Undo the last commit. At the moment we require access to the structure
[dragonfly.git] / sbin / growfs / growfs.c
blob7ed5e8641293346dde7a6975b95293c3de501ecf
1 /*
2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgment:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors, as well as Christoph
21 * Herrmann and Thomas-Henning von Kamptz.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40 * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42 * $DragonFly: src/sbin/growfs/growfs.c,v 1.4 2005/11/06 12:16:44 swildner Exp $
45 /* ********************************************************** INCLUDES ***** */
46 #include <sys/param.h>
47 #include <sys/disklabel.h>
48 #include <sys/ioctl.h>
49 #include <sys/stat.h>
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <vfs/ufs/dinode.h>
60 #include <vfs/ufs/fs.h>
62 #include "debug.h"
64 /* *************************************************** GLOBALS & TYPES ***** */
65 #ifdef FS_DEBUG
66 int _dbg_lvl_ = (DL_INFO); /* DL_TRC */
67 #endif /* FS_DEBUG */
69 static union {
70 struct fs fs;
71 char pad[SBSIZE];
72 } fsun1, fsun2;
73 #define sblock fsun1.fs /* the new superblock */
74 #define osblock fsun2.fs /* the old superblock */
76 static union {
77 struct cg cg;
78 char pad[MAXBSIZE];
79 } cgun1, cgun2;
80 #define acg cgun1.cg /* a cylinder cgroup (new) */
81 #define aocg cgun2.cg /* an old cylinder group */
83 static char ablk[MAXBSIZE]; /* a block */
84 static char i1blk[MAXBSIZE]; /* some indirect blocks */
85 static char i2blk[MAXBSIZE];
86 static char i3blk[MAXBSIZE];
88 /* where to write back updated blocks */
89 static daddr_t in_src, i1_src, i2_src, i3_src;
91 /* what object contains the reference */
92 enum pointer_source {
93 GFS_PS_INODE,
94 GFS_PS_IND_BLK_LVL1,
95 GFS_PS_IND_BLK_LVL2,
96 GFS_PS_IND_BLK_LVL3
99 static struct csum *fscs; /* cylinder summary */
101 static struct dinode zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */
104 * An array of elements of type struct gfs_bpp describes all blocks to
105 * be relocated in order to free the space needed for the cylinder group
106 * summary for all cylinder groups located in the first cylinder group.
108 struct gfs_bpp {
109 daddr_t old; /* old block number */
110 daddr_t new; /* new block number */
111 #define GFS_FL_FIRST 1
112 #define GFS_FL_LAST 2
113 unsigned int flags; /* special handling required */
114 int found; /* how many references were updated */
117 /* ******************************************************** PROTOTYPES ***** */
118 static void growfs(int, int, unsigned int);
119 static void rdfs(daddr_t, size_t, void *, int);
120 static void wtfs(daddr_t, size_t, void *, int, unsigned int);
121 static daddr_t alloc(void);
122 static int charsperline(void);
123 static void usage(void);
124 static int isblock(struct fs *, unsigned char *, int);
125 static void clrblock(struct fs *, unsigned char *, int);
126 static void setblock(struct fs *, unsigned char *, int);
127 static void initcg(int, time_t, int, unsigned int);
128 static void updjcg(int, time_t, int, int, unsigned int);
129 static void updcsloc(time_t, int, int, unsigned int);
130 static struct disklabel *get_disklabel(int);
131 static void return_disklabel(int, struct disklabel *, unsigned int);
132 static struct dinode *ginode(ino_t, int, int);
133 static void frag_adjust(daddr_t, int);
134 static void cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
135 enum pointer_source, int, unsigned int);
136 static void updclst(int);
137 static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
139 /* ************************************************************ growfs ***** */
141 * Here we actually start growing the filesystem. We basically read the
142 * cylinder summary from the first cylinder group as we want to update
143 * this on the fly during our various operations. First we handle the
144 * changes in the former last cylinder group. Afterwards we create all new
145 * cylinder groups. Now we handle the cylinder group containing the
146 * cylinder summary which might result in a relocation of the whole
147 * structure. In the end we write back the updated cylinder summary, the
148 * new superblock, and slightly patched versions of the super block
149 * copies.
151 static void
152 growfs(int fsi, int fso, unsigned int Nflag)
154 DBG_FUNC("growfs")
155 int i;
156 int cylno, j;
157 time_t utime;
158 int width;
159 char tmpbuf[100];
160 #ifdef FSIRAND
161 static int randinit=0;
163 DBG_ENTER;
165 if (!randinit) {
166 randinit = 1;
167 srandomdev();
169 #else /* not FSIRAND */
171 DBG_ENTER;
173 #endif /* FSIRAND */
174 time(&utime);
177 * Get the cylinder summary into the memory.
179 fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
180 if(fscs == NULL) {
181 errx(1, "calloc failed");
183 for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185 numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
186 osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
189 #ifdef FS_DEBUG
191 struct csum *dbg_csp;
192 int dbg_csc;
193 char dbg_line[80];
195 dbg_csp=fscs;
196 for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
197 snprintf(dbg_line, sizeof(dbg_line),
198 "%d. old csum in old location", dbg_csc);
199 DBG_DUMP_CSUM(&osblock,
200 dbg_line,
201 dbg_csp++);
204 #endif /* FS_DEBUG */
205 DBG_PRINT0("fscs read\n");
208 * Do all needed changes in the former last cylinder group.
210 updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
213 * Dump out summary information about file system.
215 printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
216 sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
217 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
218 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
219 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
220 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
221 sblock.fs_ncg, sblock.fs_cpg,
222 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
223 sblock.fs_ipg);
224 #undef B2MBFACTOR
227 * Now build the cylinders group blocks and
228 * then print out indices of cylinder groups.
230 printf("super-block backups (for fsck -b #) at:\n");
231 i = 0;
232 width = charsperline();
235 * Iterate for only the new cylinder groups.
237 for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
238 initcg(cylno, utime, fso, Nflag);
239 j = sprintf(tmpbuf, " %d%s",
240 (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
241 cylno < (sblock.fs_ncg-1) ? "," : "" );
242 if (i + j >= width) {
243 printf("\n");
244 i = 0;
246 i += j;
247 printf("%s", tmpbuf);
248 fflush(stdout);
250 printf("\n");
253 * Do all needed changes in the first cylinder group.
254 * allocate blocks in new location
256 updcsloc(utime, fsi, fso, Nflag);
259 * Now write the cylinder summary back to disk.
261 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
262 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
263 (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
264 (void *)(((char *)fscs) + i), fso, Nflag);
266 DBG_PRINT0("fscs written\n");
268 #ifdef FS_DEBUG
270 struct csum *dbg_csp;
271 int dbg_csc;
272 char dbg_line[80];
274 dbg_csp=fscs;
275 for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
276 snprintf(dbg_line, sizeof(dbg_line),
277 "%d. new csum in new location", dbg_csc);
278 DBG_DUMP_CSUM(&sblock,
279 dbg_line,
280 dbg_csp++);
283 #endif /* FS_DEBUG */
286 * Now write the new superblock back to disk.
288 sblock.fs_time = utime;
289 wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
290 fso, Nflag);
291 DBG_PRINT0("sblock written\n");
292 DBG_DUMP_FS(&sblock,
293 "new initial sblock");
296 * Clean up the dynamic fields in our superblock copies.
298 sblock.fs_fmod = 0;
299 sblock.fs_clean = 1;
300 sblock.fs_ronly = 0;
301 sblock.fs_cgrotor = 0;
302 sblock.fs_state = 0;
303 memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
304 sblock.fs_flags &= FS_DOSOFTDEP;
307 * XXX
308 * The following fields are currently distributed from the superblock
309 * to the copies:
310 * fs_minfree
311 * fs_rotdelay
312 * fs_maxcontig
313 * fs_maxbpg
314 * fs_minfree,
315 * fs_optim
316 * fs_flags regarding SOFTPDATES
318 * We probably should rather change the summary for the cylinder group
319 * statistics here to the value of what would be in there, if the file
320 * system were created initially with the new size. Therefor we still
321 * need to find an easy way of calculating that.
322 * Possibly we can try to read the first superblock copy and apply the
323 * "diffed" stats between the old and new superblock by still copying
324 * certain parameters onto that.
328 * Write out the duplicate super blocks.
330 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
331 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
332 (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
334 DBG_PRINT0("sblock copies written\n");
335 DBG_DUMP_FS(&sblock,
336 "new other sblocks");
338 DBG_LEAVE;
339 return;
342 /* ************************************************************ initcg ***** */
344 * This creates a new cylinder group structure, for more details please see
345 * the source of newfs(8), as this function is taken over almost unchanged.
346 * As this is never called for the first cylinder group, the special
347 * provisions for that case are removed here.
349 static void
350 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
352 DBG_FUNC("initcg")
353 daddr_t cbase, d, dlower, dupper, dmax, blkno;
354 int i;
355 struct csum *cs;
356 #ifdef FSIRAND
357 int j;
358 #endif
360 DBG_ENTER;
363 * Determine block bounds for cylinder group.
365 cbase = cgbase(&sblock, cylno);
366 dmax = cbase + sblock.fs_fpg;
367 if (dmax > sblock.fs_size) {
368 dmax = sblock.fs_size;
370 dlower = cgsblock(&sblock, cylno) - cbase;
371 dupper = cgdmin(&sblock, cylno) - cbase;
372 if (cylno == 0) { /* XXX fscs may be relocated */
373 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
375 cs = fscs + cylno;
376 memset(&acg, 0, (size_t)sblock.fs_cgsize);
377 acg.cg_time = utime;
378 acg.cg_magic = CG_MAGIC;
379 acg.cg_cgx = cylno;
380 if (cylno == sblock.fs_ncg - 1) {
381 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
382 } else {
383 acg.cg_ncyl = sblock.fs_cpg;
385 acg.cg_niblk = sblock.fs_ipg;
386 acg.cg_ndblk = dmax - cbase;
387 if (sblock.fs_contigsumsize > 0) {
388 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
390 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
391 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
392 acg.cg_iusedoff = acg.cg_boff +
393 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
394 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
395 if (sblock.fs_contigsumsize <= 0) {
396 acg.cg_nextfreeoff = acg.cg_freeoff +
397 howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
398 } else {
399 acg.cg_clustersumoff = acg.cg_freeoff + howmany
400 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
401 sizeof(u_int32_t);
402 acg.cg_clustersumoff =
403 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
404 acg.cg_clusteroff = acg.cg_clustersumoff +
405 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
406 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
407 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
409 if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
411 * XXX This should never happen as we would have had that panic
412 * already on filesystem creation
414 errx(37, "panic: cylinder group too big");
416 acg.cg_cs.cs_nifree += sblock.fs_ipg;
417 if (cylno == 0)
418 for (i = 0; (size_t)i < ROOTINO; i++) {
419 setbit(cg_inosused(&acg), i);
420 acg.cg_cs.cs_nifree--;
422 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
423 #ifdef FSIRAND
424 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) {
425 zino[j].di_gen = random();
427 #endif
428 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
429 (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
431 for (d = 0; d < dlower; d += sblock.fs_frag) {
432 blkno = d / sblock.fs_frag;
433 setblock(&sblock, cg_blksfree(&acg), blkno);
434 if (sblock.fs_contigsumsize > 0) {
435 setbit(cg_clustersfree(&acg), blkno);
437 acg.cg_cs.cs_nbfree++;
438 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
439 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
440 [cbtorpos(&sblock, d)]++;
442 sblock.fs_dsize += dlower;
443 sblock.fs_dsize += acg.cg_ndblk - dupper;
444 if ((i = dupper % sblock.fs_frag)) {
445 acg.cg_frsum[sblock.fs_frag - i]++;
446 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
447 setbit(cg_blksfree(&acg), dupper);
448 acg.cg_cs.cs_nffree++;
451 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
452 blkno = d / sblock.fs_frag;
453 setblock(&sblock, cg_blksfree(&acg), blkno);
454 if (sblock.fs_contigsumsize > 0) {
455 setbit(cg_clustersfree(&acg), blkno);
457 acg.cg_cs.cs_nbfree++;
458 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
459 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
460 [cbtorpos(&sblock, d)]++;
461 d += sblock.fs_frag;
463 if (d < dmax - cbase) {
464 acg.cg_frsum[dmax - cbase - d]++;
465 for (; d < dmax - cbase; d++) {
466 setbit(cg_blksfree(&acg), d);
467 acg.cg_cs.cs_nffree++;
470 if (sblock.fs_contigsumsize > 0) {
471 int32_t *sump = cg_clustersum(&acg);
472 u_char *mapp = cg_clustersfree(&acg);
473 int map = *mapp++;
474 int bit = 1;
475 int run = 0;
477 for (i = 0; i < acg.cg_nclusterblks; i++) {
478 if ((map & bit) != 0) {
479 run++;
480 } else if (run != 0) {
481 if (run > sblock.fs_contigsumsize) {
482 run = sblock.fs_contigsumsize;
484 sump[run]++;
485 run = 0;
487 if ((i & (NBBY - 1)) != (NBBY - 1)) {
488 bit <<= 1;
489 } else {
490 map = *mapp++;
491 bit = 1;
494 if (run != 0) {
495 if (run > sblock.fs_contigsumsize) {
496 run = sblock.fs_contigsumsize;
498 sump[run]++;
501 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
502 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
503 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
504 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
505 *cs = acg.cg_cs;
506 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
507 (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
508 DBG_DUMP_CG(&sblock,
509 "new cg",
510 &acg);
512 DBG_LEAVE;
513 return;
516 /* ******************************************************* frag_adjust ***** */
518 * Here we add or subtract (sign +1/-1) the available fragments in a given
519 * block to or from the fragment statistics. By subtracting before and adding
520 * after an operation on the free frag map we can easy update the fragment
521 * statistic, which seems to be otherwise an rather complex operation.
523 static void
524 frag_adjust(daddr_t frag, int sign)
526 DBG_FUNC("frag_adjust")
527 int fragsize;
528 int f;
530 DBG_ENTER;
532 fragsize=0;
534 * Here frag only needs to point to any fragment in the block we want
535 * to examine.
537 for(f=rounddown(frag, sblock.fs_frag);
538 f<roundup(frag+1, sblock.fs_frag);
539 f++) {
541 * Count contiguos free fragments.
543 if(isset(cg_blksfree(&acg), f)) {
544 fragsize++;
545 } else {
546 if(fragsize && fragsize<sblock.fs_frag) {
548 * We found something in between.
550 acg.cg_frsum[fragsize]+=sign;
551 DBG_PRINT2("frag_adjust [%d]+=%d\n",
552 fragsize,
553 sign);
555 fragsize=0;
558 if(fragsize && fragsize<sblock.fs_frag) {
560 * We found something.
562 acg.cg_frsum[fragsize]+=sign;
563 DBG_PRINT2("frag_adjust [%d]+=%d\n",
564 fragsize,
565 sign);
567 DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
568 fragsize,
569 sign);
571 DBG_LEAVE;
572 return;
575 /* ******************************************************* cond_bl_upd ***** */
577 * Here we conditionally update a pointer to a fragment. We check for all
578 * relocated blocks if any of it's fragments is referenced by the current
579 * field, and update the pointer to the respective fragment in our new
580 * block. If we find a reference we write back the block immediately,
581 * as there is no easy way for our general block reading engine to figure
582 * out if a write back operation is needed.
584 static void
585 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
586 enum pointer_source source, int fso, unsigned int Nflag)
588 DBG_FUNC("cond_bl_upd")
589 struct gfs_bpp *f;
590 char *src;
591 daddr_t dst=0;
593 DBG_ENTER;
595 f=field;
596 while(f->old) { /* for all old blocks */
597 if(*block/sblock.fs_frag == f->old) {
599 * The fragment is part of the block, so update.
601 *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
602 f->found++;
603 DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
604 f->old,
605 f->new,
606 *block%sblock.fs_frag);
608 /* Write the block back to disk immediately */
609 switch (source) {
610 case GFS_PS_INODE:
611 src=ablk;
612 dst=in_src;
613 break;
614 case GFS_PS_IND_BLK_LVL1:
615 src=i1blk;
616 dst=i1_src;
617 break;
618 case GFS_PS_IND_BLK_LVL2:
619 src=i2blk;
620 dst=i2_src;
621 break;
622 case GFS_PS_IND_BLK_LVL3:
623 src=i3blk;
624 dst=i3_src;
625 break;
626 default: /* error */
627 src=NULL;
628 break;
630 if(src) {
632 * XXX If src is not of type inode we have to
633 * implement copy on write here in case
634 * of active snapshots.
636 wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
637 fso, Nflag);
641 * The same block can't be found again in this loop.
643 break;
645 f++;
648 DBG_LEAVE;
649 return;
652 /* ************************************************************ updjcg ***** */
654 * Here we do all needed work for the former last cylinder group. It has to be
655 * changed in any case, even if the filesystem ended exactly on the end of
656 * this group, as there is some slightly inconsistent handling of the number
657 * of cylinders in the cylinder group. We start again by reading the cylinder
658 * group from disk. If the last block was not fully available, we first handle
659 * the missing fragments, then we handle all new full blocks in that file
660 * system and finally we handle the new last fragmented block in the file
661 * system. We again have to handle the fragment statistics rotational layout
662 * tables and cluster summary during all those operations.
664 static void
665 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
667 DBG_FUNC("updjcg")
668 daddr_t cbase, dmax, dupper;
669 struct csum *cs;
670 int i,k;
671 int j=0;
673 DBG_ENTER;
676 * Read the former last (joining) cylinder group from disk, and make
677 * a copy.
679 rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
680 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
681 DBG_PRINT0("jcg read\n");
682 DBG_DUMP_CG(&sblock,
683 "old joining cg",
684 &aocg);
686 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
689 * If the cylinder group had already it's new final size almost
690 * nothing is to be done ... except:
691 * For some reason the value of cg_ncyl in the last cylinder group has
692 * to be zero instead of fs_cpg. As this is now no longer the last
693 * cylinder group we have to change that value now to fs_cpg.
696 if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
697 acg.cg_ncyl=sblock.fs_cpg;
699 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
700 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
701 DBG_PRINT0("jcg written\n");
702 DBG_DUMP_CG(&sblock,
703 "new joining cg",
704 &acg);
706 DBG_LEAVE;
707 return;
711 * Set up some variables needed later.
713 cbase = cgbase(&sblock, cylno);
714 dmax = cbase + sblock.fs_fpg;
715 if (dmax > sblock.fs_size)
716 dmax = sblock.fs_size;
717 dupper = cgdmin(&sblock, cylno) - cbase;
718 if (cylno == 0) { /* XXX fscs may be relocated */
719 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
723 * Set pointer to the cylinder summary for our cylinder group.
725 cs = fscs + cylno;
728 * Touch the cylinder group, update all fields in the cylinder group as
729 * needed, update the free space in the superblock.
731 acg.cg_time = utime;
732 if (cylno == sblock.fs_ncg - 1) {
734 * This is still the last cylinder group.
736 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
737 } else {
738 acg.cg_ncyl = sblock.fs_cpg;
740 DBG_PRINT4("jcg dbg: %d %u %d %u\n",
741 cylno,
742 sblock.fs_ncg,
743 acg.cg_ncyl,
744 sblock.fs_cpg);
745 acg.cg_ndblk = dmax - cbase;
746 sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
747 if (sblock.fs_contigsumsize > 0) {
748 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
752 * Now we have to update the free fragment bitmap for our new free
753 * space. There again we have to handle the fragmentation and also
754 * the rotational layout tables and the cluster summary. This is
755 * also done per fragment for the first new block if the old file
756 * system end was not on a block boundary, per fragment for the new
757 * last block if the new file system end is not on a block boundary,
758 * and per block for all space in between.
760 * Handle the first new block here if it was partially available
761 * before.
763 if(osblock.fs_size % sblock.fs_frag) {
764 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
766 * The new space is enough to fill at least this
767 * block
769 j=0;
770 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
771 i>=osblock.fs_size-cbase;
772 i--) {
773 setbit(cg_blksfree(&acg), i);
774 acg.cg_cs.cs_nffree++;
775 j++;
779 * Check if the fragment just created could join an
780 * already existing fragment at the former end of the
781 * file system.
783 if(isblock(&sblock, cg_blksfree(&acg),
784 ((osblock.fs_size - cgbase(&sblock, cylno))/
785 sblock.fs_frag))) {
787 * The block is now completely available
789 DBG_PRINT0("block was\n");
790 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
791 acg.cg_cs.cs_nbfree++;
792 acg.cg_cs.cs_nffree-=sblock.fs_frag;
793 k=rounddown(osblock.fs_size-cbase,
794 sblock.fs_frag);
795 cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
796 cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
797 [cbtorpos(&sblock, k)]++;
798 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
799 } else {
801 * Lets rejoin a possible partially growed
802 * fragment.
804 k=0;
805 while(isset(cg_blksfree(&acg), i) &&
806 (i>=rounddown(osblock.fs_size-cbase,
807 sblock.fs_frag))) {
808 i--;
809 k++;
811 if(k) {
812 acg.cg_frsum[k]--;
814 acg.cg_frsum[k+j]++;
816 } else {
818 * We only grow by some fragments within this last
819 * block.
821 for(i=sblock.fs_size-cbase-1;
822 i>=osblock.fs_size-cbase;
823 i--) {
824 setbit(cg_blksfree(&acg), i);
825 acg.cg_cs.cs_nffree++;
826 j++;
829 * Lets rejoin a possible partially growed fragment.
831 k=0;
832 while(isset(cg_blksfree(&acg), i) &&
833 (i>=rounddown(osblock.fs_size-cbase,
834 sblock.fs_frag))) {
835 i--;
836 k++;
838 if(k) {
839 acg.cg_frsum[k]--;
841 acg.cg_frsum[k+j]++;
846 * Handle all new complete blocks here.
848 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
849 i+sblock.fs_frag<=dmax-cbase; /* XXX <= or only < ? */
850 i+=sblock.fs_frag) {
851 j = i / sblock.fs_frag;
852 setblock(&sblock, cg_blksfree(&acg), j);
853 updclst(j);
854 acg.cg_cs.cs_nbfree++;
855 cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
856 cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
857 [cbtorpos(&sblock, i)]++;
861 * Handle the last new block if there are stll some new fragments left.
862 * Here we don't have to bother about the cluster summary or the even
863 * the rotational layout table.
865 if (i < (dmax - cbase)) {
866 acg.cg_frsum[dmax - cbase - i]++;
867 for (; i < dmax - cbase; i++) {
868 setbit(cg_blksfree(&acg), i);
869 acg.cg_cs.cs_nffree++;
873 sblock.fs_cstotal.cs_nffree +=
874 (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
875 sblock.fs_cstotal.cs_nbfree +=
876 (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
878 * The following statistics are not changed here:
879 * sblock.fs_cstotal.cs_ndir
880 * sblock.fs_cstotal.cs_nifree
881 * As the statistics for this cylinder group are ready, copy it to
882 * the summary information array.
884 *cs = acg.cg_cs;
887 * Write the updated "joining" cylinder group back to disk.
889 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
890 (void *)&acg, fso, Nflag);
891 DBG_PRINT0("jcg written\n");
892 DBG_DUMP_CG(&sblock,
893 "new joining cg",
894 &acg);
896 DBG_LEAVE;
897 return;
900 /* ********************************************************** updcsloc ***** */
902 * Here we update the location of the cylinder summary. We have two possible
903 * ways of growing the cylinder summary.
904 * (1) We can try to grow the summary in the current location, and relocate
905 * possibly used blocks within the current cylinder group.
906 * (2) Alternatively we can relocate the whole cylinder summary to the first
907 * new completely empty cylinder group. Once the cylinder summary is no
908 * longer in the beginning of the first cylinder group you should never
909 * use a version of fsck which is not aware of the possibility to have
910 * this structure in a non standard place.
911 * Option (1) is considered to be less intrusive to the structure of the file-
912 * system. So we try to stick to that whenever possible. If there is not enough
913 * space in the cylinder group containing the cylinder summary we have to use
914 * method (2). In case of active snapshots in the filesystem we probably can
915 * completely avoid implementing copy on write if we stick to method (2) only.
917 static void
918 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
920 DBG_FUNC("updcsloc")
921 struct csum *cs;
922 int ocscg, ncscg;
923 int blocks;
924 daddr_t cbase, dupper, odupper, d, f, g;
925 int ind;
926 int cylno, inc;
927 struct gfs_bpp *bp;
928 int i, l;
929 int lcs=0;
930 int block;
932 DBG_ENTER;
934 if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
935 howmany(osblock.fs_cssize, osblock.fs_fsize)) {
937 * No new fragment needed.
939 DBG_LEAVE;
940 return;
942 ocscg=dtog(&osblock, osblock.fs_csaddr);
943 cs=fscs+ocscg;
944 blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
945 howmany(osblock.fs_cssize, osblock.fs_bsize);
948 * Read original cylinder group from disk, and make a copy.
949 * XXX If Nflag is set in some very rare cases we now miss
950 * some changes done in updjcg by reading the unmodified
951 * block from disk.
953 rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
954 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
955 DBG_PRINT0("oscg read\n");
956 DBG_DUMP_CG(&sblock,
957 "old summary cg",
958 &aocg);
960 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
963 * Touch the cylinder group, set up local variables needed later
964 * and update the superblock.
966 acg.cg_time = utime;
969 * XXX In the case of having active snapshots we may need much more
970 * blocks for the copy on write. We need each block twice, and
971 * also up to 8*3 blocks for indirect blocks for all possible
972 * references.
974 if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
976 * There is not enough space in the old cylinder group to
977 * relocate all blocks as needed, so we relocate the whole
978 * cylinder group summary to a new group. We try to use the
979 * first complete new cylinder group just created. Within the
980 * cylinder group we allign the area immediately after the
981 * cylinder group information location in order to be as
982 * close as possible to the original implementation of ffs.
984 * First we have to make sure we'll find enough space in the
985 * new cylinder group. If not, then we currently give up.
986 * We start with freeing everything which was used by the
987 * fragments of the old cylinder summary in the current group.
988 * Now we write back the group meta data, read in the needed
989 * meta data from the new cylinder group, and start allocating
990 * within that group. Here we can assume, the group to be
991 * completely empty. Which makes the handling of fragments and
992 * clusters a lot easier.
994 DBG_TRC;
995 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
996 errx(2, "panic: not enough space");
1000 * Point "d" to the first fragment not used by the cylinder
1001 * summary.
1003 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1006 * Set up last cluster size ("lcs") already here. Calculate
1007 * the size for the trailing cluster just behind where "d"
1008 * points to.
1010 if(sblock.fs_contigsumsize > 0) {
1011 for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1012 lcs=0; lcs<sblock.fs_contigsumsize;
1013 block++, lcs++) {
1014 if(isclr(cg_clustersfree(&acg), block)){
1015 break;
1021 * Point "d" to the last frag used by the cylinder summary.
1023 d--;
1025 DBG_PRINT1("d=%d\n",
1027 if((d+1)%sblock.fs_frag) {
1029 * The end of the cylinder summary is not a complete
1030 * block.
1032 DBG_TRC;
1033 frag_adjust(d%sblock.fs_fpg, -1);
1034 for(; (d+1)%sblock.fs_frag; d--) {
1035 DBG_PRINT1("d=%d\n",
1037 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1038 acg.cg_cs.cs_nffree++;
1039 sblock.fs_cstotal.cs_nffree++;
1042 * Point "d" to the last fragment of the last
1043 * (incomplete) block of the clinder summary.
1045 d++;
1046 frag_adjust(d%sblock.fs_fpg, 1);
1048 if(isblock(&sblock, cg_blksfree(&acg),
1049 (d%sblock.fs_fpg)/sblock.fs_frag)) {
1050 DBG_PRINT1("d=%d\n",
1052 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1053 acg.cg_cs.cs_nbfree++;
1054 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1055 sblock.fs_cstotal.cs_nbfree++;
1056 cg_blktot(&acg)[cbtocylno(&sblock,
1057 d%sblock.fs_fpg)]++;
1058 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1059 d%sblock.fs_fpg))[cbtorpos(&sblock,
1060 d%sblock.fs_fpg)]++;
1061 if(sblock.fs_contigsumsize > 0) {
1062 setbit(cg_clustersfree(&acg),
1063 (d%sblock.fs_fpg)/sblock.fs_frag);
1064 if(lcs < sblock.fs_contigsumsize) {
1065 if(lcs) {
1066 cg_clustersum(&acg)
1067 [lcs]--;
1069 lcs++;
1070 cg_clustersum(&acg)[lcs]++;
1075 * Point "d" to the first fragment of the block before
1076 * the last incomplete block.
1078 d--;
1081 DBG_PRINT1("d=%d\n",
1083 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1084 d-=sblock.fs_frag) {
1085 DBG_TRC;
1086 DBG_PRINT1("d=%d\n",
1088 setblock(&sblock, cg_blksfree(&acg),
1089 (d%sblock.fs_fpg)/sblock.fs_frag);
1090 acg.cg_cs.cs_nbfree++;
1091 sblock.fs_cstotal.cs_nbfree++;
1092 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1093 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1094 d%sblock.fs_fpg))[cbtorpos(&sblock,
1095 d%sblock.fs_fpg)]++;
1096 if(sblock.fs_contigsumsize > 0) {
1097 setbit(cg_clustersfree(&acg),
1098 (d%sblock.fs_fpg)/sblock.fs_frag);
1100 * The last cluster size is already set up.
1102 if(lcs < sblock.fs_contigsumsize) {
1103 if(lcs) {
1104 cg_clustersum(&acg)[lcs]--;
1106 lcs++;
1107 cg_clustersum(&acg)[lcs]++;
1111 *cs = acg.cg_cs;
1114 * Now write the former cylinder group containing the cylinder
1115 * summary back to disk.
1117 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1118 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1119 DBG_PRINT0("oscg written\n");
1120 DBG_DUMP_CG(&sblock,
1121 "old summary cg",
1122 &acg);
1125 * Find the beginning of the new cylinder group containing the
1126 * cylinder summary.
1128 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1129 ncscg=dtog(&sblock, sblock.fs_csaddr);
1130 cs=fscs+ncscg;
1134 * If Nflag is specified, we would now read random data instead
1135 * of an empty cg structure from disk. So we can't simulate that
1136 * part for now.
1138 if(Nflag) {
1139 DBG_PRINT0("nscg update skipped\n");
1140 DBG_LEAVE;
1141 return;
1145 * Read the future cylinder group containing the cylinder
1146 * summary from disk, and make a copy.
1148 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1149 (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1150 DBG_PRINT0("nscg read\n");
1151 DBG_DUMP_CG(&sblock,
1152 "new summary cg",
1153 &aocg);
1155 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1158 * Allocate all complete blocks used by the new cylinder
1159 * summary.
1161 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1162 sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1163 d+=sblock.fs_frag) {
1164 clrblock(&sblock, cg_blksfree(&acg),
1165 (d%sblock.fs_fpg)/sblock.fs_frag);
1166 acg.cg_cs.cs_nbfree--;
1167 sblock.fs_cstotal.cs_nbfree--;
1168 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1169 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1170 d%sblock.fs_fpg))[cbtorpos(&sblock,
1171 d%sblock.fs_fpg)]--;
1172 if(sblock.fs_contigsumsize > 0) {
1173 clrbit(cg_clustersfree(&acg),
1174 (d%sblock.fs_fpg)/sblock.fs_frag);
1179 * Allocate all fragments used by the cylinder summary in the
1180 * last block.
1182 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1183 for(; d-sblock.fs_csaddr<
1184 sblock.fs_cssize/sblock.fs_fsize;
1185 d++) {
1186 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1187 acg.cg_cs.cs_nffree--;
1188 sblock.fs_cstotal.cs_nffree--;
1190 acg.cg_cs.cs_nbfree--;
1191 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1192 sblock.fs_cstotal.cs_nbfree--;
1193 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1194 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1195 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1196 d%sblock.fs_fpg))[cbtorpos(&sblock,
1197 d%sblock.fs_fpg)]--;
1198 if(sblock.fs_contigsumsize > 0) {
1199 clrbit(cg_clustersfree(&acg),
1200 (d%sblock.fs_fpg)/sblock.fs_frag);
1203 frag_adjust(d%sblock.fs_fpg, +1);
1206 * XXX Handle the cluster statistics here in the case this
1207 * cylinder group is now almost full, and the remaining
1208 * space is less then the maximum cluster size. This is
1209 * probably not needed, as you would hardly find a file
1210 * system which has only MAXCSBUFS+FS_MAXCONTIG of free
1211 * space right behind the cylinder group information in
1212 * any new cylinder group.
1216 * Update our statistics in the cylinder summary.
1218 *cs = acg.cg_cs;
1221 * Write the new cylinder group containing the cylinder summary
1222 * back to disk.
1224 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1225 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1226 DBG_PRINT0("nscg written\n");
1227 DBG_DUMP_CG(&sblock,
1228 "new summary cg",
1229 &acg);
1231 DBG_LEAVE;
1232 return;
1235 * We have got enough of space in the current cylinder group, so we
1236 * can relocate just a few blocks, and let the summary information
1237 * grow in place where it is right now.
1239 DBG_TRC;
1241 cbase = cgbase(&osblock, ocscg); /* old and new are equal */
1242 dupper = sblock.fs_csaddr - cbase +
1243 howmany(sblock.fs_cssize, sblock.fs_fsize);
1244 odupper = osblock.fs_csaddr - cbase +
1245 howmany(osblock.fs_cssize, osblock.fs_fsize);
1247 sblock.fs_dsize -= dupper-odupper;
1250 * Allocate the space for the array of blocks to be relocated.
1252 bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1253 sizeof(struct gfs_bpp));
1254 if(bp == NULL) {
1255 errx(1, "malloc failed");
1257 memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1258 sizeof(struct gfs_bpp));
1261 * Lock all new frags needed for the cylinder group summary. This is
1262 * done per fragment in the first and last block of the new required
1263 * area, and per block for all other blocks.
1265 * Handle the first new block here (but only if some fragments where
1266 * already used for the cylinder summary).
1268 ind=0;
1269 frag_adjust(odupper, -1);
1270 for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1271 DBG_PRINT1("scg first frag check loop d=%d\n",
1273 if(isclr(cg_blksfree(&acg), d)) {
1274 if (!ind) {
1275 bp[ind].old=d/sblock.fs_frag;
1276 bp[ind].flags|=GFS_FL_FIRST;
1277 if(roundup(d, sblock.fs_frag) >= dupper) {
1278 bp[ind].flags|=GFS_FL_LAST;
1280 ind++;
1282 } else {
1283 clrbit(cg_blksfree(&acg), d);
1284 acg.cg_cs.cs_nffree--;
1285 sblock.fs_cstotal.cs_nffree--;
1288 * No cluster handling is needed here, as there was at least
1289 * one fragment in use by the cylinder summary in the old
1290 * file system.
1291 * No block-free counter handling here as this block was not
1292 * a free block.
1295 frag_adjust(odupper, 1);
1298 * Handle all needed complete blocks here.
1300 for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1301 DBG_PRINT1("scg block check loop d=%d\n",
1303 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1304 for(f=d; f<d+sblock.fs_frag; f++) {
1305 if(isset(cg_blksfree(&aocg), f)) {
1306 acg.cg_cs.cs_nffree--;
1307 sblock.fs_cstotal.cs_nffree--;
1310 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1311 bp[ind].old=d/sblock.fs_frag;
1312 ind++;
1313 } else {
1314 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1315 acg.cg_cs.cs_nbfree--;
1316 sblock.fs_cstotal.cs_nbfree--;
1317 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1318 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1319 [cbtorpos(&sblock, d)]--;
1320 if(sblock.fs_contigsumsize > 0) {
1321 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1322 for(lcs=0, l=(d/sblock.fs_frag)+1;
1323 lcs<sblock.fs_contigsumsize;
1324 l++, lcs++ ) {
1325 if(isclr(cg_clustersfree(&acg),l)){
1326 break;
1329 if(lcs < sblock.fs_contigsumsize) {
1330 cg_clustersum(&acg)[lcs+1]--;
1331 if(lcs) {
1332 cg_clustersum(&acg)[lcs]++;
1338 * No fragment counter handling is needed here, as this finally
1339 * doesn't change after the relocation.
1344 * Handle all fragments needed in the last new affected block.
1346 if(d<dupper) {
1347 frag_adjust(dupper-1, -1);
1349 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1350 acg.cg_cs.cs_nbfree--;
1351 sblock.fs_cstotal.cs_nbfree--;
1352 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1353 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1354 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1355 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1356 [cbtorpos(&sblock, d)]--;
1357 if(sblock.fs_contigsumsize > 0) {
1358 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1359 for(lcs=0, l=(d/sblock.fs_frag)+1;
1360 lcs<sblock.fs_contigsumsize;
1361 l++, lcs++ ) {
1362 if(isclr(cg_clustersfree(&acg),l)){
1363 break;
1366 if(lcs < sblock.fs_contigsumsize) {
1367 cg_clustersum(&acg)[lcs+1]--;
1368 if(lcs) {
1369 cg_clustersum(&acg)[lcs]++;
1375 for(; d<dupper; d++) {
1376 DBG_PRINT1("scg second frag check loop d=%d\n",
1378 if(isclr(cg_blksfree(&acg), d)) {
1379 bp[ind].old=d/sblock.fs_frag;
1380 bp[ind].flags|=GFS_FL_LAST;
1381 } else {
1382 clrbit(cg_blksfree(&acg), d);
1383 acg.cg_cs.cs_nffree--;
1384 sblock.fs_cstotal.cs_nffree--;
1387 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1388 ind++;
1390 frag_adjust(dupper-1, 1);
1394 * If we found a block to relocate just do so.
1396 if(ind) {
1397 for(i=0; i<ind; i++) {
1398 if(!bp[i].old) { /* no more blocks listed */
1400 * XXX A relative blocknumber should not be
1401 * zero, which is not explicitly
1402 * guaranteed by our code.
1404 break;
1407 * Allocate a complete block in the same (current)
1408 * cylinder group.
1410 bp[i].new=alloc()/sblock.fs_frag;
1413 * There is no frag_adjust() needed for the new block
1414 * as it will have no fragments yet :-).
1416 for(f=bp[i].old*sblock.fs_frag,
1417 g=bp[i].new*sblock.fs_frag;
1418 f<(bp[i].old+1)*sblock.fs_frag;
1419 f++, g++) {
1420 if(isset(cg_blksfree(&aocg), f)) {
1421 setbit(cg_blksfree(&acg), g);
1422 acg.cg_cs.cs_nffree++;
1423 sblock.fs_cstotal.cs_nffree++;
1428 * Special handling is required if this was the first
1429 * block. We have to consider the fragments which were
1430 * used by the cylinder summary in the original block
1431 * which re to be free in the copy of our block. We
1432 * have to be careful if this first block happens to
1433 * be also the last block to be relocated.
1435 if(bp[i].flags & GFS_FL_FIRST) {
1436 for(f=bp[i].old*sblock.fs_frag,
1437 g=bp[i].new*sblock.fs_frag;
1438 f<odupper;
1439 f++, g++) {
1440 setbit(cg_blksfree(&acg), g);
1441 acg.cg_cs.cs_nffree++;
1442 sblock.fs_cstotal.cs_nffree++;
1444 if(!(bp[i].flags & GFS_FL_LAST)) {
1445 frag_adjust(bp[i].new*sblock.fs_frag,1);
1451 * Special handling is required if this is the last
1452 * block to be relocated.
1454 if(bp[i].flags & GFS_FL_LAST) {
1455 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1456 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1457 for(f=dupper;
1458 f<roundup(dupper, sblock.fs_frag);
1459 f++) {
1460 if(isclr(cg_blksfree(&acg), f)) {
1461 setbit(cg_blksfree(&acg), f);
1462 acg.cg_cs.cs_nffree++;
1463 sblock.fs_cstotal.cs_nffree++;
1466 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1470 * !!! Attach the cylindergroup offset here.
1472 bp[i].old+=cbase/sblock.fs_frag;
1473 bp[i].new+=cbase/sblock.fs_frag;
1476 * Copy the content of the block.
1479 * XXX Here we will have to implement a copy on write
1480 * in the case we have any active snapshots.
1482 rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1483 (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1484 wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1485 (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1486 DBG_DUMP_HEX(&sblock,
1487 "copied full block",
1488 (unsigned char *)&ablk);
1490 DBG_PRINT2("scg (%d->%d) block relocated\n",
1491 bp[i].old,
1492 bp[i].new);
1496 * Now we have to update all references to any fragment which
1497 * belongs to any block relocated. We iterate now over all
1498 * cylinder groups, within those over all non zero length
1499 * inodes.
1501 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1502 DBG_PRINT1("scg doing cg (%d)\n",
1503 cylno);
1504 for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1505 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1510 * All inodes are checked, now make sure the number of
1511 * references found make sense.
1513 for(i=0; i<ind; i++) {
1514 if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1515 warnx("error: %d refs found for block %d.",
1516 bp[i].found, bp[i].old);
1522 * The following statistics are not changed here:
1523 * sblock.fs_cstotal.cs_ndir
1524 * sblock.fs_cstotal.cs_nifree
1525 * The following statistics were already updated on the fly:
1526 * sblock.fs_cstotal.cs_nffree
1527 * sblock.fs_cstotal.cs_nbfree
1528 * As the statistics for this cylinder group are ready, copy it to
1529 * the summary information array.
1532 *cs = acg.cg_cs;
1535 * Write summary cylinder group back to disk.
1537 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1538 (void *)&acg, fso, Nflag);
1539 DBG_PRINT0("scg written\n");
1540 DBG_DUMP_CG(&sblock,
1541 "new summary cg",
1542 &acg);
1544 DBG_LEAVE;
1545 return;
1548 /* ************************************************************** rdfs ***** */
1550 * Here we read some block(s) from disk.
1552 static void
1553 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1555 DBG_FUNC("rdfs")
1556 ssize_t n;
1558 DBG_ENTER;
1560 if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1561 err(33, "rdfs: seek error: %ld", (long)bno);
1563 n = read(fsi, bf, size);
1564 if (n != (ssize_t)size) {
1565 err(34, "rdfs: read error: %ld", (long)bno);
1568 DBG_LEAVE;
1569 return;
1572 /* ************************************************************** wtfs ***** */
1574 * Here we write some block(s) to disk.
1576 static void
1577 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1579 DBG_FUNC("wtfs")
1580 ssize_t n;
1582 DBG_ENTER;
1584 if (Nflag) {
1585 DBG_LEAVE;
1586 return;
1588 if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1589 err(35, "wtfs: seek error: %ld", (long)bno);
1591 n = write(fso, bf, size);
1592 if (n != (ssize_t)size) {
1593 err(36, "wtfs: write error: %ld", (long)bno);
1596 DBG_LEAVE;
1597 return;
1600 /* ************************************************************* alloc ***** */
1602 * Here we allocate a free block in the current cylinder group. It is assumed,
1603 * that acg contains the current cylinder group. As we may take a block from
1604 * somewhere in the filesystem we have to handle cluster summary here.
1606 static daddr_t
1607 alloc(void)
1609 DBG_FUNC("alloc")
1610 daddr_t d, blkno;
1611 int lcs1, lcs2;
1612 int l;
1613 int csmin, csmax;
1614 int dlower, dupper, dmax;
1616 DBG_ENTER;
1618 if (acg.cg_magic != CG_MAGIC) {
1619 warnx("acg: bad magic number");
1620 DBG_LEAVE;
1621 return (0);
1623 if (acg.cg_cs.cs_nbfree == 0) {
1624 warnx("error: cylinder group ran out of space");
1625 DBG_LEAVE;
1626 return (0);
1629 * We start seeking for free blocks only from the space available after
1630 * the end of the new grown cylinder summary. Otherwise we allocate a
1631 * block here which we have to relocate a couple of seconds later again
1632 * again, and we are not prepared to to this anyway.
1634 blkno=-1;
1635 dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1636 dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1637 dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1638 if (dmax > sblock.fs_size) {
1639 dmax = sblock.fs_size;
1641 dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1642 csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1643 csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1644 DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1645 dlower,
1646 dupper,
1647 dmax);
1648 DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1649 csmin,
1650 csmax);
1652 for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1653 if(d>=csmin && d<=csmax) {
1654 continue;
1656 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1657 d))) {
1658 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1659 break;
1662 for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1663 if(d>=csmin && d<=csmax) {
1664 continue;
1666 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1667 d))) {
1668 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1669 break;
1672 if(blkno==-1) {
1673 warnx("internal error: couldn't find promised block in cg");
1674 DBG_LEAVE;
1675 return (0);
1679 * This is needed if the block was found already in the first loop.
1681 d=blkstofrags(&sblock, blkno);
1683 clrblock(&sblock, cg_blksfree(&acg), blkno);
1684 if (sblock.fs_contigsumsize > 0) {
1686 * Handle the cluster allocation bitmap.
1688 clrbit(cg_clustersfree(&acg), blkno);
1690 * We possibly have split a cluster here, so we have to do
1691 * recalculate the sizes of the remaining cluster halves now,
1692 * and use them for updating the cluster summary information.
1694 * Lets start with the blocks before our allocated block ...
1696 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1697 l--, lcs1++ ) {
1698 if(isclr(cg_clustersfree(&acg),l)){
1699 break;
1703 * ... and continue with the blocks right after our allocated
1704 * block.
1706 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1707 l++, lcs2++ ) {
1708 if(isclr(cg_clustersfree(&acg),l)){
1709 break;
1714 * Now update all counters.
1716 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1717 if(lcs1) {
1718 cg_clustersum(&acg)[lcs1]++;
1720 if(lcs2) {
1721 cg_clustersum(&acg)[lcs2]++;
1725 * Update all statistics based on blocks.
1727 acg.cg_cs.cs_nbfree--;
1728 sblock.fs_cstotal.cs_nbfree--;
1729 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1730 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1732 DBG_LEAVE;
1733 return (d);
1736 /* *********************************************************** isblock ***** */
1738 * Here we check if all frags of a block are free. For more details again
1739 * please see the source of newfs(8), as this function is taken over almost
1740 * unchanged.
1742 static int
1743 isblock(struct fs *fs, unsigned char *cp, int h)
1745 DBG_FUNC("isblock")
1746 unsigned char mask;
1748 DBG_ENTER;
1750 switch (fs->fs_frag) {
1751 case 8:
1752 DBG_LEAVE;
1753 return (cp[h] == 0xff);
1754 case 4:
1755 mask = 0x0f << ((h & 0x1) << 2);
1756 DBG_LEAVE;
1757 return ((cp[h >> 1] & mask) == mask);
1758 case 2:
1759 mask = 0x03 << ((h & 0x3) << 1);
1760 DBG_LEAVE;
1761 return ((cp[h >> 2] & mask) == mask);
1762 case 1:
1763 mask = 0x01 << (h & 0x7);
1764 DBG_LEAVE;
1765 return ((cp[h >> 3] & mask) == mask);
1766 default:
1767 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1768 DBG_LEAVE;
1769 return (0);
1773 /* ********************************************************** clrblock ***** */
1775 * Here we allocate a complete block in the block map. For more details again
1776 * please see the source of newfs(8), as this function is taken over almost
1777 * unchanged.
1779 static void
1780 clrblock(struct fs *fs, unsigned char *cp, int h)
1782 DBG_FUNC("clrblock")
1784 DBG_ENTER;
1786 switch ((fs)->fs_frag) {
1787 case 8:
1788 cp[h] = 0;
1789 break;
1790 case 4:
1791 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1792 break;
1793 case 2:
1794 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1795 break;
1796 case 1:
1797 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1798 break;
1799 default:
1800 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1801 break;
1804 DBG_LEAVE;
1805 return;
1808 /* ********************************************************** setblock ***** */
1810 * Here we free a complete block in the free block map. For more details again
1811 * please see the source of newfs(8), as this function is taken over almost
1812 * unchanged.
1814 static void
1815 setblock(struct fs *fs, unsigned char *cp, int h)
1817 DBG_FUNC("setblock")
1819 DBG_ENTER;
1821 switch (fs->fs_frag) {
1822 case 8:
1823 cp[h] = 0xff;
1824 break;
1825 case 4:
1826 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1827 break;
1828 case 2:
1829 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1830 break;
1831 case 1:
1832 cp[h >> 3] |= (0x01 << (h & 0x7));
1833 break;
1834 default:
1835 warnx("setblock bad fs_frag %d", fs->fs_frag);
1836 break;
1839 DBG_LEAVE;
1840 return;
1843 /* ************************************************************ ginode ***** */
1845 * This function provides access to an individual inode. We find out in which
1846 * block the requested inode is located, read it from disk if needed, and
1847 * return the pointer into that block. We maintain a cache of one block to
1848 * not read the same block again and again if we iterate linearly over all
1849 * inodes.
1851 static struct dinode *
1852 ginode(ino_t inumber, int fsi, int cg)
1854 DBG_FUNC("ginode")
1855 ufs_daddr_t iblk;
1856 static ino_t startinum=0; /* first inode in cached block */
1857 struct dinode *pi;
1859 DBG_ENTER;
1861 pi=(struct dinode *)(void *)ablk;
1862 inumber+=(cg * sblock.fs_ipg);
1863 if (startinum == 0 || inumber < startinum ||
1864 inumber >= startinum + INOPB(&sblock)) {
1866 * The block needed is not cached, so we have to read it from
1867 * disk now.
1869 iblk = ino_to_fsba(&sblock, inumber);
1870 in_src=fsbtodb(&sblock, iblk);
1871 rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1872 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1875 DBG_LEAVE;
1876 return (&(pi[inumber % INOPB(&sblock)]));
1879 /* ****************************************************** charsperline ***** */
1881 * Figure out how many lines our current terminal has. For more details again
1882 * please see the source of newfs(8), as this function is taken over almost
1883 * unchanged.
1885 static int
1886 charsperline(void)
1888 DBG_FUNC("charsperline")
1889 int columns;
1890 char *cp;
1891 struct winsize ws;
1893 DBG_ENTER;
1895 columns = 0;
1896 if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1897 columns = ws.ws_col;
1899 if (columns == 0 && (cp = getenv("COLUMNS"))) {
1900 columns = atoi(cp);
1902 if (columns == 0) {
1903 columns = 80; /* last resort */
1906 DBG_LEAVE;
1907 return columns;
1910 /* ************************************************************** main ***** */
1912 * growfs(8) is a utility which allows to increase the size of an existing
1913 * ufs filesystem. Currently this can only be done on unmounted file system.
1914 * It recognizes some command line options to specify the new desired size,
1915 * and it does some basic checkings. The old file system size is determined
1916 * and after some more checks like we can really access the new last block
1917 * on the disk etc. we calculate the new parameters for the superblock. After
1918 * having done this we just call growfs() which will do the work. Before
1919 * we finish the only thing left is to update the disklabel.
1920 * We still have to provide support for snapshots. Therefore we first have to
1921 * understand what data structures are always replicated in the snapshot on
1922 * creation, for all other blocks we touch during our procedure, we have to
1923 * keep the old blocks unchanged somewhere available for the snapshots. If we
1924 * are lucky, then we only have to handle our blocks to be relocated in that
1925 * way.
1926 * Also we have to consider in what order we actually update the critical
1927 * data structures of the filesystem to make sure, that in case of a disaster
1928 * fsck(8) is still able to restore any lost data.
1929 * The foreseen last step then will be to provide for growing even mounted
1930 * file systems. There we have to extend the mount() system call to provide
1931 * userland access to the file system locking facility.
1934 main(int argc, char **argv)
1936 DBG_FUNC("main")
1937 char *device, *special, *cp;
1938 char ch;
1939 unsigned int size=0;
1940 size_t len;
1941 unsigned int Nflag=0;
1942 int ExpertFlag=0;
1943 struct stat st;
1944 struct disklabel *lp;
1945 struct partition *pp;
1946 int fsi,fso;
1947 char reply[5];
1948 #ifdef FSMAXSNAP
1949 int j;
1950 #endif /* FSMAXSNAP */
1952 DBG_ENTER;
1954 while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1955 switch(ch) {
1956 case 'N':
1957 Nflag=1;
1958 break;
1959 case 's':
1960 size=(size_t)atol(optarg);
1961 if(size<1) {
1962 usage();
1964 break;
1965 case 'v': /* for compatibility to newfs */
1966 break;
1967 case 'y':
1968 ExpertFlag=1;
1969 break;
1970 case '?':
1971 /* FALLTHROUGH */
1972 default:
1973 usage();
1976 argc -= optind;
1977 argv += optind;
1979 if(argc != 1) {
1980 usage();
1982 device=*argv;
1985 * Now try to guess the (raw)device name.
1987 if (0 == strrchr(device, '/')) {
1989 * No path prefix was given, so try in that order:
1990 * /dev/r%s
1991 * /dev/%s
1992 * /dev/vinum/r%s
1993 * /dev/vinum/%s.
1995 * FreeBSD now doesn't distinguish between raw and block
1996 * devices any longer, but it should still work this way.
1998 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1999 special=(char *)malloc(len);
2000 if(special == NULL) {
2001 errx(1, "malloc failed");
2003 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2004 if (stat(special, &st) == -1) {
2005 snprintf(special, len, "%s%s", _PATH_DEV, device);
2006 if (stat(special, &st) == -1) {
2007 snprintf(special, len, "%svinum/r%s",
2008 _PATH_DEV, device);
2009 if (stat(special, &st) == -1) {
2010 /* For now this is the 'last resort' */
2011 snprintf(special, len, "%svinum/%s",
2012 _PATH_DEV, device);
2016 device = special;
2020 * Try to access our devices for writing ...
2022 if (Nflag) {
2023 fso = -1;
2024 } else {
2025 fso = open(device, O_WRONLY);
2026 if (fso < 0) {
2027 err(1, "%s", device);
2032 * ... and reading.
2034 fsi = open(device, O_RDONLY);
2035 if (fsi < 0) {
2036 err(1, "%s", device);
2040 * Try to read a label and gess the slice if not specified. This
2041 * code should guess the right thing and avaid to bother the user
2042 * user with the task of specifying the option -v on vinum volumes.
2044 cp=device+strlen(device)-1;
2045 lp = get_disklabel(fsi);
2046 if(lp->d_type == DTYPE_VINUM) {
2047 pp = &lp->d_partitions[0];
2048 } else if (isdigit(*cp)) {
2049 pp = &lp->d_partitions[2];
2050 } else if (*cp>='a' && *cp<='h') {
2051 pp = &lp->d_partitions[*cp - 'a'];
2052 } else {
2053 errx(1, "unknown device");
2057 * Check if that partition looks suited for growing a file system.
2059 if (pp->p_size < 1) {
2060 errx(1, "partition is unavailable");
2062 if (pp->p_fstype != FS_BSDFFS) {
2063 errx(1, "partition not 4.2BSD");
2067 * Read the current superblock, and take a backup.
2069 rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2070 fsi);
2071 if (osblock.fs_magic != FS_MAGIC) {
2072 errx(1, "superblock not recognized");
2074 memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2076 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2077 DBG_DUMP_FS(&sblock,
2078 "old sblock");
2081 * Determine size to grow to. Default to the full size specified in
2082 * the disk label.
2084 sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2085 if (size != 0) {
2086 if (size > pp->p_size){
2087 errx(1, "There is not enough space (%d < %d)",
2088 pp->p_size, size);
2090 sblock.fs_size = dbtofsb(&osblock, size);
2094 * Are we really growing ?
2096 if(osblock.fs_size >= sblock.fs_size) {
2097 errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2098 sblock.fs_size);
2102 #ifdef FSMAXSNAP
2104 * Check if we find an active snapshot.
2106 if(ExpertFlag == 0) {
2107 for(j=0; j<FSMAXSNAP; j++) {
2108 if(sblock.fs_snapinum[j]) {
2109 errx(1, "active snapshot found in filesystem\n"
2110 " please remove all snapshots before "
2111 "using growfs\n");
2113 if(!sblock.fs_snapinum[j]) { /* list is dense */
2114 break;
2118 #endif
2120 if (ExpertFlag == 0 && Nflag == 0) {
2121 printf("We strongly recommend you to make a backup "
2122 "before growing the Filesystem\n\n"
2123 " Did you backup your data (Yes/No) ? ");
2124 fgets(reply, (int)sizeof(reply), stdin);
2125 if (strcmp(reply, "Yes\n")){
2126 printf("\n Nothing done \n");
2127 exit (0);
2131 printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2134 * Try to access our new last block in the filesystem. Even if we
2135 * later on realize we have to abort our operation, on that block
2136 * there should be no data, so we can't destroy something yet.
2138 wtfs((daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2139 Nflag);
2142 * Now calculate new superblock values and check for reasonable
2143 * bound for new file system size:
2144 * fs_size: is derived from label or user input
2145 * fs_dsize: should get updated in the routines creating or
2146 * updating the cylinder groups on the fly
2147 * fs_cstotal: should get updated in the routines creating or
2148 * updating the cylinder groups
2152 * Update the number of cylinders in the filesystem.
2154 sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2155 if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2156 sblock.fs_ncyl++;
2160 * Update the number of cylinder groups in the filesystem.
2162 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2163 if (sblock.fs_ncyl % sblock.fs_cpg) {
2164 sblock.fs_ncg++;
2167 if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2168 sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2169 cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2170 (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2172 * The space in the new last cylinder group is too small,
2173 * so revert back.
2175 sblock.fs_ncg--;
2176 #if 1 /* this is a bit more safe */
2177 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2178 #else
2179 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2180 #endif
2181 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2182 printf( "Warning: %d sector(s) cannot be allocated.\n",
2183 (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2184 NSPF(&sblock));
2185 sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2189 * Update the space for the cylinder group summary information in the
2190 * respective cylinder group data area.
2192 sblock.fs_cssize =
2193 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2195 if(osblock.fs_size >= sblock.fs_size) {
2196 errx(1, "not enough new space");
2199 DBG_PRINT0("sblock calculated\n");
2202 * Ok, everything prepared, so now let's do the tricks.
2204 growfs(fsi, fso, Nflag);
2207 * Update the disk label.
2209 pp->p_fsize = sblock.fs_fsize;
2210 pp->p_frag = sblock.fs_frag;
2211 pp->p_cpg = sblock.fs_cpg;
2213 return_disklabel(fso, lp, Nflag);
2214 DBG_PRINT0("label rewritten\n");
2216 close(fsi);
2217 if(fso>-1) close(fso);
2219 DBG_CLOSE;
2221 DBG_LEAVE;
2222 return 0;
2225 /* ************************************************** return_disklabel ***** */
2227 * Write the updated disklabel back to disk.
2229 static void
2230 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2232 DBG_FUNC("return_disklabel")
2233 u_short sum;
2234 u_short *ptr;
2236 DBG_ENTER;
2238 if(!lp) {
2239 DBG_LEAVE;
2240 return;
2242 if(!Nflag) {
2243 lp->d_checksum=0;
2244 sum = 0;
2245 ptr=(u_short *)lp;
2248 * recalculate checksum
2250 while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2251 sum ^= *ptr++;
2253 lp->d_checksum=sum;
2255 if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2256 errx(1, "DIOCWDINFO failed");
2259 free(lp);
2261 DBG_LEAVE;
2262 return ;
2265 /* ***************************************************** get_disklabel ***** */
2267 * Read the disklabel from disk.
2269 static struct disklabel *
2270 get_disklabel(int fd)
2272 DBG_FUNC("get_disklabel")
2273 static struct disklabel *lab;
2275 DBG_ENTER;
2277 lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2278 if (!lab) {
2279 errx(1, "malloc failed");
2281 if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2282 errx(1, "DIOCGDINFO failed");
2285 DBG_LEAVE;
2286 return (lab);
2290 /* ************************************************************* usage ***** */
2292 * Dump a line of usage.
2294 static void
2295 usage(void)
2297 DBG_FUNC("usage")
2299 DBG_ENTER;
2301 fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2303 DBG_LEAVE;
2304 exit(1);
2307 /* *********************************************************** updclst ***** */
2309 * This updates most paramters and the bitmap related to cluster. We have to
2310 * assume, that sblock, osblock, acg are set up.
2312 static void
2313 updclst(int block)
2315 DBG_FUNC("updclst")
2316 static int lcs=0;
2318 DBG_ENTER;
2320 if(sblock.fs_contigsumsize < 1) { /* no clustering */
2321 return;
2324 * update cluster allocation map
2326 setbit(cg_clustersfree(&acg), block);
2329 * update cluster summary table
2331 if(!lcs) {
2333 * calculate size for the trailing cluster
2335 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2336 if(isclr(cg_clustersfree(&acg), block)){
2337 break;
2341 if(lcs < sblock.fs_contigsumsize) {
2342 if(lcs) {
2343 cg_clustersum(&acg)[lcs]--;
2345 lcs++;
2346 cg_clustersum(&acg)[lcs]++;
2349 DBG_LEAVE;
2350 return;
2353 /* *********************************************************** updrefs ***** */
2355 * This updates all references to relocated blocks for the given inode. The
2356 * inode is given as number within the cylinder group, and the number of the
2357 * cylinder group.
2359 static void
2360 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2361 Nflag)
2363 DBG_FUNC("updrefs")
2364 unsigned int ictr, ind2ctr, ind3ctr;
2365 ufs_daddr_t *iptr, *ind2ptr, *ind3ptr;
2366 struct dinode *ino;
2367 int remaining_blocks;
2369 DBG_ENTER;
2372 * XXX We should skip unused inodes even from beeing read from disk
2373 * here by using the bitmap.
2375 ino=ginode(in, fsi, cg);
2376 if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2377 (ino->di_mode & IFMT)==IFLNK)) {
2378 DBG_LEAVE;
2379 return; /* only check DIR, FILE, LINK */
2381 if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2382 DBG_LEAVE;
2383 return; /* skip short symlinks */
2385 if(!ino->di_size) {
2386 DBG_LEAVE;
2387 return; /* skip empty file */
2389 if(!ino->di_blocks) {
2390 DBG_LEAVE;
2391 return; /* skip empty swiss cheesy file or old fastlink */
2393 DBG_PRINT2("scg checking inode (%d in %d)\n",
2395 cg);
2398 * Start checking all direct blocks.
2400 remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2401 for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2402 ictr++) {
2403 iptr=&(ino->di_db[ictr]);
2404 if(*iptr) {
2405 cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2408 DBG_PRINT0("~~scg direct blocks checked\n");
2410 remaining_blocks-=NDADDR;
2411 if(remaining_blocks<0) {
2412 DBG_LEAVE;
2413 return;
2415 if(ino->di_ib[0]) {
2417 * Start checking first indirect block
2419 cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2420 i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2421 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2422 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2423 sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2424 ictr++) {
2425 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2426 if(*iptr) {
2427 cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2428 fso, Nflag);
2432 DBG_PRINT0("scg indirect_1 blocks checked\n");
2434 remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2435 if(remaining_blocks<0) {
2436 DBG_LEAVE;
2437 return;
2439 if(ino->di_ib[1]) {
2441 * Start checking second indirect block
2443 cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2444 i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2445 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2446 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2447 sizeof(ufs_daddr_t)); ind2ctr++) {
2448 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2449 if(!*ind2ptr) {
2450 continue;
2452 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2453 Nflag);
2454 i1_src=fsbtodb(&sblock, *ind2ptr);
2455 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2456 fsi);
2457 for(ictr=0; ictr<MIN(howmany((unsigned int)
2458 sblock.fs_bsize, sizeof(ufs_daddr_t)),
2459 (unsigned int)remaining_blocks); ictr++) {
2460 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2461 if(*iptr) {
2462 cond_bl_upd(iptr, bp,
2463 GFS_PS_IND_BLK_LVL1, fso, Nflag);
2468 DBG_PRINT0("scg indirect_2 blocks checked\n");
2470 #define SQUARE(a) ((a)*(a))
2471 remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2472 #undef SQUARE
2473 if(remaining_blocks<0) {
2474 DBG_LEAVE;
2475 return;
2478 if(ino->di_ib[2]) {
2480 * Start checking third indirect block
2482 cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2483 i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2484 rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2485 for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2486 sizeof(ufs_daddr_t)); ind3ctr ++) {
2487 ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2488 if(!*ind3ptr) {
2489 continue;
2491 cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2492 Nflag);
2493 i2_src=fsbtodb(&sblock, *ind3ptr);
2494 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2495 fsi);
2496 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2497 sizeof(ufs_daddr_t)); ind2ctr ++) {
2498 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2499 [ind2ctr];
2500 if(!*ind2ptr) {
2501 continue;
2503 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2504 fso, Nflag);
2505 i1_src=fsbtodb(&sblock, *ind2ptr);
2506 rdfs(i1_src, (size_t)sblock.fs_bsize,
2507 (void *)&i1blk, fsi);
2508 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2509 sizeof(ufs_daddr_t)),
2510 (unsigned int)remaining_blocks); ictr++) {
2511 iptr=&((ufs_daddr_t *)(void *)&i1blk)
2512 [ictr];
2513 if(*iptr) {
2514 cond_bl_upd(iptr, bp,
2515 GFS_PS_IND_BLK_LVL1, fso,
2516 Nflag);
2523 DBG_PRINT0("scg indirect_3 blocks checked\n");
2525 DBG_LEAVE;
2526 return;