drm: Sync drm_buffer.c with Linux 3.10
[dragonfly.git] / sys / net / radix.c
blob0fa5e1769cf8d8dc8844d1c4c73ce2dd1f75c596
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)radix.c 8.4 (Berkeley) 11/2/94
30 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
34 * Routines to build and maintain radix trees for routing lookups.
36 #include <sys/param.h>
37 #ifdef _KERNEL
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/domain.h>
41 #include <sys/globaldata.h>
42 #include <sys/thread.h>
43 #else
44 #include <stdlib.h>
45 #endif
46 #include <sys/syslog.h>
47 #include <net/radix.h>
50 * The arguments to the radix functions are really counted byte arrays with
51 * the length in the first byte. struct sockaddr's fit this type structurally.
53 #define clen(c) (*(u_char *)(c))
55 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
56 walktree_f_t *f, void *w);
57 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
59 static struct radix_node
60 *rn_insert(char *, struct radix_node_head *, boolean_t *,
61 struct radix_node [2]),
62 *rn_newpair(char *, int, struct radix_node[2]),
63 *rn_search(const char *, struct radix_node *),
64 *rn_search_m(const char *, struct radix_node *, const char *);
66 static struct radix_mask *rn_mkfreelist[MAXCPU];
67 static struct radix_node_head *mask_rnheads[MAXCPU];
69 static char rn_zeros[RN_MAXKEYLEN];
70 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
72 static boolean_t rn_lexobetter(char *m, char *n);
73 static struct radix_mask *
74 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
75 static boolean_t
76 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
78 static __inline struct radix_mask *
79 MKGet(struct radix_mask **l)
81 struct radix_mask *m;
83 if (*l != NULL) {
84 m = *l;
85 *l = m->rm_next;
86 } else {
87 R_Malloc(m, struct radix_mask *, sizeof *m);
89 return m;
92 static __inline void
93 MKFree(struct radix_mask **l, struct radix_mask *m)
95 m->rm_next = *l;
96 *l = m;
100 * The data structure for the keys is a radix tree with one way
101 * branching removed. The index rn_bit at an internal node n represents a bit
102 * position to be tested. The tree is arranged so that all descendants
103 * of a node n have keys whose bits all agree up to position rn_bit - 1.
104 * (We say the index of n is rn_bit.)
106 * There is at least one descendant which has a one bit at position rn_bit,
107 * and at least one with a zero there.
109 * A route is determined by a pair of key and mask. We require that the
110 * bit-wise logical and of the key and mask to be the key.
111 * We define the index of a route to associated with the mask to be
112 * the first bit number in the mask where 0 occurs (with bit number 0
113 * representing the highest order bit).
115 * We say a mask is normal if every bit is 0, past the index of the mask.
116 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
117 * and m is a normal mask, then the route applies to every descendant of n.
118 * If the index(m) < rn_bit, this implies the trailing last few bits of k
119 * before bit b are all 0, (and hence consequently true of every descendant
120 * of n), so the route applies to all descendants of the node as well.
122 * Similar logic shows that a non-normal mask m such that
123 * index(m) <= index(n) could potentially apply to many children of n.
124 * Thus, for each non-host route, we attach its mask to a list at an internal
125 * node as high in the tree as we can go.
127 * The present version of the code makes use of normal routes in short-
128 * circuiting an explict mask and compare operation when testing whether
129 * a key satisfies a normal route, and also in remembering the unique leaf
130 * that governs a subtree.
133 static struct radix_node *
134 rn_search(const char *v, struct radix_node *head)
136 struct radix_node *x;
138 x = head;
139 while (x->rn_bit >= 0) {
140 if (x->rn_bmask & v[x->rn_offset])
141 x = x->rn_right;
142 else
143 x = x->rn_left;
145 return (x);
148 static struct radix_node *
149 rn_search_m(const char *v, struct radix_node *head, const char *m)
151 struct radix_node *x;
153 for (x = head; x->rn_bit >= 0;) {
154 if ((x->rn_bmask & m[x->rn_offset]) &&
155 (x->rn_bmask & v[x->rn_offset]))
156 x = x->rn_right;
157 else
158 x = x->rn_left;
160 return x;
163 boolean_t
164 rn_refines(char *m, char *n)
166 char *lim, *lim2;
167 int longer = clen(n++) - clen(m++);
168 boolean_t masks_are_equal = TRUE;
170 lim2 = lim = n + clen(n);
171 if (longer > 0)
172 lim -= longer;
173 while (n < lim) {
174 if (*n & ~(*m))
175 return FALSE;
176 if (*n++ != *m++)
177 masks_are_equal = FALSE;
179 while (n < lim2)
180 if (*n++)
181 return FALSE;
182 if (masks_are_equal && (longer < 0))
183 for (lim2 = m - longer; m < lim2; )
184 if (*m++)
185 return TRUE;
186 return (!masks_are_equal);
189 struct radix_node *
190 rn_lookup(char *key, char *mask, struct radix_node_head *head)
192 struct radix_node *x;
193 char *netmask = NULL;
195 if (mask != NULL) {
196 x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
197 head->rnh_maskhead);
198 if (x == NULL)
199 return (NULL);
200 netmask = x->rn_key;
202 x = rn_match(key, head);
203 if (x != NULL && netmask != NULL) {
204 while (x != NULL && x->rn_mask != netmask)
205 x = x->rn_dupedkey;
207 return x;
210 static boolean_t
211 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
213 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
214 char *cplim;
215 int length = min(clen(cp), clen(cp2));
217 if (cp3 == NULL)
218 cp3 = rn_ones;
219 else
220 length = min(length, clen(cp3));
221 cplim = cp + length;
222 cp3 += skip;
223 cp2 += skip;
224 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
225 if ((*cp ^ *cp2) & *cp3)
226 return FALSE;
227 return TRUE;
230 struct radix_node *
231 rn_match(char *key, struct radix_node_head *head)
233 struct radix_node *t, *x;
234 char *cp = key, *cp2;
235 char *cplim;
236 struct radix_node *saved_t, *top = head->rnh_treetop;
237 int off = top->rn_offset, klen, matched_off;
238 int test, b, rn_bit;
240 t = rn_search(key, top);
242 * See if we match exactly as a host destination
243 * or at least learn how many bits match, for normal mask finesse.
245 * It doesn't hurt us to limit how many bytes to check
246 * to the length of the mask, since if it matches we had a genuine
247 * match and the leaf we have is the most specific one anyway;
248 * if it didn't match with a shorter length it would fail
249 * with a long one. This wins big for class B&C netmasks which
250 * are probably the most common case...
252 if (t->rn_mask != NULL)
253 klen = clen(t->rn_mask);
254 else
255 klen = clen(key);
256 cp += off; cp2 = t->rn_key + off; cplim = key + klen;
257 for (; cp < cplim; cp++, cp2++)
258 if (*cp != *cp2)
259 goto on1;
261 * This extra grot is in case we are explicitly asked
262 * to look up the default. Ugh!
264 * Never return the root node itself, it seems to cause a
265 * lot of confusion.
267 if (t->rn_flags & RNF_ROOT)
268 t = t->rn_dupedkey;
269 return t;
270 on1:
271 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
272 for (b = 7; (test >>= 1) > 0;)
273 b--;
274 matched_off = cp - key;
275 b += matched_off << 3;
276 rn_bit = -1 - b;
278 * If there is a host route in a duped-key chain, it will be first.
280 if ((saved_t = t)->rn_mask == NULL)
281 t = t->rn_dupedkey;
282 for (; t; t = t->rn_dupedkey) {
284 * Even if we don't match exactly as a host,
285 * we may match if the leaf we wound up at is
286 * a route to a net.
288 if (t->rn_flags & RNF_NORMAL) {
289 if (rn_bit <= t->rn_bit)
290 return t;
291 } else if (rn_satisfies_leaf(key, t, matched_off))
292 return t;
294 t = saved_t;
295 /* start searching up the tree */
296 do {
297 struct radix_mask *m;
299 t = t->rn_parent;
301 * If non-contiguous masks ever become important
302 * we can restore the masking and open coding of
303 * the search and satisfaction test and put the
304 * calculation of "off" back before the "do".
306 m = t->rn_mklist;
307 while (m != NULL) {
308 if (m->rm_flags & RNF_NORMAL) {
309 if (rn_bit <= m->rm_bit)
310 return (m->rm_leaf);
311 } else {
312 off = min(t->rn_offset, matched_off);
313 x = rn_search_m(key, t, m->rm_mask);
314 while (x != NULL && x->rn_mask != m->rm_mask)
315 x = x->rn_dupedkey;
316 if (x && rn_satisfies_leaf(key, x, off))
317 return x;
319 m = m->rm_next;
321 } while (t != top);
322 return NULL;
325 #ifdef RN_DEBUG
326 int rn_nodenum;
327 struct radix_node *rn_clist;
328 int rn_saveinfo;
329 boolean_t rn_debug = TRUE;
330 #endif
332 static struct radix_node *
333 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
335 struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
337 interior->rn_bit = indexbit;
338 interior->rn_bmask = 0x80 >> (indexbit & 0x7);
339 interior->rn_offset = indexbit >> 3;
340 interior->rn_left = leaf;
341 interior->rn_mklist = NULL;
343 leaf->rn_bit = -1;
344 leaf->rn_key = key;
345 leaf->rn_parent = interior;
346 leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
347 leaf->rn_mklist = NULL;
349 #ifdef RN_DEBUG
350 leaf->rn_info = rn_nodenum++;
351 interior->rn_info = rn_nodenum++;
352 leaf->rn_twin = interior;
353 leaf->rn_ybro = rn_clist;
354 rn_clist = leaf;
355 #endif
356 return interior;
359 static struct radix_node *
360 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
361 struct radix_node nodes[2])
363 struct radix_node *top = head->rnh_treetop;
364 int head_off = top->rn_offset, klen = clen(key);
365 struct radix_node *t = rn_search(key, top);
366 char *cp = key + head_off;
367 int b;
368 struct radix_node *tt;
371 * Find first bit at which the key and t->rn_key differ
374 char *cp2 = t->rn_key + head_off;
375 int cmp_res;
376 char *cplim = key + klen;
378 while (cp < cplim)
379 if (*cp2++ != *cp++)
380 goto on1;
381 *dupentry = TRUE;
382 return t;
383 on1:
384 *dupentry = FALSE;
385 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
386 for (b = (cp - key) << 3; cmp_res; b--)
387 cmp_res >>= 1;
390 struct radix_node *p, *x = top;
392 cp = key;
393 do {
394 p = x;
395 if (cp[x->rn_offset] & x->rn_bmask)
396 x = x->rn_right;
397 else
398 x = x->rn_left;
399 } while (b > (unsigned) x->rn_bit);
400 /* x->rn_bit < b && x->rn_bit >= 0 */
401 #ifdef RN_DEBUG
402 if (rn_debug)
403 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
404 #endif
405 t = rn_newpair(key, b, nodes);
406 tt = t->rn_left;
407 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
408 p->rn_left = t;
409 else
410 p->rn_right = t;
411 x->rn_parent = t;
412 t->rn_parent = p; /* frees x, p as temp vars below */
413 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
414 t->rn_right = x;
415 } else {
416 t->rn_right = tt;
417 t->rn_left = x;
419 #ifdef RN_DEBUG
420 if (rn_debug)
421 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
422 #endif
424 return (tt);
427 struct radix_node *
428 rn_addmask(char *netmask, boolean_t search, int skip,
429 struct radix_node_head *mask_rnh)
431 struct radix_node *x, *saved_x;
432 char *cp, *cplim;
433 int b = 0, mlen, m0, j;
434 boolean_t maskduplicated, isnormal;
435 char *addmask_key;
437 if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
438 mlen = RN_MAXKEYLEN;
439 if (skip == 0)
440 skip = 1;
441 if (mlen <= skip)
442 return (mask_rnh->rnh_nodes);
443 R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
444 if (addmask_key == NULL)
445 return NULL;
446 if (skip > 1)
447 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
448 if ((m0 = mlen) > skip)
449 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
451 * Trim trailing zeroes.
453 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
454 cp--;
455 mlen = cp - addmask_key;
456 if (mlen <= skip) {
457 if (m0 >= mask_rnh->rnh_last_zeroed)
458 mask_rnh->rnh_last_zeroed = mlen;
459 Free(addmask_key);
460 return (mask_rnh->rnh_nodes);
462 if (m0 < mask_rnh->rnh_last_zeroed)
463 bzero(addmask_key + m0, mask_rnh->rnh_last_zeroed - m0);
464 *addmask_key = mask_rnh->rnh_last_zeroed = mlen;
465 x = rn_search(addmask_key, mask_rnh->rnh_treetop);
466 if (x->rn_key == NULL) {
467 kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
468 print_backtrace(-1);
469 x = NULL;
470 } else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
471 x = NULL;
473 if (x != NULL || search)
474 goto out;
475 R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
476 if ((saved_x = x) == NULL)
477 goto out;
478 bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
479 netmask = cp = (char *)(x + 2);
480 bcopy(addmask_key, cp, mlen);
481 x = rn_insert(cp, mask_rnh, &maskduplicated, x);
482 if (maskduplicated) {
483 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
484 Free(saved_x);
485 goto out;
488 * Calculate index of mask, and check for normalcy.
490 isnormal = TRUE;
491 cplim = netmask + mlen;
492 for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
493 cp++;
494 if (cp != cplim) {
495 static const char normal_chars[] = {
496 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
499 for (j = 0x80; (j & *cp) != 0; j >>= 1)
500 b++;
501 if (*cp != normal_chars[b] || cp != (cplim - 1))
502 isnormal = FALSE;
504 b += (cp - netmask) << 3;
505 x->rn_bit = -1 - b;
506 if (isnormal)
507 x->rn_flags |= RNF_NORMAL;
508 out:
509 Free(addmask_key);
510 return (x);
513 /* XXX: arbitrary ordering for non-contiguous masks */
514 static boolean_t
515 rn_lexobetter(char *mp, char *np)
517 char *lim;
519 if ((unsigned) *mp > (unsigned) *np)
520 return TRUE;/* not really, but need to check longer one first */
521 if (*mp == *np)
522 for (lim = mp + clen(mp); mp < lim;)
523 if (*mp++ > *np++)
524 return TRUE;
525 return FALSE;
528 static struct radix_mask *
529 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
531 struct radix_mask *m;
533 m = MKGet(&rn_mkfreelist[mycpuid]);
534 if (m == NULL) {
535 log(LOG_ERR, "Mask for route not entered\n");
536 return (NULL);
538 bzero(m, sizeof *m);
539 m->rm_bit = tt->rn_bit;
540 m->rm_flags = tt->rn_flags;
541 if (tt->rn_flags & RNF_NORMAL)
542 m->rm_leaf = tt;
543 else
544 m->rm_mask = tt->rn_mask;
545 m->rm_next = nextmask;
546 tt->rn_mklist = m;
547 return m;
550 struct radix_node *
551 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
552 struct radix_node treenodes[2])
554 struct radix_node *t, *x = NULL, *tt;
555 struct radix_node *saved_tt, *top = head->rnh_treetop;
556 short b = 0, b_leaf = 0;
557 boolean_t keyduplicated;
558 char *mmask;
559 struct radix_mask *m, **mp;
562 * In dealing with non-contiguous masks, there may be
563 * many different routes which have the same mask.
564 * We will find it useful to have a unique pointer to
565 * the mask to speed avoiding duplicate references at
566 * nodes and possibly save time in calculating indices.
568 if (netmask != NULL) {
569 if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
570 head->rnh_maskhead)) == NULL)
571 return (NULL);
572 b_leaf = x->rn_bit;
573 b = -1 - x->rn_bit;
574 netmask = x->rn_key;
577 * Deal with duplicated keys: attach node to previous instance
579 saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
580 if (keyduplicated) {
581 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
582 if (tt->rn_mask == netmask)
583 return (NULL);
584 if (netmask == NULL ||
585 (tt->rn_mask &&
586 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
587 || rn_refines(netmask, tt->rn_mask)
588 || rn_lexobetter(netmask, tt->rn_mask))))
589 break;
592 * If the mask is not duplicated, we wouldn't
593 * find it among possible duplicate key entries
594 * anyway, so the above test doesn't hurt.
596 * We sort the masks for a duplicated key the same way as
597 * in a masklist -- most specific to least specific.
598 * This may require the unfortunate nuisance of relocating
599 * the head of the list.
601 if (tt == saved_tt) {
602 struct radix_node *xx = x;
603 /* link in at head of list */
604 (tt = treenodes)->rn_dupedkey = t;
605 tt->rn_flags = t->rn_flags;
606 tt->rn_parent = x = t->rn_parent;
607 t->rn_parent = tt; /* parent */
608 if (x->rn_left == t)
609 x->rn_left = tt;
610 else
611 x->rn_right = tt;
612 saved_tt = tt; x = xx;
613 } else {
614 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
615 t->rn_dupedkey = tt;
616 tt->rn_parent = t; /* parent */
617 if (tt->rn_dupedkey != NULL) /* parent */
618 tt->rn_dupedkey->rn_parent = tt; /* parent */
620 #ifdef RN_DEBUG
621 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
622 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
623 #endif
624 tt->rn_key = key;
625 tt->rn_bit = -1;
626 tt->rn_flags = RNF_ACTIVE;
629 * Put mask in tree.
631 if (netmask != NULL) {
632 tt->rn_mask = netmask;
633 tt->rn_bit = x->rn_bit;
634 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
636 t = saved_tt->rn_parent;
637 if (keyduplicated)
638 goto on2;
639 b_leaf = -1 - t->rn_bit;
640 if (t->rn_right == saved_tt)
641 x = t->rn_left;
642 else
643 x = t->rn_right;
644 /* Promote general routes from below */
645 if (x->rn_bit < 0) {
646 mp = &t->rn_mklist;
647 while (x != NULL) {
648 if (x->rn_mask != NULL &&
649 x->rn_bit >= b_leaf &&
650 x->rn_mklist == NULL) {
651 *mp = m = rn_new_radix_mask(x, NULL);
652 if (m != NULL)
653 mp = &m->rm_next;
655 x = x->rn_dupedkey;
657 } else if (x->rn_mklist != NULL) {
659 * Skip over masks whose index is > that of new node
661 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
662 if (m->rm_bit >= b_leaf)
663 break;
664 t->rn_mklist = m;
665 *mp = NULL;
667 on2:
668 /* Add new route to highest possible ancestor's list */
669 if ((netmask == NULL) || (b > t->rn_bit ))
670 return tt; /* can't lift at all */
671 b_leaf = tt->rn_bit;
672 do {
673 x = t;
674 t = t->rn_parent;
675 } while (b <= t->rn_bit && x != top);
677 * Search through routes associated with node to
678 * insert new route according to index.
679 * Need same criteria as when sorting dupedkeys to avoid
680 * double loop on deletion.
682 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
683 if (m->rm_bit < b_leaf)
684 continue;
685 if (m->rm_bit > b_leaf)
686 break;
687 if (m->rm_flags & RNF_NORMAL) {
688 mmask = m->rm_leaf->rn_mask;
689 if (tt->rn_flags & RNF_NORMAL) {
690 log(LOG_ERR,
691 "Non-unique normal route, mask not entered\n");
692 return tt;
694 } else
695 mmask = m->rm_mask;
696 if (mmask == netmask) {
697 m->rm_refs++;
698 tt->rn_mklist = m;
699 return tt;
701 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
702 break;
704 *mp = rn_new_radix_mask(tt, *mp);
705 return tt;
708 struct radix_node *
709 rn_delete(char *key, char *netmask, struct radix_node_head *head)
711 struct radix_node *t, *p, *x, *tt;
712 struct radix_mask *m, *saved_m, **mp;
713 struct radix_node *dupedkey, *saved_tt, *top;
714 int b, head_off, klen;
715 int cpu = mycpuid;
717 x = head->rnh_treetop;
718 tt = rn_search(key, x);
719 head_off = x->rn_offset;
720 klen = clen(key);
721 saved_tt = tt;
722 top = x;
723 if (tt == NULL ||
724 bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
725 return (NULL);
727 * Delete our route from mask lists.
729 if (netmask != NULL) {
730 if ((x = rn_addmask(netmask, TRUE, head_off,
731 head->rnh_maskhead)) == NULL)
732 return (NULL);
733 netmask = x->rn_key;
734 while (tt->rn_mask != netmask)
735 if ((tt = tt->rn_dupedkey) == NULL)
736 return (NULL);
738 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
739 goto on1;
740 if (tt->rn_flags & RNF_NORMAL) {
741 if (m->rm_leaf != tt || m->rm_refs > 0) {
742 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
743 return (NULL); /* dangling ref could cause disaster */
745 } else {
746 if (m->rm_mask != tt->rn_mask) {
747 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
748 goto on1;
750 if (--m->rm_refs >= 0)
751 goto on1;
753 b = -1 - tt->rn_bit;
754 t = saved_tt->rn_parent;
755 if (b > t->rn_bit)
756 goto on1; /* Wasn't lifted at all */
757 do {
758 x = t;
759 t = t->rn_parent;
760 } while (b <= t->rn_bit && x != top);
761 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
762 if (m == saved_m) {
763 *mp = m->rm_next;
764 MKFree(&rn_mkfreelist[cpu], m);
765 break;
767 if (m == NULL) {
768 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
769 if (tt->rn_flags & RNF_NORMAL)
770 return (NULL); /* Dangling ref to us */
772 on1:
774 * Eliminate us from tree
776 if (tt->rn_flags & RNF_ROOT)
777 return (NULL);
778 #ifdef RN_DEBUG
779 /* Get us out of the creation list */
780 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
781 if (t) t->rn_ybro = tt->rn_ybro;
782 #endif
783 t = tt->rn_parent;
784 dupedkey = saved_tt->rn_dupedkey;
785 if (dupedkey != NULL) {
787 * at this point, tt is the deletion target and saved_tt
788 * is the head of the dupekey chain
790 if (tt == saved_tt) {
791 /* remove from head of chain */
792 x = dupedkey; x->rn_parent = t;
793 if (t->rn_left == tt)
794 t->rn_left = x;
795 else
796 t->rn_right = x;
797 } else {
798 /* find node in front of tt on the chain */
799 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
800 p = p->rn_dupedkey;
801 if (p) {
802 p->rn_dupedkey = tt->rn_dupedkey;
803 if (tt->rn_dupedkey) /* parent */
804 tt->rn_dupedkey->rn_parent = p;
805 /* parent */
806 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
808 t = tt + 1;
809 if (t->rn_flags & RNF_ACTIVE) {
810 #ifndef RN_DEBUG
811 *++x = *t;
812 p = t->rn_parent;
813 #else
814 b = t->rn_info;
815 *++x = *t;
816 t->rn_info = b;
817 p = t->rn_parent;
818 #endif
819 if (p->rn_left == t)
820 p->rn_left = x;
821 else
822 p->rn_right = x;
823 x->rn_left->rn_parent = x;
824 x->rn_right->rn_parent = x;
826 goto out;
828 if (t->rn_left == tt)
829 x = t->rn_right;
830 else
831 x = t->rn_left;
832 p = t->rn_parent;
833 if (p->rn_right == t)
834 p->rn_right = x;
835 else
836 p->rn_left = x;
837 x->rn_parent = p;
839 * Demote routes attached to us.
841 if (t->rn_mklist != NULL) {
842 if (x->rn_bit >= 0) {
843 for (mp = &x->rn_mklist; (m = *mp);)
844 mp = &m->rm_next;
845 *mp = t->rn_mklist;
846 } else {
848 * If there are any (key, mask) pairs in a sibling
849 * duped-key chain, some subset will appear sorted
850 * in the same order attached to our mklist.
852 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
853 if (m == x->rn_mklist) {
854 struct radix_mask *mm = m->rm_next;
856 x->rn_mklist = NULL;
857 if (--(m->rm_refs) < 0)
858 MKFree(&rn_mkfreelist[cpu], m);
859 m = mm;
861 if (m)
862 log(LOG_ERR,
863 "rn_delete: Orphaned Mask %p at %p\n",
864 (void *)m, (void *)x);
868 * We may be holding an active internal node in the tree.
870 x = tt + 1;
871 if (t != x) {
872 #ifndef RN_DEBUG
873 *t = *x;
874 #else
875 b = t->rn_info;
876 *t = *x;
877 t->rn_info = b;
878 #endif
879 t->rn_left->rn_parent = t;
880 t->rn_right->rn_parent = t;
881 p = x->rn_parent;
882 if (p->rn_left == x)
883 p->rn_left = t;
884 else
885 p->rn_right = t;
887 out:
888 tt->rn_flags &= ~RNF_ACTIVE;
889 tt[1].rn_flags &= ~RNF_ACTIVE;
890 return (tt);
894 * This is the same as rn_walktree() except for the parameters and the
895 * exit.
897 static int
898 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
899 walktree_f_t *f, void *w)
901 struct radix_node *base, *next;
902 struct radix_node *rn, *last = NULL /* shut up gcc */;
903 boolean_t stopping = FALSE;
904 int lastb, error;
907 * rn_search_m is sort-of-open-coded here.
909 /* kprintf("about to search\n"); */
910 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
911 last = rn;
912 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
913 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
914 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
915 break;
917 if (rn->rn_bmask & xa[rn->rn_offset]) {
918 rn = rn->rn_right;
919 } else {
920 rn = rn->rn_left;
923 /* kprintf("done searching\n"); */
926 * Two cases: either we stepped off the end of our mask,
927 * in which case last == rn, or we reached a leaf, in which
928 * case we want to start from the last node we looked at.
929 * Either way, last is the node we want to start from.
931 rn = last;
932 lastb = rn->rn_bit;
934 /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
937 * This gets complicated because we may delete the node
938 * while applying the function f to it, so we need to calculate
939 * the successor node in advance.
941 while (rn->rn_bit >= 0)
942 rn = rn->rn_left;
944 while (!stopping) {
945 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
946 base = rn;
947 /* If at right child go back up, otherwise, go right */
948 while (rn->rn_parent->rn_right == rn &&
949 !(rn->rn_flags & RNF_ROOT)) {
950 rn = rn->rn_parent;
952 /* if went up beyond last, stop */
953 if (rn->rn_bit < lastb) {
954 stopping = TRUE;
955 /* kprintf("up too far\n"); */
959 /* Find the next *leaf* since next node might vanish, too */
960 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
961 rn = rn->rn_left;
962 next = rn;
963 /* Process leaves */
964 while ((rn = base) != NULL) {
965 base = rn->rn_dupedkey;
966 /* kprintf("leaf %p\n", rn); */
967 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
968 return (error);
970 rn = next;
972 if (rn->rn_flags & RNF_ROOT) {
973 /* kprintf("root, stopping"); */
974 stopping = TRUE;
978 return 0;
981 static int
982 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
984 struct radix_node *base, *next;
985 struct radix_node *rn = h->rnh_treetop;
986 int error;
989 * This gets complicated because we may delete the node
990 * while applying the function f to it, so we need to calculate
991 * the successor node in advance.
993 /* First time through node, go left */
994 while (rn->rn_bit >= 0)
995 rn = rn->rn_left;
996 for (;;) {
997 base = rn;
998 /* If at right child go back up, otherwise, go right */
999 while (rn->rn_parent->rn_right == rn &&
1000 !(rn->rn_flags & RNF_ROOT))
1001 rn = rn->rn_parent;
1002 /* Find the next *leaf* since next node might vanish, too */
1003 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1004 rn = rn->rn_left;
1005 next = rn;
1006 /* Process leaves */
1007 while ((rn = base)) {
1008 base = rn->rn_dupedkey;
1009 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1010 return (error);
1012 rn = next;
1013 if (rn->rn_flags & RNF_ROOT)
1014 return (0);
1016 /* NOTREACHED */
1020 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
1022 struct radix_node_head *rnh;
1023 struct radix_node *root, *left, *right;
1025 if (*head != NULL) /* already initialized */
1026 return (1);
1028 R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1029 if (rnh == NULL)
1030 return (0);
1031 bzero(rnh, sizeof *rnh);
1032 *head = rnh;
1034 root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1035 right = &rnh->rnh_nodes[2];
1036 root->rn_parent = root;
1037 root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1038 root->rn_right = right;
1040 left = root->rn_left;
1041 left->rn_bit = -1 - off;
1042 left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1044 *right = *left;
1045 right->rn_key = rn_ones;
1047 rnh->rnh_treetop = root;
1048 rnh->rnh_maskhead = maskhead;
1050 rnh->rnh_addaddr = rn_addroute;
1051 rnh->rnh_deladdr = rn_delete;
1052 rnh->rnh_matchaddr = rn_match;
1053 rnh->rnh_lookup = rn_lookup;
1054 rnh->rnh_walktree = rn_walktree;
1055 rnh->rnh_walktree_from = rn_walktree_from;
1057 return (1);
1060 void
1061 rn_init(void)
1063 int cpu;
1064 #ifdef _KERNEL
1065 struct domain *dom;
1067 SLIST_FOREACH(dom, &domains, dom_next) {
1068 if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1069 panic("domain %s maxkey too big %d/%d",
1070 dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1073 #endif
1074 for (cpu = 0; cpu < ncpus; ++cpu) {
1075 if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
1076 panic("rn_init 2");
1080 struct radix_node_head *
1081 rn_cpumaskhead(int cpu)
1083 KKASSERT(mask_rnheads[cpu] != NULL);
1084 return mask_rnheads[cpu];