larn(6): Fix two "use of index before limits check" issues.
[dragonfly.git] / sys / kern / kern_ntptime.c
blobb4cdf99a888449f44fe2ece1d042063b9ee132be
1 /***********************************************************************
2 * *
3 * Copyright (c) David L. Mills 1993-2001 *
4 * *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
15 * warranty. *
16 * *
17 **********************************************************************/
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
31 * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
34 #include "opt_ntp.h"
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/priv.h>
42 #include <sys/time.h>
43 #include <sys/timex.h>
44 #include <sys/timepps.h>
45 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
50 * Single-precision macros for 64-bit machines
52 typedef long long l_fp;
53 #define L_ADD(v, u) ((v) += (u))
54 #define L_SUB(v, u) ((v) -= (u))
55 #define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
56 #define L_NEG(v) ((v) = -(v))
57 #define L_RSHIFT(v, n) \
58 do { \
59 if ((v) < 0) \
60 (v) = -(-(v) >> (n)); \
61 else \
62 (v) = (v) >> (n); \
63 } while (0)
64 #define L_MPY(v, a) ((v) *= (a))
65 #define L_CLR(v) ((v) = 0)
66 #define L_ISNEG(v) ((v) < 0)
67 #define L_LINT(v, a) ((v) = (long long)(a) << 32)
68 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
71 * Generic NTP kernel interface
73 * These routines constitute the Network Time Protocol (NTP) interfaces
74 * for user and daemon application programs. The ntp_gettime() routine
75 * provides the time, maximum error (synch distance) and estimated error
76 * (dispersion) to client user application programs. The ntp_adjtime()
77 * routine is used by the NTP daemon to adjust the system clock to an
78 * externally derived time. The time offset and related variables set by
79 * this routine are used by other routines in this module to adjust the
80 * phase and frequency of the clock discipline loop which controls the
81 * system clock.
83 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84 * defined), the time at each tick interrupt is derived directly from
85 * the kernel time variable. When the kernel time is reckoned in
86 * microseconds, (NTP_NANO undefined), the time is derived from the
87 * kernel time variable together with a variable representing the
88 * leftover nanoseconds at the last tick interrupt. In either case, the
89 * current nanosecond time is reckoned from these values plus an
90 * interpolated value derived by the clock routines in another
91 * architecture-specific module. The interpolation can use either a
92 * dedicated counter or a processor cycle counter (PCC) implemented in
93 * some architectures.
95 * Note that all routines must run at priority splclock or higher.
98 * Phase/frequency-lock loop (PLL/FLL) definitions
100 * The nanosecond clock discipline uses two variable types, time
101 * variables and frequency variables. Both types are represented as 64-
102 * bit fixed-point quantities with the decimal point between two 32-bit
103 * halves. On a 32-bit machine, each half is represented as a single
104 * word and mathematical operations are done using multiple-precision
105 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106 * used.
108 * A time variable is a signed 64-bit fixed-point number in ns and
109 * fraction. It represents the remaining time offset to be amortized
110 * over succeeding tick interrupts. The maximum time offset is about
111 * 0.5 s and the resolution is about 2.3e-10 ns.
113 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |s s s| ns |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 * | fraction |
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 * A frequency variable is a signed 64-bit fixed-point number in ns/s
122 * and fraction. It represents the ns and fraction to be added to the
123 * kernel time variable at each second. The maximum frequency offset is
124 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |s s s s s s s s s s s s s| ns/s |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * | fraction |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135 * The following variables establish the state of the PLL/FLL and the
136 * residual time and frequency offset of the local clock.
138 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
139 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
141 static int time_state = TIME_OK; /* clock state */
142 static int time_status = STA_UNSYNC; /* clock status bits */
143 static long time_tai; /* TAI offset (s) */
144 static long time_monitor; /* last time offset scaled (ns) */
145 static long time_constant; /* poll interval (shift) (s) */
146 static long time_precision = 1; /* clock precision (ns) */
147 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149 static time_t time_reftime; /* time at last adjustment (s) */
150 static long time_tick; /* nanoseconds per tick (ns) */
151 static l_fp time_offset; /* time offset (ns) */
152 static l_fp time_freq; /* frequency offset (ns/s) */
153 static l_fp time_adj; /* tick adjust (ns/s) */
155 static struct lock ntp_lock = LOCK_INITIALIZER("ntplk", 0, 0);
157 #ifdef PPS_SYNC
159 * The following variables are used when a pulse-per-second (PPS) signal
160 * is available and connected via a modem control lead. They establish
161 * the engineering parameters of the clock discipline loop when
162 * controlled by the PPS signal.
164 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
165 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
166 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
167 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
168 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
169 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
170 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
172 static struct timespec pps_tf[3]; /* phase median filter */
173 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
174 static long pps_fcount; /* frequency accumulator */
175 static long pps_jitter; /* nominal jitter (ns) */
176 static long pps_stabil; /* nominal stability (scaled ns/s) */
177 static long pps_lastsec; /* time at last calibration (s) */
178 static int pps_valid; /* signal watchdog counter */
179 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
180 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
181 static int pps_intcnt; /* wander counter */
184 * PPS signal quality monitors
186 static long pps_calcnt; /* calibration intervals */
187 static long pps_jitcnt; /* jitter limit exceeded */
188 static long pps_stbcnt; /* stability limit exceeded */
189 static long pps_errcnt; /* calibration errors */
190 #endif /* PPS_SYNC */
192 * End of phase/frequency-lock loop (PLL/FLL) definitions
195 static void ntp_init(void);
196 static void hardupdate(long offset);
199 * ntp_gettime() - NTP user application interface
201 * See the timex.h header file for synopsis and API description. Note
202 * that the TAI offset is returned in the ntvtimeval.tai structure
203 * member.
205 static int
206 ntp_sysctl(SYSCTL_HANDLER_ARGS)
208 struct ntptimeval ntv; /* temporary structure */
209 struct timespec atv; /* nanosecond time */
210 int error;
212 lockmgr(&ntp_lock, LK_EXCLUSIVE);
214 nanotime(&atv);
215 ntv.time.tv_sec = atv.tv_sec;
216 ntv.time.tv_nsec = atv.tv_nsec;
217 ntv.maxerror = time_maxerror;
218 ntv.esterror = time_esterror;
219 ntv.tai = time_tai;
220 ntv.time_state = time_state;
223 * Status word error decode. If any of these conditions occur,
224 * an error is returned, instead of the status word. Most
225 * applications will care only about the fact the system clock
226 * may not be trusted, not about the details.
228 * Hardware or software error
230 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
233 * PPS signal lost when either time or frequency synchronization
234 * requested
236 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
237 !(time_status & STA_PPSSIGNAL)) ||
240 * PPS jitter exceeded when time synchronization requested
242 (time_status & STA_PPSTIME &&
243 time_status & STA_PPSJITTER) ||
246 * PPS wander exceeded or calibration error when frequency
247 * synchronization requested
249 (time_status & STA_PPSFREQ &&
250 time_status & (STA_PPSWANDER | STA_PPSERROR))) {
251 ntv.time_state = TIME_ERROR;
254 error = sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req);
255 lockmgr(&ntp_lock, LK_RELEASE);
257 return error;
260 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
261 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
262 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
264 #ifdef PPS_SYNC
265 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
266 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
267 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
269 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
270 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
271 #endif
273 * ntp_adjtime() - NTP daemon application interface
275 * See the timex.h header file for synopsis and API description. Note
276 * that the timex.constant structure member has a dual purpose to set
277 * the time constant and to set the TAI offset.
279 * MPALMOSTSAFE
282 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
284 struct thread *td = curthread;
285 struct timex ntv; /* temporary structure */
286 long freq; /* frequency ns/s) */
287 int modes; /* mode bits from structure */
288 int error;
290 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
291 if (error)
292 return(error);
295 * Update selected clock variables - only the superuser can
296 * change anything. Note that there is no error checking here on
297 * the assumption the superuser should know what it is doing.
298 * Note that either the time constant or TAI offset are loaded
299 * from the ntv.constant member, depending on the mode bits. If
300 * the STA_PLL bit in the status word is cleared, the state and
301 * status words are reset to the initial values at boot.
303 modes = ntv.modes;
304 if (modes)
305 error = priv_check(td, PRIV_NTP_ADJTIME);
306 if (error)
307 return (error);
309 lockmgr(&ntp_lock, LK_EXCLUSIVE);
310 crit_enter();
311 if (modes & MOD_MAXERROR)
312 time_maxerror = ntv.maxerror;
313 if (modes & MOD_ESTERROR)
314 time_esterror = ntv.esterror;
315 if (modes & MOD_STATUS) {
316 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
317 time_state = TIME_OK;
318 time_status = STA_UNSYNC;
319 #ifdef PPS_SYNC
320 pps_shift = PPS_FAVG;
321 #endif /* PPS_SYNC */
323 time_status &= STA_RONLY;
324 time_status |= ntv.status & ~STA_RONLY;
326 if (modes & MOD_TIMECONST) {
327 if (ntv.constant < 0)
328 time_constant = 0;
329 else if (ntv.constant > MAXTC)
330 time_constant = MAXTC;
331 else
332 time_constant = ntv.constant;
334 if (modes & MOD_TAI) {
335 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
336 time_tai = ntv.constant;
338 #ifdef PPS_SYNC
339 if (modes & MOD_PPSMAX) {
340 if (ntv.shift < PPS_FAVG)
341 pps_shiftmax = PPS_FAVG;
342 else if (ntv.shift > PPS_FAVGMAX)
343 pps_shiftmax = PPS_FAVGMAX;
344 else
345 pps_shiftmax = ntv.shift;
347 #endif /* PPS_SYNC */
348 if (modes & MOD_NANO)
349 time_status |= STA_NANO;
350 if (modes & MOD_MICRO)
351 time_status &= ~STA_NANO;
352 if (modes & MOD_CLKB)
353 time_status |= STA_CLK;
354 if (modes & MOD_CLKA)
355 time_status &= ~STA_CLK;
356 if (modes & MOD_OFFSET) {
357 if (time_status & STA_NANO)
358 hardupdate(ntv.offset);
359 else
360 hardupdate(ntv.offset * 1000);
363 * Note: the userland specified frequency is in seconds per second
364 * times 65536e+6. Multiply by a thousand and divide by 65336 to
365 * get nanoseconds.
367 if (modes & MOD_FREQUENCY) {
368 freq = (ntv.freq * 1000LL) >> 16;
369 if (freq > MAXFREQ)
370 L_LINT(time_freq, MAXFREQ);
371 else if (freq < -MAXFREQ)
372 L_LINT(time_freq, -MAXFREQ);
373 else
374 L_LINT(time_freq, freq);
375 #ifdef PPS_SYNC
376 pps_freq = time_freq;
377 #endif /* PPS_SYNC */
381 * Retrieve all clock variables. Note that the TAI offset is
382 * returned only by ntp_gettime();
384 if (time_status & STA_NANO)
385 ntv.offset = time_monitor;
386 else
387 ntv.offset = time_monitor / 1000; /* XXX rounding ? */
388 ntv.freq = L_GINT((time_freq / 1000LL) << 16);
389 ntv.maxerror = time_maxerror;
390 ntv.esterror = time_esterror;
391 ntv.status = time_status;
392 ntv.constant = time_constant;
393 if (time_status & STA_NANO)
394 ntv.precision = time_precision;
395 else
396 ntv.precision = time_precision / 1000;
397 ntv.tolerance = MAXFREQ * SCALE_PPM;
398 #ifdef PPS_SYNC
399 ntv.shift = pps_shift;
400 ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
401 if (time_status & STA_NANO)
402 ntv.jitter = pps_jitter;
403 else
404 ntv.jitter = pps_jitter / 1000;
405 ntv.stabil = pps_stabil;
406 ntv.calcnt = pps_calcnt;
407 ntv.errcnt = pps_errcnt;
408 ntv.jitcnt = pps_jitcnt;
409 ntv.stbcnt = pps_stbcnt;
410 #endif /* PPS_SYNC */
411 crit_exit();
412 lockmgr(&ntp_lock, LK_RELEASE);
414 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
415 if (error)
416 return (error);
419 * Status word error decode. See comments in
420 * ntp_gettime() routine.
422 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
423 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
424 !(time_status & STA_PPSSIGNAL)) ||
425 (time_status & STA_PPSTIME &&
426 time_status & STA_PPSJITTER) ||
427 (time_status & STA_PPSFREQ &&
428 time_status & (STA_PPSWANDER | STA_PPSERROR))) {
429 uap->sysmsg_result = TIME_ERROR;
430 } else {
431 uap->sysmsg_result = time_state;
433 return (error);
437 * second_overflow() - called after ntp_tick_adjust()
439 * This routine is ordinarily called from hardclock() whenever the seconds
440 * hand rolls over. It returns leap seconds to add or drop, and sets nsec_adj
441 * to the total adjustment to make over the next second in (ns << 32).
443 * This routine is only called by cpu #0.
446 ntp_update_second(time_t newsec, int64_t *nsec_adj)
448 l_fp ftemp; /* 32/64-bit temporary */
449 int adjsec = 0;
452 * On rollover of the second both the nanosecond and microsecond
453 * clocks are updated and the state machine cranked as
454 * necessary. The phase adjustment to be used for the next
455 * second is calculated and the maximum error is increased by
456 * the tolerance.
458 time_maxerror += MAXFREQ / 1000;
461 * Leap second processing. If in leap-insert state at
462 * the end of the day, the system clock is set back one
463 * second; if in leap-delete state, the system clock is
464 * set ahead one second. The nano_time() routine or
465 * external clock driver will insure that reported time
466 * is always monotonic.
468 switch (time_state) {
471 * No warning.
473 case TIME_OK:
474 if (time_status & STA_INS)
475 time_state = TIME_INS;
476 else if (time_status & STA_DEL)
477 time_state = TIME_DEL;
478 break;
481 * Insert second 23:59:60 following second
482 * 23:59:59.
484 case TIME_INS:
485 if (!(time_status & STA_INS))
486 time_state = TIME_OK;
487 else if ((newsec) % 86400 == 0) {
488 --adjsec;
489 time_state = TIME_OOP;
491 break;
494 * Delete second 23:59:59.
496 case TIME_DEL:
497 if (!(time_status & STA_DEL))
498 time_state = TIME_OK;
499 else if (((newsec) + 1) % 86400 == 0) {
500 ++adjsec;
501 time_tai--;
502 time_state = TIME_WAIT;
504 break;
507 * Insert second in progress.
509 case TIME_OOP:
510 time_tai++;
511 time_state = TIME_WAIT;
512 break;
515 * Wait for status bits to clear.
517 case TIME_WAIT:
518 if (!(time_status & (STA_INS | STA_DEL)))
519 time_state = TIME_OK;
523 * time_offset represents the total time adjustment we wish to
524 * make (over no particular period of time). time_freq represents
525 * the frequency compensation we wish to apply.
527 * time_adj represents the total adjustment we wish to make over
528 * one full second. hardclock usually applies this adjustment in
529 * time_adj / hz jumps, hz times a second.
531 ftemp = time_offset;
532 #ifdef PPS_SYNC
533 /* XXX even if PPS signal dies we should finish adjustment ? */
534 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
535 L_RSHIFT(ftemp, pps_shift);
536 else
537 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
538 #else
539 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
540 #endif /* PPS_SYNC */
541 time_adj = ftemp; /* adjustment for part of the offset */
542 L_SUB(time_offset, ftemp);
543 L_ADD(time_adj, time_freq); /* add frequency correction */
544 *nsec_adj = time_adj;
545 #ifdef PPS_SYNC
546 if (pps_valid > 0)
547 pps_valid--;
548 else
549 time_status &= ~STA_PPSSIGNAL;
550 #endif /* PPS_SYNC */
551 return(adjsec);
555 * ntp_init() - initialize variables and structures
557 * This routine must be called after the kernel variables hz and tick
558 * are set or changed and before the next tick interrupt. In this
559 * particular implementation, these values are assumed set elsewhere in
560 * the kernel. The design allows the clock frequency and tick interval
561 * to be changed while the system is running. So, this routine should
562 * probably be integrated with the code that does that.
564 static void
565 ntp_init(void)
569 * The following variable must be initialized any time the
570 * kernel variable hz is changed.
572 time_tick = NANOSECOND / hz;
575 * The following variables are initialized only at startup. Only
576 * those structures not cleared by the compiler need to be
577 * initialized, and these only in the simulator. In the actual
578 * kernel, any nonzero values here will quickly evaporate.
580 L_CLR(time_offset);
581 L_CLR(time_freq);
582 #ifdef PPS_SYNC
583 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
584 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
585 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
586 pps_fcount = 0;
587 L_CLR(pps_freq);
588 #endif /* PPS_SYNC */
591 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL);
594 * hardupdate() - local clock update
596 * This routine is called by ntp_adjtime() to update the local clock
597 * phase and frequency. The implementation is of an adaptive-parameter,
598 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
599 * time and frequency offset estimates for each call. If the kernel PPS
600 * discipline code is configured (PPS_SYNC), the PPS signal itself
601 * determines the new time offset, instead of the calling argument.
602 * Presumably, calls to ntp_adjtime() occur only when the caller
603 * believes the local clock is valid within some bound (+-128 ms with
604 * NTP). If the caller's time is far different than the PPS time, an
605 * argument will ensue, and it's not clear who will lose.
607 * For uncompensated quartz crystal oscillators and nominal update
608 * intervals less than 256 s, operation should be in phase-lock mode,
609 * where the loop is disciplined to phase. For update intervals greater
610 * than 1024 s, operation should be in frequency-lock mode, where the
611 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
612 * is selected by the STA_MODE status bit.
614 static void
615 hardupdate(long offset)
617 long mtemp;
618 l_fp ftemp;
621 * Select how the phase is to be controlled and from which
622 * source. If the PPS signal is present and enabled to
623 * discipline the time, the PPS offset is used; otherwise, the
624 * argument offset is used.
626 if (!(time_status & STA_PLL))
627 return;
628 if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
629 if (offset > MAXPHASE)
630 time_monitor = MAXPHASE;
631 else if (offset < -MAXPHASE)
632 time_monitor = -MAXPHASE;
633 else
634 time_monitor = offset;
635 L_LINT(time_offset, time_monitor);
639 * Select how the frequency is to be controlled and in which
640 * mode (PLL or FLL). If the PPS signal is present and enabled
641 * to discipline the frequency, the PPS frequency is used;
642 * otherwise, the argument offset is used to compute it.
644 if ((time_status & STA_PPSFREQ) && time_status & STA_PPSSIGNAL) {
645 time_reftime = time_uptime;
646 return;
648 if ((time_status & STA_FREQHOLD) || time_reftime == 0)
649 time_reftime = time_uptime;
650 mtemp = time_uptime - time_reftime;
651 L_LINT(ftemp, time_monitor);
652 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
653 L_MPY(ftemp, mtemp);
654 L_ADD(time_freq, ftemp);
655 time_status &= ~STA_MODE;
656 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
657 L_LINT(ftemp, (time_monitor << 4) / mtemp);
658 L_RSHIFT(ftemp, SHIFT_FLL + 4);
659 L_ADD(time_freq, ftemp);
660 time_status |= STA_MODE;
662 time_reftime = time_uptime;
663 if (L_GINT(time_freq) > MAXFREQ)
664 L_LINT(time_freq, MAXFREQ);
665 else if (L_GINT(time_freq) < -MAXFREQ)
666 L_LINT(time_freq, -MAXFREQ);
669 #ifdef PPS_SYNC
671 * hardpps() - discipline CPU clock oscillator to external PPS signal
673 * This routine is called at each PPS interrupt in order to discipline
674 * the CPU clock oscillator to the PPS signal. There are two independent
675 * first-order feedback loops, one for the phase, the other for the
676 * frequency. The phase loop measures and grooms the PPS phase offset
677 * and leaves it in a handy spot for the seconds overflow routine. The
678 * frequency loop averages successive PPS phase differences and
679 * calculates the PPS frequency offset, which is also processed by the
680 * seconds overflow routine. The code requires the caller to capture the
681 * time and architecture-dependent hardware counter values in
682 * nanoseconds at the on-time PPS signal transition.
684 * Note that, on some Unix systems this routine runs at an interrupt
685 * priority level higher than the timer interrupt routine hardclock().
686 * Therefore, the variables used are distinct from the hardclock()
687 * variables, except for the actual time and frequency variables, which
688 * are determined by this routine and updated atomically.
690 void
691 hardpps(struct timespec *tsp, long nsec)
693 long u_sec, u_nsec, v_nsec; /* temps */
694 l_fp ftemp;
697 * The signal is first processed by a range gate and frequency
698 * discriminator. The range gate rejects noise spikes outside
699 * the range +-500 us. The frequency discriminator rejects input
700 * signals with apparent frequency outside the range 1 +-500
701 * PPM. If two hits occur in the same second, we ignore the
702 * later hit; if not and a hit occurs outside the range gate,
703 * keep the later hit for later comparison, but do not process
704 * it.
706 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
707 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
708 pps_valid = PPS_VALID;
709 u_sec = tsp->tv_sec;
710 u_nsec = tsp->tv_nsec;
711 if (u_nsec >= (NANOSECOND >> 1)) {
712 u_nsec -= NANOSECOND;
713 u_sec++;
715 v_nsec = u_nsec - pps_tf[0].tv_nsec;
716 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
717 MAXFREQ)
718 return;
719 pps_tf[2] = pps_tf[1];
720 pps_tf[1] = pps_tf[0];
721 pps_tf[0].tv_sec = u_sec;
722 pps_tf[0].tv_nsec = u_nsec;
725 * Compute the difference between the current and previous
726 * counter values. If the difference exceeds 0.5 s, assume it
727 * has wrapped around, so correct 1.0 s. If the result exceeds
728 * the tick interval, the sample point has crossed a tick
729 * boundary during the last second, so correct the tick. Very
730 * intricate.
732 u_nsec = nsec;
733 if (u_nsec > (NANOSECOND >> 1))
734 u_nsec -= NANOSECOND;
735 else if (u_nsec < -(NANOSECOND >> 1))
736 u_nsec += NANOSECOND;
737 pps_fcount += u_nsec;
738 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
739 return;
740 time_status &= ~STA_PPSJITTER;
743 * A three-stage median filter is used to help denoise the PPS
744 * time. The median sample becomes the time offset estimate; the
745 * difference between the other two samples becomes the time
746 * dispersion (jitter) estimate.
748 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
749 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
750 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
751 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
752 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
753 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
754 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
755 } else {
756 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
757 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
759 } else {
760 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
761 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
762 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
763 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
764 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
765 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
766 } else {
767 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
768 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
773 * Nominal jitter is due to PPS signal noise and interrupt
774 * latency. If it exceeds the popcorn threshold, the sample is
775 * discarded. otherwise, if so enabled, the time offset is
776 * updated. We can tolerate a modest loss of data here without
777 * much degrading time accuracy.
779 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
780 time_status |= STA_PPSJITTER;
781 pps_jitcnt++;
782 } else if (time_status & STA_PPSTIME) {
783 time_monitor = -v_nsec;
784 L_LINT(time_offset, time_monitor);
786 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
787 u_sec = pps_tf[0].tv_sec - pps_lastsec;
788 if (u_sec < (1 << pps_shift))
789 return;
792 * At the end of the calibration interval the difference between
793 * the first and last counter values becomes the scaled
794 * frequency. It will later be divided by the length of the
795 * interval to determine the frequency update. If the frequency
796 * exceeds a sanity threshold, or if the actual calibration
797 * interval is not equal to the expected length, the data are
798 * discarded. We can tolerate a modest loss of data here without
799 * much degrading frequency accuracy.
801 pps_calcnt++;
802 v_nsec = -pps_fcount;
803 pps_lastsec = pps_tf[0].tv_sec;
804 pps_fcount = 0;
805 u_nsec = MAXFREQ << pps_shift;
806 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
807 pps_shift)) {
808 time_status |= STA_PPSERROR;
809 pps_errcnt++;
810 return;
814 * Here the raw frequency offset and wander (stability) is
815 * calculated. If the wander is less than the wander threshold
816 * for four consecutive averaging intervals, the interval is
817 * doubled; if it is greater than the threshold for four
818 * consecutive intervals, the interval is halved. The scaled
819 * frequency offset is converted to frequency offset. The
820 * stability metric is calculated as the average of recent
821 * frequency changes, but is used only for performance
822 * monitoring.
824 L_LINT(ftemp, v_nsec);
825 L_RSHIFT(ftemp, pps_shift);
826 L_SUB(ftemp, pps_freq);
827 u_nsec = L_GINT(ftemp);
828 if (u_nsec > PPS_MAXWANDER) {
829 L_LINT(ftemp, PPS_MAXWANDER);
830 pps_intcnt--;
831 time_status |= STA_PPSWANDER;
832 pps_stbcnt++;
833 } else if (u_nsec < -PPS_MAXWANDER) {
834 L_LINT(ftemp, -PPS_MAXWANDER);
835 pps_intcnt--;
836 time_status |= STA_PPSWANDER;
837 pps_stbcnt++;
838 } else {
839 pps_intcnt++;
841 if (pps_intcnt >= 4) {
842 pps_intcnt = 4;
843 if (pps_shift < pps_shiftmax) {
844 pps_shift++;
845 pps_intcnt = 0;
847 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
848 pps_intcnt = -4;
849 if (pps_shift > PPS_FAVG) {
850 pps_shift--;
851 pps_intcnt = 0;
854 if (u_nsec < 0)
855 u_nsec = -u_nsec;
856 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
859 * The PPS frequency is recalculated and clamped to the maximum
860 * MAXFREQ. If enabled, the system clock frequency is updated as
861 * well.
863 L_ADD(pps_freq, ftemp);
864 u_nsec = L_GINT(pps_freq);
865 if (u_nsec > MAXFREQ)
866 L_LINT(pps_freq, MAXFREQ);
867 else if (u_nsec < -MAXFREQ)
868 L_LINT(pps_freq, -MAXFREQ);
869 if (time_status & STA_PPSFREQ)
870 time_freq = pps_freq;
872 #endif /* PPS_SYNC */