kernel - Force NFSv3 for diskless nfs mount
[dragonfly.git] / sys / kern / vfs_mount.c
blob47fb214fc5a42fb81d2e8a60f67f49fd7f37c0bb
1 /*
2 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
70 * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
74 * External virtual filesystem routines
76 #include "opt_ddb.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
90 #include <machine/limits.h>
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 #include <sys/mplock2.h>
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
100 struct mountscan_info {
101 TAILQ_ENTRY(mountscan_info) msi_entry;
102 int msi_how;
103 struct mount *msi_node;
106 struct vmntvnodescan_info {
107 TAILQ_ENTRY(vmntvnodescan_info) entry;
108 struct vnode *vp;
111 struct vnlru_info {
112 int pass;
115 static int vnlru_nowhere = 0;
116 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
117 &vnlru_nowhere, 0,
118 "Number of times the vnlru process ran without success");
121 static struct lwkt_token mntid_token;
122 static struct mount dummymount;
124 /* note: mountlist exported to pstat */
125 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
126 static TAILQ_HEAD(,mountscan_info) mountscan_list;
127 static struct lwkt_token mountlist_token;
128 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
129 struct lwkt_token mntvnode_token;
131 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
134 * Called from vfsinit()
136 void
137 vfs_mount_init(void)
139 lwkt_token_init(&mountlist_token, 1, "mntlist");
140 lwkt_token_init(&mntvnode_token, 1, "mntvnode");
141 lwkt_token_init(&mntid_token, 1, "mntid");
142 TAILQ_INIT(&mountscan_list);
143 TAILQ_INIT(&mntvnodescan_list);
144 mount_init(&dummymount);
145 dummymount.mnt_flag |= MNT_RDONLY;
149 * Support function called with mntvnode_token held to remove a vnode
150 * from the mountlist. We must update any list scans which are in progress.
152 static void
153 vremovevnodemnt(struct vnode *vp)
155 struct vmntvnodescan_info *info;
157 TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
158 if (info->vp == vp)
159 info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
161 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
165 * Allocate a new vnode and associate it with a tag, mount point, and
166 * operations vector.
168 * A VX locked and refd vnode is returned. The caller should setup the
169 * remaining fields and vx_put() or, if he wishes to leave a vref,
170 * vx_unlock() the vnode.
173 getnewvnode(enum vtagtype tag, struct mount *mp,
174 struct vnode **vpp, int lktimeout, int lkflags)
176 struct vnode *vp;
178 KKASSERT(mp != NULL);
180 vp = allocvnode(lktimeout, lkflags);
181 vp->v_tag = tag;
182 vp->v_data = NULL;
185 * By default the vnode is assigned the mount point's normal
186 * operations vector.
188 vp->v_ops = &mp->mnt_vn_use_ops;
191 * Placing the vnode on the mount point's queue makes it visible.
192 * VNON prevents it from being messed with, however.
194 insmntque(vp, mp);
197 * A VX locked & refd vnode is returned.
199 *vpp = vp;
200 return (0);
204 * This function creates vnodes with special operations vectors. The
205 * mount point is optional.
207 * This routine is being phased out but is still used by vfs_conf to
208 * create vnodes for devices prior to the root mount (with mp == NULL).
211 getspecialvnode(enum vtagtype tag, struct mount *mp,
212 struct vop_ops **ops,
213 struct vnode **vpp, int lktimeout, int lkflags)
215 struct vnode *vp;
217 vp = allocvnode(lktimeout, lkflags);
218 vp->v_tag = tag;
219 vp->v_data = NULL;
220 vp->v_ops = ops;
222 if (mp == NULL)
223 mp = &dummymount;
226 * Placing the vnode on the mount point's queue makes it visible.
227 * VNON prevents it from being messed with, however.
229 insmntque(vp, mp);
232 * A VX locked & refd vnode is returned.
234 *vpp = vp;
235 return (0);
239 * Interlock against an unmount, return 0 on success, non-zero on failure.
241 * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
242 * is in-progress.
244 * If no unmount is in-progress LK_NOWAIT is ignored. No other flag bits
245 * are used. A shared locked will be obtained and the filesystem will not
246 * be unmountable until the lock is released.
249 vfs_busy(struct mount *mp, int flags)
251 int lkflags;
253 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
254 if (flags & LK_NOWAIT)
255 return (ENOENT);
256 /* XXX not MP safe */
257 mp->mnt_kern_flag |= MNTK_MWAIT;
259 * Since all busy locks are shared except the exclusive
260 * lock granted when unmounting, the only place that a
261 * wakeup needs to be done is at the release of the
262 * exclusive lock at the end of dounmount.
264 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
265 return (ENOENT);
267 lkflags = LK_SHARED;
268 if (lockmgr(&mp->mnt_lock, lkflags))
269 panic("vfs_busy: unexpected lock failure");
270 return (0);
274 * Free a busy filesystem.
276 void
277 vfs_unbusy(struct mount *mp)
279 lockmgr(&mp->mnt_lock, LK_RELEASE);
283 * Lookup a filesystem type, and if found allocate and initialize
284 * a mount structure for it.
286 * Devname is usually updated by mount(8) after booting.
289 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
291 struct vfsconf *vfsp;
292 struct mount *mp;
294 if (fstypename == NULL)
295 return (ENODEV);
297 vfsp = vfsconf_find_by_name(fstypename);
298 if (vfsp == NULL)
299 return (ENODEV);
300 mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
301 mount_init(mp);
302 lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
304 vfs_busy(mp, LK_NOWAIT);
305 mp->mnt_vfc = vfsp;
306 mp->mnt_op = vfsp->vfc_vfsops;
307 vfsp->vfc_refcount++;
308 mp->mnt_stat.f_type = vfsp->vfc_typenum;
309 mp->mnt_flag |= MNT_RDONLY;
310 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
311 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
312 copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
313 *mpp = mp;
314 return (0);
318 * Basic mount structure initialization
320 void
321 mount_init(struct mount *mp)
323 lockinit(&mp->mnt_lock, "vfslock", 0, 0);
324 lwkt_token_init(&mp->mnt_token, 1, "permnt");
326 TAILQ_INIT(&mp->mnt_nvnodelist);
327 TAILQ_INIT(&mp->mnt_reservedvnlist);
328 TAILQ_INIT(&mp->mnt_jlist);
329 mp->mnt_nvnodelistsize = 0;
330 mp->mnt_flag = 0;
331 mp->mnt_iosize_max = DFLTPHYS;
335 * Lookup a mount point by filesystem identifier.
337 struct mount *
338 vfs_getvfs(fsid_t *fsid)
340 struct mount *mp;
342 lwkt_gettoken(&mountlist_token);
343 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
344 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
345 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
346 break;
349 lwkt_reltoken(&mountlist_token);
350 return (mp);
354 * Get a new unique fsid. Try to make its val[0] unique, since this value
355 * will be used to create fake device numbers for stat(). Also try (but
356 * not so hard) make its val[0] unique mod 2^16, since some emulators only
357 * support 16-bit device numbers. We end up with unique val[0]'s for the
358 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
360 * Keep in mind that several mounts may be running in parallel. Starting
361 * the search one past where the previous search terminated is both a
362 * micro-optimization and a defense against returning the same fsid to
363 * different mounts.
365 void
366 vfs_getnewfsid(struct mount *mp)
368 static u_int16_t mntid_base;
369 fsid_t tfsid;
370 int mtype;
372 lwkt_gettoken(&mntid_token);
373 mtype = mp->mnt_vfc->vfc_typenum;
374 tfsid.val[1] = mtype;
375 mtype = (mtype & 0xFF) << 24;
376 for (;;) {
377 tfsid.val[0] = makeudev(255,
378 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
379 mntid_base++;
380 if (vfs_getvfs(&tfsid) == NULL)
381 break;
383 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
384 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
385 lwkt_reltoken(&mntid_token);
389 * Set the FSID for a new mount point to the template. Adjust
390 * the FSID to avoid collisions.
393 vfs_setfsid(struct mount *mp, fsid_t *template)
395 int didmunge = 0;
397 bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
398 for (;;) {
399 if (vfs_getvfs(template) == NULL)
400 break;
401 didmunge = 1;
402 ++template->val[1];
404 mp->mnt_stat.f_fsid = *template;
405 return(didmunge);
409 * This routine is called when we have too many vnodes. It attempts
410 * to free <count> vnodes and will potentially free vnodes that still
411 * have VM backing store (VM backing store is typically the cause
412 * of a vnode blowout so we want to do this). Therefore, this operation
413 * is not considered cheap.
415 * A number of conditions may prevent a vnode from being reclaimed.
416 * the buffer cache may have references on the vnode, a directory
417 * vnode may still have references due to the namei cache representing
418 * underlying files, or the vnode may be in active use. It is not
419 * desireable to reuse such vnodes. These conditions may cause the
420 * number of vnodes to reach some minimum value regardless of what
421 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
425 * This is a quick non-blocking check to determine if the vnode is a good
426 * candidate for being (eventually) vgone()'d. Returns 0 if the vnode is
427 * not a good candidate, 1 if it is.
429 static __inline int
430 vmightfree(struct vnode *vp, int page_count, int pass)
432 if (vp->v_flag & VRECLAIMED)
433 return (0);
434 #if 0
435 if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
436 return (0);
437 #endif
438 if (sysref_isactive(&vp->v_sysref))
439 return (0);
440 if (vp->v_object && vp->v_object->resident_page_count >= page_count)
441 return (0);
444 * XXX horrible hack. Up to four passes will be taken. Each pass
445 * makes a larger set of vnodes eligible. For now what this really
446 * means is that we try to recycle files opened only once before
447 * recycling files opened multiple times.
449 switch(vp->v_flag & (VAGE0 | VAGE1)) {
450 case 0:
451 if (pass < 3)
452 return(0);
453 break;
454 case VAGE0:
455 if (pass < 2)
456 return(0);
457 break;
458 case VAGE1:
459 if (pass < 1)
460 return(0);
461 break;
462 case VAGE0 | VAGE1:
463 break;
465 return (1);
469 * The vnode was found to be possibly vgone()able and the caller has locked it
470 * (thus the usecount should be 1 now). Determine if the vnode is actually
471 * vgone()able, doing some cleanups in the process. Returns 1 if the vnode
472 * can be vgone()'d, 0 otherwise.
474 * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
475 * in the namecache topology and (B) this vnode has buffer cache bufs.
476 * We cannot remove vnodes with non-leaf namecache associations. We do a
477 * tentitive leaf check prior to attempting to flush out any buffers but the
478 * 'real' test when all is said in done is that v_auxrefs must become 0 for
479 * the vnode to be freeable.
481 * We could theoretically just unconditionally flush when v_auxrefs != 0,
482 * but flushing data associated with non-leaf nodes (which are always
483 * directories), just throws it away for no benefit. It is the buffer
484 * cache's responsibility to choose buffers to recycle from the cached
485 * data point of view.
487 static int
488 visleaf(struct vnode *vp)
490 struct namecache *ncp;
492 spin_lock(&vp->v_spinlock);
493 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
494 if (!TAILQ_EMPTY(&ncp->nc_list)) {
495 spin_unlock(&vp->v_spinlock);
496 return(0);
499 spin_unlock(&vp->v_spinlock);
500 return(1);
504 * Try to clean up the vnode to the point where it can be vgone()'d, returning
505 * 0 if it cannot be vgone()'d (or already has been), 1 if it can. Unlike
506 * vmightfree() this routine may flush the vnode and block. Vnodes marked
507 * VFREE are still candidates for vgone()ing because they may hold namecache
508 * resources and could be blocking the namecache directory hierarchy (and
509 * related vnodes) from being freed.
511 static int
512 vtrytomakegoneable(struct vnode *vp, int page_count)
514 if (vp->v_flag & VRECLAIMED)
515 return (0);
516 if (vp->v_sysref.refcnt > 1)
517 return (0);
518 if (vp->v_object && vp->v_object->resident_page_count >= page_count)
519 return (0);
520 if (vp->v_auxrefs && visleaf(vp)) {
521 vinvalbuf(vp, V_SAVE, 0, 0);
522 #if 0 /* DEBUG */
523 kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
524 "vrecycle: vp %p succeeded: %s\n"), vp,
525 (TAILQ_FIRST(&vp->v_namecache) ?
526 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
527 #endif
531 * This sequence may seem a little strange, but we need to optimize
532 * the critical path a bit. We can't recycle vnodes with other
533 * references and because we are trying to recycle an otherwise
534 * perfectly fine vnode we have to invalidate the namecache in a
535 * way that avoids possible deadlocks (since the vnode lock is being
536 * held here). Finally, we have to check for other references one
537 * last time in case something snuck in during the inval.
539 if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
540 return (0);
541 if (cache_inval_vp_nonblock(vp))
542 return (0);
543 return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
547 * Reclaim up to 1/10 of the vnodes associated with a mount point. Try
548 * to avoid vnodes which have lots of resident pages (we are trying to free
549 * vnodes, not memory).
551 * This routine is a callback from the mountlist scan. The mount point
552 * in question will be busied.
554 * NOTE: The 1/10 reclamation also ensures that the inactive data set
555 * (the vnodes being recycled by the one-time use) does not degenerate
556 * into too-small a set. This is important because once a vnode is
557 * marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
558 * will not be destroyed EXCEPT by this mechanism. VM pages can still
559 * be cleaned/freed by the pageout daemon.
561 static int
562 vlrureclaim(struct mount *mp, void *data)
564 struct vnlru_info *info = data;
565 struct vnode *vp;
566 int done;
567 int trigger;
568 int usevnodes;
569 int count;
570 int trigger_mult = vnlru_nowhere;
573 * Calculate the trigger point for the resident pages check. The
574 * minimum trigger value is approximately the number of pages in
575 * the system divded by the number of vnodes. However, due to
576 * various other system memory overheads unrelated to data caching
577 * it is a good idea to double the trigger (at least).
579 * trigger_mult starts at 0. If the recycler is having problems
580 * finding enough freeable vnodes it will increase trigger_mult.
581 * This should not happen in normal operation, even on machines with
582 * low amounts of memory, but extraordinary memory use by the system
583 * verses the amount of cached data can trigger it.
585 usevnodes = desiredvnodes;
586 if (usevnodes <= 0)
587 usevnodes = 1;
588 trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
590 done = 0;
591 lwkt_gettoken(&mntvnode_token);
592 count = mp->mnt_nvnodelistsize / 10 + 1;
594 while (count && mp->mnt_syncer) {
596 * Next vnode. Use the special syncer vnode to placemark
597 * the LRU. This way the LRU code does not interfere with
598 * vmntvnodescan().
600 vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
601 TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
602 if (vp) {
603 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
604 mp->mnt_syncer, v_nmntvnodes);
605 } else {
606 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
607 v_nmntvnodes);
608 vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
609 if (vp == NULL)
610 break;
614 * __VNODESCAN__
616 * The VP will stick around while we hold mntvnode_token,
617 * at least until we block, so we can safely do an initial
618 * check, and then must check again after we lock the vnode.
620 if (vp->v_type == VNON || /* syncer or indeterminant */
621 !vmightfree(vp, trigger, info->pass) /* critical path opt */
623 --count;
624 continue;
628 * VX get the candidate vnode. If the VX get fails the
629 * vnode might still be on the mountlist. Our loop depends
630 * on us at least cycling the vnode to the end of the
631 * mountlist.
633 if (vx_get_nonblock(vp) != 0) {
634 --count;
635 continue;
639 * Since we blocked locking the vp, make sure it is still
640 * a candidate for reclamation. That is, it has not already
641 * been reclaimed and only has our VX reference associated
642 * with it.
644 if (vp->v_type == VNON || /* syncer or indeterminant */
645 (vp->v_flag & VRECLAIMED) ||
646 vp->v_mount != mp ||
647 !vtrytomakegoneable(vp, trigger) /* critical path opt */
649 --count;
650 vx_put(vp);
651 continue;
655 * All right, we are good, move the vp to the end of the
656 * mountlist and clean it out. The vget will have returned
657 * an error if the vnode was destroyed (VRECLAIMED set), so we
658 * do not have to check again. The vput() will move the
659 * vnode to the free list if the vgone() was successful.
661 KKASSERT(vp->v_mount == mp);
662 vgone_vxlocked(vp);
663 vx_put(vp);
664 ++done;
665 --count;
667 lwkt_reltoken(&mntvnode_token);
668 return (done);
672 * Attempt to recycle vnodes in a context that is always safe to block.
673 * Calling vlrurecycle() from the bowels of file system code has some
674 * interesting deadlock problems.
676 static struct thread *vnlruthread;
677 static int vnlruproc_sig;
679 void
680 vnlru_proc_wait(void)
682 if (vnlruproc_sig == 0) {
683 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
684 wakeup(vnlruthread);
686 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
689 static void
690 vnlru_proc(void)
692 struct thread *td = curthread;
693 struct vnlru_info info;
694 int done;
696 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
697 SHUTDOWN_PRI_FIRST);
699 get_mplock();
700 crit_enter();
702 for (;;) {
703 kproc_suspend_loop();
706 * Try to free some vnodes if we have too many
708 if (numvnodes > desiredvnodes &&
709 freevnodes > desiredvnodes * 2 / 10) {
710 int count = numvnodes - desiredvnodes;
712 if (count > freevnodes / 100)
713 count = freevnodes / 100;
714 if (count < 5)
715 count = 5;
716 freesomevnodes(count);
720 * Nothing to do if most of our vnodes are already on
721 * the free list.
723 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
724 vnlruproc_sig = 0;
725 wakeup(&vnlruproc_sig);
726 tsleep(td, 0, "vlruwt", hz);
727 continue;
729 cache_hysteresis();
732 * The pass iterates through the four combinations of
733 * VAGE0/VAGE1. We want to get rid of aged small files
734 * first.
736 info.pass = 0;
737 done = 0;
738 while (done == 0 && info.pass < 4) {
739 done = mountlist_scan(vlrureclaim, &info,
740 MNTSCAN_FORWARD);
741 ++info.pass;
745 * The vlrureclaim() call only processes 1/10 of the vnodes
746 * on each mount. If we couldn't find any repeat the loop
747 * at least enough times to cover all available vnodes before
748 * we start sleeping. Complain if the failure extends past
749 * 30 second, every 30 seconds.
751 if (done == 0) {
752 ++vnlru_nowhere;
753 if (vnlru_nowhere % 10 == 0)
754 tsleep(td, 0, "vlrup", hz * 3);
755 if (vnlru_nowhere % 100 == 0)
756 kprintf("vnlru_proc: vnode recycler stopped working!\n");
757 if (vnlru_nowhere == 1000)
758 vnlru_nowhere = 900;
759 } else {
760 vnlru_nowhere = 0;
764 crit_exit();
765 rel_mplock();
769 * MOUNTLIST FUNCTIONS
773 * mountlist_insert (MP SAFE)
775 * Add a new mount point to the mount list.
777 void
778 mountlist_insert(struct mount *mp, int how)
780 lwkt_gettoken(&mountlist_token);
781 if (how == MNTINS_FIRST)
782 TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
783 else
784 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
785 lwkt_reltoken(&mountlist_token);
789 * mountlist_interlock (MP SAFE)
791 * Execute the specified interlock function with the mountlist token
792 * held. The function will be called in a serialized fashion verses
793 * other functions called through this mechanism.
796 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
798 int error;
800 lwkt_gettoken(&mountlist_token);
801 error = callback(mp);
802 lwkt_reltoken(&mountlist_token);
803 return (error);
807 * mountlist_boot_getfirst (DURING BOOT ONLY)
809 * This function returns the first mount on the mountlist, which is
810 * expected to be the root mount. Since no interlocks are obtained
811 * this function is only safe to use during booting.
814 struct mount *
815 mountlist_boot_getfirst(void)
817 return(TAILQ_FIRST(&mountlist));
821 * mountlist_remove (MP SAFE)
823 * Remove a node from the mountlist. If this node is the next scan node
824 * for any active mountlist scans, the active mountlist scan will be
825 * adjusted to skip the node, thus allowing removals during mountlist
826 * scans.
828 void
829 mountlist_remove(struct mount *mp)
831 struct mountscan_info *msi;
833 lwkt_gettoken(&mountlist_token);
834 TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
835 if (msi->msi_node == mp) {
836 if (msi->msi_how & MNTSCAN_FORWARD)
837 msi->msi_node = TAILQ_NEXT(mp, mnt_list);
838 else
839 msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
842 TAILQ_REMOVE(&mountlist, mp, mnt_list);
843 lwkt_reltoken(&mountlist_token);
847 * mountlist_scan (MP SAFE)
849 * Safely scan the mount points on the mount list. Unless otherwise
850 * specified each mount point will be busied prior to the callback and
851 * unbusied afterwords. The callback may safely remove any mount point
852 * without interfering with the scan. If the current callback
853 * mount is removed the scanner will not attempt to unbusy it.
855 * If a mount node cannot be busied it is silently skipped.
857 * The callback return value is aggregated and a total is returned. A return
858 * value of < 0 is not aggregated and will terminate the scan.
860 * MNTSCAN_FORWARD - the mountlist is scanned in the forward direction
861 * MNTSCAN_REVERSE - the mountlist is scanned in reverse
862 * MNTSCAN_NOBUSY - the scanner will make the callback without busying
863 * the mount node.
866 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
868 struct mountscan_info info;
869 struct mount *mp;
870 thread_t td;
871 int count;
872 int res;
874 lwkt_gettoken(&mountlist_token);
876 info.msi_how = how;
877 info.msi_node = NULL; /* paranoia */
878 TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
880 res = 0;
881 td = curthread;
883 if (how & MNTSCAN_FORWARD) {
884 info.msi_node = TAILQ_FIRST(&mountlist);
885 while ((mp = info.msi_node) != NULL) {
886 if (how & MNTSCAN_NOBUSY) {
887 count = callback(mp, data);
888 } else if (vfs_busy(mp, LK_NOWAIT) == 0) {
889 count = callback(mp, data);
890 if (mp == info.msi_node)
891 vfs_unbusy(mp);
892 } else {
893 count = 0;
895 if (count < 0)
896 break;
897 res += count;
898 if (mp == info.msi_node)
899 info.msi_node = TAILQ_NEXT(mp, mnt_list);
901 } else if (how & MNTSCAN_REVERSE) {
902 info.msi_node = TAILQ_LAST(&mountlist, mntlist);
903 while ((mp = info.msi_node) != NULL) {
904 if (how & MNTSCAN_NOBUSY) {
905 count = callback(mp, data);
906 } else if (vfs_busy(mp, LK_NOWAIT) == 0) {
907 count = callback(mp, data);
908 if (mp == info.msi_node)
909 vfs_unbusy(mp);
910 } else {
911 count = 0;
913 if (count < 0)
914 break;
915 res += count;
916 if (mp == info.msi_node)
917 info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
920 TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
921 lwkt_reltoken(&mountlist_token);
922 return(res);
926 * MOUNT RELATED VNODE FUNCTIONS
929 static struct kproc_desc vnlru_kp = {
930 "vnlru",
931 vnlru_proc,
932 &vnlruthread
934 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
937 * Move a vnode from one mount queue to another.
939 * MPSAFE
941 void
942 insmntque(struct vnode *vp, struct mount *mp)
944 lwkt_gettoken(&mntvnode_token);
946 * Delete from old mount point vnode list, if on one.
948 if (vp->v_mount != NULL) {
949 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
950 ("bad mount point vnode list size"));
951 vremovevnodemnt(vp);
952 vp->v_mount->mnt_nvnodelistsize--;
955 * Insert into list of vnodes for the new mount point, if available.
956 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
958 if ((vp->v_mount = mp) == NULL) {
959 lwkt_reltoken(&mntvnode_token);
960 return;
962 if (mp->mnt_syncer) {
963 TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
964 } else {
965 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
967 mp->mnt_nvnodelistsize++;
968 lwkt_reltoken(&mntvnode_token);
973 * Scan the vnodes under a mount point and issue appropriate callbacks.
975 * The fastfunc() callback is called with just the mountlist token held
976 * (no vnode lock). It may not block and the vnode may be undergoing
977 * modifications while the caller is processing it. The vnode will
978 * not be entirely destroyed, however, due to the fact that the mountlist
979 * token is held. A return value < 0 skips to the next vnode without calling
980 * the slowfunc(), a return value > 0 terminates the loop.
982 * The slowfunc() callback is called after the vnode has been successfully
983 * locked based on passed flags. The vnode is skipped if it gets rearranged
984 * or destroyed while blocking on the lock. A non-zero return value from
985 * the slow function terminates the loop. The slow function is allowed to
986 * arbitrarily block. The scanning code guarentees consistency of operation
987 * even if the slow function deletes or moves the node, or blocks and some
988 * other thread deletes or moves the node.
990 * NOTE: We hold vmobj_token to prevent a VM object from being destroyed
991 * out from under the fastfunc()'s vnode test. It will not prevent
992 * v_object from getting NULL'd out but it will ensure that the
993 * pointer (if we race) will remain stable.
996 vmntvnodescan(
997 struct mount *mp,
998 int flags,
999 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1000 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1001 void *data
1003 struct vmntvnodescan_info info;
1004 struct vnode *vp;
1005 int r = 0;
1006 int maxcount = 1000000;
1007 int stopcount = 0;
1008 int count = 0;
1010 lwkt_gettoken(&mntvnode_token);
1011 lwkt_gettoken(&vmobj_token);
1014 * If asked to do one pass stop after iterating available vnodes.
1015 * Under heavy loads new vnodes can be added while we are scanning,
1016 * so this isn't perfect. Create a slop factor of 2x.
1018 if (flags & VMSC_ONEPASS)
1019 stopcount = mp->mnt_nvnodelistsize * 2;
1021 info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1022 TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1023 while ((vp = info.vp) != NULL) {
1024 if (--maxcount == 0)
1025 panic("maxcount reached during vmntvnodescan");
1028 * Skip if visible but not ready, or special (e.g.
1029 * mp->mnt_syncer)
1031 if (vp->v_type == VNON)
1032 goto next;
1033 KKASSERT(vp->v_mount == mp);
1036 * Quick test. A negative return continues the loop without
1037 * calling the slow test. 0 continues onto the slow test.
1038 * A positive number aborts the loop.
1040 if (fastfunc) {
1041 if ((r = fastfunc(mp, vp, data)) < 0) {
1042 r = 0;
1043 goto next;
1045 if (r)
1046 break;
1050 * Get a vxlock on the vnode, retry if it has moved or isn't
1051 * in the mountlist where we expect it.
1053 if (slowfunc) {
1054 int error;
1056 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1057 case VMSC_GETVP:
1058 error = vget(vp, LK_EXCLUSIVE);
1059 break;
1060 case VMSC_GETVP|VMSC_NOWAIT:
1061 error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1062 break;
1063 case VMSC_GETVX:
1064 vx_get(vp);
1065 error = 0;
1066 break;
1067 default:
1068 error = 0;
1069 break;
1071 if (error)
1072 goto next;
1074 * Do not call the slow function if the vnode is
1075 * invalid or if it was ripped out from under us
1076 * while we (potentially) blocked.
1078 if (info.vp == vp && vp->v_type != VNON)
1079 r = slowfunc(mp, vp, data);
1082 * Cleanup
1084 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1085 case VMSC_GETVP:
1086 case VMSC_GETVP|VMSC_NOWAIT:
1087 vput(vp);
1088 break;
1089 case VMSC_GETVX:
1090 vx_put(vp);
1091 break;
1092 default:
1093 break;
1095 if (r != 0)
1096 break;
1099 next:
1101 * Yield after some processing. Depending on the number
1102 * of vnodes, we might wind up running for a long time.
1103 * Because threads are not preemptable, time critical
1104 * userland processes might starve. Give them a chance
1105 * now and then.
1107 if (++count == 10000) {
1108 /* We really want to yield a bit, so we simply sleep a tick */
1109 tsleep(mp, 0, "vnodescn", 1);
1110 count = 0;
1114 * If doing one pass this decrements to zero. If it starts
1115 * at zero it is effectively unlimited for the purposes of
1116 * this loop.
1118 if (--stopcount == 0)
1119 break;
1122 * Iterate. If the vnode was ripped out from under us
1123 * info.vp will already point to the next vnode, otherwise
1124 * we have to obtain the next valid vnode ourselves.
1126 if (info.vp == vp)
1127 info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1129 TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1130 lwkt_reltoken(&vmobj_token);
1131 lwkt_reltoken(&mntvnode_token);
1132 return(r);
1136 * Remove any vnodes in the vnode table belonging to mount point mp.
1138 * If FORCECLOSE is not specified, there should not be any active ones,
1139 * return error if any are found (nb: this is a user error, not a
1140 * system error). If FORCECLOSE is specified, detach any active vnodes
1141 * that are found.
1143 * If WRITECLOSE is set, only flush out regular file vnodes open for
1144 * writing.
1146 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1148 * `rootrefs' specifies the base reference count for the root vnode
1149 * of this filesystem. The root vnode is considered busy if its
1150 * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1151 * will call vrele() on the root vnode exactly rootrefs times.
1152 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1153 * be zero.
1155 #ifdef DIAGNOSTIC
1156 static int busyprt = 0; /* print out busy vnodes */
1157 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1158 #endif
1160 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1162 struct vflush_info {
1163 int flags;
1164 int busy;
1165 thread_t td;
1169 vflush(struct mount *mp, int rootrefs, int flags)
1171 struct thread *td = curthread; /* XXX */
1172 struct vnode *rootvp = NULL;
1173 int error;
1174 struct vflush_info vflush_info;
1176 if (rootrefs > 0) {
1177 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1178 ("vflush: bad args"));
1180 * Get the filesystem root vnode. We can vput() it
1181 * immediately, since with rootrefs > 0, it won't go away.
1183 if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1184 if ((flags & FORCECLOSE) == 0)
1185 return (error);
1186 rootrefs = 0;
1187 /* continue anyway */
1189 if (rootrefs)
1190 vput(rootvp);
1193 vflush_info.busy = 0;
1194 vflush_info.flags = flags;
1195 vflush_info.td = td;
1196 vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1198 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1200 * If just the root vnode is busy, and if its refcount
1201 * is equal to `rootrefs', then go ahead and kill it.
1203 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1204 KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1205 if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1206 vx_lock(rootvp);
1207 vgone_vxlocked(rootvp);
1208 vx_unlock(rootvp);
1209 vflush_info.busy = 0;
1212 if (vflush_info.busy)
1213 return (EBUSY);
1214 for (; rootrefs > 0; rootrefs--)
1215 vrele(rootvp);
1216 return (0);
1220 * The scan callback is made with an VX locked vnode.
1222 static int
1223 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1225 struct vflush_info *info = data;
1226 struct vattr vattr;
1229 * Skip over a vnodes marked VSYSTEM.
1231 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1232 return(0);
1236 * If WRITECLOSE is set, flush out unlinked but still open
1237 * files (even if open only for reading) and regular file
1238 * vnodes open for writing.
1240 if ((info->flags & WRITECLOSE) &&
1241 (vp->v_type == VNON ||
1242 (VOP_GETATTR(vp, &vattr) == 0 &&
1243 vattr.va_nlink > 0)) &&
1244 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1245 return(0);
1249 * If we are the only holder (refcnt of 1) or the vnode is in
1250 * termination (refcnt < 0), we can vgone the vnode.
1252 if (vp->v_sysref.refcnt <= 1) {
1253 vgone_vxlocked(vp);
1254 return(0);
1258 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1259 * it to a dummymount structure so vop_*() functions don't deref
1260 * a NULL pointer.
1262 if (info->flags & FORCECLOSE) {
1263 vhold(vp);
1264 vgone_vxlocked(vp);
1265 if (vp->v_mount == NULL)
1266 insmntque(vp, &dummymount);
1267 vdrop(vp);
1268 return(0);
1270 #ifdef DIAGNOSTIC
1271 if (busyprt)
1272 vprint("vflush: busy vnode", vp);
1273 #endif
1274 ++info->busy;
1275 return(0);
1278 void
1279 add_bio_ops(struct bio_ops *ops)
1281 TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1284 void
1285 rem_bio_ops(struct bio_ops *ops)
1287 TAILQ_REMOVE(&bio_ops_list, ops, entry);
1291 * This calls the bio_ops io_sync function either for a mount point
1292 * or generally.
1294 * WARNING: softdeps is weirdly coded and just isn't happy unless
1295 * io_sync is called with a NULL mount from the general syncing code.
1297 void
1298 bio_ops_sync(struct mount *mp)
1300 struct bio_ops *ops;
1302 if (mp) {
1303 if ((ops = mp->mnt_bioops) != NULL)
1304 ops->io_sync(mp);
1305 } else {
1306 TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1307 ops->io_sync(NULL);
1313 * Lookup a mount point by nch
1315 struct mount *
1316 mount_get_by_nc(struct namecache *ncp)
1318 struct mount *mp = NULL;
1320 lwkt_gettoken(&mountlist_token);
1321 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1322 if (ncp == mp->mnt_ncmountpt.ncp)
1323 break;
1325 lwkt_reltoken(&mountlist_token);
1326 return (mp);