kernel - Reenable acpi sleep states
[dragonfly.git] / contrib / mpfr / zeta_ui.c
blobb2c6b92306c0736e46adc978ba79d082e6690d25
1 /* mpfr_zeta_ui -- compute the Riemann Zeta function for integer argument.
3 Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the Arenaire and Cacao projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 2.1 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 int
27 mpfr_zeta_ui (mpfr_ptr z, unsigned long m, mp_rnd_t r)
29 MPFR_ZIV_DECL (loop);
31 if (m == 0)
33 mpfr_set_ui (z, 1, r);
34 mpfr_div_2ui (z, z, 1, r);
35 MPFR_CHANGE_SIGN (z);
36 MPFR_RET (0);
38 else if (m == 1)
40 MPFR_SET_INF (z);
41 MPFR_SET_POS (z);
42 return 0;
44 else /* m >= 2 */
46 mp_prec_t p = MPFR_PREC(z);
47 unsigned long n, k, err, kbits;
48 mpz_t d, t, s, q;
49 mpfr_t y;
50 int inex;
52 if (m >= p) /* 2^(-m) < ulp(1) = 2^(1-p). This means that
53 2^(-m) <= 1/2*ulp(1). We have 3^(-m)+4^(-m)+... < 2^(-m)
54 i.e. zeta(m) < 1+2*2^(-m) for m >= 3 */
57 if (m == 2) /* necessarily p=2 */
58 return mpfr_set_ui_2exp (z, 13, -3, r);
59 else if (r == GMP_RNDZ || r == GMP_RNDD || (r == GMP_RNDN && m > p))
61 mpfr_set_ui (z, 1, r);
62 return -1;
64 else
66 mpfr_set_ui (z, 1, r);
67 mpfr_nextabove (z);
68 return 1;
72 /* now treat also the case where zeta(m) - (1+1/2^m) < 1/2*ulp(1),
73 and the result is either 1+2^(-m) or 1+2^(-m)+2^(1-p). */
74 mpfr_init2 (y, 31);
76 if (m >= p / 2) /* otherwise 4^(-m) > 2^(-p) */
78 /* the following is a lower bound for log(3)/log(2) */
79 mpfr_set_str_binary (y, "1.100101011100000000011010001110");
80 mpfr_mul_ui (y, y, m, GMP_RNDZ); /* lower bound for log2(3^m) */
81 if (mpfr_cmp_ui (y, p + 2) >= 0)
83 mpfr_clear (y);
84 mpfr_set_ui (z, 1, GMP_RNDZ);
85 mpfr_div_2ui (z, z, m, GMP_RNDZ);
86 mpfr_add_ui (z, z, 1, GMP_RNDZ);
87 if (r != GMP_RNDU)
88 return -1;
89 mpfr_nextabove (z);
90 return 1;
94 mpz_init (s);
95 mpz_init (d);
96 mpz_init (t);
97 mpz_init (q);
99 p += MPFR_INT_CEIL_LOG2(p); /* account of the n term in the error */
101 p += MPFR_INT_CEIL_LOG2(p) + 15; /* initial value */
103 MPFR_ZIV_INIT (loop, p);
104 for(;;)
106 /* 0.39321985067869744 = log(2)/log(3+sqrt(8)) */
107 n = 1 + (unsigned long) (0.39321985067869744 * (double) p);
108 err = n + 4;
110 mpfr_set_prec (y, p);
112 /* computation of the d[k] */
113 mpz_set_ui (s, 0);
114 mpz_set_ui (t, 1);
115 mpz_mul_2exp (t, t, 2 * n - 1); /* t[n] */
116 mpz_set (d, t);
117 for (k = n; k > 0; k--)
119 count_leading_zeros (kbits, k);
120 kbits = BITS_PER_MP_LIMB - kbits;
121 /* if k^m is too large, use mpz_tdiv_q */
122 if (m * kbits > 2 * BITS_PER_MP_LIMB)
124 /* if we know in advance that k^m > d, then floor(d/k^m) will
125 be zero below, so there is no need to compute k^m */
126 kbits = (kbits - 1) * m + 1;
127 /* k^m has at least kbits bits */
128 if (kbits > mpz_sizeinbase (d, 2))
129 mpz_set_ui (q, 0);
130 else
132 mpz_ui_pow_ui (q, k, m);
133 mpz_tdiv_q (q, d, q);
136 else /* use several mpz_tdiv_q_ui calls */
138 unsigned long km = k, mm = m - 1;
139 while (mm > 0 && km < ULONG_MAX / k)
141 km *= k;
142 mm --;
144 mpz_tdiv_q_ui (q, d, km);
145 while (mm > 0)
147 km = k;
148 mm --;
149 while (mm > 0 && km < ULONG_MAX / k)
151 km *= k;
152 mm --;
154 mpz_tdiv_q_ui (q, q, km);
157 if (k % 2)
158 mpz_add (s, s, q);
159 else
160 mpz_sub (s, s, q);
162 /* we have d[k] = sum(t[i], i=k+1..n)
163 with t[i] = n*(n+i-1)!*4^i/(n-i)!/(2i)!
164 t[k-1]/t[k] = k*(2k-1)/(n-k+1)/(n+k-1)/2 */
165 #if (BITS_PER_MP_LIMB == 32)
166 #define KMAX 46341 /* max k such that k*(2k-1) < 2^32 */
167 #elif (BITS_PER_MP_LIMB == 64)
168 #define KMAX 3037000500
169 #endif
170 #ifdef KMAX
171 if (k <= KMAX)
172 mpz_mul_ui (t, t, k * (2 * k - 1));
173 else
174 #endif
176 mpz_mul_ui (t, t, k);
177 mpz_mul_ui (t, t, 2 * k - 1);
179 mpz_div_2exp (t, t, 1);
180 if (n < 1UL << (BITS_PER_MP_LIMB / 2))
181 /* (n - k + 1) * (n + k - 1) < n^2 */
182 mpz_divexact_ui (t, t, (n - k + 1) * (n + k - 1));
183 else
185 mpz_divexact_ui (t, t, n - k + 1);
186 mpz_divexact_ui (t, t, n + k - 1);
188 mpz_add (d, d, t);
191 /* multiply by 1/(1-2^(1-m)) = 1 + 2^(1-m) + 2^(2-m) + ... */
192 mpz_div_2exp (t, s, m - 1);
195 err ++;
196 mpz_add (s, s, t);
197 mpz_div_2exp (t, t, m - 1);
199 while (mpz_cmp_ui (t, 0) > 0);
201 /* divide by d[n] */
202 mpz_mul_2exp (s, s, p);
203 mpz_tdiv_q (s, s, d);
204 mpfr_set_z (y, s, GMP_RNDN);
205 mpfr_div_2ui (y, y, p, GMP_RNDN);
207 err = MPFR_INT_CEIL_LOG2 (err);
209 if (MPFR_LIKELY(MPFR_CAN_ROUND (y, p - err, MPFR_PREC(z), r)))
210 break;
212 MPFR_ZIV_NEXT (loop, p);
214 MPFR_ZIV_FREE (loop);
216 mpz_clear (d);
217 mpz_clear (t);
218 mpz_clear (q);
219 mpz_clear (s);
220 inex = mpfr_set (z, y, r);
221 mpfr_clear (y);
222 return inex;