs > 1)
6399 max_group_size = MAX (rld[j].nregs, max_group_size);
6400 group_class
6401 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6404 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6407 if (n_reloads > 1)
6408 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6410 /* If -O, try first with inheritance, then turning it off.
6411 If not -O, don't do inheritance.
6412 Using inheritance when not optimizing leads to paradoxes
6413 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6414 because one side of the comparison might be inherited. */
6415 win = 0;
6416 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6418 choose_reload_regs_init (chain, save_reload_reg_rtx);
6420 /* Process the reloads in order of preference just found.
6421 Beyond this point, subregs can be found in reload_reg_rtx.
6423 This used to look for an existing reloaded home for all of the
6424 reloads, and only then perform any new reloads. But that could lose
6425 if the reloads were done out of reg-class order because a later
6426 reload with a looser constraint might have an old home in a register
6427 needed by an earlier reload with a tighter constraint.
6429 To solve this, we make two passes over the reloads, in the order
6430 described above. In the first pass we try to inherit a reload
6431 from a previous insn. If there is a later reload that needs a
6432 class that is a proper subset of the class being processed, we must
6433 also allocate a spill register during the first pass.
6435 Then make a second pass over the reloads to allocate any reloads
6436 that haven't been given registers yet. */
6438 for (j = 0; j < n_reloads; j++)
6440 int r = reload_order[j];
6441 rtx search_equiv = NULL_RTX;
6443 /* Ignore reloads that got marked inoperative. */
6444 if (rld[r].out == 0 && rld[r].in == 0
6445 && ! rld[r].secondary_p)
6446 continue;
6448 /* If find_reloads chose to use reload_in or reload_out as a reload
6449 register, we don't need to chose one. Otherwise, try even if it
6450 found one since we might save an insn if we find the value lying
6451 around.
6452 Try also when reload_in is a pseudo without a hard reg. */
6453 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6454 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6455 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6456 && !MEM_P (rld[r].in)
6457 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6458 continue;
6460 #if 0 /* No longer needed for correct operation.
6461 It might give better code, or might not; worth an experiment? */
6462 /* If this is an optional reload, we can't inherit from earlier insns
6463 until we are sure that any non-optional reloads have been allocated.
6464 The following code takes advantage of the fact that optional reloads
6465 are at the end of reload_order. */
6466 if (rld[r].optional != 0)
6467 for (i = 0; i < j; i++)
6468 if ((rld[reload_order[i]].out != 0
6469 || rld[reload_order[i]].in != 0
6470 || rld[reload_order[i]].secondary_p)
6471 && ! rld[reload_order[i]].optional
6472 && rld[reload_order[i]].reg_rtx == 0)
6473 allocate_reload_reg (chain, reload_order[i], 0);
6474 #endif
6476 /* First see if this pseudo is already available as reloaded
6477 for a previous insn. We cannot try to inherit for reloads
6478 that are smaller than the maximum number of registers needed
6479 for groups unless the register we would allocate cannot be used
6480 for the groups.
6482 We could check here to see if this is a secondary reload for
6483 an object that is already in a register of the desired class.
6484 This would avoid the need for the secondary reload register.
6485 But this is complex because we can't easily determine what
6486 objects might want to be loaded via this reload. So let a
6487 register be allocated here. In `emit_reload_insns' we suppress
6488 one of the loads in the case described above. */
6490 if (inheritance)
6492 int byte = 0;
6493 int regno = -1;
6494 enum machine_mode mode = VOIDmode;
6496 if (rld[r].in == 0)
6498 else if (REG_P (rld[r].in))
6500 regno = REGNO (rld[r].in);
6501 mode = GET_MODE (rld[r].in);
6503 else if (REG_P (rld[r].in_reg))
6505 regno = REGNO (rld[r].in_reg);
6506 mode = GET_MODE (rld[r].in_reg);
6508 else if (GET_CODE (rld[r].in_reg) == SUBREG
6509 && REG_P (SUBREG_REG (rld[r].in_reg)))
6511 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6512 if (regno < FIRST_PSEUDO_REGISTER)
6513 regno = subreg_regno (rld[r].in_reg);
6514 else
6515 byte = SUBREG_BYTE (rld[r].in_reg);
6516 mode = GET_MODE (rld[r].in_reg);
6518 #ifdef AUTO_INC_DEC
6519 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6520 && REG_P (XEXP (rld[r].in_reg, 0)))
6522 regno = REGNO (XEXP (rld[r].in_reg, 0));
6523 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6524 rld[r].out = rld[r].in;
6526 #endif
6527 #if 0
6528 /* This won't work, since REGNO can be a pseudo reg number.
6529 Also, it takes much more hair to keep track of all the things
6530 that can invalidate an inherited reload of part of a pseudoreg. */
6531 else if (GET_CODE (rld[r].in) == SUBREG
6532 && REG_P (SUBREG_REG (rld[r].in)))
6533 regno = subreg_regno (rld[r].in);
6534 #endif
6536 if (regno >= 0
6537 && reg_last_reload_reg[regno] != 0
6538 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6539 >= GET_MODE_SIZE (mode) + byte)
6540 #ifdef CANNOT_CHANGE_MODE_CLASS
6541 /* Verify that the register it's in can be used in
6542 mode MODE. */
6543 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6544 GET_MODE (reg_last_reload_reg[regno]),
6545 mode)
6546 #endif
6549 enum reg_class rclass = rld[r].rclass, last_class;
6550 rtx last_reg = reg_last_reload_reg[regno];
6552 i = REGNO (last_reg);
6553 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6554 last_class = REGNO_REG_CLASS (i);
6556 if (reg_reloaded_contents[i] == regno
6557 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6558 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6559 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6560 /* Even if we can't use this register as a reload
6561 register, we might use it for reload_override_in,
6562 if copying it to the desired class is cheap
6563 enough. */
6564 || ((register_move_cost (mode, last_class, rclass)
6565 < memory_move_cost (mode, rclass, true))
6566 && (secondary_reload_class (1, rclass, mode,
6567 last_reg)
6568 == NO_REGS)
6569 #ifdef SECONDARY_MEMORY_NEEDED
6570 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6571 mode)
6572 #endif
6575 && (rld[r].nregs == max_group_size
6576 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6578 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6579 rld[r].when_needed, rld[r].in,
6580 const0_rtx, r, 1))
6582 /* If a group is needed, verify that all the subsequent
6583 registers still have their values intact. */
6584 int nr = hard_regno_nregs[i][rld[r].mode];
6585 int k;
6587 for (k = 1; k < nr; k++)
6588 if (reg_reloaded_contents[i + k] != regno
6589 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6590 break;
6592 if (k == nr)
6594 int i1;
6595 int bad_for_class;
6597 last_reg = (GET_MODE (last_reg) == mode
6598 ? last_reg : gen_rtx_REG (mode, i));
6600 bad_for_class = 0;
6601 for (k = 0; k < nr; k++)
6602 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6603 i+k);
6605 /* We found a register that contains the
6606 value we need. If this register is the
6607 same as an `earlyclobber' operand of the
6608 current insn, just mark it as a place to
6609 reload from since we can't use it as the
6610 reload register itself. */
6612 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6613 if (reg_overlap_mentioned_for_reload_p
6614 (reg_last_reload_reg[regno],
6615 reload_earlyclobbers[i1]))
6616 break;
6618 if (i1 != n_earlyclobbers
6619 || ! (free_for_value_p (i, rld[r].mode,
6620 rld[r].opnum,
6621 rld[r].when_needed, rld[r].in,
6622 rld[r].out, r, 1))
6623 /* Don't use it if we'd clobber a pseudo reg. */
6624 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6625 && rld[r].out
6626 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6627 /* Don't clobber the frame pointer. */
6628 || (i == HARD_FRAME_POINTER_REGNUM
6629 && frame_pointer_needed
6630 && rld[r].out)
6631 /* Don't really use the inherited spill reg
6632 if we need it wider than we've got it. */
6633 || (GET_MODE_SIZE (rld[r].mode)
6634 > GET_MODE_SIZE (mode))
6635 || bad_for_class
6637 /* If find_reloads chose reload_out as reload
6638 register, stay with it - that leaves the
6639 inherited register for subsequent reloads. */
6640 || (rld[r].out && rld[r].reg_rtx
6641 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6643 if (! rld[r].optional)
6645 reload_override_in[r] = last_reg;
6646 reload_inheritance_insn[r]
6647 = reg_reloaded_insn[i];
6650 else
6652 int k;
6653 /* We can use this as a reload reg. */
6654 /* Mark the register as in use for this part of
6655 the insn. */
6656 mark_reload_reg_in_use (i,
6657 rld[r].opnum,
6658 rld[r].when_needed,
6659 rld[r].mode);
6660 rld[r].reg_rtx = last_reg;
6661 reload_inherited[r] = 1;
6662 reload_inheritance_insn[r]
6663 = reg_reloaded_insn[i];
6664 reload_spill_index[r] = i;
6665 for (k = 0; k < nr; k++)
6666 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6667 i + k);
6674 /* Here's another way to see if the value is already lying around. */
6675 if (inheritance
6676 && rld[r].in != 0
6677 && ! reload_inherited[r]
6678 && rld[r].out == 0
6679 && (CONSTANT_P (rld[r].in)
6680 || GET_CODE (rld[r].in) == PLUS
6681 || REG_P (rld[r].in)
6682 || MEM_P (rld[r].in))
6683 && (rld[r].nregs == max_group_size
6684 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6685 search_equiv = rld[r].in;
6687 if (search_equiv)
6689 rtx equiv
6690 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6691 -1, NULL, 0, rld[r].mode);
6692 int regno = 0;
6694 if (equiv != 0)
6696 if (REG_P (equiv))
6697 regno = REGNO (equiv);
6698 else
6700 /* This must be a SUBREG of a hard register.
6701 Make a new REG since this might be used in an
6702 address and not all machines support SUBREGs
6703 there. */
6704 gcc_assert (GET_CODE (equiv) == SUBREG);
6705 regno = subreg_regno (equiv);
6706 equiv = gen_rtx_REG (rld[r].mode, regno);
6707 /* If we choose EQUIV as the reload register, but the
6708 loop below decides to cancel the inheritance, we'll
6709 end up reloading EQUIV in rld[r].mode, not the mode
6710 it had originally. That isn't safe when EQUIV isn't
6711 available as a spill register since its value might
6712 still be live at this point. */
6713 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6714 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6715 equiv = 0;
6719 /* If we found a spill reg, reject it unless it is free
6720 and of the desired class. */
6721 if (equiv != 0)
6723 int regs_used = 0;
6724 int bad_for_class = 0;
6725 int max_regno = regno + rld[r].nregs;
6727 for (i = regno; i < max_regno; i++)
6729 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6731 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6735 if ((regs_used
6736 && ! free_for_value_p (regno, rld[r].mode,
6737 rld[r].opnum, rld[r].when_needed,
6738 rld[r].in, rld[r].out, r, 1))
6739 || bad_for_class)
6740 equiv = 0;
6743 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6744 equiv = 0;
6746 /* We found a register that contains the value we need.
6747 If this register is the same as an `earlyclobber' operand
6748 of the current insn, just mark it as a place to reload from
6749 since we can't use it as the reload register itself. */
6751 if (equiv != 0)
6752 for (i = 0; i < n_earlyclobbers; i++)
6753 if (reg_overlap_mentioned_for_reload_p (equiv,
6754 reload_earlyclobbers[i]))
6756 if (! rld[r].optional)
6757 reload_override_in[r] = equiv;
6758 equiv = 0;
6759 break;
6762 /* If the equiv register we have found is explicitly clobbered
6763 in the current insn, it depends on the reload type if we
6764 can use it, use it for reload_override_in, or not at all.
6765 In particular, we then can't use EQUIV for a
6766 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6768 if (equiv != 0)
6770 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6771 switch (rld[r].when_needed)
6773 case RELOAD_FOR_OTHER_ADDRESS:
6774 case RELOAD_FOR_INPADDR_ADDRESS:
6775 case RELOAD_FOR_INPUT_ADDRESS:
6776 case RELOAD_FOR_OPADDR_ADDR:
6777 break;
6778 case RELOAD_OTHER:
6779 case RELOAD_FOR_INPUT:
6780 case RELOAD_FOR_OPERAND_ADDRESS:
6781 if (! rld[r].optional)
6782 reload_override_in[r] = equiv;
6783 /* Fall through. */
6784 default:
6785 equiv = 0;
6786 break;
6788 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6789 switch (rld[r].when_needed)
6791 case RELOAD_FOR_OTHER_ADDRESS:
6792 case RELOAD_FOR_INPADDR_ADDRESS:
6793 case RELOAD_FOR_INPUT_ADDRESS:
6794 case RELOAD_FOR_OPADDR_ADDR:
6795 case RELOAD_FOR_OPERAND_ADDRESS:
6796 case RELOAD_FOR_INPUT:
6797 break;
6798 case RELOAD_OTHER:
6799 if (! rld[r].optional)
6800 reload_override_in[r] = equiv;
6801 /* Fall through. */
6802 default:
6803 equiv = 0;
6804 break;
6808 /* If we found an equivalent reg, say no code need be generated
6809 to load it, and use it as our reload reg. */
6810 if (equiv != 0
6811 && (regno != HARD_FRAME_POINTER_REGNUM
6812 || !frame_pointer_needed))
6814 int nr = hard_regno_nregs[regno][rld[r].mode];
6815 int k;
6816 rld[r].reg_rtx = equiv;
6817 reload_spill_index[r] = regno;
6818 reload_inherited[r] = 1;
6820 /* If reg_reloaded_valid is not set for this register,
6821 there might be a stale spill_reg_store lying around.
6822 We must clear it, since otherwise emit_reload_insns
6823 might delete the store. */
6824 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6825 spill_reg_store[regno] = NULL_RTX;
6826 /* If any of the hard registers in EQUIV are spill
6827 registers, mark them as in use for this insn. */
6828 for (k = 0; k < nr; k++)
6830 i = spill_reg_order[regno + k];
6831 if (i >= 0)
6833 mark_reload_reg_in_use (regno, rld[r].opnum,
6834 rld[r].when_needed,
6835 rld[r].mode);
6836 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6837 regno + k);
6843 /* If we found a register to use already, or if this is an optional
6844 reload, we are done. */
6845 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6846 continue;
6848 #if 0
6849 /* No longer needed for correct operation. Might or might
6850 not give better code on the average. Want to experiment? */
6852 /* See if there is a later reload that has a class different from our
6853 class that intersects our class or that requires less register
6854 than our reload. If so, we must allocate a register to this
6855 reload now, since that reload might inherit a previous reload
6856 and take the only available register in our class. Don't do this
6857 for optional reloads since they will force all previous reloads
6858 to be allocated. Also don't do this for reloads that have been
6859 turned off. */
6861 for (i = j + 1; i < n_reloads; i++)
6863 int s = reload_order[i];
6865 if ((rld[s].in == 0 && rld[s].out == 0
6866 && ! rld[s].secondary_p)
6867 || rld[s].optional)
6868 continue;
6870 if ((rld[s].rclass != rld[r].rclass
6871 && reg_classes_intersect_p (rld[r].rclass,
6872 rld[s].rclass))
6873 || rld[s].nregs < rld[r].nregs)
6874 break;
6877 if (i == n_reloads)
6878 continue;
6880 allocate_reload_reg (chain, r, j == n_reloads - 1);
6881 #endif
6884 /* Now allocate reload registers for anything non-optional that
6885 didn't get one yet. */
6886 for (j = 0; j < n_reloads; j++)
6888 int r = reload_order[j];
6890 /* Ignore reloads that got marked inoperative. */
6891 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6892 continue;
6894 /* Skip reloads that already have a register allocated or are
6895 optional. */
6896 if (rld[r].reg_rtx != 0 || rld[r].optional)
6897 continue;
6899 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6900 break;
6903 /* If that loop got all the way, we have won. */
6904 if (j == n_reloads)
6906 win = 1;
6907 break;
6910 /* Loop around and try without any inheritance. */
6913 if (! win)
6915 /* First undo everything done by the failed attempt
6916 to allocate with inheritance. */
6917 choose_reload_regs_init (chain, save_reload_reg_rtx);
6919 /* Some sanity tests to verify that the reloads found in the first
6920 pass are identical to the ones we have now. */
6921 gcc_assert (chain->n_reloads == n_reloads);
6923 for (i = 0; i < n_reloads; i++)
6925 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6926 continue;
6927 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6928 for (j = 0; j < n_spills; j++)
6929 if (spill_regs[j] == chain->rld[i].regno)
6930 if (! set_reload_reg (j, i))
6931 failed_reload (chain->insn, i);
6935 /* If we thought we could inherit a reload, because it seemed that
6936 nothing else wanted the same reload register earlier in the insn,
6937 verify that assumption, now that all reloads have been assigned.
6938 Likewise for reloads where reload_override_in has been set. */
6940 /* If doing expensive optimizations, do one preliminary pass that doesn't
6941 cancel any inheritance, but removes reloads that have been needed only
6942 for reloads that we know can be inherited. */
6943 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6945 for (j = 0; j < n_reloads; j++)
6947 int r = reload_order[j];
6948 rtx check_reg;
6949 if (reload_inherited[r] && rld[r].reg_rtx)
6950 check_reg = rld[r].reg_rtx;
6951 else if (reload_override_in[r]
6952 && (REG_P (reload_override_in[r])
6953 || GET_CODE (reload_override_in[r]) == SUBREG))
6954 check_reg = reload_override_in[r];
6955 else
6956 continue;
6957 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6958 rld[r].opnum, rld[r].when_needed, rld[r].in,
6959 (reload_inherited[r]
6960 ? rld[r].out : const0_rtx),
6961 r, 1))
6963 if (pass)
6964 continue;
6965 reload_inherited[r] = 0;
6966 reload_override_in[r] = 0;
6968 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6969 reload_override_in, then we do not need its related
6970 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6971 likewise for other reload types.
6972 We handle this by removing a reload when its only replacement
6973 is mentioned in reload_in of the reload we are going to inherit.
6974 A special case are auto_inc expressions; even if the input is
6975 inherited, we still need the address for the output. We can
6976 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6977 If we succeeded removing some reload and we are doing a preliminary
6978 pass just to remove such reloads, make another pass, since the
6979 removal of one reload might allow us to inherit another one. */
6980 else if (rld[r].in
6981 && rld[r].out != rld[r].in
6982 && remove_address_replacements (rld[r].in) && pass)
6983 pass = 2;
6987 /* Now that reload_override_in is known valid,
6988 actually override reload_in. */
6989 for (j = 0; j < n_reloads; j++)
6990 if (reload_override_in[j])
6991 rld[j].in = reload_override_in[j];
6993 /* If this reload won't be done because it has been canceled or is
6994 optional and not inherited, clear reload_reg_rtx so other
6995 routines (such as subst_reloads) don't get confused. */
6996 for (j = 0; j < n_reloads; j++)
6997 if (rld[j].reg_rtx != 0
6998 && ((rld[j].optional && ! reload_inherited[j])
6999 || (rld[j].in == 0 && rld[j].out == 0
7000 && ! rld[j].secondary_p)))
7002 int regno = true_regnum (rld[j].reg_rtx);
7004 if (spill_reg_order[regno] >= 0)
7005 clear_reload_reg_in_use (regno, rld[j].opnum,
7006 rld[j].when_needed, rld[j].mode);
7007 rld[j].reg_rtx = 0;
7008 reload_spill_index[j] = -1;
7011 /* Record which pseudos and which spill regs have output reloads. */
7012 for (j = 0; j < n_reloads; j++)
7014 int r = reload_order[j];
7016 i = reload_spill_index[r];
7018 /* I is nonneg if this reload uses a register.
7019 If rld[r].reg_rtx is 0, this is an optional reload
7020 that we opted to ignore. */
7021 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7022 && rld[r].reg_rtx != 0)
7024 int nregno = REGNO (rld[r].out_reg);
7025 int nr = 1;
7027 if (nregno < FIRST_PSEUDO_REGISTER)
7028 nr = hard_regno_nregs[nregno][rld[r].mode];
7030 while (--nr >= 0)
7031 SET_REGNO_REG_SET (&reg_has_output_reload,
7032 nregno + nr);
7034 if (i >= 0)
7035 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7037 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7038 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7039 || rld[r].when_needed == RELOAD_FOR_INSN);
7044 /* Deallocate the reload register for reload R. This is called from
7045 remove_address_replacements. */
7047 void
7048 deallocate_reload_reg (int r)
7050 int regno;
7052 if (! rld[r].reg_rtx)
7053 return;
7054 regno = true_regnum (rld[r].reg_rtx);
7055 rld[r].reg_rtx = 0;
7056 if (spill_reg_order[regno] >= 0)
7057 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7058 rld[r].mode);
7059 reload_spill_index[r] = -1;
7062 /* These arrays are filled by emit_reload_insns and its subroutines. */
7063 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7064 static rtx other_input_address_reload_insns = 0;
7065 static rtx other_input_reload_insns = 0;
7066 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7067 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7068 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7069 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7070 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7071 static rtx operand_reload_insns = 0;
7072 static rtx other_operand_reload_insns = 0;
7073 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7075 /* Values to be put in spill_reg_store are put here first. Instructions
7076 must only be placed here if the associated reload register reaches
7077 the end of the instruction's reload sequence. */
7078 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7079 static HARD_REG_SET reg_reloaded_died;
7081 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7082 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7083 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7084 adjusted register, and return true. Otherwise, return false. */
7085 static bool
7086 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7087 enum reg_class new_class,
7088 enum machine_mode new_mode)
7091 rtx reg;
7093 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7095 unsigned regno = REGNO (reg);
7097 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7098 continue;
7099 if (GET_MODE (reg) != new_mode)
7101 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7102 continue;
7103 if (hard_regno_nregs[regno][new_mode]
7104 > hard_regno_nregs[regno][GET_MODE (reg)])
7105 continue;
7106 reg = reload_adjust_reg_for_mode (reg, new_mode);
7108 *reload_reg = reg;
7109 return true;
7111 return false;
7114 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7115 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7116 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7117 adjusted register, and return true. Otherwise, return false. */
7118 static bool
7119 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7120 enum insn_code icode)
7123 enum reg_class new_class = scratch_reload_class (icode);
7124 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7126 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7127 new_class, new_mode);
7130 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7131 has the number J. OLD contains the value to be used as input. */
7133 static void
7134 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7135 rtx old, int j)
7137 rtx insn = chain->insn;
7138 rtx reloadreg;
7139 rtx oldequiv_reg = 0;
7140 rtx oldequiv = 0;
7141 int special = 0;
7142 enum machine_mode mode;
7143 rtx *where;
7145 /* delete_output_reload is only invoked properly if old contains
7146 the original pseudo register. Since this is replaced with a
7147 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7148 find the pseudo in RELOAD_IN_REG. */
7149 if (reload_override_in[j]
7150 && REG_P (rl->in_reg))
7152 oldequiv = old;
7153 old = rl->in_reg;
7155 if (oldequiv == 0)
7156 oldequiv = old;
7157 else if (REG_P (oldequiv))
7158 oldequiv_reg = oldequiv;
7159 else if (GET_CODE (oldequiv) == SUBREG)
7160 oldequiv_reg = SUBREG_REG (oldequiv);
7162 reloadreg = reload_reg_rtx_for_input[j];
7163 mode = GET_MODE (reloadreg);
7165 /* If we are reloading from a register that was recently stored in
7166 with an output-reload, see if we can prove there was
7167 actually no need to store the old value in it. */
7169 if (optimize && REG_P (oldequiv)
7170 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7171 && spill_reg_store[REGNO (oldequiv)]
7172 && REG_P (old)
7173 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7174 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7175 rl->out_reg)))
7176 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7178 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7179 OLDEQUIV. */
7181 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7182 oldequiv = SUBREG_REG (oldequiv);
7183 if (GET_MODE (oldequiv) != VOIDmode
7184 && mode != GET_MODE (oldequiv))
7185 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7187 /* Switch to the right place to emit the reload insns. */
7188 switch (rl->when_needed)
7190 case RELOAD_OTHER:
7191 where = &other_input_reload_insns;
7192 break;
7193 case RELOAD_FOR_INPUT:
7194 where = &input_reload_insns[rl->opnum];
7195 break;
7196 case RELOAD_FOR_INPUT_ADDRESS:
7197 where = &input_address_reload_insns[rl->opnum];
7198 break;
7199 case RELOAD_FOR_INPADDR_ADDRESS:
7200 where = &inpaddr_address_reload_insns[rl->opnum];
7201 break;
7202 case RELOAD_FOR_OUTPUT_ADDRESS:
7203 where = &output_address_reload_insns[rl->opnum];
7204 break;
7205 case RELOAD_FOR_OUTADDR_ADDRESS:
7206 where = &outaddr_address_reload_insns[rl->opnum];
7207 break;
7208 case RELOAD_FOR_OPERAND_ADDRESS:
7209 where = &operand_reload_insns;
7210 break;
7211 case RELOAD_FOR_OPADDR_ADDR:
7212 where = &other_operand_reload_insns;
7213 break;
7214 case RELOAD_FOR_OTHER_ADDRESS:
7215 where = &other_input_address_reload_insns;
7216 break;
7217 default:
7218 gcc_unreachable ();
7221 push_to_sequence (*where);
7223 /* Auto-increment addresses must be reloaded in a special way. */
7224 if (rl->out && ! rl->out_reg)
7226 /* We are not going to bother supporting the case where a
7227 incremented register can't be copied directly from
7228 OLDEQUIV since this seems highly unlikely. */
7229 gcc_assert (rl->secondary_in_reload < 0);
7231 if (reload_inherited[j])
7232 oldequiv = reloadreg;
7234 old = XEXP (rl->in_reg, 0);
7236 /* Prevent normal processing of this reload. */
7237 special = 1;
7238 /* Output a special code sequence for this case. */
7239 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7242 /* If we are reloading a pseudo-register that was set by the previous
7243 insn, see if we can get rid of that pseudo-register entirely
7244 by redirecting the previous insn into our reload register. */
7246 else if (optimize && REG_P (old)
7247 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7248 && dead_or_set_p (insn, old)
7249 /* This is unsafe if some other reload
7250 uses the same reg first. */
7251 && ! conflicts_with_override (reloadreg)
7252 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7253 rl->when_needed, old, rl->out, j, 0))
7255 rtx temp = PREV_INSN (insn);
7256 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7257 temp = PREV_INSN (temp);
7258 if (temp
7259 && NONJUMP_INSN_P (temp)
7260 && GET_CODE (PATTERN (temp)) == SET
7261 && SET_DEST (PATTERN (temp)) == old
7262 /* Make sure we can access insn_operand_constraint. */
7263 && asm_noperands (PATTERN (temp)) < 0
7264 /* This is unsafe if operand occurs more than once in current
7265 insn. Perhaps some occurrences aren't reloaded. */
7266 && count_occurrences (PATTERN (insn), old, 0) == 1)
7268 rtx old = SET_DEST (PATTERN (temp));
7269 /* Store into the reload register instead of the pseudo. */
7270 SET_DEST (PATTERN (temp)) = reloadreg;
7272 /* Verify that resulting insn is valid. */
7273 extract_insn (temp);
7274 if (constrain_operands (1))
7276 /* If the previous insn is an output reload, the source is
7277 a reload register, and its spill_reg_store entry will
7278 contain the previous destination. This is now
7279 invalid. */
7280 if (REG_P (SET_SRC (PATTERN (temp)))
7281 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7283 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7284 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7287 /* If these are the only uses of the pseudo reg,
7288 pretend for GDB it lives in the reload reg we used. */
7289 if (REG_N_DEATHS (REGNO (old)) == 1
7290 && REG_N_SETS (REGNO (old)) == 1)
7292 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7293 if (ira_conflicts_p)
7294 /* Inform IRA about the change. */
7295 ira_mark_allocation_change (REGNO (old));
7296 alter_reg (REGNO (old), -1, false);
7298 special = 1;
7300 /* Adjust any debug insns between temp and insn. */
7301 while ((temp = NEXT_INSN (temp)) != insn)
7302 if (DEBUG_INSN_P (temp))
7303 replace_rtx (PATTERN (temp), old, reloadreg);
7304 else
7305 gcc_assert (NOTE_P (temp));
7307 else
7309 SET_DEST (PATTERN (temp)) = old;
7314 /* We can't do that, so output an insn to load RELOADREG. */
7316 /* If we have a secondary reload, pick up the secondary register
7317 and icode, if any. If OLDEQUIV and OLD are different or
7318 if this is an in-out reload, recompute whether or not we
7319 still need a secondary register and what the icode should
7320 be. If we still need a secondary register and the class or
7321 icode is different, go back to reloading from OLD if using
7322 OLDEQUIV means that we got the wrong type of register. We
7323 cannot have different class or icode due to an in-out reload
7324 because we don't make such reloads when both the input and
7325 output need secondary reload registers. */
7327 if (! special && rl->secondary_in_reload >= 0)
7329 rtx second_reload_reg = 0;
7330 rtx third_reload_reg = 0;
7331 int secondary_reload = rl->secondary_in_reload;
7332 rtx real_oldequiv = oldequiv;
7333 rtx real_old = old;
7334 rtx tmp;
7335 enum insn_code icode;
7336 enum insn_code tertiary_icode = CODE_FOR_nothing;
7338 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7339 and similarly for OLD.
7340 See comments in get_secondary_reload in reload.c. */
7341 /* If it is a pseudo that cannot be replaced with its
7342 equivalent MEM, we must fall back to reload_in, which
7343 will have all the necessary substitutions registered.
7344 Likewise for a pseudo that can't be replaced with its
7345 equivalent constant.
7347 Take extra care for subregs of such pseudos. Note that
7348 we cannot use reg_equiv_mem in this case because it is
7349 not in the right mode. */
7351 tmp = oldequiv;
7352 if (GET_CODE (tmp) == SUBREG)
7353 tmp = SUBREG_REG (tmp);
7354 if (REG_P (tmp)
7355 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7356 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7357 || reg_equiv_constant (REGNO (tmp)) != 0))
7359 if (! reg_equiv_mem (REGNO (tmp))
7360 || num_not_at_initial_offset
7361 || GET_CODE (oldequiv) == SUBREG)
7362 real_oldequiv = rl->in;
7363 else
7364 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7367 tmp = old;
7368 if (GET_CODE (tmp) == SUBREG)
7369 tmp = SUBREG_REG (tmp);
7370 if (REG_P (tmp)
7371 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7372 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7373 || reg_equiv_constant (REGNO (tmp)) != 0))
7375 if (! reg_equiv_mem (REGNO (tmp))
7376 || num_not_at_initial_offset
7377 || GET_CODE (old) == SUBREG)
7378 real_old = rl->in;
7379 else
7380 real_old = reg_equiv_mem (REGNO (tmp));
7383 second_reload_reg = rld[secondary_reload].reg_rtx;
7384 if (rld[secondary_reload].secondary_in_reload >= 0)
7386 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7388 third_reload_reg = rld[tertiary_reload].reg_rtx;
7389 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7390 /* We'd have to add more code for quartary reloads. */
7391 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7393 icode = rl->secondary_in_icode;
7395 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7396 || (rl->in != 0 && rl->out != 0))
7398 secondary_reload_info sri, sri2;
7399 enum reg_class new_class, new_t_class;
7401 sri.icode = CODE_FOR_nothing;
7402 sri.prev_sri = NULL;
7403 new_class
7404 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7405 rl->rclass, mode,
7406 &sri);
7408 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7409 second_reload_reg = 0;
7410 else if (new_class == NO_REGS)
7412 if (reload_adjust_reg_for_icode (&second_reload_reg,
7413 third_reload_reg,
7414 (enum insn_code) sri.icode))
7416 icode = (enum insn_code) sri.icode;
7417 third_reload_reg = 0;
7419 else
7421 oldequiv = old;
7422 real_oldequiv = real_old;
7425 else if (sri.icode != CODE_FOR_nothing)
7426 /* We currently lack a way to express this in reloads. */
7427 gcc_unreachable ();
7428 else
7430 sri2.icode = CODE_FOR_nothing;
7431 sri2.prev_sri = &sri;
7432 new_t_class
7433 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7434 new_class, mode,
7435 &sri);
7436 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7438 if (reload_adjust_reg_for_temp (&second_reload_reg,
7439 third_reload_reg,
7440 new_class, mode))
7442 third_reload_reg = 0;
7443 tertiary_icode = (enum insn_code) sri2.icode;
7445 else
7447 oldequiv = old;
7448 real_oldequiv = real_old;
7451 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7453 rtx intermediate = second_reload_reg;
7455 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7456 new_class, mode)
7457 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7458 ((enum insn_code)
7459 sri2.icode)))
7461 second_reload_reg = intermediate;
7462 tertiary_icode = (enum insn_code) sri2.icode;
7464 else
7466 oldequiv = old;
7467 real_oldequiv = real_old;
7470 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7472 rtx intermediate = second_reload_reg;
7474 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7475 new_class, mode)
7476 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7477 new_t_class, mode))
7479 second_reload_reg = intermediate;
7480 tertiary_icode = (enum insn_code) sri2.icode;
7482 else
7484 oldequiv = old;
7485 real_oldequiv = real_old;
7488 else
7490 /* This could be handled more intelligently too. */
7491 oldequiv = old;
7492 real_oldequiv = real_old;
7497 /* If we still need a secondary reload register, check
7498 to see if it is being used as a scratch or intermediate
7499 register and generate code appropriately. If we need
7500 a scratch register, use REAL_OLDEQUIV since the form of
7501 the insn may depend on the actual address if it is
7502 a MEM. */
7504 if (second_reload_reg)
7506 if (icode != CODE_FOR_nothing)
7508 /* We'd have to add extra code to handle this case. */
7509 gcc_assert (!third_reload_reg);
7511 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7512 second_reload_reg));
7513 special = 1;
7515 else
7517 /* See if we need a scratch register to load the
7518 intermediate register (a tertiary reload). */
7519 if (tertiary_icode != CODE_FOR_nothing)
7521 emit_insn ((GEN_FCN (tertiary_icode)
7522 (second_reload_reg, real_oldequiv,
7523 third_reload_reg)));
7525 else if (third_reload_reg)
7527 gen_reload (third_reload_reg, real_oldequiv,
7528 rl->opnum,
7529 rl->when_needed);
7530 gen_reload (second_reload_reg, third_reload_reg,
7531 rl->opnum,
7532 rl->when_needed);
7534 else
7535 gen_reload (second_reload_reg, real_oldequiv,
7536 rl->opnum,
7537 rl->when_needed);
7539 oldequiv = second_reload_reg;
7544 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7546 rtx real_oldequiv = oldequiv;
7548 if ((REG_P (oldequiv)
7549 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7550 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7551 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7552 || (GET_CODE (oldequiv) == SUBREG
7553 && REG_P (SUBREG_REG (oldequiv))
7554 && (REGNO (SUBREG_REG (oldequiv))
7555 >= FIRST_PSEUDO_REGISTER)
7556 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7557 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7558 || (CONSTANT_P (oldequiv)
7559 && (targetm.preferred_reload_class (oldequiv,
7560 REGNO_REG_CLASS (REGNO (reloadreg)))
7561 == NO_REGS)))
7562 real_oldequiv = rl->in;
7563 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7564 rl->when_needed);
7567 if (cfun->can_throw_non_call_exceptions)
7568 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7570 /* End this sequence. */
7571 *where = get_insns ();
7572 end_sequence ();
7574 /* Update reload_override_in so that delete_address_reloads_1
7575 can see the actual register usage. */
7576 if (oldequiv_reg)
7577 reload_override_in[j] = oldequiv;
7580 /* Generate insns to for the output reload RL, which is for the insn described
7581 by CHAIN and has the number J. */
7582 static void
7583 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7584 int j)
7586 rtx reloadreg;
7587 rtx insn = chain->insn;
7588 int special = 0;
7589 rtx old = rl->out;
7590 enum machine_mode mode;
7591 rtx p;
7592 rtx rl_reg_rtx;
7594 if (rl->when_needed == RELOAD_OTHER)
7595 start_sequence ();
7596 else
7597 push_to_sequence (output_reload_insns[rl->opnum]);
7599 rl_reg_rtx = reload_reg_rtx_for_output[j];
7600 mode = GET_MODE (rl_reg_rtx);
7602 reloadreg = rl_reg_rtx;
7604 /* If we need two reload regs, set RELOADREG to the intermediate
7605 one, since it will be stored into OLD. We might need a secondary
7606 register only for an input reload, so check again here. */
7608 if (rl->secondary_out_reload >= 0)
7610 rtx real_old = old;
7611 int secondary_reload = rl->secondary_out_reload;
7612 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7614 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7615 && reg_equiv_mem (REGNO (old)) != 0)
7616 real_old = reg_equiv_mem (REGNO (old));
7618 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7620 rtx second_reloadreg = reloadreg;
7621 reloadreg = rld[secondary_reload].reg_rtx;
7623 /* See if RELOADREG is to be used as a scratch register
7624 or as an intermediate register. */
7625 if (rl->secondary_out_icode != CODE_FOR_nothing)
7627 /* We'd have to add extra code to handle this case. */
7628 gcc_assert (tertiary_reload < 0);
7630 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7631 (real_old, second_reloadreg, reloadreg)));
7632 special = 1;
7634 else
7636 /* See if we need both a scratch and intermediate reload
7637 register. */
7639 enum insn_code tertiary_icode
7640 = rld[secondary_reload].secondary_out_icode;
7642 /* We'd have to add more code for quartary reloads. */
7643 gcc_assert (tertiary_reload < 0
7644 || rld[tertiary_reload].secondary_out_reload < 0);
7646 if (GET_MODE (reloadreg) != mode)
7647 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7649 if (tertiary_icode != CODE_FOR_nothing)
7651 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7653 /* Copy primary reload reg to secondary reload reg.
7654 (Note that these have been swapped above, then
7655 secondary reload reg to OLD using our insn.) */
7657 /* If REAL_OLD is a paradoxical SUBREG, remove it
7658 and try to put the opposite SUBREG on
7659 RELOADREG. */
7660 strip_paradoxical_subreg (&real_old, &reloadreg);
7662 gen_reload (reloadreg, second_reloadreg,
7663 rl->opnum, rl->when_needed);
7664 emit_insn ((GEN_FCN (tertiary_icode)
7665 (real_old, reloadreg, third_reloadreg)));
7666 special = 1;
7669 else
7671 /* Copy between the reload regs here and then to
7672 OUT later. */
7674 gen_reload (reloadreg, second_reloadreg,
7675 rl->opnum, rl->when_needed);
7676 if (tertiary_reload >= 0)
7678 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7680 gen_reload (third_reloadreg, reloadreg,
7681 rl->opnum, rl->when_needed);
7682 reloadreg = third_reloadreg;
7689 /* Output the last reload insn. */
7690 if (! special)
7692 rtx set;
7694 /* Don't output the last reload if OLD is not the dest of
7695 INSN and is in the src and is clobbered by INSN. */
7696 if (! flag_expensive_optimizations
7697 || !REG_P (old)
7698 || !(set = single_set (insn))
7699 || rtx_equal_p (old, SET_DEST (set))
7700 || !reg_mentioned_p (old, SET_SRC (set))
7701 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7702 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7703 gen_reload (old, reloadreg, rl->opnum,
7704 rl->when_needed);
7707 /* Look at all insns we emitted, just to be safe. */
7708 for (p = get_insns (); p; p = NEXT_INSN (p))
7709 if (INSN_P (p))
7711 rtx pat = PATTERN (p);
7713 /* If this output reload doesn't come from a spill reg,
7714 clear any memory of reloaded copies of the pseudo reg.
7715 If this output reload comes from a spill reg,
7716 reg_has_output_reload will make this do nothing. */
7717 note_stores (pat, forget_old_reloads_1, NULL);
7719 if (reg_mentioned_p (rl_reg_rtx, pat))
7721 rtx set = single_set (insn);
7722 if (reload_spill_index[j] < 0
7723 && set
7724 && SET_SRC (set) == rl_reg_rtx)
7726 int src = REGNO (SET_SRC (set));
7728 reload_spill_index[j] = src;
7729 SET_HARD_REG_BIT (reg_is_output_reload, src);
7730 if (find_regno_note (insn, REG_DEAD, src))
7731 SET_HARD_REG_BIT (reg_reloaded_died, src);
7733 if (HARD_REGISTER_P (rl_reg_rtx))
7735 int s = rl->secondary_out_reload;
7736 set = single_set (p);
7737 /* If this reload copies only to the secondary reload
7738 register, the secondary reload does the actual
7739 store. */
7740 if (s >= 0 && set == NULL_RTX)
7741 /* We can't tell what function the secondary reload
7742 has and where the actual store to the pseudo is
7743 made; leave new_spill_reg_store alone. */
7745 else if (s >= 0
7746 && SET_SRC (set) == rl_reg_rtx
7747 && SET_DEST (set) == rld[s].reg_rtx)
7749 /* Usually the next instruction will be the
7750 secondary reload insn; if we can confirm
7751 that it is, setting new_spill_reg_store to
7752 that insn will allow an extra optimization. */
7753 rtx s_reg = rld[s].reg_rtx;
7754 rtx next = NEXT_INSN (p);
7755 rld[s].out = rl->out;
7756 rld[s].out_reg = rl->out_reg;
7757 set = single_set (next);
7758 if (set && SET_SRC (set) == s_reg
7759 && reload_reg_rtx_reaches_end_p (s_reg, s))
7761 SET_HARD_REG_BIT (reg_is_output_reload,
7762 REGNO (s_reg));
7763 new_spill_reg_store[REGNO (s_reg)] = next;
7766 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7767 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7772 if (rl->when_needed == RELOAD_OTHER)
7774 emit_insn (other_output_reload_insns[rl->opnum]);
7775 other_output_reload_insns[rl->opnum] = get_insns ();
7777 else
7778 output_reload_insns[rl->opnum] = get_insns ();
7780 if (cfun->can_throw_non_call_exceptions)
7781 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7783 end_sequence ();
7786 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7787 and has the number J. */
7788 static void
7789 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7791 rtx insn = chain->insn;
7792 rtx old = (rl->in && MEM_P (rl->in)
7793 ? rl->in_reg : rl->in);
7794 rtx reg_rtx = rl->reg_rtx;
7796 if (old && reg_rtx)
7798 enum machine_mode mode;
7800 /* Determine the mode to reload in.
7801 This is very tricky because we have three to choose from.
7802 There is the mode the insn operand wants (rl->inmode).
7803 There is the mode of the reload register RELOADREG.
7804 There is the intrinsic mode of the operand, which we could find
7805 by stripping some SUBREGs.
7806 It turns out that RELOADREG's mode is irrelevant:
7807 we can change that arbitrarily.
7809 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7810 then the reload reg may not support QImode moves, so use SImode.
7811 If foo is in memory due to spilling a pseudo reg, this is safe,
7812 because the QImode value is in the least significant part of a
7813 slot big enough for a SImode. If foo is some other sort of
7814 memory reference, then it is impossible to reload this case,
7815 so previous passes had better make sure this never happens.
7817 Then consider a one-word union which has SImode and one of its
7818 members is a float, being fetched as (SUBREG:SF union:SI).
7819 We must fetch that as SFmode because we could be loading into
7820 a float-only register. In this case OLD's mode is correct.
7822 Consider an immediate integer: it has VOIDmode. Here we need
7823 to get a mode from something else.
7825 In some cases, there is a fourth mode, the operand's
7826 containing mode. If the insn specifies a containing mode for
7827 this operand, it overrides all others.
7829 I am not sure whether the algorithm here is always right,
7830 but it does the right things in those cases. */
7832 mode = GET_MODE (old);
7833 if (mode == VOIDmode)
7834 mode = rl->inmode;
7836 /* We cannot use gen_lowpart_common since it can do the wrong thing
7837 when REG_RTX has a multi-word mode. Note that REG_RTX must
7838 always be a REG here. */
7839 if (GET_MODE (reg_rtx) != mode)
7840 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7842 reload_reg_rtx_for_input[j] = reg_rtx;
7844 if (old != 0
7845 /* AUTO_INC reloads need to be handled even if inherited. We got an
7846 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7847 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7848 && ! rtx_equal_p (reg_rtx, old)
7849 && reg_rtx != 0)
7850 emit_input_reload_insns (chain, rld + j, old, j);
7852 /* When inheriting a wider reload, we have a MEM in rl->in,
7853 e.g. inheriting a SImode output reload for
7854 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7855 if (optimize && reload_inherited[j] && rl->in
7856 && MEM_P (rl->in)
7857 && MEM_P (rl->in_reg)
7858 && reload_spill_index[j] >= 0
7859 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7860 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7862 /* If we are reloading a register that was recently stored in with an
7863 output-reload, see if we can prove there was
7864 actually no need to store the old value in it. */
7866 if (optimize
7867 && (reload_inherited[j] || reload_override_in[j])
7868 && reg_rtx
7869 && REG_P (reg_rtx)
7870 && spill_reg_store[REGNO (reg_rtx)] != 0
7871 #if 0
7872 /* There doesn't seem to be any reason to restrict this to pseudos
7873 and doing so loses in the case where we are copying from a
7874 register of the wrong class. */
7875 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7876 #endif
7877 /* The insn might have already some references to stackslots
7878 replaced by MEMs, while reload_out_reg still names the
7879 original pseudo. */
7880 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7881 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7882 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7885 /* Do output reloading for reload RL, which is for the insn described by
7886 CHAIN and has the number J.
7887 ??? At some point we need to support handling output reloads of
7888 JUMP_INSNs or insns that set cc0. */
7889 static void
7890 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7892 rtx note, old;
7893 rtx insn = chain->insn;
7894 /* If this is an output reload that stores something that is
7895 not loaded in this same reload, see if we can eliminate a previous
7896 store. */
7897 rtx pseudo = rl->out_reg;
7898 rtx reg_rtx = rl->reg_rtx;
7900 if (rl->out && reg_rtx)
7902 enum machine_mode mode;
7904 /* Determine the mode to reload in.
7905 See comments above (for input reloading). */
7906 mode = GET_MODE (rl->out);
7907 if (mode == VOIDmode)
7909 /* VOIDmode should never happen for an output. */
7910 if (asm_noperands (PATTERN (insn)) < 0)
7911 /* It's the compiler's fault. */
7912 fatal_insn ("VOIDmode on an output", insn);
7913 error_for_asm (insn, "output operand is constant in %<asm%>");
7914 /* Prevent crash--use something we know is valid. */
7915 mode = word_mode;
7916 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7918 if (GET_MODE (reg_rtx) != mode)
7919 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7921 reload_reg_rtx_for_output[j] = reg_rtx;
7923 if (pseudo
7924 && optimize
7925 && REG_P (pseudo)
7926 && ! rtx_equal_p (rl->in_reg, pseudo)
7927 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7928 && reg_last_reload_reg[REGNO (pseudo)])
7930 int pseudo_no = REGNO (pseudo);
7931 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7933 /* We don't need to test full validity of last_regno for
7934 inherit here; we only want to know if the store actually
7935 matches the pseudo. */
7936 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7937 && reg_reloaded_contents[last_regno] == pseudo_no
7938 && spill_reg_store[last_regno]
7939 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7940 delete_output_reload (insn, j, last_regno, reg_rtx);
7943 old = rl->out_reg;
7944 if (old == 0
7945 || reg_rtx == 0
7946 || rtx_equal_p (old, reg_rtx))
7947 return;
7949 /* An output operand that dies right away does need a reload,
7950 but need not be copied from it. Show the new location in the
7951 REG_UNUSED note. */
7952 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7953 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7955 XEXP (note, 0) = reg_rtx;
7956 return;
7958 /* Likewise for a SUBREG of an operand that dies. */
7959 else if (GET_CODE (old) == SUBREG
7960 && REG_P (SUBREG_REG (old))
7961 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7962 SUBREG_REG (old))))
7964 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7965 return;
7967 else if (GET_CODE (old) == SCRATCH)
7968 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7969 but we don't want to make an output reload. */
7970 return;
7972 /* If is a JUMP_INSN, we can't support output reloads yet. */
7973 gcc_assert (NONJUMP_INSN_P (insn));
7975 emit_output_reload_insns (chain, rld + j, j);
7978 /* A reload copies values of MODE from register SRC to register DEST.
7979 Return true if it can be treated for inheritance purposes like a
7980 group of reloads, each one reloading a single hard register. The
7981 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7982 occupy the same number of hard registers. */
7984 static bool
7985 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7986 int src ATTRIBUTE_UNUSED,
7987 enum machine_mode mode ATTRIBUTE_UNUSED)
7989 #ifdef CANNOT_CHANGE_MODE_CLASS
7990 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7991 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7992 #else
7993 return true;
7994 #endif
7997 /* Output insns to reload values in and out of the chosen reload regs. */
7999 static void
8000 emit_reload_insns (struct insn_chain *chain)
8002 rtx insn = chain->insn;
8004 int j;
8006 CLEAR_HARD_REG_SET (reg_reloaded_died);
8008 for (j = 0; j < reload_n_operands; j++)
8009 input_reload_insns[j] = input_address_reload_insns[j]
8010 = inpaddr_address_reload_insns[j]
8011 = output_reload_insns[j] = output_address_reload_insns[j]
8012 = outaddr_address_reload_insns[j]
8013 = other_output_reload_insns[j] = 0;
8014 other_input_address_reload_insns = 0;
8015 other_input_reload_insns = 0;
8016 operand_reload_insns = 0;
8017 other_operand_reload_insns = 0;
8019 /* Dump reloads into the dump file. */
8020 if (dump_file)
8022 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8023 debug_reload_to_stream (dump_file);
8026 for (j = 0; j < n_reloads; j++)
8027 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8029 unsigned int i;
8031 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8032 new_spill_reg_store[i] = 0;
8035 /* Now output the instructions to copy the data into and out of the
8036 reload registers. Do these in the order that the reloads were reported,
8037 since reloads of base and index registers precede reloads of operands
8038 and the operands may need the base and index registers reloaded. */
8040 for (j = 0; j < n_reloads; j++)
8042 do_input_reload (chain, rld + j, j);
8043 do_output_reload (chain, rld + j, j);
8046 /* Now write all the insns we made for reloads in the order expected by
8047 the allocation functions. Prior to the insn being reloaded, we write
8048 the following reloads:
8050 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8052 RELOAD_OTHER reloads.
8054 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8055 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8056 RELOAD_FOR_INPUT reload for the operand.
8058 RELOAD_FOR_OPADDR_ADDRS reloads.
8060 RELOAD_FOR_OPERAND_ADDRESS reloads.
8062 After the insn being reloaded, we write the following:
8064 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8065 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8066 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8067 reloads for the operand. The RELOAD_OTHER output reloads are
8068 output in descending order by reload number. */
8070 emit_insn_before (other_input_address_reload_insns, insn);
8071 emit_insn_before (other_input_reload_insns, insn);
8073 for (j = 0; j < reload_n_operands; j++)
8075 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8076 emit_insn_before (input_address_reload_insns[j], insn);
8077 emit_insn_before (input_reload_insns[j], insn);
8080 emit_insn_before (other_operand_reload_insns, insn);
8081 emit_insn_before (operand_reload_insns, insn);
8083 for (j = 0; j < reload_n_operands; j++)
8085 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8086 x = emit_insn_after (output_address_reload_insns[j], x);
8087 x = emit_insn_after (output_reload_insns[j], x);
8088 emit_insn_after (other_output_reload_insns[j], x);
8091 /* For all the spill regs newly reloaded in this instruction,
8092 record what they were reloaded from, so subsequent instructions
8093 can inherit the reloads.
8095 Update spill_reg_store for the reloads of this insn.
8096 Copy the elements that were updated in the loop above. */
8098 for (j = 0; j < n_reloads; j++)
8100 int r = reload_order[j];
8101 int i = reload_spill_index[r];
8103 /* If this is a non-inherited input reload from a pseudo, we must
8104 clear any memory of a previous store to the same pseudo. Only do
8105 something if there will not be an output reload for the pseudo
8106 being reloaded. */
8107 if (rld[r].in_reg != 0
8108 && ! (reload_inherited[r] || reload_override_in[r]))
8110 rtx reg = rld[r].in_reg;
8112 if (GET_CODE (reg) == SUBREG)
8113 reg = SUBREG_REG (reg);
8115 if (REG_P (reg)
8116 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8117 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8119 int nregno = REGNO (reg);
8121 if (reg_last_reload_reg[nregno])
8123 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8125 if (reg_reloaded_contents[last_regno] == nregno)
8126 spill_reg_store[last_regno] = 0;
8131 /* I is nonneg if this reload used a register.
8132 If rld[r].reg_rtx is 0, this is an optional reload
8133 that we opted to ignore. */
8135 if (i >= 0 && rld[r].reg_rtx != 0)
8137 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8138 int k;
8140 /* For a multi register reload, we need to check if all or part
8141 of the value lives to the end. */
8142 for (k = 0; k < nr; k++)
8143 if (reload_reg_reaches_end_p (i + k, r))
8144 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8146 /* Maybe the spill reg contains a copy of reload_out. */
8147 if (rld[r].out != 0
8148 && (REG_P (rld[r].out)
8149 || (rld[r].out_reg
8150 ? REG_P (rld[r].out_reg)
8151 /* The reload value is an auto-modification of
8152 some kind. For PRE_INC, POST_INC, PRE_DEC
8153 and POST_DEC, we record an equivalence
8154 between the reload register and the operand
8155 on the optimistic assumption that we can make
8156 the equivalence hold. reload_as_needed must
8157 then either make it hold or invalidate the
8158 equivalence.
8160 PRE_MODIFY and POST_MODIFY addresses are reloaded
8161 somewhat differently, and allowing them here leads
8162 to problems. */
8163 : (GET_CODE (rld[r].out) != POST_MODIFY
8164 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8166 rtx reg;
8168 reg = reload_reg_rtx_for_output[r];
8169 if (reload_reg_rtx_reaches_end_p (reg, r))
8171 enum machine_mode mode = GET_MODE (reg);
8172 int regno = REGNO (reg);
8173 int nregs = hard_regno_nregs[regno][mode];
8174 rtx out = (REG_P (rld[r].out)
8175 ? rld[r].out
8176 : rld[r].out_reg
8177 ? rld[r].out_reg
8178 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8179 int out_regno = REGNO (out);
8180 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8181 : hard_regno_nregs[out_regno][mode]);
8182 bool piecemeal;
8184 spill_reg_store[regno] = new_spill_reg_store[regno];
8185 spill_reg_stored_to[regno] = out;
8186 reg_last_reload_reg[out_regno] = reg;
8188 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8189 && nregs == out_nregs
8190 && inherit_piecemeal_p (out_regno, regno, mode));
8192 /* If OUT_REGNO is a hard register, it may occupy more than
8193 one register. If it does, say what is in the
8194 rest of the registers assuming that both registers
8195 agree on how many words the object takes. If not,
8196 invalidate the subsequent registers. */
8198 if (HARD_REGISTER_NUM_P (out_regno))
8199 for (k = 1; k < out_nregs; k++)
8200 reg_last_reload_reg[out_regno + k]
8201 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8203 /* Now do the inverse operation. */
8204 for (k = 0; k < nregs; k++)
8206 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8207 reg_reloaded_contents[regno + k]
8208 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8209 ? out_regno
8210 : out_regno + k);
8211 reg_reloaded_insn[regno + k] = insn;
8212 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8213 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8214 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8215 regno + k);
8216 else
8217 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8218 regno + k);
8222 /* Maybe the spill reg contains a copy of reload_in. Only do
8223 something if there will not be an output reload for
8224 the register being reloaded. */
8225 else if (rld[r].out_reg == 0
8226 && rld[r].in != 0
8227 && ((REG_P (rld[r].in)
8228 && !HARD_REGISTER_P (rld[r].in)
8229 && !REGNO_REG_SET_P (&reg_has_output_reload,
8230 REGNO (rld[r].in)))
8231 || (REG_P (rld[r].in_reg)
8232 && !REGNO_REG_SET_P (&reg_has_output_reload,
8233 REGNO (rld[r].in_reg))))
8234 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8236 rtx reg;
8238 reg = reload_reg_rtx_for_input[r];
8239 if (reload_reg_rtx_reaches_end_p (reg, r))
8241 enum machine_mode mode;
8242 int regno;
8243 int nregs;
8244 int in_regno;
8245 int in_nregs;
8246 rtx in;
8247 bool piecemeal;
8249 mode = GET_MODE (reg);
8250 regno = REGNO (reg);
8251 nregs = hard_regno_nregs[regno][mode];
8252 if (REG_P (rld[r].in)
8253 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8254 in = rld[r].in;
8255 else if (REG_P (rld[r].in_reg))
8256 in = rld[r].in_reg;
8257 else
8258 in = XEXP (rld[r].in_reg, 0);
8259 in_regno = REGNO (in);
8261 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8262 : hard_regno_nregs[in_regno][mode]);
8264 reg_last_reload_reg[in_regno] = reg;
8266 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8267 && nregs == in_nregs
8268 && inherit_piecemeal_p (regno, in_regno, mode));
8270 if (HARD_REGISTER_NUM_P (in_regno))
8271 for (k = 1; k < in_nregs; k++)
8272 reg_last_reload_reg[in_regno + k]
8273 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8275 /* Unless we inherited this reload, show we haven't
8276 recently done a store.
8277 Previous stores of inherited auto_inc expressions
8278 also have to be discarded. */
8279 if (! reload_inherited[r]
8280 || (rld[r].out && ! rld[r].out_reg))
8281 spill_reg_store[regno] = 0;
8283 for (k = 0; k < nregs; k++)
8285 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8286 reg_reloaded_contents[regno + k]
8287 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8288 ? in_regno
8289 : in_regno + k);
8290 reg_reloaded_insn[regno + k] = insn;
8291 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8292 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8293 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8294 regno + k);
8295 else
8296 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8297 regno + k);
8303 /* The following if-statement was #if 0'd in 1.34 (or before...).
8304 It's reenabled in 1.35 because supposedly nothing else
8305 deals with this problem. */
8307 /* If a register gets output-reloaded from a non-spill register,
8308 that invalidates any previous reloaded copy of it.
8309 But forget_old_reloads_1 won't get to see it, because
8310 it thinks only about the original insn. So invalidate it here.
8311 Also do the same thing for RELOAD_OTHER constraints where the
8312 output is discarded. */
8313 if (i < 0
8314 && ((rld[r].out != 0
8315 && (REG_P (rld[r].out)
8316 || (MEM_P (rld[r].out)
8317 && REG_P (rld[r].out_reg))))
8318 || (rld[r].out == 0 && rld[r].out_reg
8319 && REG_P (rld[r].out_reg))))
8321 rtx out = ((rld[r].out && REG_P (rld[r].out))
8322 ? rld[r].out : rld[r].out_reg);
8323 int out_regno = REGNO (out);
8324 enum machine_mode mode = GET_MODE (out);
8326 /* REG_RTX is now set or clobbered by the main instruction.
8327 As the comment above explains, forget_old_reloads_1 only
8328 sees the original instruction, and there is no guarantee
8329 that the original instruction also clobbered REG_RTX.
8330 For example, if find_reloads sees that the input side of
8331 a matched operand pair dies in this instruction, it may
8332 use the input register as the reload register.
8334 Calling forget_old_reloads_1 is a waste of effort if
8335 REG_RTX is also the output register.
8337 If we know that REG_RTX holds the value of a pseudo
8338 register, the code after the call will record that fact. */
8339 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8340 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8342 if (!HARD_REGISTER_NUM_P (out_regno))
8344 rtx src_reg, store_insn = NULL_RTX;
8346 reg_last_reload_reg[out_regno] = 0;
8348 /* If we can find a hard register that is stored, record
8349 the storing insn so that we may delete this insn with
8350 delete_output_reload. */
8351 src_reg = reload_reg_rtx_for_output[r];
8353 if (src_reg)
8355 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8356 store_insn = new_spill_reg_store[REGNO (src_reg)];
8357 else
8358 src_reg = NULL_RTX;
8360 else
8362 /* If this is an optional reload, try to find the
8363 source reg from an input reload. */
8364 rtx set = single_set (insn);
8365 if (set && SET_DEST (set) == rld[r].out)
8367 int k;
8369 src_reg = SET_SRC (set);
8370 store_insn = insn;
8371 for (k = 0; k < n_reloads; k++)
8373 if (rld[k].in == src_reg)
8375 src_reg = reload_reg_rtx_for_input[k];
8376 break;
8381 if (src_reg && REG_P (src_reg)
8382 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8384 int src_regno, src_nregs, k;
8385 rtx note;
8387 gcc_assert (GET_MODE (src_reg) == mode);
8388 src_regno = REGNO (src_reg);
8389 src_nregs = hard_regno_nregs[src_regno][mode];
8390 /* The place where to find a death note varies with
8391 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8392 necessarily checked exactly in the code that moves
8393 notes, so just check both locations. */
8394 note = find_regno_note (insn, REG_DEAD, src_regno);
8395 if (! note && store_insn)
8396 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8397 for (k = 0; k < src_nregs; k++)
8399 spill_reg_store[src_regno + k] = store_insn;
8400 spill_reg_stored_to[src_regno + k] = out;
8401 reg_reloaded_contents[src_regno + k] = out_regno;
8402 reg_reloaded_insn[src_regno + k] = store_insn;
8403 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8404 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8405 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8406 mode))
8407 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8408 src_regno + k);
8409 else
8410 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8411 src_regno + k);
8412 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8413 if (note)
8414 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8415 else
8416 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8418 reg_last_reload_reg[out_regno] = src_reg;
8419 /* We have to set reg_has_output_reload here, or else
8420 forget_old_reloads_1 will clear reg_last_reload_reg
8421 right away. */
8422 SET_REGNO_REG_SET (&reg_has_output_reload,
8423 out_regno);
8426 else
8428 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8430 for (k = 0; k < out_nregs; k++)
8431 reg_last_reload_reg[out_regno + k] = 0;
8435 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8438 /* Go through the motions to emit INSN and test if it is strictly valid.
8439 Return the emitted insn if valid, else return NULL. */
8441 static rtx
8442 emit_insn_if_valid_for_reload (rtx insn)
8444 rtx last = get_last_insn ();
8445 int code;
8447 insn = emit_insn (insn);
8448 code = recog_memoized (insn);
8450 if (code >= 0)
8452 extract_insn (insn);
8453 /* We want constrain operands to treat this insn strictly in its
8454 validity determination, i.e., the way it would after reload has
8455 completed. */
8456 if (constrain_operands (1))
8457 return insn;
8460 delete_insns_since (last);
8461 return NULL;
8464 /* Emit code to perform a reload from IN (which may be a reload register) to
8465 OUT (which may also be a reload register). IN or OUT is from operand
8466 OPNUM with reload type TYPE.
8468 Returns first insn emitted. */
8470 static rtx
8471 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8473 rtx last = get_last_insn ();
8474 rtx tem;
8476 /* If IN is a paradoxical SUBREG, remove it and try to put the
8477 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8478 if (!strip_paradoxical_subreg (&in, &out))
8479 strip_paradoxical_subreg (&out, &in);
8481 /* How to do this reload can get quite tricky. Normally, we are being
8482 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8483 register that didn't get a hard register. In that case we can just
8484 call emit_move_insn.
8486 We can also be asked to reload a PLUS that adds a register or a MEM to
8487 another register, constant or MEM. This can occur during frame pointer
8488 elimination and while reloading addresses. This case is handled by
8489 trying to emit a single insn to perform the add. If it is not valid,
8490 we use a two insn sequence.
8492 Or we can be asked to reload an unary operand that was a fragment of
8493 an addressing mode, into a register. If it isn't recognized as-is,
8494 we try making the unop operand and the reload-register the same:
8495 (set reg:X (unop:X expr:Y))
8496 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8498 Finally, we could be called to handle an 'o' constraint by putting
8499 an address into a register. In that case, we first try to do this
8500 with a named pattern of "reload_load_address". If no such pattern
8501 exists, we just emit a SET insn and hope for the best (it will normally
8502 be valid on machines that use 'o').
8504 This entire process is made complex because reload will never
8505 process the insns we generate here and so we must ensure that
8506 they will fit their constraints and also by the fact that parts of
8507 IN might be being reloaded separately and replaced with spill registers.
8508 Because of this, we are, in some sense, just guessing the right approach
8509 here. The one listed above seems to work.
8511 ??? At some point, this whole thing needs to be rethought. */
8513 if (GET_CODE (in) == PLUS
8514 && (REG_P (XEXP (in, 0))
8515 || GET_CODE (XEXP (in, 0)) == SUBREG
8516 || MEM_P (XEXP (in, 0)))
8517 && (REG_P (XEXP (in, 1))
8518 || GET_CODE (XEXP (in, 1)) == SUBREG
8519 || CONSTANT_P (XEXP (in, 1))
8520 || MEM_P (XEXP (in, 1))))
8522 /* We need to compute the sum of a register or a MEM and another
8523 register, constant, or MEM, and put it into the reload
8524 register. The best possible way of doing this is if the machine
8525 has a three-operand ADD insn that accepts the required operands.
8527 The simplest approach is to try to generate such an insn and see if it
8528 is recognized and matches its constraints. If so, it can be used.
8530 It might be better not to actually emit the insn unless it is valid,
8531 but we need to pass the insn as an operand to `recog' and
8532 `extract_insn' and it is simpler to emit and then delete the insn if
8533 not valid than to dummy things up. */
8535 rtx op0, op1, tem, insn;
8536 enum insn_code code;
8538 op0 = find_replacement (&XEXP (in, 0));
8539 op1 = find_replacement (&XEXP (in, 1));
8541 /* Since constraint checking is strict, commutativity won't be
8542 checked, so we need to do that here to avoid spurious failure
8543 if the add instruction is two-address and the second operand
8544 of the add is the same as the reload reg, which is frequently
8545 the case. If the insn would be A = B + A, rearrange it so
8546 it will be A = A + B as constrain_operands expects. */
8548 if (REG_P (XEXP (in, 1))
8549 && REGNO (out) == REGNO (XEXP (in, 1)))
8550 tem = op0, op0 = op1, op1 = tem;
8552 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8553 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8555 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8556 if (insn)
8557 return insn;
8559 /* If that failed, we must use a conservative two-insn sequence.
8561 Use a move to copy one operand into the reload register. Prefer
8562 to reload a constant, MEM or pseudo since the move patterns can
8563 handle an arbitrary operand. If OP1 is not a constant, MEM or
8564 pseudo and OP1 is not a valid operand for an add instruction, then
8565 reload OP1.
8567 After reloading one of the operands into the reload register, add
8568 the reload register to the output register.
8570 If there is another way to do this for a specific machine, a
8571 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8572 we emit below. */
8574 code = optab_handler (add_optab, GET_MODE (out));
8576 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8577 || (REG_P (op1)
8578 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8579 || (code != CODE_FOR_nothing
8580 && !insn_operand_matches (code, 2, op1)))
8581 tem = op0, op0 = op1, op1 = tem;
8583 gen_reload (out, op0, opnum, type);
8585 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8586 This fixes a problem on the 32K where the stack pointer cannot
8587 be used as an operand of an add insn. */
8589 if (rtx_equal_p (op0, op1))
8590 op1 = out;
8592 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8593 if (insn)
8595 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8596 set_dst_reg_note (insn, REG_EQUIV, in, out);
8597 return insn;
8600 /* If that failed, copy the address register to the reload register.
8601 Then add the constant to the reload register. */
8603 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8604 gen_reload (out, op1, opnum, type);
8605 insn = emit_insn (gen_add2_insn (out, op0));
8606 set_dst_reg_note (insn, REG_EQUIV, in, out);
8609 #ifdef SECONDARY_MEMORY_NEEDED
8610 /* If we need a memory location to do the move, do it that way. */
8611 else if ((REG_P (in)
8612 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8613 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8614 && (REG_P (out)
8615 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8616 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8617 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8618 REGNO_REG_CLASS (reg_or_subregno (out)),
8619 GET_MODE (out)))
8621 /* Get the memory to use and rewrite both registers to its mode. */
8622 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8624 if (GET_MODE (loc) != GET_MODE (out))
8625 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8627 if (GET_MODE (loc) != GET_MODE (in))
8628 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8630 gen_reload (loc, in, opnum, type);
8631 gen_reload (out, loc, opnum, type);
8633 #endif
8634 else if (REG_P (out) && UNARY_P (in))
8636 rtx insn;
8637 rtx op1;
8638 rtx out_moded;
8639 rtx set;
8641 op1 = find_replacement (&XEXP (in, 0));
8642 if (op1 != XEXP (in, 0))
8643 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8645 /* First, try a plain SET. */
8646 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8647 if (set)
8648 return set;
8650 /* If that failed, move the inner operand to the reload
8651 register, and try the same unop with the inner expression
8652 replaced with the reload register. */
8654 if (GET_MODE (op1) != GET_MODE (out))
8655 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8656 else
8657 out_moded = out;
8659 gen_reload (out_moded, op1, opnum, type);
8661 insn
8662 = gen_rtx_SET (VOIDmode, out,
8663 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8664 out_moded));
8665 insn = emit_insn_if_valid_for_reload (insn);
8666 if (insn)
8668 set_unique_reg_note (insn, REG_EQUIV, in);
8669 return insn;
8672 fatal_insn ("failure trying to reload:", set);
8674 /* If IN is a simple operand, use gen_move_insn. */
8675 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8677 tem = emit_insn (gen_move_insn (out, in));
8678 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8679 mark_jump_label (in, tem, 0);
8682 #ifdef HAVE_reload_load_address
8683 else if (HAVE_reload_load_address)
8684 emit_insn (gen_reload_load_address (out, in));
8685 #endif
8687 /* Otherwise, just write (set OUT IN) and hope for the best. */
8688 else
8689 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8691 /* Return the first insn emitted.
8692 We can not just return get_last_insn, because there may have
8693 been multiple instructions emitted. Also note that gen_move_insn may
8694 emit more than one insn itself, so we can not assume that there is one
8695 insn emitted per emit_insn_before call. */
8697 return last ? NEXT_INSN (last) : get_insns ();
8700 /* Delete a previously made output-reload whose result we now believe
8701 is not needed. First we double-check.
8703 INSN is the insn now being processed.
8704 LAST_RELOAD_REG is the hard register number for which we want to delete
8705 the last output reload.
8706 J is the reload-number that originally used REG. The caller has made
8707 certain that reload J doesn't use REG any longer for input.
8708 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8710 static void
8711 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8713 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8714 rtx reg = spill_reg_stored_to[last_reload_reg];
8715 int k;
8716 int n_occurrences;
8717 int n_inherited = 0;
8718 rtx i1;
8719 rtx substed;
8720 unsigned regno;
8721 int nregs;
8723 /* It is possible that this reload has been only used to set another reload
8724 we eliminated earlier and thus deleted this instruction too. */
8725 if (INSN_DELETED_P (output_reload_insn))
8726 return;
8728 /* Get the raw pseudo-register referred to. */
8730 while (GET_CODE (reg) == SUBREG)
8731 reg = SUBREG_REG (reg);
8732 substed = reg_equiv_memory_loc (REGNO (reg));
8734 /* This is unsafe if the operand occurs more often in the current
8735 insn than it is inherited. */
8736 for (k = n_reloads - 1; k >= 0; k--)
8738 rtx reg2 = rld[k].in;
8739 if (! reg2)
8740 continue;
8741 if (MEM_P (reg2) || reload_override_in[k])
8742 reg2 = rld[k].in_reg;
8743 #ifdef AUTO_INC_DEC
8744 if (rld[k].out && ! rld[k].out_reg)
8745 reg2 = XEXP (rld[k].in_reg, 0);
8746 #endif
8747 while (GET_CODE (reg2) == SUBREG)
8748 reg2 = SUBREG_REG (reg2);
8749 if (rtx_equal_p (reg2, reg))
8751 if (reload_inherited[k] || reload_override_in[k] || k == j)
8752 n_inherited++;
8753 else
8754 return;
8757 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8758 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8759 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8760 reg, 0);
8761 if (substed)
8762 n_occurrences += count_occurrences (PATTERN (insn),
8763 eliminate_regs (substed, VOIDmode,
8764 NULL_RTX), 0);
8765 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8767 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8768 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8770 if (n_occurrences > n_inherited)
8771 return;
8773 regno = REGNO (reg);
8774 if (regno >= FIRST_PSEUDO_REGISTER)
8775 nregs = 1;
8776 else
8777 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8779 /* If the pseudo-reg we are reloading is no longer referenced
8780 anywhere between the store into it and here,
8781 and we're within the same basic block, then the value can only
8782 pass through the reload reg and end up here.
8783 Otherwise, give up--return. */
8784 for (i1 = NEXT_INSN (output_reload_insn);
8785 i1 != insn; i1 = NEXT_INSN (i1))
8787 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8788 return;
8789 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8790 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8792 /* If this is USE in front of INSN, we only have to check that
8793 there are no more references than accounted for by inheritance. */
8794 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8796 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8797 i1 = NEXT_INSN (i1);
8799 if (n_occurrences <= n_inherited && i1 == insn)
8800 break;
8801 return;
8805 /* We will be deleting the insn. Remove the spill reg information. */
8806 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8808 spill_reg_store[last_reload_reg + k] = 0;
8809 spill_reg_stored_to[last_reload_reg + k] = 0;
8812 /* The caller has already checked that REG dies or is set in INSN.
8813 It has also checked that we are optimizing, and thus some
8814 inaccuracies in the debugging information are acceptable.
8815 So we could just delete output_reload_insn. But in some cases
8816 we can improve the debugging information without sacrificing
8817 optimization - maybe even improving the code: See if the pseudo
8818 reg has been completely replaced with reload regs. If so, delete
8819 the store insn and forget we had a stack slot for the pseudo. */
8820 if (rld[j].out != rld[j].in
8821 && REG_N_DEATHS (REGNO (reg)) == 1
8822 && REG_N_SETS (REGNO (reg)) == 1
8823 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8824 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8826 rtx i2;
8828 /* We know that it was used only between here and the beginning of
8829 the current basic block. (We also know that the last use before
8830 INSN was the output reload we are thinking of deleting, but never
8831 mind that.) Search that range; see if any ref remains. */
8832 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8834 rtx set = single_set (i2);
8836 /* Uses which just store in the pseudo don't count,
8837 since if they are the only uses, they are dead. */
8838 if (set != 0 && SET_DEST (set) == reg)
8839 continue;
8840 if (LABEL_P (i2)
8841 || JUMP_P (i2))
8842 break;
8843 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8844 && reg_mentioned_p (reg, PATTERN (i2)))
8846 /* Some other ref remains; just delete the output reload we
8847 know to be dead. */
8848 delete_address_reloads (output_reload_insn, insn);
8849 delete_insn (output_reload_insn);
8850 return;
8854 /* Delete the now-dead stores into this pseudo. Note that this
8855 loop also takes care of deleting output_reload_insn. */
8856 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8858 rtx set = single_set (i2);
8860 if (set != 0 && SET_DEST (set) == reg)
8862 delete_address_reloads (i2, insn);
8863 delete_insn (i2);
8865 if (LABEL_P (i2)
8866 || JUMP_P (i2))
8867 break;
8870 /* For the debugging info, say the pseudo lives in this reload reg. */
8871 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8872 if (ira_conflicts_p)
8873 /* Inform IRA about the change. */
8874 ira_mark_allocation_change (REGNO (reg));
8875 alter_reg (REGNO (reg), -1, false);
8877 else
8879 delete_address_reloads (output_reload_insn, insn);
8880 delete_insn (output_reload_insn);
8884 /* We are going to delete DEAD_INSN. Recursively delete loads of
8885 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8886 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8887 static void
8888 delete_address_reloads (rtx dead_insn, rtx current_insn)
8890 rtx set = single_set (dead_insn);
8891 rtx set2, dst, prev, next;
8892 if (set)
8894 rtx dst = SET_DEST (set);
8895 if (MEM_P (dst))
8896 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8898 /* If we deleted the store from a reloaded post_{in,de}c expression,
8899 we can delete the matching adds. */
8900 prev = PREV_INSN (dead_insn);
8901 next = NEXT_INSN (dead_insn);
8902 if (! prev || ! next)
8903 return;
8904 set = single_set (next);
8905 set2 = single_set (prev);
8906 if (! set || ! set2
8907 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8908 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8909 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8910 return;
8911 dst = SET_DEST (set);
8912 if (! rtx_equal_p (dst, SET_DEST (set2))
8913 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8914 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8915 || (INTVAL (XEXP (SET_SRC (set), 1))
8916 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8917 return;
8918 delete_related_insns (prev);
8919 delete_related_insns (next);
8922 /* Subfunction of delete_address_reloads: process registers found in X. */
8923 static void
8924 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8926 rtx prev, set, dst, i2;
8927 int i, j;
8928 enum rtx_code code = GET_CODE (x);
8930 if (code != REG)
8932 const char *fmt = GET_RTX_FORMAT (code);
8933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8935 if (fmt[i] == 'e')
8936 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8937 else if (fmt[i] == 'E')
8939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8940 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8941 current_insn);
8944 return;
8947 if (spill_reg_order[REGNO (x)] < 0)
8948 return;
8950 /* Scan backwards for the insn that sets x. This might be a way back due
8951 to inheritance. */
8952 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8954 code = GET_CODE (prev);
8955 if (code == CODE_LABEL || code == JUMP_INSN)
8956 return;
8957 if (!INSN_P (prev))
8958 continue;
8959 if (reg_set_p (x, PATTERN (prev)))
8960 break;
8961 if (reg_referenced_p (x, PATTERN (prev)))
8962 return;
8964 if (! prev || INSN_UID (prev) < reload_first_uid)
8965 return;
8966 /* Check that PREV only sets the reload register. */
8967 set = single_set (prev);
8968 if (! set)
8969 return;
8970 dst = SET_DEST (set);
8971 if (!REG_P (dst)
8972 || ! rtx_equal_p (dst, x))
8973 return;
8974 if (! reg_set_p (dst, PATTERN (dead_insn)))
8976 /* Check if DST was used in a later insn -
8977 it might have been inherited. */
8978 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8980 if (LABEL_P (i2))
8981 break;
8982 if (! INSN_P (i2))
8983 continue;
8984 if (reg_referenced_p (dst, PATTERN (i2)))
8986 /* If there is a reference to the register in the current insn,
8987 it might be loaded in a non-inherited reload. If no other
8988 reload uses it, that means the register is set before
8989 referenced. */
8990 if (i2 == current_insn)
8992 for (j = n_reloads - 1; j >= 0; j--)
8993 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8994 || reload_override_in[j] == dst)
8995 return;
8996 for (j = n_reloads - 1; j >= 0; j--)
8997 if (rld[j].in && rld[j].reg_rtx == dst)
8998 break;
8999 if (j >= 0)
9000 break;
9002 return;
9004 if (JUMP_P (i2))
9005 break;
9006 /* If DST is still live at CURRENT_INSN, check if it is used for
9007 any reload. Note that even if CURRENT_INSN sets DST, we still
9008 have to check the reloads. */
9009 if (i2 == current_insn)
9011 for (j = n_reloads - 1; j >= 0; j--)
9012 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9013 || reload_override_in[j] == dst)
9014 return;
9015 /* ??? We can't finish the loop here, because dst might be
9016 allocated to a pseudo in this block if no reload in this
9017 block needs any of the classes containing DST - see
9018 spill_hard_reg. There is no easy way to tell this, so we
9019 have to scan till the end of the basic block. */
9021 if (reg_set_p (dst, PATTERN (i2)))
9022 break;
9025 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9026 reg_reloaded_contents[REGNO (dst)] = -1;
9027 delete_insn (prev);
9030 /* Output reload-insns to reload VALUE into RELOADREG.
9031 VALUE is an autoincrement or autodecrement RTX whose operand
9032 is a register or memory location;
9033 so reloading involves incrementing that location.
9034 IN is either identical to VALUE, or some cheaper place to reload from.
9036 INC_AMOUNT is the number to increment or decrement by (always positive).
9037 This cannot be deduced from VALUE. */
9039 static void
9040 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9042 /* REG or MEM to be copied and incremented. */
9043 rtx incloc = find_replacement (&XEXP (value, 0));
9044 /* Nonzero if increment after copying. */
9045 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9046 || GET_CODE (value) == POST_MODIFY);
9047 rtx last;
9048 rtx inc;
9049 rtx add_insn;
9050 int code;
9051 rtx real_in = in == value ? incloc : in;
9053 /* No hard register is equivalent to this register after
9054 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9055 we could inc/dec that register as well (maybe even using it for
9056 the source), but I'm not sure it's worth worrying about. */
9057 if (REG_P (incloc))
9058 reg_last_reload_reg[REGNO (incloc)] = 0;
9060 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9062 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9063 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9065 else
9067 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9068 inc_amount = -inc_amount;
9070 inc = GEN_INT (inc_amount);
9073 /* If this is post-increment, first copy the location to the reload reg. */
9074 if (post && real_in != reloadreg)
9075 emit_insn (gen_move_insn (reloadreg, real_in));
9077 if (in == value)
9079 /* See if we can directly increment INCLOC. Use a method similar to
9080 that in gen_reload. */
9082 last = get_last_insn ();
9083 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9084 gen_rtx_PLUS (GET_MODE (incloc),
9085 incloc, inc)));
9087 code = recog_memoized (add_insn);
9088 if (code >= 0)
9090 extract_insn (add_insn);
9091 if (constrain_operands (1))
9093 /* If this is a pre-increment and we have incremented the value
9094 where it lives, copy the incremented value to RELOADREG to
9095 be used as an address. */
9097 if (! post)
9098 emit_insn (gen_move_insn (reloadreg, incloc));
9099 return;
9102 delete_insns_since (last);
9105 /* If couldn't do the increment directly, must increment in RELOADREG.
9106 The way we do this depends on whether this is pre- or post-increment.
9107 For pre-increment, copy INCLOC to the reload register, increment it
9108 there, then save back. */
9110 if (! post)
9112 if (in != reloadreg)
9113 emit_insn (gen_move_insn (reloadreg, real_in));
9114 emit_insn (gen_add2_insn (reloadreg, inc));
9115 emit_insn (gen_move_insn (incloc, reloadreg));
9117 else
9119 /* Postincrement.
9120 Because this might be a jump insn or a compare, and because RELOADREG
9121 may not be available after the insn in an input reload, we must do
9122 the incrementation before the insn being reloaded for.
9124 We have already copied IN to RELOADREG. Increment the copy in
9125 RELOADREG, save that back, then decrement RELOADREG so it has
9126 the original value. */
9128 emit_insn (gen_add2_insn (reloadreg, inc));
9129 emit_insn (gen_move_insn (incloc, reloadreg));
9130 if (CONST_INT_P (inc))
9131 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9132 else
9133 emit_insn (gen_sub2_insn (reloadreg, inc));
9137 #ifdef AUTO_INC_DEC
9138 static void
9139 add_auto_inc_notes (rtx insn, rtx x)
9141 enum rtx_code code = GET_CODE (x);
9142 const char *fmt;
9143 int i, j;
9145 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9147 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9148 return;
9151 /* Scan all the operand sub-expressions. */
9152 fmt = GET_RTX_FORMAT (code);
9153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9155 if (fmt[i] == 'e')
9156 add_auto_inc_notes (insn, XEXP (x, i));
9157 else if (fmt[i] == 'E')
9158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9159 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9162 #endif