Fix incomplete stack traces by gdb.
[dragonfly.git] / contrib / gcc-3.4 / gcc / cselib.c
blob9c1d93649b59b8e0fc0210fcf38ad78e511d2eb1
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
45 static int entry_and_rtx_equal_p (const void *, const void *);
46 static hashval_t get_value_hash (const void *);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void clear_table (void);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int hash_rtx (rtx, enum machine_mode, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
64 static void cselib_record_sets (rtx);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static GTY((param_is (cselib_val))) htab_t hash_table;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn;
81 static bool cselib_current_insn_in_libcall;
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value;
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs;
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values;
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
102 element. */
103 static GTY(()) varray_type reg_values;
104 static GTY((deletable (""))) varray_type reg_values_old;
105 #define REG_VALUES(I) VARRAY_ELT_LIST (reg_values, (I))
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each clear_table() invocation. */
109 static unsigned int max_value_regs;
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in clear_table() for fast emptying. */
113 static GTY(()) varray_type used_regs;
114 static GTY((deletable (""))) varray_type used_regs_old;
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem;
120 /* Set by discard_useless_locs if it deleted the last location of any
121 value. */
122 static int values_became_useless;
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val;
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val *first_containing_mem = &dummy_val;
132 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
135 /* Allocate a struct elt_list and fill in its two elements with the
136 arguments. */
138 static inline struct elt_list *
139 new_elt_list (struct elt_list *next, cselib_val *elt)
141 struct elt_list *el;
142 el = pool_alloc (elt_list_pool);
143 el->next = next;
144 el->elt = elt;
145 return el;
148 /* Allocate a struct elt_loc_list and fill in its two elements with the
149 arguments. */
151 static inline struct elt_loc_list *
152 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 struct elt_loc_list *el;
155 el = pool_alloc (elt_loc_list_pool);
156 el->next = next;
157 el->loc = loc;
158 el->canon_loc = NULL;
159 el->setting_insn = cselib_current_insn;
160 el->in_libcall = cselib_current_insn_in_libcall;
161 return el;
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
167 static inline void
168 unchain_one_elt_list (struct elt_list **pl)
170 struct elt_list *l = *pl;
172 *pl = l->next;
173 pool_free (elt_list_pool, l);
176 /* Likewise for elt_loc_lists. */
178 static void
179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
181 struct elt_loc_list *l = *pl;
183 *pl = l->next;
184 pool_free (elt_loc_list_pool, l);
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
190 static void
191 unchain_one_value (cselib_val *v)
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
196 pool_free (cselib_val_pool, v);
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
203 static void
204 clear_table (void)
206 unsigned int i;
208 for (i = 0; i < VARRAY_ACTIVE_SIZE (used_regs); i++)
209 REG_VALUES (VARRAY_UINT (used_regs, i)) = 0;
211 max_value_regs = 0;
213 VARRAY_POP_ALL (used_regs);
215 htab_empty (hash_table);
217 n_useless_values = 0;
219 next_unknown_value = 0;
221 first_containing_mem = &dummy_val;
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
229 static int
230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
237 if (GET_CODE (x) == CONST_INT
238 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
239 abort ();
240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
255 return 0;
258 /* The hash function for our hash table. The value is always computed with
259 hash_rtx when adding an element; this function just extracts the hash
260 value from a cselib_val structure. */
262 static hashval_t
263 get_value_hash (const void *entry)
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
275 references_value_p (rtx x, int only_useless)
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
295 return 0;
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
302 static int
303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
309 while (*p)
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
317 if (had_locs && v->locs == 0)
319 n_useless_values++;
320 values_became_useless = 1;
322 return 1;
325 /* If X is a value with no locations, remove it from the hashtable. */
327 static int
328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
330 cselib_val *v = (cselib_val *)*x;
332 if (v->locs == 0)
334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
340 return 1;
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
346 static void
347 remove_useless_values (void)
349 cselib_val **p, *v;
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
357 while (values_became_useless);
359 /* Second pass: actually remove the values. */
360 p = &first_containing_mem;
361 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
362 if (v->locs)
364 *p = v;
365 p = &(*p)->next_containing_mem;
367 *p = &dummy_val;
369 htab_traverse (hash_table, discard_useless_values, 0);
371 if (n_useless_values != 0)
372 abort ();
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
380 enum machine_mode
381 cselib_reg_set_mode (rtx x)
383 if (GET_CODE (x) != REG)
384 return GET_MODE (x);
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (rtx x, rtx y)
399 enum rtx_code code;
400 const char *fmt;
401 int i;
403 if (GET_CODE (x) == REG || GET_CODE (x) == MEM)
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
407 if (e)
408 x = e->u.val_rtx;
411 if (GET_CODE (y) == REG || GET_CODE (y) == MEM)
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
415 if (e)
416 y = e->u.val_rtx;
419 if (x == y)
420 return 1;
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
425 if (GET_CODE (x) == VALUE)
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
430 for (l = e->locs; l; l = l->next)
432 rtx t = l->loc;
434 /* Avoid infinite recursion. */
435 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
441 return 0;
444 if (GET_CODE (y) == VALUE)
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
449 for (l = e->locs; l; l = l->next)
451 rtx t = l->loc;
453 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
459 return 0;
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
474 int j;
476 switch (fmt[i])
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
502 case 'e':
503 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
504 return 0;
505 break;
507 case 'S':
508 case 's':
509 if (strcmp (XSTR (x, i), XSTR (y, i)))
510 return 0;
511 break;
513 case 'u':
514 /* These are just backpointers, so they don't matter. */
515 break;
517 case '0':
518 case 't':
519 break;
521 /* It is believed that rtx's at this level will never
522 contain anything but integers and other rtx's,
523 except for within LABEL_REFs and SYMBOL_REFs. */
524 default:
525 abort ();
528 return 1;
531 /* We need to pass down the mode of constants through the hash table
532 functions. For that purpose, wrap them in a CONST of the appropriate
533 mode. */
534 static rtx
535 wrap_constant (enum machine_mode mode, rtx x)
537 if (GET_CODE (x) != CONST_INT
538 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
539 return x;
540 if (mode == VOIDmode)
541 abort ();
542 return gen_rtx_CONST (mode, x);
545 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
546 For registers and memory locations, we look up their cselib_val structure
547 and return its VALUE element.
548 Possible reasons for return 0 are: the object is volatile, or we couldn't
549 find a register or memory location in the table and CREATE is zero. If
550 CREATE is nonzero, table elts are created for regs and mem.
551 MODE is used in hashing for CONST_INTs only;
552 otherwise the mode of X is used. */
554 static unsigned int
555 hash_rtx (rtx x, enum machine_mode mode, int create)
557 cselib_val *e;
558 int i, j;
559 enum rtx_code code;
560 const char *fmt;
561 unsigned int hash = 0;
563 code = GET_CODE (x);
564 hash += (unsigned) code + (unsigned) GET_MODE (x);
566 switch (code)
568 case MEM:
569 case REG:
570 e = cselib_lookup (x, GET_MODE (x), create);
571 if (! e)
572 return 0;
574 return e->value;
576 case CONST_INT:
577 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
578 return hash ? hash : (unsigned int) CONST_INT;
580 case CONST_DOUBLE:
581 /* This is like the general case, except that it only counts
582 the integers representing the constant. */
583 hash += (unsigned) code + (unsigned) GET_MODE (x);
584 if (GET_MODE (x) != VOIDmode)
585 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
586 else
587 hash += ((unsigned) CONST_DOUBLE_LOW (x)
588 + (unsigned) CONST_DOUBLE_HIGH (x));
589 return hash ? hash : (unsigned int) CONST_DOUBLE;
591 case CONST_VECTOR:
593 int units;
594 rtx elt;
596 units = CONST_VECTOR_NUNITS (x);
598 for (i = 0; i < units; ++i)
600 elt = CONST_VECTOR_ELT (x, i);
601 hash += hash_rtx (elt, GET_MODE (elt), 0);
604 return hash;
607 /* Assume there is only one rtx object for any given label. */
608 case LABEL_REF:
609 hash
610 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
611 return hash ? hash : (unsigned int) LABEL_REF;
613 case SYMBOL_REF:
614 hash
615 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
616 return hash ? hash : (unsigned int) SYMBOL_REF;
618 case PRE_DEC:
619 case PRE_INC:
620 case POST_DEC:
621 case POST_INC:
622 case POST_MODIFY:
623 case PRE_MODIFY:
624 case PC:
625 case CC0:
626 case CALL:
627 case UNSPEC_VOLATILE:
628 return 0;
630 case ASM_OPERANDS:
631 if (MEM_VOLATILE_P (x))
632 return 0;
634 break;
636 default:
637 break;
640 i = GET_RTX_LENGTH (code) - 1;
641 fmt = GET_RTX_FORMAT (code);
642 for (; i >= 0; i--)
644 if (fmt[i] == 'e')
646 rtx tem = XEXP (x, i);
647 unsigned int tem_hash = hash_rtx (tem, 0, create);
649 if (tem_hash == 0)
650 return 0;
652 hash += tem_hash;
654 else if (fmt[i] == 'E')
655 for (j = 0; j < XVECLEN (x, i); j++)
657 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
659 if (tem_hash == 0)
660 return 0;
662 hash += tem_hash;
664 else if (fmt[i] == 's')
666 const unsigned char *p = (const unsigned char *) XSTR (x, i);
668 if (p)
669 while (*p)
670 hash += *p++;
672 else if (fmt[i] == 'i')
673 hash += XINT (x, i);
674 else if (fmt[i] == '0' || fmt[i] == 't')
675 /* unused */;
676 else
677 abort ();
680 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
683 /* Create a new value structure for VALUE and initialize it. The mode of the
684 value is MODE. */
686 static inline cselib_val *
687 new_cselib_val (unsigned int value, enum machine_mode mode)
689 cselib_val *e = pool_alloc (cselib_val_pool);
691 #ifdef ENABLE_CHECKING
692 if (value == 0)
693 abort ();
694 #endif
696 e->value = value;
697 /* We use custom method to allocate this RTL construct because it accounts
698 about 8% of overall memory usage. */
699 e->u.val_rtx = pool_alloc (value_pool);
700 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
701 PUT_CODE (e->u.val_rtx, VALUE);
702 PUT_MODE (e->u.val_rtx, mode);
703 CSELIB_VAL_PTR (e->u.val_rtx) = e;
704 e->addr_list = 0;
705 e->locs = 0;
706 e->next_containing_mem = 0;
707 return e;
710 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
711 contains the data at this address. X is a MEM that represents the
712 value. Update the two value structures to represent this situation. */
714 static void
715 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
717 struct elt_loc_list *l;
719 /* Avoid duplicates. */
720 for (l = mem_elt->locs; l; l = l->next)
721 if (GET_CODE (l->loc) == MEM
722 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
723 return;
725 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
726 mem_elt->locs
727 = new_elt_loc_list (mem_elt->locs,
728 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
729 if (mem_elt->next_containing_mem == NULL)
731 mem_elt->next_containing_mem = first_containing_mem;
732 first_containing_mem = mem_elt;
736 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
737 If CREATE, make a new one if we haven't seen it before. */
739 static cselib_val *
740 cselib_lookup_mem (rtx x, int create)
742 enum machine_mode mode = GET_MODE (x);
743 void **slot;
744 cselib_val *addr;
745 cselib_val *mem_elt;
746 struct elt_list *l;
748 if (MEM_VOLATILE_P (x) || mode == BLKmode
749 || (FLOAT_MODE_P (mode) && flag_float_store))
750 return 0;
752 /* Look up the value for the address. */
753 addr = cselib_lookup (XEXP (x, 0), mode, create);
754 if (! addr)
755 return 0;
757 /* Find a value that describes a value of our mode at that address. */
758 for (l = addr->addr_list; l; l = l->next)
759 if (GET_MODE (l->elt->u.val_rtx) == mode)
760 return l->elt;
762 if (! create)
763 return 0;
765 mem_elt = new_cselib_val (++next_unknown_value, mode);
766 add_mem_for_addr (addr, mem_elt, x);
767 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
768 mem_elt->value, INSERT);
769 *slot = mem_elt;
770 return mem_elt;
773 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
774 with VALUE expressions. This way, it becomes independent of changes
775 to registers and memory.
776 X isn't actually modified; if modifications are needed, new rtl is
777 allocated. However, the return value can share rtl with X. */
780 cselib_subst_to_values (rtx x)
782 enum rtx_code code = GET_CODE (x);
783 const char *fmt = GET_RTX_FORMAT (code);
784 cselib_val *e;
785 struct elt_list *l;
786 rtx copy = x;
787 int i;
789 switch (code)
791 case REG:
792 l = REG_VALUES (REGNO (x));
793 if (l && l->elt == NULL)
794 l = l->next;
795 for (; l; l = l->next)
796 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
797 return l->elt->u.val_rtx;
799 abort ();
801 case MEM:
802 e = cselib_lookup_mem (x, 0);
803 if (! e)
805 /* This happens for autoincrements. Assign a value that doesn't
806 match any other. */
807 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
809 return e->u.val_rtx;
811 case CONST_DOUBLE:
812 case CONST_VECTOR:
813 case CONST_INT:
814 return x;
816 case POST_INC:
817 case PRE_INC:
818 case POST_DEC:
819 case PRE_DEC:
820 case POST_MODIFY:
821 case PRE_MODIFY:
822 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
823 return e->u.val_rtx;
825 default:
826 break;
829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
831 if (fmt[i] == 'e')
833 rtx t = cselib_subst_to_values (XEXP (x, i));
835 if (t != XEXP (x, i) && x == copy)
836 copy = shallow_copy_rtx (x);
838 XEXP (copy, i) = t;
840 else if (fmt[i] == 'E')
842 int j, k;
844 for (j = 0; j < XVECLEN (x, i); j++)
846 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
848 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
850 if (x == copy)
851 copy = shallow_copy_rtx (x);
853 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
854 for (k = 0; k < j; k++)
855 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
858 XVECEXP (copy, i, j) = t;
863 return copy;
866 /* Look up the rtl expression X in our tables and return the value it has.
867 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
868 we create a new one if possible, using mode MODE if X doesn't have a mode
869 (i.e. because it's a constant). */
871 cselib_val *
872 cselib_lookup (rtx x, enum machine_mode mode, int create)
874 void **slot;
875 cselib_val *e;
876 unsigned int hashval;
878 if (GET_MODE (x) != VOIDmode)
879 mode = GET_MODE (x);
881 if (GET_CODE (x) == VALUE)
882 return CSELIB_VAL_PTR (x);
884 if (GET_CODE (x) == REG)
886 struct elt_list *l;
887 unsigned int i = REGNO (x);
889 l = REG_VALUES (i);
890 if (l && l->elt == NULL)
891 l = l->next;
892 for (; l; l = l->next)
893 if (mode == GET_MODE (l->elt->u.val_rtx))
894 return l->elt;
896 if (! create)
897 return 0;
899 if (i < FIRST_PSEUDO_REGISTER)
901 unsigned int n = HARD_REGNO_NREGS (i, mode);
903 if (n > max_value_regs)
904 max_value_regs = n;
907 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
908 e->locs = new_elt_loc_list (e->locs, x);
909 if (REG_VALUES (i) == 0)
911 /* Maintain the invariant that the first entry of
912 REG_VALUES, if present, must be the value used to set the
913 register, or NULL. */
914 VARRAY_PUSH_UINT (used_regs, i);
915 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
917 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
918 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
919 *slot = e;
920 return e;
923 if (GET_CODE (x) == MEM)
924 return cselib_lookup_mem (x, create);
926 hashval = hash_rtx (x, mode, create);
927 /* Can't even create if hashing is not possible. */
928 if (! hashval)
929 return 0;
931 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
932 hashval, create ? INSERT : NO_INSERT);
933 if (slot == 0)
934 return 0;
936 e = (cselib_val *) *slot;
937 if (e)
938 return e;
940 e = new_cselib_val (hashval, mode);
942 /* We have to fill the slot before calling cselib_subst_to_values:
943 the hash table is inconsistent until we do so, and
944 cselib_subst_to_values will need to do lookups. */
945 *slot = (void *) e;
946 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
947 return e;
950 /* Invalidate any entries in reg_values that overlap REGNO. This is called
951 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
952 is used to determine how many hard registers are being changed. If MODE
953 is VOIDmode, then only REGNO is being changed; this is used when
954 invalidating call clobbered registers across a call. */
956 static void
957 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
959 unsigned int endregno;
960 unsigned int i;
962 /* If we see pseudos after reload, something is _wrong_. */
963 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
964 && reg_renumber[regno] >= 0)
965 abort ();
967 /* Determine the range of registers that must be invalidated. For
968 pseudos, only REGNO is affected. For hard regs, we must take MODE
969 into account, and we must also invalidate lower register numbers
970 if they contain values that overlap REGNO. */
971 if (regno < FIRST_PSEUDO_REGISTER)
973 if (mode == VOIDmode)
974 abort ();
976 if (regno < max_value_regs)
977 i = 0;
978 else
979 i = regno - max_value_regs;
981 endregno = regno + HARD_REGNO_NREGS (regno, mode);
983 else
985 i = regno;
986 endregno = regno + 1;
989 for (; i < endregno; i++)
991 struct elt_list **l = &REG_VALUES (i);
993 /* Go through all known values for this reg; if it overlaps the range
994 we're invalidating, remove the value. */
995 while (*l)
997 cselib_val *v = (*l)->elt;
998 struct elt_loc_list **p;
999 unsigned int this_last = i;
1001 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1002 this_last += HARD_REGNO_NREGS (i, GET_MODE (v->u.val_rtx)) - 1;
1004 if (this_last < regno || v == NULL)
1006 l = &(*l)->next;
1007 continue;
1010 /* We have an overlap. */
1011 if (*l == REG_VALUES (i))
1013 /* Maintain the invariant that the first entry of
1014 REG_VALUES, if present, must be the value used to set
1015 the register, or NULL. This is also nice because
1016 then we won't push the same regno onto user_regs
1017 multiple times. */
1018 (*l)->elt = NULL;
1019 l = &(*l)->next;
1021 else
1022 unchain_one_elt_list (l);
1024 /* Now, we clear the mapping from value to reg. It must exist, so
1025 this code will crash intentionally if it doesn't. */
1026 for (p = &v->locs; ; p = &(*p)->next)
1028 rtx x = (*p)->loc;
1030 if (GET_CODE (x) == REG && REGNO (x) == i)
1032 unchain_one_elt_loc_list (p);
1033 break;
1036 if (v->locs == 0)
1037 n_useless_values++;
1042 /* Return 1 if X has a value that can vary even between two
1043 executions of the program. 0 means X can be compared reliably
1044 against certain constants or near-constants. */
1046 static int
1047 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1049 /* We actually don't need to verify very hard. This is because
1050 if X has actually changed, we invalidate the memory anyway,
1051 so assume that all common memory addresses are
1052 invariant. */
1053 return 0;
1056 /* Invalidate any locations in the table which are changed because of a
1057 store to MEM_RTX. If this is called because of a non-const call
1058 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1060 static void
1061 cselib_invalidate_mem (rtx mem_rtx)
1063 cselib_val **vp, *v, *next;
1064 int num_mems = 0;
1065 rtx mem_addr;
1067 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1068 mem_rtx = canon_rtx (mem_rtx);
1070 vp = &first_containing_mem;
1071 for (v = *vp; v != &dummy_val; v = next)
1073 bool has_mem = false;
1074 struct elt_loc_list **p = &v->locs;
1075 int had_locs = v->locs != 0;
1077 while (*p)
1079 rtx x = (*p)->loc;
1080 rtx canon_x = (*p)->canon_loc;
1081 cselib_val *addr;
1082 struct elt_list **mem_chain;
1084 /* MEMs may occur in locations only at the top level; below
1085 that every MEM or REG is substituted by its VALUE. */
1086 if (GET_CODE (x) != MEM)
1088 p = &(*p)->next;
1089 continue;
1091 if (!canon_x)
1092 canon_x = (*p)->canon_loc = canon_rtx (x);
1093 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1094 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1095 x, cselib_rtx_varies_p))
1097 has_mem = true;
1098 num_mems++;
1099 p = &(*p)->next;
1100 continue;
1103 /* This one overlaps. */
1104 /* We must have a mapping from this MEM's address to the
1105 value (E). Remove that, too. */
1106 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1107 mem_chain = &addr->addr_list;
1108 for (;;)
1110 if ((*mem_chain)->elt == v)
1112 unchain_one_elt_list (mem_chain);
1113 break;
1116 mem_chain = &(*mem_chain)->next;
1119 unchain_one_elt_loc_list (p);
1122 if (had_locs && v->locs == 0)
1123 n_useless_values++;
1125 next = v->next_containing_mem;
1126 if (has_mem)
1128 *vp = v;
1129 vp = &(*vp)->next_containing_mem;
1131 else
1132 v->next_containing_mem = NULL;
1134 *vp = &dummy_val;
1137 /* Invalidate DEST, which is being assigned to or clobbered. */
1139 void
1140 cselib_invalidate_rtx (rtx dest)
1142 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1143 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1144 dest = XEXP (dest, 0);
1146 if (GET_CODE (dest) == REG)
1147 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1148 else if (GET_CODE (dest) == MEM)
1149 cselib_invalidate_mem (dest);
1151 /* Some machines don't define AUTO_INC_DEC, but they still use push
1152 instructions. We need to catch that case here in order to
1153 invalidate the stack pointer correctly. Note that invalidating
1154 the stack pointer is different from invalidating DEST. */
1155 if (push_operand (dest, GET_MODE (dest)))
1156 cselib_invalidate_rtx (stack_pointer_rtx);
1159 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1161 static void
1162 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1163 void *data ATTRIBUTE_UNUSED)
1165 cselib_invalidate_rtx (dest);
1168 /* Record the result of a SET instruction. DEST is being set; the source
1169 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1170 describes its address. */
1172 static void
1173 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1175 int dreg = GET_CODE (dest) == REG ? (int) REGNO (dest) : -1;
1177 if (src_elt == 0 || side_effects_p (dest))
1178 return;
1180 if (dreg >= 0)
1182 if (dreg < FIRST_PSEUDO_REGISTER)
1184 unsigned int n = HARD_REGNO_NREGS (dreg, GET_MODE (dest));
1186 if (n > max_value_regs)
1187 max_value_regs = n;
1190 if (REG_VALUES (dreg) == 0)
1192 VARRAY_PUSH_UINT (used_regs, dreg);
1193 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1195 else
1197 if (REG_VALUES (dreg)->elt == 0)
1198 REG_VALUES (dreg)->elt = src_elt;
1199 else
1200 /* The register should have been invalidated. */
1201 abort ();
1204 if (src_elt->locs == 0)
1205 n_useless_values--;
1206 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1208 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0)
1210 if (src_elt->locs == 0)
1211 n_useless_values--;
1212 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1216 /* Describe a single set that is part of an insn. */
1217 struct set
1219 rtx src;
1220 rtx dest;
1221 cselib_val *src_elt;
1222 cselib_val *dest_addr_elt;
1225 /* There is no good way to determine how many elements there can be
1226 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1227 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1229 /* Record the effects of any sets in INSN. */
1230 static void
1231 cselib_record_sets (rtx insn)
1233 int n_sets = 0;
1234 int i;
1235 struct set sets[MAX_SETS];
1236 rtx body = PATTERN (insn);
1237 rtx cond = 0;
1239 body = PATTERN (insn);
1240 if (GET_CODE (body) == COND_EXEC)
1242 cond = COND_EXEC_TEST (body);
1243 body = COND_EXEC_CODE (body);
1246 /* Find all sets. */
1247 if (GET_CODE (body) == SET)
1249 sets[0].src = SET_SRC (body);
1250 sets[0].dest = SET_DEST (body);
1251 n_sets = 1;
1253 else if (GET_CODE (body) == PARALLEL)
1255 /* Look through the PARALLEL and record the values being
1256 set, if possible. Also handle any CLOBBERs. */
1257 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1259 rtx x = XVECEXP (body, 0, i);
1261 if (GET_CODE (x) == SET)
1263 sets[n_sets].src = SET_SRC (x);
1264 sets[n_sets].dest = SET_DEST (x);
1265 n_sets++;
1270 /* Look up the values that are read. Do this before invalidating the
1271 locations that are written. */
1272 for (i = 0; i < n_sets; i++)
1274 rtx dest = sets[i].dest;
1276 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1277 the low part after invalidating any knowledge about larger modes. */
1278 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1279 sets[i].dest = dest = XEXP (dest, 0);
1281 /* We don't know how to record anything but REG or MEM. */
1282 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1284 rtx src = sets[i].src;
1285 if (cond)
1286 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1287 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1288 if (GET_CODE (dest) == MEM)
1289 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1290 else
1291 sets[i].dest_addr_elt = 0;
1295 /* Invalidate all locations written by this insn. Note that the elts we
1296 looked up in the previous loop aren't affected, just some of their
1297 locations may go away. */
1298 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1300 /* If this is an asm, look for duplicate sets. This can happen when the
1301 user uses the same value as an output multiple times. This is valid
1302 if the outputs are not actually used thereafter. Treat this case as
1303 if the value isn't actually set. We do this by smashing the destination
1304 to pc_rtx, so that we won't record the value later. */
1305 if (n_sets >= 2 && asm_noperands (body) >= 0)
1307 for (i = 0; i < n_sets; i++)
1309 rtx dest = sets[i].dest;
1310 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1312 int j;
1313 for (j = i + 1; j < n_sets; j++)
1314 if (rtx_equal_p (dest, sets[j].dest))
1316 sets[i].dest = pc_rtx;
1317 sets[j].dest = pc_rtx;
1323 /* Now enter the equivalences in our tables. */
1324 for (i = 0; i < n_sets; i++)
1326 rtx dest = sets[i].dest;
1327 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1328 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1332 /* Record the effects of INSN. */
1334 void
1335 cselib_process_insn (rtx insn)
1337 int i;
1338 rtx x;
1340 if (find_reg_note (insn, REG_LIBCALL, NULL))
1341 cselib_current_insn_in_libcall = true;
1342 cselib_current_insn = insn;
1344 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1345 if (GET_CODE (insn) == CODE_LABEL
1346 || (GET_CODE (insn) == CALL_INSN
1347 && find_reg_note (insn, REG_SETJMP, NULL))
1348 || (GET_CODE (insn) == INSN
1349 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1350 && MEM_VOLATILE_P (PATTERN (insn))))
1352 if (find_reg_note (insn, REG_RETVAL, NULL))
1353 cselib_current_insn_in_libcall = false;
1354 clear_table ();
1355 return;
1358 if (! INSN_P (insn))
1360 if (find_reg_note (insn, REG_RETVAL, NULL))
1361 cselib_current_insn_in_libcall = false;
1362 cselib_current_insn = 0;
1363 return;
1366 /* If this is a call instruction, forget anything stored in a
1367 call clobbered register, or, if this is not a const call, in
1368 memory. */
1369 if (GET_CODE (insn) == CALL_INSN)
1371 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1372 if (call_used_regs[i])
1373 cselib_invalidate_regno (i, reg_raw_mode[i]);
1375 if (! CONST_OR_PURE_CALL_P (insn))
1376 cselib_invalidate_mem (callmem);
1379 cselib_record_sets (insn);
1381 #ifdef AUTO_INC_DEC
1382 /* Clobber any registers which appear in REG_INC notes. We
1383 could keep track of the changes to their values, but it is
1384 unlikely to help. */
1385 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1386 if (REG_NOTE_KIND (x) == REG_INC)
1387 cselib_invalidate_rtx (XEXP (x, 0));
1388 #endif
1390 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1391 after we have processed the insn. */
1392 if (GET_CODE (insn) == CALL_INSN)
1393 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1394 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1395 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1397 if (find_reg_note (insn, REG_RETVAL, NULL))
1398 cselib_current_insn_in_libcall = false;
1399 cselib_current_insn = 0;
1401 if (n_useless_values > MAX_USELESS_VALUES)
1402 remove_useless_values ();
1405 /* Make sure our varrays are big enough. Not called from any cselib routines;
1406 it must be called by the user if it allocated new registers. */
1408 void
1409 cselib_update_varray_sizes (void)
1411 unsigned int nregs = max_reg_num ();
1413 if (nregs == cselib_nregs)
1414 return;
1416 cselib_nregs = nregs;
1417 VARRAY_GROW (reg_values, nregs);
1418 VARRAY_GROW (used_regs, nregs);
1421 /* Initialize cselib for one pass. The caller must also call
1422 init_alias_analysis. */
1424 void
1425 cselib_init (void)
1427 elt_list_pool = create_alloc_pool ("elt_list",
1428 sizeof (struct elt_list), 10);
1429 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1430 sizeof (struct elt_loc_list), 10);
1431 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1432 sizeof (cselib_val), 10);
1433 value_pool = create_alloc_pool ("value",
1434 RTX_SIZE (VALUE), 10);
1435 /* This is only created once. */
1436 if (! callmem)
1437 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1439 cselib_nregs = max_reg_num ();
1440 if (reg_values_old != NULL && VARRAY_SIZE (reg_values_old) >= cselib_nregs)
1442 reg_values = reg_values_old;
1443 used_regs = used_regs_old;
1445 else
1447 VARRAY_ELT_LIST_INIT (reg_values, cselib_nregs, "reg_values");
1448 VARRAY_UINT_INIT (used_regs, cselib_nregs, "used_regs");
1450 hash_table = htab_create_ggc (31, get_value_hash, entry_and_rtx_equal_p,
1451 NULL);
1452 cselib_current_insn_in_libcall = false;
1455 /* Called when the current user is done with cselib. */
1457 void
1458 cselib_finish (void)
1460 free_alloc_pool (elt_list_pool);
1461 free_alloc_pool (elt_loc_list_pool);
1462 free_alloc_pool (cselib_val_pool);
1463 free_alloc_pool (value_pool);
1464 clear_table ();
1465 reg_values_old = reg_values;
1466 reg_values = 0;
1467 used_regs_old = used_regs;
1468 used_regs = 0;
1469 hash_table = 0;
1470 n_useless_values = 0;
1471 next_unknown_value = 0;
1474 #include "gt-cselib.h"