HAMMER 27/many: Major surgery - change allocation model
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
blob812c04418fc91811670f33f385c2bfb45d9cb9d2
1 /*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.29 2008/02/08 08:30:59 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. Empty
77 * nodes are not allowed and a deletion may recurse upwards from the leaf.
78 * Rather then allow a deadlock a deletion may terminate early by setting
79 * an internal node's element's subtree_offset to 0. The deletion will
80 * then be resumed the next time a search encounters the element.
82 #include "hammer.h"
83 #include <sys/buf.h>
84 #include <sys/buf2.h>
86 static int btree_search(hammer_cursor_t cursor, int flags);
87 static int btree_split_internal(hammer_cursor_t cursor);
88 static int btree_split_leaf(hammer_cursor_t cursor);
89 static int btree_remove(hammer_cursor_t cursor);
90 static int btree_remove_deleted_element(hammer_cursor_t cursor);
91 static int btree_set_parent(hammer_node_t node, hammer_btree_elm_t elm);
92 static int btree_node_is_full(hammer_node_ondisk_t node);
93 static void hammer_make_separator(hammer_base_elm_t key1,
94 hammer_base_elm_t key2, hammer_base_elm_t dest);
97 * Iterate records after a search. The cursor is iterated forwards past
98 * the current record until a record matching the key-range requirements
99 * is found. ENOENT is returned if the iteration goes past the ending
100 * key.
102 * The iteration is inclusive of key_beg and can be inclusive or exclusive
103 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106 * may be modified by B-Tree functions.
108 * cursor->key_beg may or may not be modified by this function during
109 * the iteration. XXX future - in case of an inverted lock we may have
110 * to reinitiate the lookup and set key_beg to properly pick up where we
111 * left off.
113 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
116 hammer_btree_iterate(hammer_cursor_t cursor)
118 hammer_node_ondisk_t node;
119 hammer_btree_elm_t elm;
120 int error;
121 int r;
122 int s;
125 * Skip past the current record
127 node = cursor->node->ondisk;
128 if (node == NULL)
129 return(ENOENT);
130 if (cursor->index < node->count &&
131 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
132 ++cursor->index;
136 * Loop until an element is found or we are done.
138 for (;;) {
140 * We iterate up the tree and then index over one element
141 * while we are at the last element in the current node.
143 * If we are at the root of the filesystem, cursor_up
144 * returns ENOENT.
146 * XXX this could be optimized by storing the information in
147 * the parent reference.
149 * XXX we can lose the node lock temporarily, this could mess
150 * up our scan.
152 if (cursor->index == node->count) {
153 error = hammer_cursor_up(cursor);
154 if (error)
155 break;
156 /* reload stale pointer */
157 node = cursor->node->ondisk;
158 KKASSERT(cursor->index != node->count);
159 ++cursor->index;
160 continue;
164 * Check internal or leaf element. Determine if the record
165 * at the cursor has gone beyond the end of our range.
167 * We recurse down through internal nodes.
169 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
170 elm = &node->elms[cursor->index];
171 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
172 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
173 if (hammer_debug_btree) {
174 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx %d\n",
175 cursor->node->node_offset,
176 cursor->index,
177 elm[0].internal.base.obj_id,
178 elm[0].internal.base.rec_type,
179 elm[0].internal.base.key,
182 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx %d\n",
183 cursor->node->node_offset,
184 cursor->index + 1,
185 elm[1].internal.base.obj_id,
186 elm[1].internal.base.rec_type,
187 elm[1].internal.base.key,
192 if (r < 0) {
193 error = ENOENT;
194 break;
196 if (r == 0 && (cursor->flags &
197 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
198 error = ENOENT;
199 break;
201 KKASSERT(s <= 0);
204 * When iterating try to clean up any deleted
205 * internal elements left over from btree_remove()
206 * deadlocks, but it is ok if we can't.
208 if (elm->internal.subtree_offset == 0) {
209 btree_remove_deleted_element(cursor);
210 /* note: elm also invalid */
211 } else if (elm->internal.subtree_offset != 0) {
212 error = hammer_cursor_down(cursor);
213 if (error)
214 break;
215 KKASSERT(cursor->index == 0);
217 /* reload stale pointer */
218 node = cursor->node->ondisk;
219 continue;
220 } else {
221 elm = &node->elms[cursor->index];
222 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
223 if (hammer_debug_btree) {
224 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx %d\n",
225 cursor->node->node_offset,
226 cursor->index,
227 (elm[0].leaf.base.btype ?
228 elm[0].leaf.base.btype : '?'),
229 elm[0].leaf.base.obj_id,
230 elm[0].leaf.base.rec_type,
231 elm[0].leaf.base.key,
235 if (r < 0) {
236 error = ENOENT;
237 break;
241 * We support both end-inclusive and
242 * end-exclusive searches.
244 if (r == 0 &&
245 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
246 error = ENOENT;
247 break;
250 switch(elm->leaf.base.btype) {
251 case HAMMER_BTREE_TYPE_RECORD:
252 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
253 hammer_btree_chkts(cursor->asof, &elm->base)) {
254 ++cursor->index;
255 continue;
257 break;
258 default:
259 error = EINVAL;
260 break;
262 if (error)
263 break;
266 * node pointer invalid after loop
270 * Return entry
272 if (hammer_debug_btree) {
273 int i = cursor->index;
274 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
275 kprintf("ITERATE %p:%d %016llx %02x %016llx\n",
276 cursor->node, i,
277 elm->internal.base.obj_id,
278 elm->internal.base.rec_type,
279 elm->internal.base.key
282 return(0);
284 return(error);
288 * Iterate in the reverse direction. This is used by the pruning code to
289 * avoid overlapping records.
292 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
294 hammer_node_ondisk_t node;
295 hammer_btree_elm_t elm;
296 int error;
297 int r;
298 int s;
301 * Skip past the current record. For various reasons the cursor
302 * may end up set to -1 or set to point at the end of the current
303 * node. These cases must be addressed.
305 node = cursor->node->ondisk;
306 if (node == NULL)
307 return(ENOENT);
308 if (cursor->index != -1 &&
309 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
310 --cursor->index;
312 if (cursor->index == cursor->node->ondisk->count)
313 --cursor->index;
316 * Loop until an element is found or we are done.
318 for (;;) {
320 * We iterate up the tree and then index over one element
321 * while we are at the last element in the current node.
323 if (cursor->index == -1) {
324 error = hammer_cursor_up(cursor);
325 if (error) {
326 cursor->index = 0; /* sanity */
327 break;
329 /* reload stale pointer */
330 node = cursor->node->ondisk;
331 KKASSERT(cursor->index != node->count);
332 --cursor->index;
333 continue;
337 * Check internal or leaf element. Determine if the record
338 * at the cursor has gone beyond the end of our range.
340 * We recurse down through internal nodes.
342 KKASSERT(cursor->index != node->count);
343 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
344 elm = &node->elms[cursor->index];
345 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
346 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
347 if (hammer_debug_btree) {
348 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx %d\n",
349 cursor->node->node_offset,
350 cursor->index,
351 elm[0].internal.base.obj_id,
352 elm[0].internal.base.rec_type,
353 elm[0].internal.base.key,
356 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx %d\n",
357 cursor->node->node_offset,
358 cursor->index + 1,
359 elm[1].internal.base.obj_id,
360 elm[1].internal.base.rec_type,
361 elm[1].internal.base.key,
366 if (s >= 0) {
367 error = ENOENT;
368 break;
370 KKASSERT(r >= 0);
373 * When iterating try to clean up any deleted
374 * internal elements left over from btree_remove()
375 * deadlocks, but it is ok if we can't.
377 if (elm->internal.subtree_offset == 0) {
378 btree_remove_deleted_element(cursor);
379 /* note: elm also invalid */
380 } else if (elm->internal.subtree_offset != 0) {
381 error = hammer_cursor_down(cursor);
382 if (error)
383 break;
384 KKASSERT(cursor->index == 0);
385 cursor->index = cursor->node->ondisk->count - 1;
387 /* reload stale pointer */
388 node = cursor->node->ondisk;
389 continue;
390 } else {
391 elm = &node->elms[cursor->index];
392 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
393 if (hammer_debug_btree) {
394 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx %d\n",
395 cursor->node->node_offset,
396 cursor->index,
397 (elm[0].leaf.base.btype ?
398 elm[0].leaf.base.btype : '?'),
399 elm[0].leaf.base.obj_id,
400 elm[0].leaf.base.rec_type,
401 elm[0].leaf.base.key,
405 if (s > 0) {
406 error = ENOENT;
407 break;
410 switch(elm->leaf.base.btype) {
411 case HAMMER_BTREE_TYPE_RECORD:
412 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
413 hammer_btree_chkts(cursor->asof, &elm->base)) {
414 --cursor->index;
415 continue;
417 break;
418 default:
419 error = EINVAL;
420 break;
422 if (error)
423 break;
426 * node pointer invalid after loop
430 * Return entry
432 if (hammer_debug_btree) {
433 int i = cursor->index;
434 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
435 kprintf("ITERATE %p:%d %016llx %02x %016llx\n",
436 cursor->node, i,
437 elm->internal.base.obj_id,
438 elm->internal.base.rec_type,
439 elm->internal.base.key
442 return(0);
444 return(error);
448 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
449 * could not be found, EDEADLK if inserting and a retry is needed, and a
450 * fatal error otherwise. When retrying, the caller must terminate the
451 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
453 * The cursor is suitably positioned for a deletion on success, and suitably
454 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
455 * specified.
457 * The cursor may begin anywhere, the search will traverse the tree in
458 * either direction to locate the requested element.
460 * Most of the logic implementing historical searches is handled here. We
461 * do an initial lookup with create_tid set to the asof TID. Due to the
462 * way records are laid out, a backwards iteration may be required if
463 * ENOENT is returned to locate the historical record. Here's the
464 * problem:
466 * create_tid: 10 15 20
467 * LEAF1 LEAF2
468 * records: (11) (18)
470 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
471 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
472 * not visible and thus causes ENOENT to be returned. We really need
473 * to check record 11 in LEAF1. If it also fails then the search fails
474 * (e.g. it might represent the range 11-16 and thus still not match our
475 * AS-OF timestamp of 17).
477 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
478 * and the cursor->create_check TID if an iteration might be needed.
479 * In the above example create_check would be set to 14.
482 hammer_btree_lookup(hammer_cursor_t cursor)
484 int error;
486 if (cursor->flags & HAMMER_CURSOR_ASOF) {
487 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
488 cursor->key_beg.create_tid = cursor->asof;
489 for (;;) {
490 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
491 error = btree_search(cursor, 0);
492 if (error != ENOENT ||
493 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
495 * Stop if no error.
496 * Stop if error other then ENOENT.
497 * Stop if ENOENT and not special case.
499 break;
501 if (hammer_debug_btree) {
502 kprintf("CREATE_CHECK %016llx\n",
503 cursor->create_check);
505 cursor->key_beg.create_tid = cursor->create_check;
506 /* loop */
508 } else {
509 error = btree_search(cursor, 0);
511 if (error == 0 && cursor->flags)
512 error = hammer_btree_extract(cursor, cursor->flags);
513 return(error);
517 * Execute the logic required to start an iteration. The first record
518 * located within the specified range is returned and iteration control
519 * flags are adjusted for successive hammer_btree_iterate() calls.
522 hammer_btree_first(hammer_cursor_t cursor)
524 int error;
526 error = hammer_btree_lookup(cursor);
527 if (error == ENOENT) {
528 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
529 error = hammer_btree_iterate(cursor);
531 cursor->flags |= HAMMER_CURSOR_ATEDISK;
532 return(error);
536 * Similarly but for an iteration in the reverse direction.
539 hammer_btree_last(hammer_cursor_t cursor)
541 struct hammer_base_elm save;
542 int error;
544 save = cursor->key_beg;
545 cursor->key_beg = cursor->key_end;
546 error = hammer_btree_lookup(cursor);
547 cursor->key_beg = save;
548 if (error == ENOENT ||
549 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
550 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
551 error = hammer_btree_iterate_reverse(cursor);
553 cursor->flags |= HAMMER_CURSOR_ATEDISK;
554 return(error);
558 * Extract the record and/or data associated with the cursor's current
559 * position. Any prior record or data stored in the cursor is replaced.
560 * The cursor must be positioned at a leaf node.
562 * NOTE: All extractions occur at the leaf of the B-Tree.
565 hammer_btree_extract(hammer_cursor_t cursor, int flags)
567 hammer_mount_t hmp;
568 hammer_node_ondisk_t node;
569 hammer_btree_elm_t elm;
570 hammer_off_t rec_off;
571 hammer_off_t data_off;
572 hammer_off_t data_end;
573 int error;
576 * The case where the data reference resolves to the same buffer
577 * as the record reference must be handled.
579 node = cursor->node->ondisk;
580 elm = &node->elms[cursor->index];
581 cursor->data1 = NULL;
582 cursor->data2 = NULL;
583 cursor->data_split = 0;
584 hmp = cursor->node->volume->hmp;
585 flags |= cursor->flags & HAMMER_CURSOR_DATAEXTOK;
588 * There is nothing to extract for an internal element.
590 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
591 return(EINVAL);
594 * Only record types have data.
596 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
597 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
598 flags &= ~HAMMER_CURSOR_GET_DATA;
599 data_off = elm->leaf.data_offset;
600 data_end = data_off + elm->leaf.data_len - 1;
601 if (data_off == 0)
602 flags &= ~HAMMER_CURSOR_GET_DATA;
603 rec_off = elm->leaf.rec_offset;
606 * Extract the record if the record was requested or the data
607 * resides in the record buf.
609 if ((flags & HAMMER_CURSOR_GET_RECORD) ||
610 ((flags & HAMMER_CURSOR_GET_DATA) &&
611 ((rec_off ^ data_off) & ~HAMMER_BUFMASK64) == 0)) {
612 cursor->record = hammer_bread(hmp, rec_off, &error,
613 &cursor->record_buffer);
614 } else {
615 rec_off = 0;
616 error = 0;
618 if ((flags & HAMMER_CURSOR_GET_DATA) && error == 0) {
619 if ((rec_off ^ data_off) & ~HAMMER_BUFMASK64) {
621 * The data is not in the same buffer as the last
622 * record we cached, but it could still be embedded
623 * in a record. Note that we may not have loaded the
624 * record's buffer above, depending on flags.
626 * Assert that the data does not cross into additional
627 * buffers.
629 cursor->data_split = 0;
630 cursor->data2 = hammer_bread(hmp, data_off,
631 &error, &cursor->data_buffer);
632 KKASSERT(((data_off ^ data_end) &
633 ~HAMMER_BUFMASK64) == 0);
634 } else {
636 * The data starts in same buffer as record. Check
637 * to determine if the data extends into another
638 * buffer.
640 cursor->data1 = (void *)
641 ((char *)cursor->record_buffer->ondisk +
642 ((int32_t)data_off & HAMMER_BUFMASK));
643 if ((data_off ^ data_end) & ~HAMMER_BUFMASK64) {
644 cursor->data_split = HAMMER_BUFSIZE -
645 ((int32_t)data_off & HAMMER_BUFMASK);
646 if (flags & HAMMER_CURSOR_DATAEXTOK) {
648 * NOTE: Assumes data buffer does not
649 * cross a volume boundary.
651 cursor->data2 = hammer_bread(hmp, data_off + cursor->data_split,
652 &error, &cursor->data_buffer);
653 } else {
654 panic("Illegal data extension");
656 } else {
657 cursor->data_split = elm->leaf.data_len;
661 return(error);
666 * Insert a leaf element into the B-Tree at the current cursor position.
667 * The cursor is positioned such that the element at and beyond the cursor
668 * are shifted to make room for the new record.
670 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
671 * flag set and that call must return ENOENT before this function can be
672 * called.
674 * ENOSPC is returned if there is no room to insert a new record.
677 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_elm_t elm)
679 hammer_node_ondisk_t node;
680 int i;
681 int error;
683 if ((error = hammer_cursor_upgrade(cursor)) != 0)
684 return(error);
687 * Insert the element at the leaf node and update the count in the
688 * parent. It is possible for parent to be NULL, indicating that
689 * the filesystem's ROOT B-Tree node is a leaf itself, which is
690 * possible. The root inode can never be deleted so the leaf should
691 * never be empty.
693 * Remember that the right-hand boundary is not included in the
694 * count.
696 hammer_modify_node(cursor->node);
697 node = cursor->node->ondisk;
698 i = cursor->index;
699 KKASSERT(elm->base.btype != 0);
700 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
701 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
702 if (i != node->count) {
703 bcopy(&node->elms[i], &node->elms[i+1],
704 (node->count - i) * sizeof(*elm));
706 node->elms[i] = *elm;
707 ++node->count;
710 * Debugging sanity checks.
712 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
713 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
714 if (i) {
715 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->leaf.base) < 0);
717 if (i != node->count - 1)
718 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->leaf.base) > 0);
720 return(0);
724 * Delete a record from the B-Tree at the current cursor position.
725 * The cursor is positioned such that the current element is the one
726 * to be deleted.
728 * On return the cursor will be positioned after the deleted element and
729 * MAY point to an internal node. It will be suitable for the continuation
730 * of an iteration but not for an insertion or deletion.
732 * Deletions will attempt to partially rebalance the B-Tree in an upward
733 * direction, but will terminate rather then deadlock. Empty leaves are
734 * not allowed. An early termination will leave an internal node with an
735 * element whos subtree_offset is 0, a case detected and handled by
736 * btree_search().
738 * This function can return EDEADLK, requiring the caller to retry the
739 * operation after clearing the deadlock.
742 hammer_btree_delete(hammer_cursor_t cursor)
744 hammer_node_ondisk_t ondisk;
745 hammer_node_t node;
746 hammer_node_t parent;
747 int error;
748 int i;
750 if ((error = hammer_cursor_upgrade(cursor)) != 0)
751 return(error);
754 * Delete the element from the leaf node.
756 * Remember that leaf nodes do not have boundaries.
758 node = cursor->node;
759 ondisk = node->ondisk;
760 i = cursor->index;
762 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
763 KKASSERT(i >= 0 && i < ondisk->count);
764 hammer_modify_node(node);
765 if (i + 1 != ondisk->count) {
766 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
767 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
769 --ondisk->count;
772 * Validate local parent
774 if (ondisk->parent) {
775 parent = cursor->parent;
777 KKASSERT(parent != NULL);
778 KKASSERT(parent->node_offset == ondisk->parent);
782 * If the leaf becomes empty it must be detached from the parent,
783 * potentially recursing through to the filesystem root.
785 * This may reposition the cursor at one of the parent's of the
786 * current node.
788 * Ignore deadlock errors, that simply means that btree_remove
789 * was unable to recurse and had to leave the subtree_offset
790 * in the parent set to 0.
792 KKASSERT(cursor->index <= ondisk->count);
793 if (ondisk->count == 0) {
794 do {
795 error = btree_remove(cursor);
796 } while (error == EAGAIN);
797 if (error == EDEADLK)
798 error = 0;
799 } else {
800 error = 0;
802 KKASSERT(cursor->parent == NULL ||
803 cursor->parent_index < cursor->parent->ondisk->count);
804 return(error);
808 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
810 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
812 * The search can begin ANYWHERE in the B-Tree. As a first step the search
813 * iterates up the tree as necessary to properly position itself prior to
814 * actually doing the sarch.
816 * INSERTIONS: The search will split full nodes and leaves on its way down
817 * and guarentee that the leaf it ends up on is not full. If we run out
818 * of space the search continues to the leaf (to position the cursor for
819 * the spike), but ENOSPC is returned.
821 * The search is only guarenteed to end up on a leaf if an error code of 0
822 * is returned, or if inserting and an error code of ENOENT is returned.
823 * Otherwise it can stop at an internal node. On success a search returns
824 * a leaf node.
826 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
827 * filesystem, and it is not simple code. Please note the following facts:
829 * - Internal node recursions have a boundary on the left AND right. The
830 * right boundary is non-inclusive. The create_tid is a generic part
831 * of the key for internal nodes.
833 * - Leaf nodes contain terminal elements only now.
835 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
836 * historical search. ASOF and INSERT are mutually exclusive. When
837 * doing an as-of lookup btree_search() checks for a right-edge boundary
838 * case. If while recursing down the left-edge differs from the key
839 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
840 * with cursor->create_check. This is used by btree_lookup() to iterate.
841 * The iteration backwards because as-of searches can wind up going
842 * down the wrong branch of the B-Tree.
844 static
846 btree_search(hammer_cursor_t cursor, int flags)
848 hammer_node_ondisk_t node;
849 hammer_btree_elm_t elm;
850 int error;
851 int enospc = 0;
852 int i;
853 int r;
854 int s;
856 flags |= cursor->flags;
858 if (hammer_debug_btree) {
859 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx\n",
860 cursor->node->node_offset,
861 cursor->index,
862 cursor->key_beg.obj_id,
863 cursor->key_beg.rec_type,
864 cursor->key_beg.key,
865 cursor->key_beg.create_tid
870 * Move our cursor up the tree until we find a node whos range covers
871 * the key we are trying to locate.
873 * The left bound is inclusive, the right bound is non-inclusive.
874 * It is ok to cursor up too far.
876 for (;;) {
877 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
878 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
879 if (r >= 0 && s < 0)
880 break;
881 KKASSERT(cursor->parent);
882 error = hammer_cursor_up(cursor);
883 if (error)
884 goto done;
888 * The delete-checks below are based on node, not parent. Set the
889 * initial delete-check based on the parent.
891 if (r == 1) {
892 KKASSERT(cursor->left_bound->create_tid != 1);
893 cursor->create_check = cursor->left_bound->create_tid - 1;
894 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
898 * We better have ended up with a node somewhere.
900 KKASSERT(cursor->node != NULL);
903 * If we are inserting we can't start at a full node if the parent
904 * is also full (because there is no way to split the node),
905 * continue running up the tree until the requirement is satisfied
906 * or we hit the root of the filesystem.
908 * (If inserting we aren't doing an as-of search so we don't have
909 * to worry about create_check).
911 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
912 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
913 if (btree_node_is_full(cursor->node->ondisk) == 0)
914 break;
915 } else {
916 if (btree_node_is_full(cursor->node->ondisk) ==0)
917 break;
919 if (cursor->node->ondisk->parent == 0 ||
920 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
921 break;
923 error = hammer_cursor_up(cursor);
924 /* node may have become stale */
925 if (error)
926 goto done;
929 re_search:
931 * Push down through internal nodes to locate the requested key.
933 node = cursor->node->ondisk;
934 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
936 * Scan the node to find the subtree index to push down into.
937 * We go one-past, then back-up.
939 * We must proactively remove deleted elements which may
940 * have been left over from a deadlocked btree_remove().
942 * The left and right boundaries are included in the loop
943 * in order to detect edge cases.
945 * If the separator only differs by create_tid (r == 1)
946 * and we are doing an as-of search, we may end up going
947 * down a branch to the left of the one containing the
948 * desired key. This requires numerous special cases.
950 if (hammer_debug_btree) {
951 kprintf("SEARCH-I %016llx count=%d\n",
952 cursor->node->node_offset,
953 node->count);
955 for (i = 0; i <= node->count; ++i) {
956 elm = &node->elms[i];
957 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
958 if (hammer_debug_btree > 2) {
959 kprintf(" IELM %p %d r=%d\n",
960 &node->elms[i], i, r);
962 if (r < 0)
963 break;
964 if (r == 1) {
965 KKASSERT(elm->base.create_tid != 1);
966 cursor->create_check = elm->base.create_tid - 1;
967 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
970 if (hammer_debug_btree) {
971 kprintf("SEARCH-I preI=%d/%d r=%d\n",
972 i, node->count, r);
976 * These cases occur when the parent's idea of the boundary
977 * is wider then the child's idea of the boundary, and
978 * require special handling. If not inserting we can
979 * terminate the search early for these cases but the
980 * child's boundaries cannot be unconditionally modified.
982 if (i == 0) {
984 * If i == 0 the search terminated to the LEFT of the
985 * left_boundary but to the RIGHT of the parent's left
986 * boundary.
988 u_int8_t save;
990 elm = &node->elms[0];
993 * If we aren't inserting we can stop here.
995 if ((flags & HAMMER_CURSOR_INSERT) == 0) {
996 cursor->index = 0;
997 return(ENOENT);
1001 * Correct a left-hand boundary mismatch.
1003 * We can only do this if we can upgrade the lock.
1005 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1006 return(error);
1007 hammer_modify_node(cursor->node);
1008 save = node->elms[0].base.btype;
1009 node->elms[0].base = *cursor->left_bound;
1010 node->elms[0].base.btype = save;
1011 } else if (i == node->count + 1) {
1013 * If i == node->count + 1 the search terminated to
1014 * the RIGHT of the right boundary but to the LEFT
1015 * of the parent's right boundary. If we aren't
1016 * inserting we can stop here.
1018 * Note that the last element in this case is
1019 * elms[i-2] prior to adjustments to 'i'.
1021 --i;
1022 if ((flags & HAMMER_CURSOR_INSERT) == 0) {
1023 cursor->index = i;
1024 return (ENOENT);
1028 * Correct a right-hand boundary mismatch.
1029 * (actual push-down record is i-2 prior to
1030 * adjustments to i).
1032 * We can only do this if we can upgrade the lock.
1034 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1035 return(error);
1036 elm = &node->elms[i];
1037 hammer_modify_node(cursor->node);
1038 elm->base = *cursor->right_bound;
1039 --i;
1040 } else {
1042 * The push-down index is now i - 1. If we had
1043 * terminated on the right boundary this will point
1044 * us at the last element.
1046 --i;
1048 cursor->index = i;
1049 elm = &node->elms[i];
1051 if (hammer_debug_btree) {
1052 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1053 "key=%016llx cre=%016llx\n",
1054 cursor->node->node_offset,
1056 elm->internal.base.obj_id,
1057 elm->internal.base.rec_type,
1058 elm->internal.base.key,
1059 elm->internal.base.create_tid
1064 * When searching try to clean up any deleted
1065 * internal elements left over from btree_remove()
1066 * deadlocks.
1068 * If we fail and we are doing an insertion lookup,
1069 * we have to return EDEADLK, because an insertion lookup
1070 * must terminate at a leaf.
1072 if (elm->internal.subtree_offset == 0) {
1073 error = btree_remove_deleted_element(cursor);
1074 if (error == 0)
1075 goto re_search;
1076 if (error == EDEADLK &&
1077 (flags & HAMMER_CURSOR_INSERT) == 0) {
1078 error = ENOENT;
1080 return(error);
1085 * Handle insertion and deletion requirements.
1087 * If inserting split full nodes. The split code will
1088 * adjust cursor->node and cursor->index if the current
1089 * index winds up in the new node.
1091 * If inserting and a left or right edge case was detected,
1092 * we cannot correct the left or right boundary and must
1093 * prepend and append an empty leaf node in order to make
1094 * the boundary correction.
1096 * If we run out of space we set enospc and continue on
1097 * to a leaf to provide the spike code with a good point
1098 * of entry.
1100 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1101 if (btree_node_is_full(node)) {
1102 error = btree_split_internal(cursor);
1103 if (error) {
1104 if (error != ENOSPC)
1105 goto done;
1106 enospc = 1;
1109 * reload stale pointers
1111 i = cursor->index;
1112 node = cursor->node->ondisk;
1117 * Push down (push into new node, existing node becomes
1118 * the parent) and continue the search.
1120 error = hammer_cursor_down(cursor);
1121 /* node may have become stale */
1122 if (error)
1123 goto done;
1124 node = cursor->node->ondisk;
1128 * We are at a leaf, do a linear search of the key array.
1130 * If we encounter a spike element type within the necessary
1131 * range we push into it.
1133 * On success the index is set to the matching element and 0
1134 * is returned.
1136 * On failure the index is set to the insertion point and ENOENT
1137 * is returned.
1139 * Boundaries are not stored in leaf nodes, so the index can wind
1140 * up to the left of element 0 (index == 0) or past the end of
1141 * the array (index == node->count).
1143 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1144 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1145 if (hammer_debug_btree) {
1146 kprintf("SEARCH-L %016llx count=%d\n",
1147 cursor->node->node_offset,
1148 node->count);
1151 for (i = 0; i < node->count; ++i) {
1152 elm = &node->elms[i];
1154 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1156 if (hammer_debug_btree > 1)
1157 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1160 * We are at a record element. Stop if we've flipped past
1161 * key_beg, not counting the create_tid test. Allow the
1162 * r == 1 case (key_beg > element but differs only by its
1163 * create_tid) to fall through to the AS-OF check.
1165 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1167 if (r < 0)
1168 goto failed;
1169 if (r > 1)
1170 continue;
1173 * Check our as-of timestamp against the element.
1175 if (flags & HAMMER_CURSOR_ASOF) {
1176 if (hammer_btree_chkts(cursor->asof,
1177 &node->elms[i].base) != 0) {
1178 continue;
1180 /* success */
1181 } else {
1182 if (r > 0) /* can only be +1 */
1183 continue;
1184 /* success */
1186 cursor->index = i;
1187 error = 0;
1188 if (hammer_debug_btree) {
1189 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1190 cursor->node->node_offset, i);
1192 goto done;
1196 * The search of the leaf node failed. i is the insertion point.
1198 failed:
1199 if (hammer_debug_btree) {
1200 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1201 cursor->node->node_offset, i);
1205 * No exact match was found, i is now at the insertion point.
1207 * If inserting split a full leaf before returning. This
1208 * may have the side effect of adjusting cursor->node and
1209 * cursor->index.
1211 cursor->index = i;
1212 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1213 btree_node_is_full(node)) {
1214 error = btree_split_leaf(cursor);
1215 if (error) {
1216 if (error != ENOSPC)
1217 goto done;
1218 enospc = 1;
1221 * reload stale pointers
1223 /* NOT USED
1224 i = cursor->index;
1225 node = &cursor->node->internal;
1230 * We reached a leaf but did not find the key we were looking for.
1231 * If this is an insert we will be properly positioned for an insert
1232 * (ENOENT) or spike (ENOSPC) operation.
1234 error = enospc ? ENOSPC : ENOENT;
1235 done:
1236 return(error);
1240 /************************************************************************
1241 * SPLITTING AND MERGING *
1242 ************************************************************************
1244 * These routines do all the dirty work required to split and merge nodes.
1248 * Split an internal node into two nodes and move the separator at the split
1249 * point to the parent.
1251 * (cursor->node, cursor->index) indicates the element the caller intends
1252 * to push into. We will adjust node and index if that element winds
1253 * up in the split node.
1255 * If we are at the root of the filesystem a new root must be created with
1256 * two elements, one pointing to the original root and one pointing to the
1257 * newly allocated split node.
1259 static
1261 btree_split_internal(hammer_cursor_t cursor)
1263 hammer_node_ondisk_t ondisk;
1264 hammer_mount_t hmp;
1265 hammer_node_t node;
1266 hammer_node_t parent;
1267 hammer_node_t new_node;
1268 hammer_btree_elm_t elm;
1269 hammer_btree_elm_t parent_elm;
1270 hammer_node_locklist_t locklist = NULL;
1271 int parent_index;
1272 int made_root;
1273 int split;
1274 int error;
1275 int i;
1276 const int esize = sizeof(*elm);
1278 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1279 return(error);
1280 error = hammer_btree_lock_children(cursor, &locklist);
1281 if (error)
1282 goto done;
1285 * We are splitting but elms[split] will be promoted to the parent,
1286 * leaving the right hand node with one less element. If the
1287 * insertion point will be on the left-hand side adjust the split
1288 * point to give the right hand side one additional node.
1290 node = cursor->node;
1291 ondisk = node->ondisk;
1292 split = (ondisk->count + 1) / 2;
1293 if (cursor->index <= split)
1294 --split;
1295 hmp = node->volume->hmp;
1298 * If we are at the root of the filesystem, create a new root node
1299 * with 1 element and split normally. Avoid making major
1300 * modifications until we know the whole operation will work.
1302 if (ondisk->parent == 0) {
1303 parent = hammer_alloc_btree(hmp, &error);
1304 if (parent == NULL)
1305 goto done;
1306 hammer_lock_ex(&parent->lock);
1307 hammer_modify_node(parent);
1308 ondisk = parent->ondisk;
1309 ondisk->count = 1;
1310 ondisk->parent = 0;
1311 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1312 ondisk->elms[0].base = hmp->root_btree_beg;
1313 ondisk->elms[0].base.btype = node->ondisk->type;
1314 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1315 ondisk->elms[1].base = hmp->root_btree_end;
1316 /* ondisk->elms[1].base.btype - not used */
1317 made_root = 1;
1318 parent_index = 0; /* index of current node in parent */
1319 } else {
1320 made_root = 0;
1321 parent = cursor->parent;
1322 parent_index = cursor->parent_index;
1326 * Split node into new_node at the split point.
1328 * B O O O P N N B <-- P = node->elms[split]
1329 * 0 1 2 3 4 5 6 <-- subtree indices
1331 * x x P x x
1332 * s S S s
1333 * / \
1334 * B O O O B B N N B <--- inner boundary points are 'P'
1335 * 0 1 2 3 4 5 6
1338 new_node = hammer_alloc_btree(hmp, &error);
1339 if (new_node == NULL) {
1340 if (made_root) {
1341 hammer_unlock(&parent->lock);
1342 parent->flags |= HAMMER_NODE_DELETED;
1343 hammer_rel_node(parent);
1345 goto done;
1347 hammer_lock_ex(&new_node->lock);
1350 * Create the new node. P becomes the left-hand boundary in the
1351 * new node. Copy the right-hand boundary as well.
1353 * elm is the new separator.
1355 hammer_modify_node(new_node);
1356 hammer_modify_node(node);
1357 ondisk = node->ondisk;
1358 elm = &ondisk->elms[split];
1359 bcopy(elm, &new_node->ondisk->elms[0],
1360 (ondisk->count - split + 1) * esize);
1361 new_node->ondisk->count = ondisk->count - split;
1362 new_node->ondisk->parent = parent->node_offset;
1363 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1364 KKASSERT(ondisk->type == new_node->ondisk->type);
1367 * Cleanup the original node. Elm (P) becomes the new boundary,
1368 * its subtree_offset was moved to the new node. If we had created
1369 * a new root its parent pointer may have changed.
1371 elm->internal.subtree_offset = 0;
1372 ondisk->count = split;
1375 * Insert the separator into the parent, fixup the parent's
1376 * reference to the original node, and reference the new node.
1377 * The separator is P.
1379 * Remember that base.count does not include the right-hand boundary.
1381 hammer_modify_node(parent);
1382 ondisk = parent->ondisk;
1383 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1384 parent_elm = &ondisk->elms[parent_index+1];
1385 bcopy(parent_elm, parent_elm + 1,
1386 (ondisk->count - parent_index) * esize);
1387 parent_elm->internal.base = elm->base; /* separator P */
1388 parent_elm->internal.base.btype = new_node->ondisk->type;
1389 parent_elm->internal.subtree_offset = new_node->node_offset;
1390 ++ondisk->count;
1393 * The children of new_node need their parent pointer set to new_node.
1394 * The children have already been locked by
1395 * hammer_btree_lock_children().
1397 for (i = 0; i < new_node->ondisk->count; ++i) {
1398 elm = &new_node->ondisk->elms[i];
1399 error = btree_set_parent(new_node, elm);
1400 if (error) {
1401 panic("btree_split_internal: btree-fixup problem");
1406 * The filesystem's root B-Tree pointer may have to be updated.
1408 if (made_root) {
1409 hammer_volume_t volume;
1411 volume = hammer_get_root_volume(hmp, &error);
1412 KKASSERT(error == 0);
1414 hammer_modify_volume(volume, &volume->ondisk->vol0_btree_root,
1415 sizeof(hammer_off_t));
1416 volume->ondisk->vol0_btree_root = parent->node_offset;
1417 node->ondisk->parent = parent->node_offset;
1418 if (cursor->parent) {
1419 hammer_unlock(&cursor->parent->lock);
1420 hammer_rel_node(cursor->parent);
1422 cursor->parent = parent; /* lock'd and ref'd */
1423 hammer_rel_volume(volume, 0);
1428 * Ok, now adjust the cursor depending on which element the original
1429 * index was pointing at. If we are >= the split point the push node
1430 * is now in the new node.
1432 * NOTE: If we are at the split point itself we cannot stay with the
1433 * original node because the push index will point at the right-hand
1434 * boundary, which is illegal.
1436 * NOTE: The cursor's parent or parent_index must be adjusted for
1437 * the case where a new parent (new root) was created, and the case
1438 * where the cursor is now pointing at the split node.
1440 if (cursor->index >= split) {
1441 cursor->parent_index = parent_index + 1;
1442 cursor->index -= split;
1443 hammer_unlock(&cursor->node->lock);
1444 hammer_rel_node(cursor->node);
1445 cursor->node = new_node; /* locked and ref'd */
1446 } else {
1447 cursor->parent_index = parent_index;
1448 hammer_unlock(&new_node->lock);
1449 hammer_rel_node(new_node);
1453 * Fixup left and right bounds
1455 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1456 cursor->left_bound = &parent_elm[0].internal.base;
1457 cursor->right_bound = &parent_elm[1].internal.base;
1458 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1459 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1460 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1461 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1463 done:
1464 hammer_btree_unlock_children(&locklist);
1465 hammer_cursor_downgrade(cursor);
1466 return (error);
1470 * Same as the above, but splits a full leaf node.
1472 * This function
1474 static
1476 btree_split_leaf(hammer_cursor_t cursor)
1478 hammer_node_ondisk_t ondisk;
1479 hammer_node_t parent;
1480 hammer_node_t leaf;
1481 hammer_mount_t hmp;
1482 hammer_node_t new_leaf;
1483 hammer_btree_elm_t elm;
1484 hammer_btree_elm_t parent_elm;
1485 hammer_base_elm_t mid_boundary;
1486 int parent_index;
1487 int made_root;
1488 int split;
1489 int error;
1490 const size_t esize = sizeof(*elm);
1492 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1493 return(error);
1496 * Calculate the split point. If the insertion point will be on
1497 * the left-hand side adjust the split point to give the right
1498 * hand side one additional node.
1500 * Spikes are made up of two leaf elements which cannot be
1501 * safely split.
1503 leaf = cursor->node;
1504 ondisk = leaf->ondisk;
1505 split = (ondisk->count + 1) / 2;
1506 if (cursor->index <= split)
1507 --split;
1508 error = 0;
1509 hmp = leaf->volume->hmp;
1511 elm = &ondisk->elms[split];
1514 * If we are at the root of the tree, create a new root node with
1515 * 1 element and split normally. Avoid making major modifications
1516 * until we know the whole operation will work.
1518 if (ondisk->parent == 0) {
1519 parent = hammer_alloc_btree(hmp, &error);
1520 if (parent == NULL)
1521 goto done;
1522 hammer_lock_ex(&parent->lock);
1523 hammer_modify_node(parent);
1524 ondisk = parent->ondisk;
1525 ondisk->count = 1;
1526 ondisk->parent = 0;
1527 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1528 ondisk->elms[0].base = hmp->root_btree_beg;
1529 ondisk->elms[0].base.btype = leaf->ondisk->type;
1530 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1531 ondisk->elms[1].base = hmp->root_btree_end;
1532 /* ondisk->elms[1].base.btype = not used */
1533 made_root = 1;
1534 parent_index = 0; /* insertion point in parent */
1535 } else {
1536 made_root = 0;
1537 parent = cursor->parent;
1538 parent_index = cursor->parent_index;
1542 * Split leaf into new_leaf at the split point. Select a separator
1543 * value in-between the two leafs but with a bent towards the right
1544 * leaf since comparisons use an 'elm >= separator' inequality.
1546 * L L L L L L L L
1548 * x x P x x
1549 * s S S s
1550 * / \
1551 * L L L L L L L L
1553 new_leaf = hammer_alloc_btree(hmp, &error);
1554 if (new_leaf == NULL) {
1555 if (made_root) {
1556 hammer_unlock(&parent->lock);
1557 parent->flags |= HAMMER_NODE_DELETED;
1558 hammer_rel_node(parent);
1560 goto done;
1562 hammer_lock_ex(&new_leaf->lock);
1565 * Create the new node. P (elm) become the left-hand boundary in the
1566 * new node. Copy the right-hand boundary as well.
1568 hammer_modify_node(leaf);
1569 hammer_modify_node(new_leaf);
1570 ondisk = leaf->ondisk;
1571 elm = &ondisk->elms[split];
1572 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1573 new_leaf->ondisk->count = ondisk->count - split;
1574 new_leaf->ondisk->parent = parent->node_offset;
1575 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1576 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1579 * Cleanup the original node. Because this is a leaf node and
1580 * leaf nodes do not have a right-hand boundary, there
1581 * aren't any special edge cases to clean up. We just fixup the
1582 * count.
1584 ondisk->count = split;
1587 * Insert the separator into the parent, fixup the parent's
1588 * reference to the original node, and reference the new node.
1589 * The separator is P.
1591 * Remember that base.count does not include the right-hand boundary.
1592 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1594 hammer_modify_node(parent);
1595 ondisk = parent->ondisk;
1596 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1597 parent_elm = &ondisk->elms[parent_index+1];
1598 bcopy(parent_elm, parent_elm + 1,
1599 (ondisk->count - parent_index) * esize);
1601 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1602 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1603 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1604 mid_boundary = &parent_elm->base;
1605 ++ondisk->count;
1608 * The filesystem's root B-Tree pointer may have to be updated.
1610 if (made_root) {
1611 hammer_volume_t volume;
1613 volume = hammer_get_root_volume(hmp, &error);
1614 KKASSERT(error == 0);
1616 hammer_modify_volume(volume, &volume->ondisk->vol0_btree_root,
1617 sizeof(hammer_off_t));
1618 volume->ondisk->vol0_btree_root = parent->node_offset;
1619 leaf->ondisk->parent = parent->node_offset;
1620 if (cursor->parent) {
1621 hammer_unlock(&cursor->parent->lock);
1622 hammer_rel_node(cursor->parent);
1624 cursor->parent = parent; /* lock'd and ref'd */
1625 hammer_rel_volume(volume, 0);
1629 * Ok, now adjust the cursor depending on which element the original
1630 * index was pointing at. If we are >= the split point the push node
1631 * is now in the new node.
1633 * NOTE: If we are at the split point itself we need to select the
1634 * old or new node based on where key_beg's insertion point will be.
1635 * If we pick the wrong side the inserted element will wind up in
1636 * the wrong leaf node and outside that node's bounds.
1638 if (cursor->index > split ||
1639 (cursor->index == split &&
1640 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1641 cursor->parent_index = parent_index + 1;
1642 cursor->index -= split;
1643 hammer_unlock(&cursor->node->lock);
1644 hammer_rel_node(cursor->node);
1645 cursor->node = new_leaf;
1646 } else {
1647 cursor->parent_index = parent_index;
1648 hammer_unlock(&new_leaf->lock);
1649 hammer_rel_node(new_leaf);
1653 * Fixup left and right bounds
1655 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1656 cursor->left_bound = &parent_elm[0].internal.base;
1657 cursor->right_bound = &parent_elm[1].internal.base;
1660 * Assert that the bounds are correct.
1662 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1663 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1664 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1665 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1667 done:
1668 hammer_cursor_downgrade(cursor);
1669 return (error);
1673 * Recursively correct the right-hand boundary's create_tid to (tid) as
1674 * long as the rest of the key matches. We have to recurse upward in
1675 * the tree as well as down the left side of each parent's right node.
1677 * Return EDEADLK if we were only partially successful, forcing the caller
1678 * to try again. The original cursor is not modified. This routine can
1679 * also fail with EDEADLK if it is forced to throw away a portion of its
1680 * record history.
1682 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1684 struct hammer_rhb {
1685 TAILQ_ENTRY(hammer_rhb) entry;
1686 hammer_node_t node;
1687 int index;
1690 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1693 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1695 struct hammer_rhb_list rhb_list;
1696 hammer_base_elm_t elm;
1697 hammer_node_t orig_node;
1698 struct hammer_rhb *rhb;
1699 int orig_index;
1700 int error;
1702 TAILQ_INIT(&rhb_list);
1705 * Save our position so we can restore it on return. This also
1706 * gives us a stable 'elm'.
1708 orig_node = cursor->node;
1709 hammer_ref_node(orig_node);
1710 hammer_lock_sh(&orig_node->lock);
1711 orig_index = cursor->index;
1712 elm = &orig_node->ondisk->elms[orig_index].base;
1715 * Now build a list of parents going up, allocating a rhb
1716 * structure for each one.
1718 while (cursor->parent) {
1720 * Stop if we no longer have any right-bounds to fix up
1722 if (elm->obj_id != cursor->right_bound->obj_id ||
1723 elm->rec_type != cursor->right_bound->rec_type ||
1724 elm->key != cursor->right_bound->key) {
1725 break;
1729 * Stop if the right-hand bound's create_tid does not
1730 * need to be corrected.
1732 if (cursor->right_bound->create_tid >= tid)
1733 break;
1735 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1736 rhb->node = cursor->parent;
1737 rhb->index = cursor->parent_index;
1738 hammer_ref_node(rhb->node);
1739 hammer_lock_sh(&rhb->node->lock);
1740 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1742 hammer_cursor_up(cursor);
1746 * now safely adjust the right hand bound for each rhb. This may
1747 * also require taking the right side of the tree and iterating down
1748 * ITS left side.
1750 error = 0;
1751 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1752 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1753 kprintf("CORRECT RHB %016llx index %d type=%c\n",
1754 rhb->node->node_offset,
1755 rhb->index, cursor->node->ondisk->type);
1756 if (error)
1757 break;
1758 TAILQ_REMOVE(&rhb_list, rhb, entry);
1759 hammer_unlock(&rhb->node->lock);
1760 hammer_rel_node(rhb->node);
1761 kfree(rhb, M_HAMMER);
1763 switch (cursor->node->ondisk->type) {
1764 case HAMMER_BTREE_TYPE_INTERNAL:
1766 * Right-boundary for parent at internal node
1767 * is one element to the right of the element whos
1768 * right boundary needs adjusting. We must then
1769 * traverse down the left side correcting any left
1770 * bounds (which may now be too far to the left).
1772 ++cursor->index;
1773 error = hammer_btree_correct_lhb(cursor, tid);
1774 break;
1775 default:
1776 panic("hammer_btree_correct_rhb(): Bad node type");
1777 error = EINVAL;
1778 break;
1783 * Cleanup
1785 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1786 TAILQ_REMOVE(&rhb_list, rhb, entry);
1787 hammer_unlock(&rhb->node->lock);
1788 hammer_rel_node(rhb->node);
1789 kfree(rhb, M_HAMMER);
1791 error = hammer_cursor_seek(cursor, orig_node, orig_index);
1792 hammer_unlock(&orig_node->lock);
1793 hammer_rel_node(orig_node);
1794 return (error);
1798 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1799 * bound going downward starting at the current cursor position.
1801 * This function does not restore the cursor after use.
1804 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1806 struct hammer_rhb_list rhb_list;
1807 hammer_base_elm_t elm;
1808 hammer_base_elm_t cmp;
1809 struct hammer_rhb *rhb;
1810 int error;
1812 TAILQ_INIT(&rhb_list);
1814 cmp = &cursor->node->ondisk->elms[cursor->index].base;
1817 * Record the node and traverse down the left-hand side for all
1818 * matching records needing a boundary correction.
1820 error = 0;
1821 for (;;) {
1822 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1823 rhb->node = cursor->node;
1824 rhb->index = cursor->index;
1825 hammer_ref_node(rhb->node);
1826 hammer_lock_sh(&rhb->node->lock);
1827 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1829 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1831 * Nothing to traverse down if we are at the right
1832 * boundary of an internal node.
1834 if (cursor->index == cursor->node->ondisk->count)
1835 break;
1836 } else {
1837 elm = &cursor->node->ondisk->elms[cursor->index].base;
1838 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
1839 break;
1840 panic("Illegal leaf record type %02x", elm->btype);
1842 error = hammer_cursor_down(cursor);
1843 if (error)
1844 break;
1846 elm = &cursor->node->ondisk->elms[cursor->index].base;
1847 if (elm->obj_id != cmp->obj_id ||
1848 elm->rec_type != cmp->rec_type ||
1849 elm->key != cmp->key) {
1850 break;
1852 if (elm->create_tid >= tid)
1853 break;
1858 * Now we can safely adjust the left-hand boundary from the bottom-up.
1859 * The last element we remove from the list is the caller's right hand
1860 * boundary, which must also be adjusted.
1862 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1863 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1864 if (error)
1865 break;
1866 TAILQ_REMOVE(&rhb_list, rhb, entry);
1867 hammer_unlock(&rhb->node->lock);
1868 hammer_rel_node(rhb->node);
1869 kfree(rhb, M_HAMMER);
1871 elm = &cursor->node->ondisk->elms[cursor->index].base;
1872 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1873 kprintf("hammer_btree_correct_lhb-I @%016llx[%d]\n",
1874 cursor->node->node_offset, cursor->index);
1875 hammer_modify_node(cursor->node);
1876 elm->create_tid = tid;
1877 } else {
1878 panic("hammer_btree_correct_lhb(): Bad element type");
1883 * Cleanup
1885 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1886 TAILQ_REMOVE(&rhb_list, rhb, entry);
1887 hammer_unlock(&rhb->node->lock);
1888 hammer_rel_node(rhb->node);
1889 kfree(rhb, M_HAMMER);
1891 return (error);
1895 * Attempt to remove the empty B-Tree node at (cursor->node). Returns 0
1896 * on success, EAGAIN if we could not acquire the necessary locks, or some
1897 * other error. This node can be a leaf node or an internal node.
1899 * On return the cursor may end up pointing at an internal node, suitable
1900 * for further iteration but not for an immediate insertion or deletion.
1902 * cursor->node may be an internal node or a leaf node.
1904 * NOTE: If cursor->node has one element it is the parent trying to delete
1905 * that element, make sure cursor->index is properly adjusted on success.
1908 btree_remove(hammer_cursor_t cursor)
1910 hammer_node_ondisk_t ondisk;
1911 hammer_btree_elm_t elm;
1912 hammer_node_t node;
1913 hammer_node_t parent;
1914 const int esize = sizeof(*elm);
1915 int error;
1917 node = cursor->node;
1920 * When deleting the root of the filesystem convert it to
1921 * an empty leaf node. Internal nodes cannot be empty.
1923 if (node->ondisk->parent == 0) {
1924 hammer_modify_node(node);
1925 ondisk = node->ondisk;
1926 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1927 ondisk->count = 0;
1928 cursor->index = 0;
1929 return(0);
1933 * Zero-out the parent's reference to the child and flag the
1934 * child for destruction. This ensures that the child is not
1935 * reused while other references to it exist.
1937 parent = cursor->parent;
1938 hammer_modify_node(parent);
1939 ondisk = parent->ondisk;
1940 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
1941 elm = &ondisk->elms[cursor->parent_index];
1942 KKASSERT(elm->internal.subtree_offset == node->node_offset);
1943 elm->internal.subtree_offset = 0;
1945 hammer_flush_node(node);
1946 node->flags |= HAMMER_NODE_DELETED;
1949 * If the parent would otherwise not become empty we can physically
1950 * remove the zero'd element. Note however that in order to
1951 * guarentee a valid cursor we still need to be able to cursor up
1952 * because we no longer have a node.
1954 * This collapse will change the parent's boundary elements, making
1955 * them wider. The new boundaries are recursively corrected in
1956 * btree_search().
1958 * XXX we can theoretically recalculate the midpoint but there isn't
1959 * much of a reason to do it.
1961 error = hammer_cursor_up(cursor);
1962 if (error == 0)
1963 error = hammer_cursor_upgrade(cursor);
1965 if (error) {
1966 kprintf("BTREE_REMOVE: Cannot lock parent, skipping\n");
1967 Debugger("BTREE_REMOVE");
1968 return (0);
1972 * Remove the internal element from the parent. The bcopy must
1973 * include the right boundary element.
1975 KKASSERT(parent == cursor->node && ondisk == parent->ondisk);
1976 node = parent;
1977 parent = NULL;
1978 /* ondisk is node's ondisk */
1979 /* elm is node's element */
1982 * Remove the internal element that we zero'd out. Tell the caller
1983 * to loop if it hits zero (to try to avoid eating up precious kernel
1984 * stack).
1986 KKASSERT(ondisk->count > 0);
1987 bcopy(&elm[1], &elm[0], (ondisk->count - cursor->index) * esize);
1988 --ondisk->count;
1989 if (ondisk->count == 0)
1990 error = EAGAIN;
1991 return(error);
1995 * Attempt to remove the deleted internal element at the current cursor
1996 * position. If we are unable to remove the element we return EDEADLK.
1998 * If the current internal node becomes empty we delete it in the parent
1999 * and cursor up, looping until we finish or we deadlock.
2001 * On return, if successful, the cursor will be pointing at the next
2002 * iterative position in the B-Tree. If unsuccessful the cursor will be
2003 * pointing at the last deleted internal element that could not be
2004 * removed.
2006 static
2008 btree_remove_deleted_element(hammer_cursor_t cursor)
2010 hammer_node_t node;
2011 hammer_btree_elm_t elm;
2012 int error;
2014 if ((error = hammer_cursor_upgrade(cursor)) != 0)
2015 return(error);
2016 node = cursor->node;
2017 elm = &node->ondisk->elms[cursor->index];
2018 if (elm->internal.subtree_offset == 0) {
2019 do {
2020 error = btree_remove(cursor);
2021 kprintf("BTREE REMOVE DELETED ELEMENT %d\n", error);
2022 } while (error == EAGAIN);
2024 return(error);
2028 * The element (elm) has been moved to a new internal node (node).
2030 * If the element represents a pointer to an internal node that node's
2031 * parent must be adjusted to the element's new location.
2033 * XXX deadlock potential here with our exclusive locks
2035 static
2037 btree_set_parent(hammer_node_t node, hammer_btree_elm_t elm)
2039 hammer_node_t child;
2040 int error;
2042 error = 0;
2044 switch(elm->base.btype) {
2045 case HAMMER_BTREE_TYPE_INTERNAL:
2046 case HAMMER_BTREE_TYPE_LEAF:
2047 child = hammer_get_node(node->volume->hmp,
2048 elm->internal.subtree_offset, &error);
2049 if (error == 0) {
2050 hammer_modify_node(child);
2051 child->ondisk->parent = node->node_offset;
2052 hammer_rel_node(child);
2054 break;
2055 default:
2056 break;
2058 return(error);
2062 * Exclusively lock all the children of node. This is used by the split
2063 * code to prevent anyone from accessing the children of a cursor node
2064 * while we fix-up its parent offset.
2066 * If we don't lock the children we can really mess up cursors which block
2067 * trying to cursor-up into our node.
2069 * On failure EDEADLK (or some other error) is returned. If a deadlock
2070 * error is returned the cursor is adjusted to block on termination.
2073 hammer_btree_lock_children(hammer_cursor_t cursor,
2074 struct hammer_node_locklist **locklistp)
2076 hammer_node_t node;
2077 hammer_node_locklist_t item;
2078 hammer_node_ondisk_t ondisk;
2079 hammer_btree_elm_t elm;
2080 hammer_node_t child;
2081 int error;
2082 int i;
2084 node = cursor->node;
2085 ondisk = node->ondisk;
2086 error = 0;
2087 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2088 elm = &ondisk->elms[i];
2090 switch(elm->base.btype) {
2091 case HAMMER_BTREE_TYPE_INTERNAL:
2092 case HAMMER_BTREE_TYPE_LEAF:
2093 child = hammer_get_node(node->volume->hmp,
2094 elm->internal.subtree_offset,
2095 &error);
2096 break;
2097 default:
2098 child = NULL;
2099 break;
2101 if (child) {
2102 if (hammer_lock_ex_try(&child->lock) != 0) {
2103 if (cursor->deadlk_node == NULL) {
2104 cursor->deadlk_node = node;
2105 hammer_ref_node(cursor->deadlk_node);
2107 error = EDEADLK;
2108 } else {
2109 item = kmalloc(sizeof(*item),
2110 M_HAMMER, M_WAITOK);
2111 item->next = *locklistp;
2112 item->node = child;
2113 *locklistp = item;
2117 if (error)
2118 hammer_btree_unlock_children(locklistp);
2119 return(error);
2124 * Release previously obtained node locks.
2126 void
2127 hammer_btree_unlock_children(struct hammer_node_locklist **locklistp)
2129 hammer_node_locklist_t item;
2131 while ((item = *locklistp) != NULL) {
2132 *locklistp = item->next;
2133 hammer_unlock(&item->node->lock);
2134 hammer_rel_node(item->node);
2135 kfree(item, M_HAMMER);
2139 /************************************************************************
2140 * MISCELLANIOUS SUPPORT *
2141 ************************************************************************/
2144 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2146 * Note that for this particular function a return value of -1, 0, or +1
2147 * can denote a match if create_tid is otherwise discounted. A create_tid
2148 * of zero is considered to be 'infinity' in comparisons.
2150 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2153 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2155 if (key1->obj_id < key2->obj_id)
2156 return(-4);
2157 if (key1->obj_id > key2->obj_id)
2158 return(4);
2160 if (key1->rec_type < key2->rec_type)
2161 return(-3);
2162 if (key1->rec_type > key2->rec_type)
2163 return(3);
2165 if (key1->key < key2->key)
2166 return(-2);
2167 if (key1->key > key2->key)
2168 return(2);
2171 * A create_tid of zero indicates a record which is undeletable
2172 * and must be considered to have a value of positive infinity.
2174 if (key1->create_tid == 0) {
2175 if (key2->create_tid == 0)
2176 return(0);
2177 return(1);
2179 if (key2->create_tid == 0)
2180 return(-1);
2181 if (key1->create_tid < key2->create_tid)
2182 return(-1);
2183 if (key1->create_tid > key2->create_tid)
2184 return(1);
2185 return(0);
2189 * Test a timestamp against an element to determine whether the
2190 * element is visible. A timestamp of 0 means 'infinity'.
2193 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2195 if (asof == 0) {
2196 if (base->delete_tid)
2197 return(1);
2198 return(0);
2200 if (asof < base->create_tid)
2201 return(-1);
2202 if (base->delete_tid && asof >= base->delete_tid)
2203 return(1);
2204 return(0);
2208 * Create a separator half way inbetween key1 and key2. For fields just
2209 * one unit apart, the separator will match key2. key1 is on the left-hand
2210 * side and key2 is on the right-hand side.
2212 * create_tid has to be special cased because a value of 0 represents
2213 * infinity.
2215 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2216 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2218 static void
2219 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2220 hammer_base_elm_t dest)
2222 bzero(dest, sizeof(*dest));
2223 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2224 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2225 MAKE_SEPARATOR(key1, key2, dest, key);
2227 if (key1->obj_id == key2->obj_id &&
2228 key1->rec_type == key2->rec_type &&
2229 key1->key == key2->key) {
2230 if (key1->create_tid == 0) {
2232 * Oops, a create_tid of 0 means 'infinity', so
2233 * if everything matches this just isn't legal.
2235 panic("key1->create_tid of 0 is impossible here");
2236 } else if (key2->create_tid == 0) {
2237 dest->create_tid = key1->create_tid + 1;
2238 } else {
2239 MAKE_SEPARATOR(key1, key2, dest, create_tid);
2241 } else {
2242 dest->create_tid = 0;
2246 #undef MAKE_SEPARATOR
2249 * Return whether a generic internal or leaf node is full
2251 static int
2252 btree_node_is_full(hammer_node_ondisk_t node)
2254 switch(node->type) {
2255 case HAMMER_BTREE_TYPE_INTERNAL:
2256 if (node->count == HAMMER_BTREE_INT_ELMS)
2257 return(1);
2258 break;
2259 case HAMMER_BTREE_TYPE_LEAF:
2260 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2261 return(1);
2262 break;
2263 default:
2264 panic("illegal btree subtype");
2266 return(0);
2269 #if 0
2270 static int
2271 btree_max_elements(u_int8_t type)
2273 if (type == HAMMER_BTREE_TYPE_LEAF)
2274 return(HAMMER_BTREE_LEAF_ELMS);
2275 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2276 return(HAMMER_BTREE_INT_ELMS);
2277 panic("btree_max_elements: bad type %d\n", type);
2279 #endif
2281 void
2282 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2284 hammer_btree_elm_t elm;
2285 int i;
2287 kprintf("node %p count=%d parent=%016llx type=%c\n",
2288 ondisk, ondisk->count, ondisk->parent, ondisk->type);
2291 * Dump both boundary elements if an internal node
2293 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2294 for (i = 0; i <= ondisk->count; ++i) {
2295 elm = &ondisk->elms[i];
2296 hammer_print_btree_elm(elm, ondisk->type, i);
2298 } else {
2299 for (i = 0; i < ondisk->count; ++i) {
2300 elm = &ondisk->elms[i];
2301 hammer_print_btree_elm(elm, ondisk->type, i);
2306 void
2307 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2309 kprintf(" %2d", i);
2310 kprintf("\tobj_id = %016llx\n", elm->base.obj_id);
2311 kprintf("\tkey = %016llx\n", elm->base.key);
2312 kprintf("\tcreate_tid = %016llx\n", elm->base.create_tid);
2313 kprintf("\tdelete_tid = %016llx\n", elm->base.delete_tid);
2314 kprintf("\trec_type = %04x\n", elm->base.rec_type);
2315 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
2316 kprintf("\tbtype = %02x (%c)\n",
2317 elm->base.btype,
2318 (elm->base.btype ? elm->base.btype : '?'));
2320 switch(type) {
2321 case HAMMER_BTREE_TYPE_INTERNAL:
2322 kprintf("\tsubtree_off = %016llx\n",
2323 elm->internal.subtree_offset);
2324 break;
2325 case HAMMER_BTREE_TYPE_RECORD:
2326 kprintf("\trec_offset = %016llx\n", elm->leaf.rec_offset);
2327 kprintf("\tdata_offset = %016llx\n", elm->leaf.data_offset);
2328 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
2329 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
2330 break;