2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
53 #include <sys/thread2.h>
54 #include <sys/file2.h>
55 #include <sys/mplock2.h>
57 #define EVENT_REGISTER 1
58 #define EVENT_PROCESS 2
60 MALLOC_DEFINE(M_KQUEUE
, "kqueue", "memory for kqueue system");
62 struct kevent_copyin_args
{
63 struct kevent_args
*ka
;
67 #define KNOTE_CACHE_MAX 8
69 struct knote_cache_list
{
70 struct klist knote_cache
;
74 static int kqueue_scan(struct kqueue
*kq
, struct kevent
*kevp
, int count
,
75 struct knote
*marker
);
76 static int kqueue_read(struct file
*fp
, struct uio
*uio
,
77 struct ucred
*cred
, int flags
);
78 static int kqueue_write(struct file
*fp
, struct uio
*uio
,
79 struct ucred
*cred
, int flags
);
80 static int kqueue_ioctl(struct file
*fp
, u_long com
, caddr_t data
,
81 struct ucred
*cred
, struct sysmsg
*msg
);
82 static int kqueue_kqfilter(struct file
*fp
, struct knote
*kn
);
83 static int kqueue_stat(struct file
*fp
, struct stat
*st
,
85 static int kqueue_close(struct file
*fp
);
86 static void kqueue_wakeup(struct kqueue
*kq
);
87 static int filter_attach(struct knote
*kn
);
88 static int filter_event(struct knote
*kn
, long hint
);
93 static struct fileops kqueueops
= {
94 .fo_read
= kqueue_read
,
95 .fo_write
= kqueue_write
,
96 .fo_ioctl
= kqueue_ioctl
,
97 .fo_kqfilter
= kqueue_kqfilter
,
98 .fo_stat
= kqueue_stat
,
99 .fo_close
= kqueue_close
,
100 .fo_shutdown
= nofo_shutdown
103 static void knote_attach(struct knote
*kn
);
104 static void knote_drop(struct knote
*kn
);
105 static void knote_detach_and_drop(struct knote
*kn
);
106 static void knote_enqueue(struct knote
*kn
);
107 static void knote_dequeue(struct knote
*kn
);
108 static struct knote
*knote_alloc(void);
109 static void knote_free(struct knote
*kn
);
111 static void precise_sleep_intr(systimer_t info
, int in_ipi
,
112 struct intrframe
*frame
);
113 static int precise_sleep(void *ident
, int flags
, const char *wmesg
,
116 static void filt_kqdetach(struct knote
*kn
);
117 static int filt_kqueue(struct knote
*kn
, long hint
);
118 static int filt_procattach(struct knote
*kn
);
119 static void filt_procdetach(struct knote
*kn
);
120 static int filt_proc(struct knote
*kn
, long hint
);
121 static int filt_fileattach(struct knote
*kn
);
122 static void filt_timerexpire(void *knx
);
123 static int filt_timerattach(struct knote
*kn
);
124 static void filt_timerdetach(struct knote
*kn
);
125 static int filt_timer(struct knote
*kn
, long hint
);
126 static int filt_userattach(struct knote
*kn
);
127 static void filt_userdetach(struct knote
*kn
);
128 static int filt_user(struct knote
*kn
, long hint
);
129 static void filt_usertouch(struct knote
*kn
, struct kevent
*kev
,
131 static int filt_fsattach(struct knote
*kn
);
132 static void filt_fsdetach(struct knote
*kn
);
133 static int filt_fs(struct knote
*kn
, long hint
);
135 static struct filterops file_filtops
=
136 { FILTEROP_ISFD
| FILTEROP_MPSAFE
, filt_fileattach
, NULL
, NULL
};
137 static struct filterops kqread_filtops
=
138 { FILTEROP_ISFD
| FILTEROP_MPSAFE
, NULL
, filt_kqdetach
, filt_kqueue
};
139 static struct filterops proc_filtops
=
140 { FILTEROP_MPSAFE
, filt_procattach
, filt_procdetach
, filt_proc
};
141 static struct filterops timer_filtops
=
142 { FILTEROP_MPSAFE
, filt_timerattach
, filt_timerdetach
, filt_timer
};
143 static struct filterops user_filtops
=
144 { FILTEROP_MPSAFE
, filt_userattach
, filt_userdetach
, filt_user
};
145 static struct filterops fs_filtops
=
146 { FILTEROP_MPSAFE
, filt_fsattach
, filt_fsdetach
, filt_fs
};
148 static int kq_ncallouts
= 0;
149 static int kq_calloutmax
= (4 * 1024);
150 SYSCTL_INT(_kern
, OID_AUTO
, kq_calloutmax
, CTLFLAG_RW
,
151 &kq_calloutmax
, 0, "Maximum number of callouts allocated for kqueue");
152 static int kq_checkloop
= 1000000;
153 SYSCTL_INT(_kern
, OID_AUTO
, kq_checkloop
, CTLFLAG_RW
,
154 &kq_checkloop
, 0, "Maximum number of loops for kqueue scan");
155 static int kq_sleep_threshold
= 20000;
156 SYSCTL_INT(_kern
, OID_AUTO
, kq_sleep_threshold
, CTLFLAG_RW
,
157 &kq_sleep_threshold
, 0, "Minimum sleep duration without busy-looping");
159 #define KNOTE_ACTIVATE(kn) do { \
160 kn->kn_status |= KN_ACTIVE; \
161 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
165 #define KN_HASHSIZE 64 /* XXX should be tunable */
166 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
168 extern struct filterops aio_filtops
;
169 extern struct filterops sig_filtops
;
172 * Table for for all system-defined filters.
174 static struct filterops
*sysfilt_ops
[] = {
175 &file_filtops
, /* EVFILT_READ */
176 &file_filtops
, /* EVFILT_WRITE */
177 &aio_filtops
, /* EVFILT_AIO */
178 &file_filtops
, /* EVFILT_VNODE */
179 &proc_filtops
, /* EVFILT_PROC */
180 &sig_filtops
, /* EVFILT_SIGNAL */
181 &timer_filtops
, /* EVFILT_TIMER */
182 &file_filtops
, /* EVFILT_EXCEPT */
183 &user_filtops
, /* EVFILT_USER */
184 &fs_filtops
, /* EVFILT_FS */
187 static struct knote_cache_list knote_cache_lists
[MAXCPU
];
190 * Acquire a knote, return non-zero on success, 0 on failure.
192 * If we cannot acquire the knote we sleep and return 0. The knote
193 * may be stale on return in this case and the caller must restart
194 * whatever loop they are in.
196 * Related kq token must be held.
199 knote_acquire(struct knote
*kn
)
201 if (kn
->kn_status
& KN_PROCESSING
) {
202 kn
->kn_status
|= KN_WAITING
| KN_REPROCESS
;
203 tsleep(kn
, 0, "kqepts", hz
);
204 /* knote may be stale now */
207 kn
->kn_status
|= KN_PROCESSING
;
212 * Release an acquired knote, clearing KN_PROCESSING and handling any
213 * KN_REPROCESS events.
215 * Caller must be holding the related kq token
217 * Non-zero is returned if the knote is destroyed or detached.
220 knote_release(struct knote
*kn
)
224 while (kn
->kn_status
& KN_REPROCESS
) {
225 kn
->kn_status
&= ~KN_REPROCESS
;
226 if (kn
->kn_status
& KN_WAITING
) {
227 kn
->kn_status
&= ~KN_WAITING
;
230 if (kn
->kn_status
& KN_DELETING
) {
231 knote_detach_and_drop(kn
);
235 if (filter_event(kn
, 0))
238 if (kn
->kn_status
& KN_DETACHED
)
242 kn
->kn_status
&= ~KN_PROCESSING
;
243 /* kn should not be accessed anymore */
248 filt_fileattach(struct knote
*kn
)
250 return (fo_kqfilter(kn
->kn_fp
, kn
));
257 kqueue_kqfilter(struct file
*fp
, struct knote
*kn
)
259 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
261 if (kn
->kn_filter
!= EVFILT_READ
)
264 kn
->kn_fop
= &kqread_filtops
;
265 knote_insert(&kq
->kq_kqinfo
.ki_note
, kn
);
270 filt_kqdetach(struct knote
*kn
)
272 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
274 knote_remove(&kq
->kq_kqinfo
.ki_note
, kn
);
279 filt_kqueue(struct knote
*kn
, long hint
)
281 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
283 kn
->kn_data
= kq
->kq_count
;
284 return (kn
->kn_data
> 0);
288 filt_procattach(struct knote
*kn
)
294 p
= pfind(kn
->kn_id
);
295 if (p
== NULL
&& (kn
->kn_sfflags
& NOTE_EXIT
)) {
296 p
= zpfind(kn
->kn_id
);
302 if (!PRISON_CHECK(curthread
->td_ucred
, p
->p_ucred
)) {
308 lwkt_gettoken(&p
->p_token
);
309 kn
->kn_ptr
.p_proc
= p
;
310 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
313 * internal flag indicating registration done by kernel
315 if (kn
->kn_flags
& EV_FLAG1
) {
316 kn
->kn_data
= kn
->kn_sdata
; /* ppid */
317 kn
->kn_fflags
= NOTE_CHILD
;
318 kn
->kn_flags
&= ~EV_FLAG1
;
321 knote_insert(&p
->p_klist
, kn
);
324 * Immediately activate any exit notes if the target process is a
325 * zombie. This is necessary to handle the case where the target
326 * process, e.g. a child, dies before the kevent is negistered.
328 if (immediate
&& filt_proc(kn
, NOTE_EXIT
))
330 lwkt_reltoken(&p
->p_token
);
337 * The knote may be attached to a different process, which may exit,
338 * leaving nothing for the knote to be attached to. So when the process
339 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
340 * it will be deleted when read out. However, as part of the knote deletion,
341 * this routine is called, so a check is needed to avoid actually performing
342 * a detach, because the original process does not exist any more.
345 filt_procdetach(struct knote
*kn
)
349 if (kn
->kn_status
& KN_DETACHED
)
351 p
= kn
->kn_ptr
.p_proc
;
352 knote_remove(&p
->p_klist
, kn
);
356 filt_proc(struct knote
*kn
, long hint
)
361 * mask off extra data
363 event
= (u_int
)hint
& NOTE_PCTRLMASK
;
366 * if the user is interested in this event, record it.
368 if (kn
->kn_sfflags
& event
)
369 kn
->kn_fflags
|= event
;
372 * Process is gone, so flag the event as finished. Detach the
373 * knote from the process now because the process will be poof,
376 if (event
== NOTE_EXIT
) {
377 struct proc
*p
= kn
->kn_ptr
.p_proc
;
378 if ((kn
->kn_status
& KN_DETACHED
) == 0) {
380 knote_remove(&p
->p_klist
, kn
);
381 kn
->kn_status
|= KN_DETACHED
;
382 kn
->kn_data
= p
->p_xstat
;
383 kn
->kn_ptr
.p_proc
= NULL
;
386 kn
->kn_flags
|= (EV_EOF
| EV_NODATA
| EV_ONESHOT
);
391 * process forked, and user wants to track the new process,
392 * so attach a new knote to it, and immediately report an
393 * event with the parent's pid.
395 if ((event
== NOTE_FORK
) && (kn
->kn_sfflags
& NOTE_TRACK
)) {
400 * register knote with new process.
402 kev
.ident
= hint
& NOTE_PDATAMASK
; /* pid */
403 kev
.filter
= kn
->kn_filter
;
404 kev
.flags
= kn
->kn_flags
| EV_ADD
| EV_ENABLE
| EV_FLAG1
;
405 kev
.fflags
= kn
->kn_sfflags
;
406 kev
.data
= kn
->kn_id
; /* parent */
407 kev
.udata
= kn
->kn_kevent
.udata
; /* preserve udata */
408 error
= kqueue_register(kn
->kn_kq
, &kev
);
410 kn
->kn_fflags
|= NOTE_TRACKERR
;
413 return (kn
->kn_fflags
!= 0);
417 filt_timerreset(struct knote
*kn
)
419 struct callout
*calloutp
;
423 tv
.tv_sec
= kn
->kn_sdata
/ 1000;
424 tv
.tv_usec
= (kn
->kn_sdata
% 1000) * 1000;
425 tticks
= tvtohz_high(&tv
);
426 calloutp
= (struct callout
*)kn
->kn_hook
;
427 callout_reset(calloutp
, tticks
, filt_timerexpire
, kn
);
431 * The callout interlocks with callout_terminate() but can still
432 * race a deletion so if KN_DELETING is set we just don't touch
436 filt_timerexpire(void *knx
)
438 struct knote
*kn
= knx
;
439 struct kqueue
*kq
= kn
->kn_kq
;
441 lwkt_getpooltoken(kq
);
444 * Open knote_acquire(), since we can't sleep in callout,
445 * however, we do need to record this expiration.
448 if (kn
->kn_status
& KN_PROCESSING
) {
449 kn
->kn_status
|= KN_REPROCESS
;
450 if ((kn
->kn_status
& KN_DELETING
) == 0 &&
451 (kn
->kn_flags
& EV_ONESHOT
) == 0)
453 lwkt_relpooltoken(kq
);
456 KASSERT((kn
->kn_status
& KN_DELETING
) == 0,
457 ("acquire a deleting knote %#x", kn
->kn_status
));
458 kn
->kn_status
|= KN_PROCESSING
;
461 if ((kn
->kn_flags
& EV_ONESHOT
) == 0)
466 lwkt_relpooltoken(kq
);
470 * data contains amount of time to sleep, in milliseconds
473 filt_timerattach(struct knote
*kn
)
475 struct callout
*calloutp
;
478 prev_ncallouts
= atomic_fetchadd_int(&kq_ncallouts
, 1);
479 if (prev_ncallouts
>= kq_calloutmax
) {
480 atomic_subtract_int(&kq_ncallouts
, 1);
485 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
486 calloutp
= kmalloc(sizeof(*calloutp
), M_KQUEUE
, M_WAITOK
);
487 callout_init_mp(calloutp
);
488 kn
->kn_hook
= (caddr_t
)calloutp
;
495 * This function is called with the knote flagged locked but it is
496 * still possible to race a callout event due to the callback blocking.
497 * We must call callout_terminate() instead of callout_stop() to deal
501 filt_timerdetach(struct knote
*kn
)
503 struct callout
*calloutp
;
505 calloutp
= (struct callout
*)kn
->kn_hook
;
506 callout_terminate(calloutp
);
508 kfree(calloutp
, M_KQUEUE
);
509 atomic_subtract_int(&kq_ncallouts
, 1);
513 filt_timer(struct knote
*kn
, long hint
)
515 return (kn
->kn_data
!= 0);
522 filt_userattach(struct knote
*kn
)
527 if (kn
->kn_sfflags
& NOTE_TRIGGER
)
528 kn
->kn_ptr
.hookid
= 1;
530 kn
->kn_ptr
.hookid
= 0;
532 ffctrl
= kn
->kn_sfflags
& NOTE_FFCTRLMASK
;
533 kn
->kn_sfflags
&= NOTE_FFLAGSMASK
;
539 kn
->kn_fflags
&= kn
->kn_sfflags
;
543 kn
->kn_fflags
|= kn
->kn_sfflags
;
547 kn
->kn_fflags
= kn
->kn_sfflags
;
551 /* XXX Return error? */
554 /* We just happen to copy this value as well. Undocumented. */
555 kn
->kn_data
= kn
->kn_sdata
;
561 filt_userdetach(struct knote
*kn
)
567 filt_user(struct knote
*kn
, long hint
)
569 return (kn
->kn_ptr
.hookid
);
573 filt_usertouch(struct knote
*kn
, struct kevent
*kev
, u_long type
)
579 if (kev
->fflags
& NOTE_TRIGGER
)
580 kn
->kn_ptr
.hookid
= 1;
582 ffctrl
= kev
->fflags
& NOTE_FFCTRLMASK
;
583 kev
->fflags
&= NOTE_FFLAGSMASK
;
589 kn
->kn_fflags
&= kev
->fflags
;
593 kn
->kn_fflags
|= kev
->fflags
;
597 kn
->kn_fflags
= kev
->fflags
;
601 /* XXX Return error? */
604 /* We just happen to copy this value as well. Undocumented. */
605 kn
->kn_data
= kev
->data
;
608 * This is not the correct use of EV_CLEAR in an event
609 * modification, it should have been passed as a NOTE instead.
610 * But we need to maintain compatibility with Apple & FreeBSD.
612 * Note however that EV_CLEAR can still be used when doing
613 * the initial registration of the event and works as expected
614 * (clears the event on reception).
616 if (kev
->flags
& EV_CLEAR
) {
617 kn
->kn_ptr
.hookid
= 0;
619 * Clearing kn->kn_data is fine, since it gets set
620 * every time anyway. We just shouldn't clear
621 * kn->kn_fflags here, since that would limit the
622 * possible uses of this API. NOTE_FFAND or
623 * NOTE_FFCOPY should be used for explicitly clearing
631 *kev
= kn
->kn_kevent
;
632 kev
->fflags
= kn
->kn_fflags
;
633 kev
->data
= kn
->kn_data
;
634 if (kn
->kn_flags
& EV_CLEAR
) {
635 kn
->kn_ptr
.hookid
= 0;
636 /* kn_data, kn_fflags handled by parent */
641 panic("filt_usertouch() - invalid type (%ld)", type
);
649 struct klist fs_klist
= SLIST_HEAD_INITIALIZER(&fs_klist
);
652 filt_fsattach(struct knote
*kn
)
654 kn
->kn_flags
|= EV_CLEAR
;
655 knote_insert(&fs_klist
, kn
);
661 filt_fsdetach(struct knote
*kn
)
663 knote_remove(&fs_klist
, kn
);
667 filt_fs(struct knote
*kn
, long hint
)
669 kn
->kn_fflags
|= hint
;
670 return (kn
->kn_fflags
!= 0);
674 * Initialize a kqueue.
676 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
681 kqueue_init(struct kqueue
*kq
, struct filedesc
*fdp
)
683 TAILQ_INIT(&kq
->kq_knpend
);
684 TAILQ_INIT(&kq
->kq_knlist
);
687 SLIST_INIT(&kq
->kq_kqinfo
.ki_note
);
691 * Terminate a kqueue. Freeing the actual kq itself is left up to the
692 * caller (it might be embedded in a lwp so we don't do it here).
694 * The kq's knlist must be completely eradicated so block on any
698 kqueue_terminate(struct kqueue
*kq
)
702 lwkt_getpooltoken(kq
);
703 while ((kn
= TAILQ_FIRST(&kq
->kq_knlist
)) != NULL
) {
704 if (knote_acquire(kn
))
705 knote_detach_and_drop(kn
);
707 lwkt_relpooltoken(kq
);
710 hashdestroy(kq
->kq_knhash
, M_KQUEUE
, kq
->kq_knhashmask
);
711 kq
->kq_knhash
= NULL
;
712 kq
->kq_knhashmask
= 0;
720 sys_kqueue(struct kqueue_args
*uap
)
722 struct thread
*td
= curthread
;
727 error
= falloc(td
->td_lwp
, &fp
, &fd
);
730 fp
->f_flag
= FREAD
| FWRITE
;
731 fp
->f_type
= DTYPE_KQUEUE
;
732 fp
->f_ops
= &kqueueops
;
734 kq
= kmalloc(sizeof(struct kqueue
), M_KQUEUE
, M_WAITOK
| M_ZERO
);
735 kqueue_init(kq
, td
->td_proc
->p_fd
);
738 fsetfd(kq
->kq_fdp
, fp
, fd
);
739 uap
->sysmsg_result
= fd
;
745 * Copy 'count' items into the destination list pointed to by uap->eventlist.
748 kevent_copyout(void *arg
, struct kevent
*kevp
, int count
, int *res
)
750 struct kevent_copyin_args
*kap
;
753 kap
= (struct kevent_copyin_args
*)arg
;
755 error
= copyout(kevp
, kap
->ka
->eventlist
, count
* sizeof(*kevp
));
757 kap
->ka
->eventlist
+= count
;
767 * Copy at most 'max' items from the list pointed to by kap->changelist,
768 * return number of items in 'events'.
771 kevent_copyin(void *arg
, struct kevent
*kevp
, int max
, int *events
)
773 struct kevent_copyin_args
*kap
;
776 kap
= (struct kevent_copyin_args
*)arg
;
778 count
= min(kap
->ka
->nchanges
- kap
->pchanges
, max
);
779 error
= copyin(kap
->ka
->changelist
, kevp
, count
* sizeof *kevp
);
781 kap
->ka
->changelist
+= count
;
782 kap
->pchanges
+= count
;
793 kern_kevent(struct kqueue
*kq
, int nevents
, int *res
, void *uap
,
794 k_copyin_fn kevent_copyinfn
, k_copyout_fn kevent_copyoutfn
,
795 struct timespec
*tsp_in
, int flags
)
798 struct timespec
*tsp
, ats
;
799 int i
, n
, total
, error
, nerrors
= 0;
801 int limit
= kq_checkloop
;
802 struct kevent kev
[KQ_NEVENTS
];
804 struct lwkt_token
*tok
;
806 if (tsp_in
== NULL
|| tsp_in
->tv_sec
|| tsp_in
->tv_nsec
)
807 atomic_set_int(&curthread
->td_mpflags
, TDF_MP_BATCH_DEMARC
);
814 error
= kevent_copyinfn(uap
, kev
, KQ_NEVENTS
, &n
);
819 for (i
= 0; i
< n
; i
++) {
821 kevp
->flags
&= ~EV_SYSFLAGS
;
822 error
= kqueue_register(kq
, kevp
);
825 * If a registration returns an error we
826 * immediately post the error. The kevent()
827 * call itself will fail with the error if
828 * no space is available for posting.
830 * Such errors normally bypass the timeout/blocking
831 * code. However, if the copyoutfn function refuses
832 * to post the error (see sys_poll()), then we
835 if (error
|| (kevp
->flags
& EV_RECEIPT
)) {
836 kevp
->flags
= EV_ERROR
;
839 kevent_copyoutfn(uap
, kevp
, 1, res
);
842 } else if (lres
!= *res
) {
853 * Acquire/wait for events - setup timeout
856 if (tsp
->tv_sec
|| tsp
->tv_nsec
) {
858 timespecadd(tsp
, &ats
); /* tsp = target time */
865 * Collect as many events as we can. Sleeping on successive
866 * loops is disabled if copyoutfn has incremented (*res).
868 * The loop stops if an error occurs, all events have been
869 * scanned (the marker has been reached), or fewer than the
870 * maximum number of events is found.
872 * The copyoutfn function does not have to increment (*res) in
873 * order for the loop to continue.
875 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
879 marker
.kn_filter
= EVFILT_MARKER
;
880 marker
.kn_status
= KN_PROCESSING
;
881 tok
= lwkt_token_pool_lookup(kq
);
883 TAILQ_INSERT_TAIL(&kq
->kq_knpend
, &marker
, kn_tqe
);
885 while ((n
= nevents
- total
) > 0) {
890 * If no events are pending sleep until timeout (if any)
891 * or an event occurs.
893 * After the sleep completes the marker is moved to the
894 * end of the list, making any received events available
897 if (kq
->kq_count
== 0 && *res
== 0) {
898 int timeout
, ustimeout
= 0;
902 } else if (tsp
->tv_sec
== 0 && tsp
->tv_nsec
== 0) {
906 struct timespec atx
= *tsp
;
909 timespecsub(&atx
, &ats
);
910 if (atx
.tv_sec
< 0) {
914 timeout
= atx
.tv_sec
> 24 * 60 * 60 ?
918 if (flags
& KEVENT_TIMEOUT_PRECISE
&&
920 if (atx
.tv_sec
== 0 &&
921 atx
.tv_nsec
< kq_sleep_threshold
) {
922 DELAY(atx
.tv_nsec
/ 1000);
925 } else if (atx
.tv_sec
< 2000) {
926 ustimeout
= atx
.tv_sec
*
927 1000000 + atx
.tv_nsec
/1000;
929 ustimeout
= 2000000000;
935 if (kq
->kq_count
== 0) {
937 if (__predict_false(kq
->kq_sleep_cnt
== 0)) {
939 * Guard against possible wrapping. And
940 * set it to 2, so that kqueue_wakeup()
941 * can wake everyone up.
943 kq
->kq_sleep_cnt
= 2;
945 if ((flags
& KEVENT_TIMEOUT_PRECISE
) &&
947 error
= precise_sleep(kq
, PCATCH
,
948 "kqread", ustimeout
);
950 error
= tsleep(kq
, PCATCH
, "kqread",
954 /* don't restart after signals... */
955 if (error
== ERESTART
)
962 TAILQ_REMOVE(&kq
->kq_knpend
, &marker
, kn_tqe
);
963 TAILQ_INSERT_TAIL(&kq
->kq_knpend
, &marker
,
970 * Process all received events
971 * Account for all non-spurious events in our total
973 i
= kqueue_scan(kq
, kev
, n
, &marker
);
976 error
= kevent_copyoutfn(uap
, kev
, i
, res
);
977 total
+= *res
- lres
;
981 if (limit
&& --limit
== 0)
982 panic("kqueue: checkloop failed i=%d", i
);
985 * Normally when fewer events are returned than requested
986 * we can stop. However, if only spurious events were
987 * collected the copyout will not bump (*res) and we have
994 * Deal with an edge case where spurious events can cause
995 * a loop to occur without moving the marker. This can
996 * prevent kqueue_scan() from picking up new events which
997 * race us. We must be sure to move the marker for this
1000 * NOTE: We do not want to move the marker if events
1001 * were scanned because normal kqueue operations
1002 * may reactivate events. Moving the marker in
1003 * that case could result in duplicates for the
1008 TAILQ_REMOVE(&kq
->kq_knpend
, &marker
, kn_tqe
);
1009 TAILQ_INSERT_TAIL(&kq
->kq_knpend
, &marker
, kn_tqe
);
1014 TAILQ_REMOVE(&kq
->kq_knpend
, &marker
, kn_tqe
);
1017 /* Timeouts do not return EWOULDBLOCK. */
1018 if (error
== EWOULDBLOCK
)
1027 sys_kevent(struct kevent_args
*uap
)
1029 struct thread
*td
= curthread
;
1030 struct proc
*p
= td
->td_proc
;
1031 struct timespec ts
, *tsp
;
1033 struct file
*fp
= NULL
;
1034 struct kevent_copyin_args
*kap
, ka
;
1038 error
= copyin(uap
->timeout
, &ts
, sizeof(ts
));
1045 fp
= holdfp(p
->p_fd
, uap
->fd
, -1);
1048 if (fp
->f_type
!= DTYPE_KQUEUE
) {
1053 kq
= (struct kqueue
*)fp
->f_data
;
1059 error
= kern_kevent(kq
, uap
->nevents
, &uap
->sysmsg_result
, kap
,
1060 kevent_copyin
, kevent_copyout
, tsp
, 0);
1068 kqueue_register(struct kqueue
*kq
, struct kevent
*kev
)
1070 struct filedesc
*fdp
= kq
->kq_fdp
;
1071 struct klist
*list
= NULL
;
1072 struct filterops
*fops
;
1073 struct file
*fp
= NULL
;
1074 struct knote
*kn
= NULL
;
1077 struct knote_cache_list
*cache_list
;
1079 if (kev
->filter
< 0) {
1080 if (kev
->filter
+ EVFILT_SYSCOUNT
< 0)
1082 fops
= sysfilt_ops
[~kev
->filter
]; /* to 0-base index */
1086 * filter attach routine is responsible for insuring that
1087 * the identifier can be attached to it.
1092 if (fops
->f_flags
& FILTEROP_ISFD
) {
1093 /* validate descriptor */
1094 fp
= holdfp(fdp
, kev
->ident
, -1);
1099 cache_list
= &knote_cache_lists
[mycpuid
];
1100 if (SLIST_EMPTY(&cache_list
->knote_cache
)) {
1101 struct knote
*new_kn
;
1103 new_kn
= knote_alloc();
1105 SLIST_INSERT_HEAD(&cache_list
->knote_cache
, new_kn
, kn_link
);
1106 cache_list
->knote_cache_cnt
++;
1111 lwkt_getpooltoken(kq
);
1114 * Make sure that only one thread can register event on this kqueue,
1115 * so that we would not suffer any race, even if the registration
1116 * blocked, i.e. kq token was released, and the kqueue was shared
1117 * between threads (this should be rare though).
1119 while (__predict_false(kq
->kq_regtd
!= NULL
&& kq
->kq_regtd
!= td
)) {
1120 kq
->kq_state
|= KQ_REGWAIT
;
1121 tsleep(&kq
->kq_regtd
, 0, "kqreg", 0);
1123 if (__predict_false(kq
->kq_regtd
!= NULL
)) {
1124 /* Recursive calling of kqueue_register() */
1127 /* Owner of the kq_regtd, i.e. td != NULL */
1132 list
= &fp
->f_klist
;
1133 } else if (kq
->kq_knhashmask
) {
1134 list
= &kq
->kq_knhash
[
1135 KN_HASH((u_long
)kev
->ident
, kq
->kq_knhashmask
)];
1138 lwkt_getpooltoken(list
);
1140 SLIST_FOREACH(kn
, list
, kn_link
) {
1141 if (kn
->kn_kq
== kq
&&
1142 kn
->kn_filter
== kev
->filter
&&
1143 kn
->kn_id
== kev
->ident
) {
1144 if (knote_acquire(kn
) == 0)
1149 lwkt_relpooltoken(list
);
1153 * NOTE: At this point if kn is non-NULL we will have acquired
1154 * it and set KN_PROCESSING.
1156 if (kn
== NULL
&& ((kev
->flags
& EV_ADD
) == 0)) {
1162 * kn now contains the matching knote, or NULL if no match
1164 if (kev
->flags
& EV_ADD
) {
1167 kn
= SLIST_FIRST(&cache_list
->knote_cache
);
1172 SLIST_REMOVE_HEAD(&cache_list
->knote_cache
,
1174 cache_list
->knote_cache_cnt
--;
1182 * apply reference count to knote structure, and
1183 * do not release it at the end of this routine.
1187 kn
->kn_sfflags
= kev
->fflags
;
1188 kn
->kn_sdata
= kev
->data
;
1191 kn
->kn_kevent
= *kev
;
1194 * KN_PROCESSING prevents the knote from getting
1195 * ripped out from under us while we are trying
1196 * to attach it, in case the attach blocks.
1198 kn
->kn_status
= KN_PROCESSING
;
1200 if ((error
= filter_attach(kn
)) != 0) {
1201 kn
->kn_status
|= KN_DELETING
| KN_REPROCESS
;
1207 * Interlock against close races which either tried
1208 * to remove our knote while we were blocked or missed
1209 * it entirely prior to our attachment. We do not
1210 * want to end up with a knote on a closed descriptor.
1212 if ((fops
->f_flags
& FILTEROP_ISFD
) &&
1213 checkfdclosed(fdp
, kev
->ident
, kn
->kn_fp
)) {
1214 kn
->kn_status
|= KN_DELETING
| KN_REPROCESS
;
1218 * The user may change some filter values after the
1219 * initial EV_ADD, but doing so will not reset any
1220 * filter which have already been triggered.
1222 KKASSERT(kn
->kn_status
& KN_PROCESSING
);
1223 if (fops
== &user_filtops
) {
1224 filt_usertouch(kn
, kev
, EVENT_REGISTER
);
1226 kn
->kn_sfflags
= kev
->fflags
;
1227 kn
->kn_sdata
= kev
->data
;
1228 kn
->kn_kevent
.udata
= kev
->udata
;
1233 * Execute the filter event to immediately activate the
1234 * knote if necessary. If reprocessing events are pending
1235 * due to blocking above we do not run the filter here
1236 * but instead let knote_release() do it. Otherwise we
1237 * might run the filter on a deleted event.
1239 if ((kn
->kn_status
& KN_REPROCESS
) == 0) {
1240 if (filter_event(kn
, 0))
1243 } else if (kev
->flags
& EV_DELETE
) {
1245 * Delete the existing knote
1247 knote_detach_and_drop(kn
);
1251 * Modify an existing event.
1253 * The user may change some filter values after the
1254 * initial EV_ADD, but doing so will not reset any
1255 * filter which have already been triggered.
1257 KKASSERT(kn
->kn_status
& KN_PROCESSING
);
1258 if (fops
== &user_filtops
) {
1259 filt_usertouch(kn
, kev
, EVENT_REGISTER
);
1261 kn
->kn_sfflags
= kev
->fflags
;
1262 kn
->kn_sdata
= kev
->data
;
1263 kn
->kn_kevent
.udata
= kev
->udata
;
1267 * Execute the filter event to immediately activate the
1268 * knote if necessary. If reprocessing events are pending
1269 * due to blocking above we do not run the filter here
1270 * but instead let knote_release() do it. Otherwise we
1271 * might run the filter on a deleted event.
1273 if ((kn
->kn_status
& KN_REPROCESS
) == 0) {
1274 if (filter_event(kn
, 0))
1280 * Disablement does not deactivate a knote here.
1282 if ((kev
->flags
& EV_DISABLE
) &&
1283 ((kn
->kn_status
& KN_DISABLED
) == 0)) {
1284 kn
->kn_status
|= KN_DISABLED
;
1288 * Re-enablement may have to immediately enqueue an active knote.
1290 if ((kev
->flags
& EV_ENABLE
) && (kn
->kn_status
& KN_DISABLED
)) {
1291 kn
->kn_status
&= ~KN_DISABLED
;
1292 if ((kn
->kn_status
& KN_ACTIVE
) &&
1293 ((kn
->kn_status
& KN_QUEUED
) == 0)) {
1299 * Handle any required reprocessing
1302 /* kn may be invalid now */
1305 if (td
!= NULL
) { /* Owner of the kq_regtd */
1306 kq
->kq_regtd
= NULL
;
1307 if (__predict_false(kq
->kq_state
& KQ_REGWAIT
)) {
1308 kq
->kq_state
&= ~KQ_REGWAIT
;
1309 wakeup(&kq
->kq_regtd
);
1312 lwkt_relpooltoken(kq
);
1319 * Scan the kqueue, return the number of active events placed in kevp up
1322 * Continuous mode events may get recycled, do not continue scanning past
1323 * marker unless no events have been collected.
1326 kqueue_scan(struct kqueue
*kq
, struct kevent
*kevp
, int count
,
1327 struct knote
*marker
)
1329 struct knote
*kn
, local_marker
;
1333 local_marker
.kn_filter
= EVFILT_MARKER
;
1334 local_marker
.kn_status
= KN_PROCESSING
;
1336 lwkt_getpooltoken(kq
);
1341 TAILQ_INSERT_HEAD(&kq
->kq_knpend
, &local_marker
, kn_tqe
);
1343 kn
= TAILQ_NEXT(&local_marker
, kn_tqe
);
1344 if (kn
->kn_filter
== EVFILT_MARKER
) {
1345 /* Marker reached, we are done */
1349 /* Move local marker past some other threads marker */
1350 kn
= TAILQ_NEXT(kn
, kn_tqe
);
1351 TAILQ_REMOVE(&kq
->kq_knpend
, &local_marker
, kn_tqe
);
1352 TAILQ_INSERT_BEFORE(kn
, &local_marker
, kn_tqe
);
1357 * We can't skip a knote undergoing processing, otherwise
1358 * we risk not returning it when the user process expects
1359 * it should be returned. Sleep and retry.
1361 if (knote_acquire(kn
) == 0)
1365 * Remove the event for processing.
1367 * WARNING! We must leave KN_QUEUED set to prevent the
1368 * event from being KNOTE_ACTIVATE()d while
1369 * the queue state is in limbo, in case we
1372 TAILQ_REMOVE(&kq
->kq_knpend
, kn
, kn_tqe
);
1376 * We have to deal with an extremely important race against
1377 * file descriptor close()s here. The file descriptor can
1378 * disappear MPSAFE, and there is a small window of
1379 * opportunity between that and the call to knote_fdclose().
1381 * If we hit that window here while doselect or dopoll is
1382 * trying to delete a spurious event they will not be able
1383 * to match up the event against a knote and will go haywire.
1385 if ((kn
->kn_fop
->f_flags
& FILTEROP_ISFD
) &&
1386 checkfdclosed(kq
->kq_fdp
, kn
->kn_kevent
.ident
, kn
->kn_fp
)) {
1387 kn
->kn_status
|= KN_DELETING
| KN_REPROCESS
;
1390 if (kn
->kn_status
& KN_DISABLED
) {
1392 * If disabled we ensure the event is not queued
1393 * but leave its active bit set. On re-enablement
1394 * the event may be immediately triggered.
1396 kn
->kn_status
&= ~KN_QUEUED
;
1397 } else if ((kn
->kn_flags
& EV_ONESHOT
) == 0 &&
1398 (kn
->kn_status
& KN_DELETING
) == 0 &&
1399 filter_event(kn
, 0) == 0) {
1401 * If not running in one-shot mode and the event
1402 * is no longer present we ensure it is removed
1403 * from the queue and ignore it.
1405 kn
->kn_status
&= ~(KN_QUEUED
| KN_ACTIVE
);
1410 if (kn
->kn_fop
== &user_filtops
)
1411 filt_usertouch(kn
, kevp
, EVENT_PROCESS
);
1413 *kevp
= kn
->kn_kevent
;
1418 if (kn
->kn_flags
& EV_ONESHOT
) {
1419 kn
->kn_status
&= ~KN_QUEUED
;
1420 kn
->kn_status
|= KN_DELETING
| KN_REPROCESS
;
1422 if (kn
->kn_flags
& (EV_CLEAR
| EV_DISPATCH
)) {
1423 if (kn
->kn_flags
& EV_CLEAR
) {
1427 if (kn
->kn_flags
& EV_DISPATCH
) {
1428 kn
->kn_status
|= KN_DISABLED
;
1430 kn
->kn_status
&= ~(KN_QUEUED
|
1433 TAILQ_INSERT_TAIL(&kq
->kq_knpend
, kn
, kn_tqe
);
1440 * Handle any post-processing states
1444 TAILQ_REMOVE(&kq
->kq_knpend
, &local_marker
, kn_tqe
);
1446 lwkt_relpooltoken(kq
);
1452 * This could be expanded to call kqueue_scan, if desired.
1457 kqueue_read(struct file
*fp
, struct uio
*uio
, struct ucred
*cred
, int flags
)
1466 kqueue_write(struct file
*fp
, struct uio
*uio
, struct ucred
*cred
, int flags
)
1475 kqueue_ioctl(struct file
*fp
, u_long com
, caddr_t data
,
1476 struct ucred
*cred
, struct sysmsg
*msg
)
1481 kq
= (struct kqueue
*)fp
->f_data
;
1482 lwkt_getpooltoken(kq
);
1486 kq
->kq_state
|= KQ_ASYNC
;
1488 kq
->kq_state
&= ~KQ_ASYNC
;
1492 error
= fsetown(*(int *)data
, &kq
->kq_sigio
);
1498 lwkt_relpooltoken(kq
);
1506 kqueue_stat(struct file
*fp
, struct stat
*st
, struct ucred
*cred
)
1508 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
1510 bzero((void *)st
, sizeof(*st
));
1511 st
->st_size
= kq
->kq_count
;
1512 st
->st_blksize
= sizeof(struct kevent
);
1513 st
->st_mode
= S_IFIFO
;
1521 kqueue_close(struct file
*fp
)
1523 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
1525 kqueue_terminate(kq
);
1528 funsetown(&kq
->kq_sigio
);
1530 kfree(kq
, M_KQUEUE
);
1535 kqueue_wakeup(struct kqueue
*kq
)
1537 if (kq
->kq_sleep_cnt
) {
1538 u_int sleep_cnt
= kq
->kq_sleep_cnt
;
1540 kq
->kq_sleep_cnt
= 0;
1546 KNOTE(&kq
->kq_kqinfo
.ki_note
, 0);
1550 * Calls filterops f_attach function, acquiring mplock if filter is not
1551 * marked as FILTEROP_MPSAFE.
1553 * Caller must be holding the related kq token
1556 filter_attach(struct knote
*kn
)
1560 if (kn
->kn_fop
->f_flags
& FILTEROP_MPSAFE
) {
1561 ret
= kn
->kn_fop
->f_attach(kn
);
1564 ret
= kn
->kn_fop
->f_attach(kn
);
1571 * Detach the knote and drop it, destroying the knote.
1573 * Calls filterops f_detach function, acquiring mplock if filter is not
1574 * marked as FILTEROP_MPSAFE.
1576 * Caller must be holding the related kq token
1579 knote_detach_and_drop(struct knote
*kn
)
1581 kn
->kn_status
|= KN_DELETING
| KN_REPROCESS
;
1582 if (kn
->kn_fop
->f_flags
& FILTEROP_MPSAFE
) {
1583 kn
->kn_fop
->f_detach(kn
);
1586 kn
->kn_fop
->f_detach(kn
);
1593 * Calls filterops f_event function, acquiring mplock if filter is not
1594 * marked as FILTEROP_MPSAFE.
1596 * If the knote is in the middle of being created or deleted we cannot
1597 * safely call the filter op.
1599 * Caller must be holding the related kq token
1602 filter_event(struct knote
*kn
, long hint
)
1606 if (kn
->kn_fop
->f_flags
& FILTEROP_MPSAFE
) {
1607 ret
= kn
->kn_fop
->f_event(kn
, hint
);
1610 ret
= kn
->kn_fop
->f_event(kn
, hint
);
1617 * Walk down a list of knotes, activating them if their event has triggered.
1619 * If we encounter any knotes which are undergoing processing we just mark
1620 * them for reprocessing and do not try to [re]activate the knote. However,
1621 * if a hint is being passed we have to wait and that makes things a bit
1625 knote(struct klist
*list
, long hint
)
1629 struct knote
*kntmp
;
1631 lwkt_getpooltoken(list
);
1633 SLIST_FOREACH(kn
, list
, kn_next
) {
1635 lwkt_getpooltoken(kq
);
1637 /* temporary verification hack */
1638 SLIST_FOREACH(kntmp
, list
, kn_next
) {
1642 if (kn
!= kntmp
|| kn
->kn_kq
!= kq
) {
1643 lwkt_relpooltoken(kq
);
1647 if (kn
->kn_status
& KN_PROCESSING
) {
1649 * Someone else is processing the knote, ask the
1650 * other thread to reprocess it and don't mess
1651 * with it otherwise.
1654 kn
->kn_status
|= KN_REPROCESS
;
1655 lwkt_relpooltoken(kq
);
1660 * If the hint is non-zero we have to wait or risk
1661 * losing the state the caller is trying to update.
1663 * XXX This is a real problem, certain process
1664 * and signal filters will bump kn_data for
1665 * already-processed notes more than once if
1666 * we restart the list scan. FIXME.
1668 kn
->kn_status
|= KN_WAITING
| KN_REPROCESS
;
1669 tsleep(kn
, 0, "knotec", hz
);
1670 lwkt_relpooltoken(kq
);
1675 * Become the reprocessing master ourselves.
1677 * If hint is non-zero running the event is mandatory
1678 * when not deleting so do it whether reprocessing is
1681 kn
->kn_status
|= KN_PROCESSING
;
1682 if ((kn
->kn_status
& KN_DELETING
) == 0) {
1683 if (filter_event(kn
, hint
))
1686 if (knote_release(kn
)) {
1687 lwkt_relpooltoken(kq
);
1690 lwkt_relpooltoken(kq
);
1692 lwkt_relpooltoken(list
);
1696 * Insert knote at head of klist.
1698 * This function may only be called via a filter function and thus
1699 * kq_token should already be held and marked for processing.
1702 knote_insert(struct klist
*klist
, struct knote
*kn
)
1704 lwkt_getpooltoken(klist
);
1705 KKASSERT(kn
->kn_status
& KN_PROCESSING
);
1706 SLIST_INSERT_HEAD(klist
, kn
, kn_next
);
1707 lwkt_relpooltoken(klist
);
1711 * Remove knote from a klist
1713 * This function may only be called via a filter function and thus
1714 * kq_token should already be held and marked for processing.
1717 knote_remove(struct klist
*klist
, struct knote
*kn
)
1719 lwkt_getpooltoken(klist
);
1720 KKASSERT(kn
->kn_status
& KN_PROCESSING
);
1721 SLIST_REMOVE(klist
, kn
, knote
, kn_next
);
1722 lwkt_relpooltoken(klist
);
1726 knote_assume_knotes(struct kqinfo
*src
, struct kqinfo
*dst
,
1727 struct filterops
*ops
, void *hook
)
1732 lwkt_getpooltoken(&src
->ki_note
);
1733 lwkt_getpooltoken(&dst
->ki_note
);
1734 while ((kn
= SLIST_FIRST(&src
->ki_note
)) != NULL
) {
1736 lwkt_getpooltoken(kq
);
1737 if (SLIST_FIRST(&src
->ki_note
) != kn
|| kn
->kn_kq
!= kq
) {
1738 lwkt_relpooltoken(kq
);
1741 if (knote_acquire(kn
)) {
1742 knote_remove(&src
->ki_note
, kn
);
1745 knote_insert(&dst
->ki_note
, kn
);
1747 /* kn may be invalid now */
1749 lwkt_relpooltoken(kq
);
1751 lwkt_relpooltoken(&dst
->ki_note
);
1752 lwkt_relpooltoken(&src
->ki_note
);
1756 * Remove all knotes referencing a specified fd
1759 knote_fdclose(struct file
*fp
, struct filedesc
*fdp
, int fd
)
1763 struct knote
*kntmp
;
1765 lwkt_getpooltoken(&fp
->f_klist
);
1767 SLIST_FOREACH(kn
, &fp
->f_klist
, kn_link
) {
1768 if (kn
->kn_kq
->kq_fdp
== fdp
&& kn
->kn_id
== fd
) {
1770 lwkt_getpooltoken(kq
);
1772 /* temporary verification hack */
1773 SLIST_FOREACH(kntmp
, &fp
->f_klist
, kn_link
) {
1777 if (kn
!= kntmp
|| kn
->kn_kq
->kq_fdp
!= fdp
||
1778 kn
->kn_id
!= fd
|| kn
->kn_kq
!= kq
) {
1779 lwkt_relpooltoken(kq
);
1782 if (knote_acquire(kn
))
1783 knote_detach_and_drop(kn
);
1784 lwkt_relpooltoken(kq
);
1788 lwkt_relpooltoken(&fp
->f_klist
);
1792 * Low level attach function.
1794 * The knote should already be marked for processing.
1795 * Caller must hold the related kq token.
1798 knote_attach(struct knote
*kn
)
1801 struct kqueue
*kq
= kn
->kn_kq
;
1803 if (kn
->kn_fop
->f_flags
& FILTEROP_ISFD
) {
1804 KKASSERT(kn
->kn_fp
);
1805 list
= &kn
->kn_fp
->f_klist
;
1807 if (kq
->kq_knhashmask
== 0)
1808 kq
->kq_knhash
= hashinit(KN_HASHSIZE
, M_KQUEUE
,
1809 &kq
->kq_knhashmask
);
1810 list
= &kq
->kq_knhash
[KN_HASH(kn
->kn_id
, kq
->kq_knhashmask
)];
1812 lwkt_getpooltoken(list
);
1813 SLIST_INSERT_HEAD(list
, kn
, kn_link
);
1814 lwkt_relpooltoken(list
);
1815 TAILQ_INSERT_HEAD(&kq
->kq_knlist
, kn
, kn_kqlink
);
1819 * Low level drop function.
1821 * The knote should already be marked for processing.
1822 * Caller must hold the related kq token.
1825 knote_drop(struct knote
*kn
)
1832 if (kn
->kn_fop
->f_flags
& FILTEROP_ISFD
)
1833 list
= &kn
->kn_fp
->f_klist
;
1835 list
= &kq
->kq_knhash
[KN_HASH(kn
->kn_id
, kq
->kq_knhashmask
)];
1837 lwkt_getpooltoken(list
);
1838 SLIST_REMOVE(list
, kn
, knote
, kn_link
);
1839 lwkt_relpooltoken(list
);
1840 TAILQ_REMOVE(&kq
->kq_knlist
, kn
, kn_kqlink
);
1841 if (kn
->kn_status
& KN_QUEUED
)
1843 if (kn
->kn_fop
->f_flags
& FILTEROP_ISFD
) {
1851 * Low level enqueue function.
1853 * The knote should already be marked for processing.
1854 * Caller must be holding the kq token
1857 knote_enqueue(struct knote
*kn
)
1859 struct kqueue
*kq
= kn
->kn_kq
;
1861 KASSERT((kn
->kn_status
& KN_QUEUED
) == 0, ("knote already queued"));
1862 TAILQ_INSERT_TAIL(&kq
->kq_knpend
, kn
, kn_tqe
);
1863 kn
->kn_status
|= KN_QUEUED
;
1867 * Send SIGIO on request (typically set up as a mailbox signal)
1869 if (kq
->kq_sigio
&& (kq
->kq_state
& KQ_ASYNC
) && kq
->kq_count
== 1)
1870 pgsigio(kq
->kq_sigio
, SIGIO
, 0);
1876 * Low level dequeue function.
1878 * The knote should already be marked for processing.
1879 * Caller must be holding the kq token
1882 knote_dequeue(struct knote
*kn
)
1884 struct kqueue
*kq
= kn
->kn_kq
;
1886 KASSERT(kn
->kn_status
& KN_QUEUED
, ("knote not queued"));
1887 TAILQ_REMOVE(&kq
->kq_knpend
, kn
, kn_tqe
);
1888 kn
->kn_status
&= ~KN_QUEUED
;
1892 static struct knote
*
1895 return kmalloc(sizeof(struct knote
), M_KQUEUE
, M_WAITOK
);
1899 knote_free(struct knote
*kn
)
1901 struct knote_cache_list
*cache_list
;
1903 cache_list
= &knote_cache_lists
[mycpuid
];
1904 if (cache_list
->knote_cache_cnt
< KNOTE_CACHE_MAX
) {
1906 SLIST_INSERT_HEAD(&cache_list
->knote_cache
, kn
, kn_link
);
1907 cache_list
->knote_cache_cnt
++;
1911 kfree(kn
, M_KQUEUE
);
1920 precise_sleep_intr(systimer_t info
, int in_ipi
, struct intrframe
*frame
)
1922 struct sleepinfo
*si
;
1930 precise_sleep(void *ident
, int flags
, const char *wmesg
, int us
)
1932 struct systimer info
;
1933 struct sleepinfo si
= {
1939 tsleep_interlock(ident
, flags
);
1940 systimer_init_oneshot(&info
, precise_sleep_intr
, &si
,
1942 r
= tsleep(ident
, flags
| PINTERLOCKED
, wmesg
, 0);
1943 systimer_del(&info
);