kernel/mrsas: Fix a double assignment.
[dragonfly.git] / sys / kern / kern_time.c
blobc2e9f77666492d7f7d4f48982d870d81d77395cd
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/sysproto.h>
37 #include <sys/resourcevar.h>
38 #include <sys/signalvar.h>
39 #include <sys/kernel.h>
40 #include <sys/sysent.h>
41 #include <sys/sysunion.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/time.h>
45 #include <sys/vnode.h>
46 #include <sys/sysctl.h>
47 #include <sys/kern_syscall.h>
48 #include <sys/upmap.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
52 #include <sys/msgport2.h>
53 #include <sys/spinlock2.h>
54 #include <sys/thread2.h>
56 extern struct spinlock ntp_spin;
58 #define CPUCLOCK_BIT 0x80000000
59 #define CPUCLOCK_ID_MASK ~CPUCLOCK_BIT
60 #define CPUCLOCK2LWPID(clock_id) (((clockid_t)(clock_id) >> 32) & CPUCLOCK_ID_MASK)
61 #define CPUCLOCK2PID(clock_id) ((clock_id) & CPUCLOCK_ID_MASK)
62 #define MAKE_CPUCLOCK(pid, lwp_id) ((clockid_t)(lwp_id) << 32 | (pid) | CPUCLOCK_BIT)
64 struct timezone tz;
67 * Time of day and interval timer support.
69 * These routines provide the kernel entry points to get and set
70 * the time-of-day and per-process interval timers. Subroutines
71 * here provide support for adding and subtracting timeval structures
72 * and decrementing interval timers, optionally reloading the interval
73 * timers when they expire.
76 static int settime(struct timeval *);
77 static void timevalfix(struct timeval *);
78 static void realitexpire(void *arg);
80 static int sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS);
84 * Nanosleep tries very hard to sleep for a precisely requested time
85 * interval, down to 1uS. The administrator can impose a minimum delay
86 * and a delay below which we hard-loop instead of initiate a timer
87 * interrupt and sleep.
89 * For machines under high loads it might be beneficial to increase min_us
90 * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
92 static int nanosleep_min_us = 10;
93 static int nanosleep_hard_us = 100;
94 static int gettimeofday_quick = 0;
95 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
96 &nanosleep_min_us, 0, "");
97 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
98 &nanosleep_hard_us, 0, "");
99 SYSCTL_PROC(_kern, OID_AUTO, gettimeofday_quick, CTLTYPE_INT | CTLFLAG_RW,
100 0, 0, sysctl_gettimeofday_quick, "I", "Quick mode gettimeofday");
102 static struct lock masterclock_lock = LOCK_INITIALIZER("mstrclk", 0, 0);
104 static int
105 settime(struct timeval *tv)
107 struct timeval delta, tv1, tv2;
108 static struct timeval maxtime, laststep;
109 struct timespec ts;
110 int origcpu;
112 if ((origcpu = mycpu->gd_cpuid) != 0)
113 lwkt_setcpu_self(globaldata_find(0));
115 crit_enter();
116 microtime(&tv1);
117 delta = *tv;
118 timevalsub(&delta, &tv1);
121 * If the system is secure, we do not allow the time to be
122 * set to a value earlier than 1 second less than the highest
123 * time we have yet seen. The worst a miscreant can do in
124 * this circumstance is "freeze" time. He couldn't go
125 * back to the past.
127 * We similarly do not allow the clock to be stepped more
128 * than one second, nor more than once per second. This allows
129 * a miscreant to make the clock march double-time, but no worse.
131 if (securelevel > 1) {
132 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
134 * Update maxtime to latest time we've seen.
136 if (tv1.tv_sec > maxtime.tv_sec)
137 maxtime = tv1;
138 tv2 = *tv;
139 timevalsub(&tv2, &maxtime);
140 if (tv2.tv_sec < -1) {
141 tv->tv_sec = maxtime.tv_sec - 1;
142 kprintf("Time adjustment clamped to -1 second\n");
144 } else {
145 if (tv1.tv_sec == laststep.tv_sec) {
146 crit_exit();
147 return (EPERM);
149 if (delta.tv_sec > 1) {
150 tv->tv_sec = tv1.tv_sec + 1;
151 kprintf("Time adjustment clamped to +1 second\n");
153 laststep = *tv;
157 ts.tv_sec = tv->tv_sec;
158 ts.tv_nsec = tv->tv_usec * 1000;
159 set_timeofday(&ts);
160 crit_exit();
162 if (origcpu != 0)
163 lwkt_setcpu_self(globaldata_find(origcpu));
165 resettodr();
166 return (0);
169 static void
170 get_process_cputime(struct proc *p, struct timespec *ats)
172 struct rusage ru;
174 lwkt_gettoken(&p->p_token);
175 calcru_proc(p, &ru);
176 lwkt_reltoken(&p->p_token);
177 timevaladd(&ru.ru_utime, &ru.ru_stime);
178 TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
181 static void
182 get_process_usertime(struct proc *p, struct timespec *ats)
184 struct rusage ru;
186 lwkt_gettoken(&p->p_token);
187 calcru_proc(p, &ru);
188 lwkt_reltoken(&p->p_token);
189 TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
192 static void
193 get_thread_cputime(struct thread *td, struct timespec *ats)
195 struct timeval sys, user;
197 calcru(td->td_lwp, &user, &sys);
198 timevaladd(&user, &sys);
199 TIMEVAL_TO_TIMESPEC(&user, ats);
203 * MPSAFE
206 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
208 struct proc *p;
209 struct lwp *lp;
210 lwpid_t lwp_id;
212 p = curproc;
213 switch(clock_id) {
214 case CLOCK_REALTIME:
215 case CLOCK_REALTIME_PRECISE:
216 nanotime(ats);
217 break;
218 case CLOCK_REALTIME_FAST:
219 getnanotime(ats);
220 break;
221 case CLOCK_MONOTONIC:
222 case CLOCK_MONOTONIC_PRECISE:
223 case CLOCK_UPTIME:
224 case CLOCK_UPTIME_PRECISE:
225 nanouptime(ats);
226 break;
227 case CLOCK_MONOTONIC_FAST:
228 case CLOCK_UPTIME_FAST:
229 getnanouptime(ats);
230 break;
231 case CLOCK_VIRTUAL:
232 get_process_usertime(p, ats);
233 break;
234 case CLOCK_PROF:
235 case CLOCK_PROCESS_CPUTIME_ID:
236 get_process_cputime(p, ats);
237 break;
238 case CLOCK_SECOND:
239 ats->tv_sec = time_second;
240 ats->tv_nsec = 0;
241 break;
242 case CLOCK_THREAD_CPUTIME_ID:
243 get_thread_cputime(curthread, ats);
244 break;
245 default:
246 if ((clock_id & CPUCLOCK_BIT) == 0)
247 return (EINVAL);
248 if ((p = pfind(CPUCLOCK2PID(clock_id))) == NULL)
249 return (EINVAL);
250 lwp_id = CPUCLOCK2LWPID(clock_id);
251 if (lwp_id == 0) {
252 get_process_cputime(p, ats);
253 } else {
254 lwkt_gettoken(&p->p_token);
255 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id);
256 if (lp == NULL) {
257 lwkt_reltoken(&p->p_token);
258 PRELE(p);
259 return (EINVAL);
261 get_thread_cputime(lp->lwp_thread, ats);
262 lwkt_reltoken(&p->p_token);
264 PRELE(p);
266 return (0);
270 * MPSAFE
273 sys_clock_gettime(struct clock_gettime_args *uap)
275 struct timespec ats;
276 int error;
278 error = kern_clock_gettime(uap->clock_id, &ats);
279 if (error == 0)
280 error = copyout(&ats, uap->tp, sizeof(ats));
282 return (error);
286 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
288 struct thread *td = curthread;
289 struct timeval atv;
290 int error;
292 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
293 return (error);
294 if (clock_id != CLOCK_REALTIME)
295 return (EINVAL);
296 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
297 return (EINVAL);
299 lockmgr(&masterclock_lock, LK_EXCLUSIVE);
300 TIMESPEC_TO_TIMEVAL(&atv, ats);
301 error = settime(&atv);
302 lockmgr(&masterclock_lock, LK_RELEASE);
304 return (error);
308 * MPALMOSTSAFE
311 sys_clock_settime(struct clock_settime_args *uap)
313 struct timespec ats;
314 int error;
316 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
317 return (error);
319 error = kern_clock_settime(uap->clock_id, &ats);
321 return (error);
325 * MPSAFE
328 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
330 ts->tv_sec = 0;
331 switch(clock_id) {
332 case CLOCK_REALTIME:
333 case CLOCK_REALTIME_FAST:
334 case CLOCK_REALTIME_PRECISE:
335 case CLOCK_MONOTONIC:
336 case CLOCK_MONOTONIC_FAST:
337 case CLOCK_MONOTONIC_PRECISE:
338 case CLOCK_UPTIME:
339 case CLOCK_UPTIME_FAST:
340 case CLOCK_UPTIME_PRECISE:
342 * Round up the result of the division cheaply
343 * by adding 1. Rounding up is especially important
344 * if rounding down would give 0. Perfect rounding
345 * is unimportant.
347 ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
348 break;
349 case CLOCK_VIRTUAL:
350 case CLOCK_PROF:
351 /* Accurately round up here because we can do so cheaply. */
352 ts->tv_nsec = (1000000000 + hz - 1) / hz;
353 break;
354 case CLOCK_SECOND:
355 ts->tv_sec = 1;
356 ts->tv_nsec = 0;
357 break;
358 case CLOCK_THREAD_CPUTIME_ID:
359 case CLOCK_PROCESS_CPUTIME_ID:
360 ts->tv_nsec = 1000;
361 break;
362 default:
363 if ((clock_id & CPUCLOCK_BIT) != 0)
364 ts->tv_nsec = 1000;
365 else
366 return (EINVAL);
369 return (0);
373 * MPSAFE
376 sys_clock_getres(struct clock_getres_args *uap)
378 int error;
379 struct timespec ts;
381 error = kern_clock_getres(uap->clock_id, &ts);
382 if (error == 0)
383 error = copyout(&ts, uap->tp, sizeof(ts));
385 return (error);
388 static int
389 kern_getcpuclockid(pid_t pid, lwpid_t lwp_id, clockid_t *clock_id)
391 struct proc *p;
392 int error = 0;
394 if (pid == 0) {
395 p = curproc;
396 pid = p->p_pid;
397 PHOLD(p);
398 } else {
399 p = pfind(pid);
400 if (p == NULL)
401 return (ESRCH);
403 /* lwp_id can be 0 when called by clock_getcpuclockid() */
404 if (lwp_id < 0) {
405 error = EINVAL;
406 goto out;
408 lwkt_gettoken(&p->p_token);
409 if (lwp_id > 0 &&
410 lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id) == NULL) {
411 lwkt_reltoken(&p->p_token);
412 error = ESRCH;
413 goto out;
415 *clock_id = MAKE_CPUCLOCK(pid, lwp_id);
416 lwkt_reltoken(&p->p_token);
417 out:
418 PRELE(p);
419 return (error);
423 sys_getcpuclockid(struct getcpuclockid_args *uap)
425 clockid_t clk_id;
426 int error;
428 error = kern_getcpuclockid(uap->pid, uap->lwp_id, &clk_id);
429 if (error == 0)
430 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
432 return (error);
436 * nanosleep1()
438 * This is a general helper function for nanosleep() (aka sleep() aka
439 * usleep()).
441 * If there is less then one tick's worth of time left and
442 * we haven't done a yield, or the remaining microseconds is
443 * ridiculously low, do a yield. This avoids having
444 * to deal with systimer overheads when the system is under
445 * heavy loads. If we have done a yield already then use
446 * a systimer and an uninterruptable thread wait.
448 * If there is more then a tick's worth of time left,
449 * calculate the baseline ticks and use an interruptable
450 * tsleep, then handle the fine-grained delay on the next
451 * loop. This usually results in two sleeps occuring, a long one
452 * and a short one.
454 * MPSAFE
456 static void
457 ns1_systimer(systimer_t info, int in_ipi __unused,
458 struct intrframe *frame __unused)
460 lwkt_schedule(info->data);
464 nanosleep1(struct timespec *rqt, struct timespec *rmt)
466 static int nanowait;
467 struct timespec ts, ts2, ts3;
468 struct timeval tv;
469 int error;
471 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
472 return (EINVAL);
473 /* XXX: imho this should return EINVAL at least for tv_sec < 0 */
474 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
475 return (0);
476 nanouptime(&ts);
477 timespecadd(&ts, rqt); /* ts = target timestamp compare */
478 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
480 for (;;) {
481 int ticks;
482 struct systimer info;
484 ticks = tv.tv_usec / ustick; /* approximate */
486 if (tv.tv_sec == 0 && ticks == 0) {
487 thread_t td = curthread;
488 if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
489 tv.tv_usec = nanosleep_min_us;
490 if (tv.tv_usec < nanosleep_hard_us) {
491 lwkt_user_yield();
492 cpu_pause();
493 } else {
494 crit_enter_quick(td);
495 systimer_init_oneshot(&info, ns1_systimer,
496 td, tv.tv_usec);
497 lwkt_deschedule_self(td);
498 crit_exit_quick(td);
499 lwkt_switch();
500 systimer_del(&info); /* make sure it's gone */
502 error = iscaught(td->td_lwp);
503 } else if (tv.tv_sec == 0) {
504 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
505 } else {
506 ticks = tvtohz_low(&tv); /* also handles overflow */
507 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
509 nanouptime(&ts2);
510 if (error && error != EWOULDBLOCK) {
511 if (error == ERESTART)
512 error = EINTR;
513 if (rmt != NULL) {
514 timespecsub(&ts, &ts2);
515 if (ts.tv_sec < 0)
516 timespecclear(&ts);
517 *rmt = ts;
519 return (error);
521 if (timespeccmp(&ts2, &ts, >=))
522 return (0);
523 ts3 = ts;
524 timespecsub(&ts3, &ts2);
525 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
530 * MPSAFE
533 sys_nanosleep(struct nanosleep_args *uap)
535 int error;
536 struct timespec rqt;
537 struct timespec rmt;
539 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
540 if (error)
541 return (error);
543 error = nanosleep1(&rqt, &rmt);
546 * copyout the residual if nanosleep was interrupted.
548 if (error && uap->rmtp) {
549 int error2;
551 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
552 if (error2)
553 error = error2;
555 return (error);
559 * The gettimeofday() system call is supposed to return a fine-grained
560 * realtime stamp. However, acquiring a fine-grained stamp can create a
561 * bottleneck when multiple cpu cores are trying to accessing e.g. the
562 * HPET hardware timer all at the same time, so we have a sysctl that
563 * allows its behavior to be changed to a more coarse-grained timestamp
564 * which does not have to access a hardware timer.
567 sys_gettimeofday(struct gettimeofday_args *uap)
569 struct timeval atv;
570 int error = 0;
572 if (uap->tp) {
573 if (gettimeofday_quick)
574 getmicrotime(&atv);
575 else
576 microtime(&atv);
577 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
578 sizeof (atv))))
579 return (error);
581 if (uap->tzp)
582 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
583 sizeof (tz));
584 return (error);
588 * MPALMOSTSAFE
591 sys_settimeofday(struct settimeofday_args *uap)
593 struct thread *td = curthread;
594 struct timeval atv;
595 struct timezone atz;
596 int error;
598 if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
599 return (error);
601 * Verify all parameters before changing time.
603 * XXX: We do not allow the time to be set to 0.0, which also by
604 * happy coincidence works around a pkgsrc bulk build bug.
606 if (uap->tv) {
607 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
608 sizeof(atv))))
609 return (error);
610 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
611 return (EINVAL);
612 if (atv.tv_sec == 0 && atv.tv_usec == 0)
613 return (EINVAL);
615 if (uap->tzp &&
616 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
617 return (error);
619 lockmgr(&masterclock_lock, LK_EXCLUSIVE);
620 if (uap->tv && (error = settime(&atv))) {
621 lockmgr(&masterclock_lock, LK_RELEASE);
622 return (error);
624 lockmgr(&masterclock_lock, LK_RELEASE);
626 if (uap->tzp)
627 tz = atz;
628 return (0);
632 * WARNING! Run with ntp_spin held
634 static void
635 kern_adjtime_common(void)
637 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
638 (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
639 ntp_tick_delta = ntp_delta;
640 else if (ntp_delta > ntp_big_delta)
641 ntp_tick_delta = 10 * ntp_default_tick_delta;
642 else if (ntp_delta < -ntp_big_delta)
643 ntp_tick_delta = -10 * ntp_default_tick_delta;
644 else if (ntp_delta > 0)
645 ntp_tick_delta = ntp_default_tick_delta;
646 else
647 ntp_tick_delta = -ntp_default_tick_delta;
650 void
651 kern_adjtime(int64_t delta, int64_t *odelta)
653 spin_lock(&ntp_spin);
654 *odelta = ntp_delta;
655 ntp_delta = delta;
656 kern_adjtime_common();
657 spin_unlock(&ntp_spin);
660 static void
661 kern_get_ntp_delta(int64_t *delta)
663 *delta = ntp_delta;
666 void
667 kern_reladjtime(int64_t delta)
669 spin_lock(&ntp_spin);
670 ntp_delta += delta;
671 kern_adjtime_common();
672 spin_unlock(&ntp_spin);
675 static void
676 kern_adjfreq(int64_t rate)
678 spin_lock(&ntp_spin);
679 ntp_tick_permanent = rate;
680 spin_unlock(&ntp_spin);
684 * MPALMOSTSAFE
687 sys_adjtime(struct adjtime_args *uap)
689 struct thread *td = curthread;
690 struct timeval atv;
691 int64_t ndelta, odelta;
692 int error;
694 if ((error = priv_check(td, PRIV_ADJTIME)))
695 return (error);
696 error = copyin(uap->delta, &atv, sizeof(struct timeval));
697 if (error)
698 return (error);
701 * Compute the total correction and the rate at which to apply it.
702 * Round the adjustment down to a whole multiple of the per-tick
703 * delta, so that after some number of incremental changes in
704 * hardclock(), tickdelta will become zero, lest the correction
705 * overshoot and start taking us away from the desired final time.
707 ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
708 kern_adjtime(ndelta, &odelta);
710 if (uap->olddelta) {
711 atv.tv_sec = odelta / 1000000000;
712 atv.tv_usec = odelta % 1000000000 / 1000;
713 copyout(&atv, uap->olddelta, sizeof(struct timeval));
715 return (0);
718 static int
719 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
721 int64_t delta;
722 int error;
724 if (req->newptr != NULL) {
725 if (priv_check(curthread, PRIV_ROOT))
726 return (EPERM);
727 error = SYSCTL_IN(req, &delta, sizeof(delta));
728 if (error)
729 return (error);
730 kern_reladjtime(delta);
733 if (req->oldptr)
734 kern_get_ntp_delta(&delta);
735 error = SYSCTL_OUT(req, &delta, sizeof(delta));
736 return (error);
740 * delta is in nanoseconds.
742 static int
743 sysctl_delta(SYSCTL_HANDLER_ARGS)
745 int64_t delta, old_delta;
746 int error;
748 if (req->newptr != NULL) {
749 if (priv_check(curthread, PRIV_ROOT))
750 return (EPERM);
751 error = SYSCTL_IN(req, &delta, sizeof(delta));
752 if (error)
753 return (error);
754 kern_adjtime(delta, &old_delta);
757 if (req->oldptr != NULL)
758 kern_get_ntp_delta(&old_delta);
759 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
760 return (error);
764 * frequency is in nanoseconds per second shifted left 32.
765 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
767 static int
768 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
770 int64_t freqdelta;
771 int error;
773 if (req->newptr != NULL) {
774 if (priv_check(curthread, PRIV_ROOT))
775 return (EPERM);
776 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
777 if (error)
778 return (error);
780 freqdelta /= hz;
781 kern_adjfreq(freqdelta);
784 if (req->oldptr != NULL)
785 freqdelta = ntp_tick_permanent * hz;
786 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
787 if (error)
788 return (error);
790 return (0);
793 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
794 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
795 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
796 sysctl_adjfreq, "Q", "permanent correction per second");
797 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
798 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
799 sysctl_delta, "Q", "one-time delta");
800 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
801 &ntp_big_delta, sizeof(ntp_big_delta), "Q",
802 "threshold for fast adjustment");
803 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
804 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
805 "per-tick adjustment");
806 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
807 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
808 "default per-tick adjustment");
809 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
810 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
811 "next leap second");
812 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
813 &ntp_leap_insert, 0, "insert or remove leap second");
814 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
815 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
816 sysctl_adjtime, "Q", "relative adjust for delta");
819 * Get value of an interval timer. The process virtual and
820 * profiling virtual time timers are kept in the p_stats area, since
821 * they can be swapped out. These are kept internally in the
822 * way they are specified externally: in time until they expire.
824 * The real time interval timer is kept in the process table slot
825 * for the process, and its value (it_value) is kept as an
826 * absolute time rather than as a delta, so that it is easy to keep
827 * periodic real-time signals from drifting.
829 * Virtual time timers are processed in the hardclock() routine of
830 * kern_clock.c. The real time timer is processed by a timeout
831 * routine, called from the softclock() routine. Since a callout
832 * may be delayed in real time due to interrupt processing in the system,
833 * it is possible for the real time timeout routine (realitexpire, given below),
834 * to be delayed in real time past when it is supposed to occur. It
835 * does not suffice, therefore, to reload the real timer .it_value from the
836 * real time timers .it_interval. Rather, we compute the next time in
837 * absolute time the timer should go off.
839 * MPALMOSTSAFE
842 sys_getitimer(struct getitimer_args *uap)
844 struct proc *p = curproc;
845 struct timeval ctv;
846 struct itimerval aitv;
848 if (uap->which > ITIMER_PROF)
849 return (EINVAL);
850 lwkt_gettoken(&p->p_token);
851 if (uap->which == ITIMER_REAL) {
853 * Convert from absolute to relative time in .it_value
854 * part of real time timer. If time for real time timer
855 * has passed return 0, else return difference between
856 * current time and time for the timer to go off.
858 aitv = p->p_realtimer;
859 if (timevalisset(&aitv.it_value)) {
860 getmicrouptime(&ctv);
861 if (timevalcmp(&aitv.it_value, &ctv, <))
862 timevalclear(&aitv.it_value);
863 else
864 timevalsub(&aitv.it_value, &ctv);
866 } else {
867 aitv = p->p_timer[uap->which];
869 lwkt_reltoken(&p->p_token);
870 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
874 * MPALMOSTSAFE
877 sys_setitimer(struct setitimer_args *uap)
879 struct itimerval aitv;
880 struct timeval ctv;
881 struct itimerval *itvp;
882 struct proc *p = curproc;
883 int error;
885 if (uap->which > ITIMER_PROF)
886 return (EINVAL);
887 itvp = uap->itv;
888 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
889 sizeof(struct itimerval))))
890 return (error);
891 if ((uap->itv = uap->oitv) &&
892 (error = sys_getitimer((struct getitimer_args *)uap)))
893 return (error);
894 if (itvp == NULL)
895 return (0);
896 if (itimerfix(&aitv.it_value))
897 return (EINVAL);
898 if (!timevalisset(&aitv.it_value))
899 timevalclear(&aitv.it_interval);
900 else if (itimerfix(&aitv.it_interval))
901 return (EINVAL);
902 lwkt_gettoken(&p->p_token);
903 if (uap->which == ITIMER_REAL) {
904 if (timevalisset(&p->p_realtimer.it_value))
905 callout_stop_sync(&p->p_ithandle);
906 if (timevalisset(&aitv.it_value))
907 callout_reset(&p->p_ithandle,
908 tvtohz_high(&aitv.it_value), realitexpire, p);
909 getmicrouptime(&ctv);
910 timevaladd(&aitv.it_value, &ctv);
911 p->p_realtimer = aitv;
912 } else {
913 p->p_timer[uap->which] = aitv;
914 switch(uap->which) {
915 case ITIMER_VIRTUAL:
916 p->p_flags &= ~P_SIGVTALRM;
917 break;
918 case ITIMER_PROF:
919 p->p_flags &= ~P_SIGPROF;
920 break;
923 lwkt_reltoken(&p->p_token);
924 return (0);
928 * Real interval timer expired:
929 * send process whose timer expired an alarm signal.
930 * If time is not set up to reload, then just return.
931 * Else compute next time timer should go off which is > current time.
932 * This is where delay in processing this timeout causes multiple
933 * SIGALRM calls to be compressed into one.
934 * tvtohz_high() always adds 1 to allow for the time until the next clock
935 * interrupt being strictly less than 1 clock tick, but we don't want
936 * that here since we want to appear to be in sync with the clock
937 * interrupt even when we're delayed.
939 static
940 void
941 realitexpire(void *arg)
943 struct proc *p;
944 struct timeval ctv, ntv;
946 p = (struct proc *)arg;
947 PHOLD(p);
948 lwkt_gettoken(&p->p_token);
949 ksignal(p, SIGALRM);
950 if (!timevalisset(&p->p_realtimer.it_interval)) {
951 timevalclear(&p->p_realtimer.it_value);
952 goto done;
954 for (;;) {
955 timevaladd(&p->p_realtimer.it_value,
956 &p->p_realtimer.it_interval);
957 getmicrouptime(&ctv);
958 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
959 ntv = p->p_realtimer.it_value;
960 timevalsub(&ntv, &ctv);
961 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
962 realitexpire, p);
963 goto done;
966 done:
967 lwkt_reltoken(&p->p_token);
968 PRELE(p);
972 * Used to validate itimer timeouts and utimes*() timespecs.
975 itimerfix(struct timeval *tv)
977 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
978 return (EINVAL);
979 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
980 tv->tv_usec = ustick;
981 return (0);
985 * Used to validate timeouts and utimes*() timespecs.
988 itimespecfix(struct timespec *ts)
990 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000ULL)
991 return (EINVAL);
992 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < nstick)
993 ts->tv_nsec = nstick;
994 return (0);
998 * Decrement an interval timer by a specified number
999 * of microseconds, which must be less than a second,
1000 * i.e. < 1000000. If the timer expires, then reload
1001 * it. In this case, carry over (usec - old value) to
1002 * reduce the value reloaded into the timer so that
1003 * the timer does not drift. This routine assumes
1004 * that it is called in a context where the timers
1005 * on which it is operating cannot change in value.
1008 itimerdecr(struct itimerval *itp, int usec)
1011 if (itp->it_value.tv_usec < usec) {
1012 if (itp->it_value.tv_sec == 0) {
1013 /* expired, and already in next interval */
1014 usec -= itp->it_value.tv_usec;
1015 goto expire;
1017 itp->it_value.tv_usec += 1000000;
1018 itp->it_value.tv_sec--;
1020 itp->it_value.tv_usec -= usec;
1021 usec = 0;
1022 if (timevalisset(&itp->it_value))
1023 return (1);
1024 /* expired, exactly at end of interval */
1025 expire:
1026 if (timevalisset(&itp->it_interval)) {
1027 itp->it_value = itp->it_interval;
1028 itp->it_value.tv_usec -= usec;
1029 if (itp->it_value.tv_usec < 0) {
1030 itp->it_value.tv_usec += 1000000;
1031 itp->it_value.tv_sec--;
1033 } else
1034 itp->it_value.tv_usec = 0; /* sec is already 0 */
1035 return (0);
1039 * Add and subtract routines for timevals.
1040 * N.B.: subtract routine doesn't deal with
1041 * results which are before the beginning,
1042 * it just gets very confused in this case.
1043 * Caveat emptor.
1045 void
1046 timevaladd(struct timeval *t1, const struct timeval *t2)
1049 t1->tv_sec += t2->tv_sec;
1050 t1->tv_usec += t2->tv_usec;
1051 timevalfix(t1);
1054 void
1055 timevalsub(struct timeval *t1, const struct timeval *t2)
1058 t1->tv_sec -= t2->tv_sec;
1059 t1->tv_usec -= t2->tv_usec;
1060 timevalfix(t1);
1063 static void
1064 timevalfix(struct timeval *t1)
1067 if (t1->tv_usec < 0) {
1068 t1->tv_sec--;
1069 t1->tv_usec += 1000000;
1071 if (t1->tv_usec >= 1000000) {
1072 t1->tv_sec++;
1073 t1->tv_usec -= 1000000;
1078 * ratecheck(): simple time-based rate-limit checking.
1081 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1083 struct timeval tv, delta;
1084 int rv = 0;
1086 getmicrouptime(&tv); /* NB: 10ms precision */
1087 delta = tv;
1088 timevalsub(&delta, lasttime);
1091 * check for 0,0 is so that the message will be seen at least once,
1092 * even if interval is huge.
1094 if (timevalcmp(&delta, mininterval, >=) ||
1095 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1096 *lasttime = tv;
1097 rv = 1;
1100 return (rv);
1104 * ppsratecheck(): packets (or events) per second limitation.
1106 * Return 0 if the limit is to be enforced (e.g. the caller
1107 * should drop a packet because of the rate limitation).
1109 * maxpps of 0 always causes zero to be returned. maxpps of -1
1110 * always causes 1 to be returned; this effectively defeats rate
1111 * limiting.
1113 * Note that we maintain the struct timeval for compatibility
1114 * with other bsd systems. We reuse the storage and just monitor
1115 * clock ticks for minimal overhead.
1118 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1120 int now;
1123 * Reset the last time and counter if this is the first call
1124 * or more than a second has passed since the last update of
1125 * lasttime.
1127 now = ticks;
1128 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1129 lasttime->tv_sec = now;
1130 *curpps = 1;
1131 return (maxpps != 0);
1132 } else {
1133 (*curpps)++; /* NB: ignore potential overflow */
1134 return (maxpps < 0 || *curpps < maxpps);
1138 static int
1139 sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS)
1141 int error;
1142 int gtod;
1144 gtod = gettimeofday_quick;
1145 error = sysctl_handle_int(oidp, &gtod, 0, req);
1146 if (error || req->newptr == NULL)
1147 return error;
1148 gettimeofday_quick = gtod;
1149 if (kpmap)
1150 kpmap->fast_gtod = gtod;
1151 return 0;