4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
71 * Virtual memory object module.
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h> /* for curproc, pageproc */
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
85 #include <vm/vm_param.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_zone.h>
97 #define EASY_SCAN_FACTOR 8
99 static void vm_object_qcollapse(vm_object_t object
);
100 static int vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
,
104 * Virtual memory objects maintain the actual data
105 * associated with allocated virtual memory. A given
106 * page of memory exists within exactly one object.
108 * An object is only deallocated when all "references"
109 * are given up. Only one "reference" to a given
110 * region of an object should be writeable.
112 * Associated with each object is a list of all resident
113 * memory pages belonging to that object; this list is
114 * maintained by the "vm_page" module, and locked by the object's
117 * Each object also records a "pager" routine which is
118 * used to retrieve (and store) pages to the proper backing
119 * storage. In addition, objects may be backed by other
120 * objects from which they were virtual-copied.
122 * The only items within the object structure which are
123 * modified after time of creation are:
124 * reference count locked by object's lock
125 * pager routine locked by object's lock
129 struct object_q vm_object_list
; /* locked by vmobj_token */
130 struct vm_object kernel_object
;
132 static long vm_object_count
; /* locked by vmobj_token */
133 extern int vm_pageout_page_count
;
135 static long object_collapses
;
136 static long object_bypasses
;
137 static int next_index
;
138 static vm_zone_t obj_zone
;
139 static struct vm_zone obj_zone_store
;
140 static int object_hash_rand
;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init
[VM_OBJECTS_INIT
];
145 * Initialize a freshly allocated object
147 * Used only by vm_object_allocate() and zinitna().
152 _vm_object_allocate(objtype_t type
, vm_pindex_t size
, vm_object_t object
)
156 RB_INIT(&object
->rb_memq
);
157 LIST_INIT(&object
->shadow_head
);
161 object
->ref_count
= 1;
163 if ((object
->type
== OBJT_DEFAULT
) || (object
->type
== OBJT_SWAP
))
164 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
165 object
->paging_in_progress
= 0;
166 object
->resident_page_count
= 0;
167 object
->agg_pv_list_count
= 0;
168 object
->shadow_count
= 0;
169 object
->pg_color
= next_index
;
170 if ( size
> (PQ_L2_SIZE
/ 3 + PQ_PRIME1
))
171 incr
= PQ_L2_SIZE
/ 3 + PQ_PRIME1
;
174 next_index
= (next_index
+ incr
) & PQ_L2_MASK
;
175 object
->handle
= NULL
;
176 object
->backing_object
= NULL
;
177 object
->backing_object_offset
= (vm_ooffset_t
) 0;
179 * Try to generate a number that will spread objects out in the
180 * hash table. We 'wipe' new objects across the hash in 128 page
181 * increments plus 1 more to offset it a little more by the time
184 object
->hash_rand
= object_hash_rand
- 129;
186 object
->generation
++;
187 object
->swblock_count
= 0;
188 RB_INIT(&object
->swblock_root
);
190 lwkt_gettoken(&vmobj_token
);
191 TAILQ_INSERT_TAIL(&vm_object_list
, object
, object_list
);
193 object_hash_rand
= object
->hash_rand
;
194 lwkt_reltoken(&vmobj_token
);
198 * Initialize the VM objects module.
200 * Called from the low level boot code only.
205 TAILQ_INIT(&vm_object_list
);
207 _vm_object_allocate(OBJT_DEFAULT
, OFF_TO_IDX(KvaEnd
),
210 obj_zone
= &obj_zone_store
;
211 zbootinit(obj_zone
, "VM OBJECT", sizeof (struct vm_object
),
212 vm_objects_init
, VM_OBJECTS_INIT
);
216 vm_object_init2(void)
218 zinitna(obj_zone
, NULL
, NULL
, 0, 0, ZONE_PANICFAIL
, 1);
222 * Allocate and return a new object of the specified type and size.
227 vm_object_allocate(objtype_t type
, vm_pindex_t size
)
231 result
= (vm_object_t
) zalloc(obj_zone
);
233 _vm_object_allocate(type
, size
, result
);
239 * Add an additional reference to a vm_object.
241 * Object passed by caller must be stable or caller must already
242 * hold vmobj_token to avoid races.
245 vm_object_reference(vm_object_t object
)
248 lwkt_gettoken(&vmobj_token
);
250 if (object
->type
== OBJT_VNODE
) {
251 vref(object
->handle
);
252 /* XXX what if the vnode is being destroyed? */
254 lwkt_reltoken(&vmobj_token
);
259 vm_object_reference_locked(vm_object_t object
)
262 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
264 if (object
->type
== OBJT_VNODE
) {
265 vref(object
->handle
);
266 /* XXX what if the vnode is being destroyed? */
272 * Dereference an object and its underlying vnode.
274 * The caller must hold vmobj_token.
277 vm_object_vndeallocate(vm_object_t object
)
279 struct vnode
*vp
= (struct vnode
*) object
->handle
;
281 KASSERT(object
->type
== OBJT_VNODE
,
282 ("vm_object_vndeallocate: not a vnode object"));
283 KASSERT(vp
!= NULL
, ("vm_object_vndeallocate: missing vp"));
284 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
286 if (object
->ref_count
== 0) {
287 vprint("vm_object_vndeallocate", vp
);
288 panic("vm_object_vndeallocate: bad object reference count");
293 if (object
->ref_count
== 0)
294 vclrflags(vp
, VTEXT
);
299 * Release a reference to the specified object, gained either through a
300 * vm_object_allocate or a vm_object_reference call. When all references
301 * are gone, storage associated with this object may be relinquished.
304 vm_object_deallocate(vm_object_t object
)
306 lwkt_gettoken(&vmobj_token
);
307 vm_object_deallocate_locked(object
);
308 lwkt_reltoken(&vmobj_token
);
312 vm_object_deallocate_locked(vm_object_t object
)
316 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
318 while (object
!= NULL
) {
319 if (object
->type
== OBJT_VNODE
) {
320 vm_object_vndeallocate(object
);
324 if (object
->ref_count
== 0) {
325 panic("vm_object_deallocate: object deallocated "
326 "too many times: %d", object
->type
);
328 if (object
->ref_count
> 2) {
334 * We currently need the vm_token from this point on, and
335 * we must recheck ref_count after acquiring it.
337 lwkt_gettoken(&vm_token
);
339 if (object
->ref_count
> 2) {
341 lwkt_reltoken(&vm_token
);
346 * Here on ref_count of one or two, which are special cases for
349 if ((object
->ref_count
== 2) && (object
->shadow_count
== 0)) {
350 vm_object_set_flag(object
, OBJ_ONEMAPPING
);
352 lwkt_reltoken(&vm_token
);
355 if ((object
->ref_count
== 2) && (object
->shadow_count
== 1)) {
357 if ((object
->handle
== NULL
) &&
358 (object
->type
== OBJT_DEFAULT
||
359 object
->type
== OBJT_SWAP
)) {
362 robject
= LIST_FIRST(&object
->shadow_head
);
363 KASSERT(robject
!= NULL
,
364 ("vm_object_deallocate: ref_count: "
365 "%d, shadow_count: %d",
367 object
->shadow_count
));
369 if ((robject
->handle
== NULL
) &&
370 (robject
->type
== OBJT_DEFAULT
||
371 robject
->type
== OBJT_SWAP
)) {
373 robject
->ref_count
++;
376 robject
->paging_in_progress
||
377 object
->paging_in_progress
379 vm_object_pip_sleep(robject
, "objde1");
380 vm_object_pip_sleep(object
, "objde2");
383 if (robject
->ref_count
== 1) {
384 robject
->ref_count
--;
390 vm_object_collapse(object
);
391 lwkt_reltoken(&vm_token
);
395 lwkt_reltoken(&vm_token
);
400 * Normal dereferencing path
403 if (object
->ref_count
!= 0) {
404 lwkt_reltoken(&vm_token
);
412 temp
= object
->backing_object
;
414 LIST_REMOVE(object
, shadow_list
);
415 temp
->shadow_count
--;
417 object
->backing_object
= NULL
;
419 lwkt_reltoken(&vm_token
);
422 * Don't double-terminate, we could be in a termination
423 * recursion due to the terminate having to sync data
426 if ((object
->flags
& OBJ_DEAD
) == 0)
427 vm_object_terminate(object
);
433 * Destroy the specified object, freeing up related resources.
435 * The object must have zero references.
437 * The caller must be holding vmobj_token and properly interlock with
440 static int vm_object_terminate_callback(vm_page_t p
, void *data
);
443 vm_object_terminate(vm_object_t object
)
446 * Make sure no one uses us. Once we set OBJ_DEAD we should be
447 * able to safely block.
449 KKASSERT((object
->flags
& OBJ_DEAD
) == 0);
450 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
451 vm_object_set_flag(object
, OBJ_DEAD
);
454 * Wait for the pageout daemon to be done with the object
456 vm_object_pip_wait(object
, "objtrm");
458 KASSERT(!object
->paging_in_progress
,
459 ("vm_object_terminate: pageout in progress"));
462 * Clean and free the pages, as appropriate. All references to the
463 * object are gone, so we don't need to lock it.
465 if (object
->type
== OBJT_VNODE
) {
469 * Clean pages and flush buffers.
471 vm_object_page_clean(object
, 0, 0, OBJPC_SYNC
);
473 vp
= (struct vnode
*) object
->handle
;
474 vinvalbuf(vp
, V_SAVE
, 0, 0);
478 * Wait for any I/O to complete, after which there had better not
479 * be any references left on the object.
481 vm_object_pip_wait(object
, "objtrm");
483 if (object
->ref_count
!= 0) {
484 panic("vm_object_terminate: object with references, "
485 "ref_count=%d", object
->ref_count
);
489 * Now free any remaining pages. For internal objects, this also
490 * removes them from paging queues. Don't free wired pages, just
491 * remove them from the object.
493 lwkt_gettoken(&vm_token
);
494 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, NULL
,
495 vm_object_terminate_callback
, NULL
);
496 lwkt_reltoken(&vm_token
);
499 * Let the pager know object is dead.
501 vm_pager_deallocate(object
);
504 * Remove the object from the global object list.
506 * (we are holding vmobj_token)
508 TAILQ_REMOVE(&vm_object_list
, object
, object_list
);
510 vm_object_dead_wakeup(object
);
512 if (object
->ref_count
!= 0) {
513 panic("vm_object_terminate2: object with references, "
514 "ref_count=%d", object
->ref_count
);
518 * Free the space for the object.
520 zfree(obj_zone
, object
);
524 * The caller must hold vm_token.
527 vm_object_terminate_callback(vm_page_t p
, void *data __unused
)
529 if (p
->busy
|| (p
->flags
& PG_BUSY
))
530 panic("vm_object_terminate: freeing busy page %p", p
);
531 if (p
->wire_count
== 0) {
534 mycpu
->gd_cnt
.v_pfree
++;
536 if (p
->queue
!= PQ_NONE
)
537 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p
, p
->queue
);
546 * The object is dead but still has an object<->pager association. Sleep
547 * and return. The caller typically retests the association in a loop.
549 * Must be called with the vmobj_token held.
552 vm_object_dead_sleep(vm_object_t object
, const char *wmesg
)
554 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
555 if (object
->handle
) {
556 vm_object_set_flag(object
, OBJ_DEADWNT
);
557 tsleep(object
, 0, wmesg
, 0);
558 /* object may be invalid after this point */
563 * Wakeup anyone waiting for the object<->pager disassociation on
566 * Must be called with the vmobj_token held.
569 vm_object_dead_wakeup(vm_object_t object
)
571 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
572 if (object
->flags
& OBJ_DEADWNT
) {
573 vm_object_clear_flag(object
, OBJ_DEADWNT
);
579 * Clean all dirty pages in the specified range of object. Leaves page
580 * on whatever queue it is currently on. If NOSYNC is set then do not
581 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
582 * leaving the object dirty.
584 * When stuffing pages asynchronously, allow clustering. XXX we need a
585 * synchronous clustering mode implementation.
587 * Odd semantics: if start == end, we clean everything.
589 * The object must be locked? XXX
591 static int vm_object_page_clean_pass1(struct vm_page
*p
, void *data
);
592 static int vm_object_page_clean_pass2(struct vm_page
*p
, void *data
);
595 vm_object_page_clean(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
598 struct rb_vm_page_scan_info info
;
604 lwkt_gettoken(&vm_token
);
605 if (object
->type
!= OBJT_VNODE
||
606 (object
->flags
& OBJ_MIGHTBEDIRTY
) == 0) {
607 lwkt_reltoken(&vm_token
);
611 pagerflags
= (flags
& (OBJPC_SYNC
| OBJPC_INVAL
)) ?
612 VM_PAGER_PUT_SYNC
: VM_PAGER_CLUSTER_OK
;
613 pagerflags
|= (flags
& OBJPC_INVAL
) ? VM_PAGER_PUT_INVAL
: 0;
618 * Interlock other major object operations. This allows us to
619 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
622 vm_object_set_flag(object
, OBJ_CLEANING
);
625 * Handle 'entire object' case
627 info
.start_pindex
= start
;
629 info
.end_pindex
= object
->size
- 1;
631 info
.end_pindex
= end
- 1;
633 wholescan
= (start
== 0 && info
.end_pindex
== object
->size
- 1);
635 info
.pagerflags
= pagerflags
;
636 info
.object
= object
;
639 * If cleaning the entire object do a pass to mark the pages read-only.
640 * If everything worked out ok, clear OBJ_WRITEABLE and
645 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
646 vm_object_page_clean_pass1
, &info
);
647 if (info
.error
== 0) {
648 vm_object_clear_flag(object
,
649 OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
650 if (object
->type
== OBJT_VNODE
&&
651 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
652 if (vp
->v_flag
& VOBJDIRTY
)
653 vclrflags(vp
, VOBJDIRTY
);
659 * Do a pass to clean all the dirty pages we find.
663 curgeneration
= object
->generation
;
664 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
665 vm_object_page_clean_pass2
, &info
);
666 } while (info
.error
|| curgeneration
!= object
->generation
);
668 vm_object_clear_flag(object
, OBJ_CLEANING
);
670 lwkt_reltoken(&vm_token
);
674 * The caller must hold vm_token.
678 vm_object_page_clean_pass1(struct vm_page
*p
, void *data
)
680 struct rb_vm_page_scan_info
*info
= data
;
682 vm_page_flag_set(p
, PG_CLEANCHK
);
683 if ((info
->limit
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
))
686 vm_page_protect(p
, VM_PROT_READ
); /* must not block */
691 * The caller must hold vm_token.
695 vm_object_page_clean_pass2(struct vm_page
*p
, void *data
)
697 struct rb_vm_page_scan_info
*info
= data
;
701 * Do not mess with pages that were inserted after we started
704 if ((p
->flags
& PG_CLEANCHK
) == 0)
708 * Before wasting time traversing the pmaps, check for trivial
709 * cases where the page cannot be dirty.
711 if (p
->valid
== 0 || (p
->queue
- p
->pc
) == PQ_CACHE
) {
712 KKASSERT((p
->dirty
& p
->valid
) == 0);
717 * Check whether the page is dirty or not. The page has been set
718 * to be read-only so the check will not race a user dirtying the
721 vm_page_test_dirty(p
);
722 if ((p
->dirty
& p
->valid
) == 0) {
723 vm_page_flag_clear(p
, PG_CLEANCHK
);
728 * If we have been asked to skip nosync pages and this is a
729 * nosync page, skip it. Note that the object flags were
730 * not cleared in this case (because pass1 will have returned an
731 * error), so we do not have to set them.
733 if ((info
->limit
& OBJPC_NOSYNC
) && (p
->flags
& PG_NOSYNC
)) {
734 vm_page_flag_clear(p
, PG_CLEANCHK
);
739 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
740 * the pages that get successfully flushed. Set info->error if
741 * we raced an object modification.
743 n
= vm_object_page_collect_flush(info
->object
, p
, info
->pagerflags
);
750 * Collect the specified page and nearby pages and flush them out.
751 * The number of pages flushed is returned.
753 * The caller must hold vm_token.
756 vm_object_page_collect_flush(vm_object_t object
, vm_page_t p
, int pagerflags
)
765 vm_page_t maf
[vm_pageout_page_count
];
766 vm_page_t mab
[vm_pageout_page_count
];
767 vm_page_t ma
[vm_pageout_page_count
];
769 curgeneration
= object
->generation
;
772 while (vm_page_sleep_busy(p
, TRUE
, "vpcwai")) {
773 if (object
->generation
!= curgeneration
) {
777 KKASSERT(p
->object
== object
&& p
->pindex
== pi
);
780 for(i
= 1; i
< vm_pageout_page_count
; i
++) {
783 if ((tp
= vm_page_lookup(object
, pi
+ i
)) != NULL
) {
784 if ((tp
->flags
& PG_BUSY
) ||
785 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
786 (tp
->flags
& PG_CLEANCHK
) == 0) ||
789 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
790 vm_page_flag_clear(tp
, PG_CLEANCHK
);
793 vm_page_test_dirty(tp
);
794 if ((tp
->dirty
& tp
->valid
) == 0) {
795 vm_page_flag_clear(tp
, PG_CLEANCHK
);
806 chkb
= vm_pageout_page_count
- maxf
;
808 for(i
= 1; i
< chkb
;i
++) {
811 if ((tp
= vm_page_lookup(object
, pi
- i
)) != NULL
) {
812 if ((tp
->flags
& PG_BUSY
) ||
813 ((pagerflags
& VM_PAGER_IGNORE_CLEANCHK
) == 0 &&
814 (tp
->flags
& PG_CLEANCHK
) == 0) ||
817 if((tp
->queue
- tp
->pc
) == PQ_CACHE
) {
818 vm_page_flag_clear(tp
, PG_CLEANCHK
);
821 vm_page_test_dirty(tp
);
822 if ((tp
->dirty
& tp
->valid
) == 0) {
823 vm_page_flag_clear(tp
, PG_CLEANCHK
);
834 for(i
= 0; i
< maxb
; i
++) {
835 int index
= (maxb
- i
) - 1;
837 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
839 vm_page_flag_clear(p
, PG_CLEANCHK
);
841 for(i
= 0; i
< maxf
; i
++) {
842 int index
= (maxb
+ i
) + 1;
844 vm_page_flag_clear(ma
[index
], PG_CLEANCHK
);
846 runlen
= maxb
+ maxf
+ 1;
848 vm_pageout_flush(ma
, runlen
, pagerflags
);
849 for (i
= 0; i
< runlen
; i
++) {
850 if (ma
[i
]->valid
& ma
[i
]->dirty
) {
851 vm_page_protect(ma
[i
], VM_PROT_READ
);
852 vm_page_flag_set(ma
[i
], PG_CLEANCHK
);
855 * maxf will end up being the actual number of pages
856 * we wrote out contiguously, non-inclusive of the
857 * first page. We do not count look-behind pages.
859 if (i
>= maxb
+ 1 && (maxf
> i
- maxb
- 1))
867 * Same as vm_object_pmap_copy, except range checking really
868 * works, and is meant for small sections of an object.
870 * This code protects resident pages by making them read-only
871 * and is typically called on a fork or split when a page
872 * is converted to copy-on-write.
874 * NOTE: If the page is already at VM_PROT_NONE, calling
875 * vm_page_protect will have no effect.
878 vm_object_pmap_copy_1(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
883 if (object
== NULL
|| (object
->flags
& OBJ_WRITEABLE
) == 0)
887 * spl protection needed to prevent races between the lookup,
888 * an interrupt unbusy/free, and our protect call.
891 lwkt_gettoken(&vm_token
);
892 for (idx
= start
; idx
< end
; idx
++) {
893 p
= vm_page_lookup(object
, idx
);
896 vm_page_protect(p
, VM_PROT_READ
);
898 lwkt_reltoken(&vm_token
);
903 * Removes all physical pages in the specified object range from all
906 * The object must *not* be locked.
909 static int vm_object_pmap_remove_callback(vm_page_t p
, void *data
);
912 vm_object_pmap_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
)
914 struct rb_vm_page_scan_info info
;
918 info
.start_pindex
= start
;
919 info
.end_pindex
= end
- 1;
922 lwkt_gettoken(&vm_token
);
923 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
924 vm_object_pmap_remove_callback
, &info
);
925 if (start
== 0 && end
== object
->size
)
926 vm_object_clear_flag(object
, OBJ_WRITEABLE
);
927 lwkt_reltoken(&vm_token
);
932 * The caller must hold vm_token.
935 vm_object_pmap_remove_callback(vm_page_t p
, void *data __unused
)
937 vm_page_protect(p
, VM_PROT_NONE
);
942 * Implements the madvise function at the object/page level.
944 * MADV_WILLNEED (any object)
946 * Activate the specified pages if they are resident.
948 * MADV_DONTNEED (any object)
950 * Deactivate the specified pages if they are resident.
952 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
954 * Deactivate and clean the specified pages if they are
955 * resident. This permits the process to reuse the pages
956 * without faulting or the kernel to reclaim the pages
962 vm_object_madvise(vm_object_t object
, vm_pindex_t pindex
, int count
, int advise
)
964 vm_pindex_t end
, tpindex
;
971 end
= pindex
+ count
;
973 lwkt_gettoken(&vm_token
);
976 * Locate and adjust resident pages
978 for (; pindex
< end
; pindex
+= 1) {
984 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985 * and those pages must be OBJ_ONEMAPPING.
987 if (advise
== MADV_FREE
) {
988 if ((tobject
->type
!= OBJT_DEFAULT
&&
989 tobject
->type
!= OBJT_SWAP
) ||
990 (tobject
->flags
& OBJ_ONEMAPPING
) == 0) {
996 * spl protection is required to avoid a race between the
997 * lookup, an interrupt unbusy/free, and our busy check.
1001 m
= vm_page_lookup(tobject
, tpindex
);
1005 * There may be swap even if there is no backing page
1007 if (advise
== MADV_FREE
&& tobject
->type
== OBJT_SWAP
)
1008 swap_pager_freespace(tobject
, tpindex
, 1);
1014 if (tobject
->backing_object
== NULL
)
1016 tpindex
+= OFF_TO_IDX(tobject
->backing_object_offset
);
1017 tobject
= tobject
->backing_object
;
1022 * If the page is busy or not in a normal active state,
1023 * we skip it. If the page is not managed there are no
1024 * page queues to mess with. Things can break if we mess
1025 * with pages in any of the below states.
1030 (m
->flags
& PG_UNMANAGED
) ||
1031 m
->valid
!= VM_PAGE_BITS_ALL
1037 if (vm_page_sleep_busy(m
, TRUE
, "madvpo")) {
1044 * Theoretically once a page is known not to be busy, an
1045 * interrupt cannot come along and rip it out from under us.
1048 if (advise
== MADV_WILLNEED
) {
1049 vm_page_activate(m
);
1050 } else if (advise
== MADV_DONTNEED
) {
1051 vm_page_dontneed(m
);
1052 } else if (advise
== MADV_FREE
) {
1054 * Mark the page clean. This will allow the page
1055 * to be freed up by the system. However, such pages
1056 * are often reused quickly by malloc()/free()
1057 * so we do not do anything that would cause
1058 * a page fault if we can help it.
1060 * Specifically, we do not try to actually free
1061 * the page now nor do we try to put it in the
1062 * cache (which would cause a page fault on reuse).
1064 * But we do make the page is freeable as we
1065 * can without actually taking the step of unmapping
1068 pmap_clear_modify(m
);
1071 vm_page_dontneed(m
);
1072 if (tobject
->type
== OBJT_SWAP
)
1073 swap_pager_freespace(tobject
, tpindex
, 1);
1076 lwkt_reltoken(&vm_token
);
1080 * Create a new object which is backed by the specified existing object
1081 * range. The source object reference is deallocated.
1083 * The new object and offset into that object are returned in the source
1086 * No other requirements.
1089 vm_object_shadow(vm_object_t
*object
, vm_ooffset_t
*offset
, vm_size_t length
)
1097 * Don't create the new object if the old object isn't shared.
1099 lwkt_gettoken(&vm_token
);
1101 if (source
!= NULL
&&
1102 source
->ref_count
== 1 &&
1103 source
->handle
== NULL
&&
1104 (source
->type
== OBJT_DEFAULT
||
1105 source
->type
== OBJT_SWAP
)) {
1106 lwkt_reltoken(&vm_token
);
1111 * Allocate a new object with the given length
1114 if ((result
= vm_object_allocate(OBJT_DEFAULT
, length
)) == NULL
)
1115 panic("vm_object_shadow: no object for shadowing");
1118 * The new object shadows the source object, adding a reference to it.
1119 * Our caller changes his reference to point to the new object,
1120 * removing a reference to the source object. Net result: no change
1121 * of reference count.
1123 * Try to optimize the result object's page color when shadowing
1124 * in order to maintain page coloring consistency in the combined
1127 result
->backing_object
= source
;
1129 LIST_INSERT_HEAD(&source
->shadow_head
, result
, shadow_list
);
1130 source
->shadow_count
++;
1131 source
->generation
++;
1132 result
->pg_color
= (source
->pg_color
+ OFF_TO_IDX(*offset
)) & PQ_L2_MASK
;
1136 * Store the offset into the source object, and fix up the offset into
1139 result
->backing_object_offset
= *offset
;
1140 lwkt_reltoken(&vm_token
);
1143 * Return the new things
1149 #define OBSC_TEST_ALL_SHADOWED 0x0001
1150 #define OBSC_COLLAPSE_NOWAIT 0x0002
1151 #define OBSC_COLLAPSE_WAIT 0x0004
1153 static int vm_object_backing_scan_callback(vm_page_t p
, void *data
);
1156 * The caller must hold vm_token.
1159 vm_object_backing_scan(vm_object_t object
, int op
)
1161 struct rb_vm_page_scan_info info
;
1162 vm_object_t backing_object
;
1166 backing_object
= object
->backing_object
;
1167 info
.backing_offset_index
= OFF_TO_IDX(object
->backing_object_offset
);
1170 * Initial conditions
1173 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1175 * We do not want to have to test for the existence of
1176 * swap pages in the backing object. XXX but with the
1177 * new swapper this would be pretty easy to do.
1179 * XXX what about anonymous MAP_SHARED memory that hasn't
1180 * been ZFOD faulted yet? If we do not test for this, the
1181 * shadow test may succeed! XXX
1183 if (backing_object
->type
!= OBJT_DEFAULT
) {
1188 if (op
& OBSC_COLLAPSE_WAIT
) {
1189 KKASSERT((backing_object
->flags
& OBJ_DEAD
) == 0);
1190 vm_object_set_flag(backing_object
, OBJ_DEAD
);
1194 * Our scan. We have to retry if a negative error code is returned,
1195 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1196 * the scan had to be stopped because the parent does not completely
1199 info
.object
= object
;
1200 info
.backing_object
= backing_object
;
1204 vm_page_rb_tree_RB_SCAN(&backing_object
->rb_memq
, NULL
,
1205 vm_object_backing_scan_callback
,
1207 } while (info
.error
< 0);
1213 * The caller must hold vm_token.
1216 vm_object_backing_scan_callback(vm_page_t p
, void *data
)
1218 struct rb_vm_page_scan_info
*info
= data
;
1219 vm_object_t backing_object
;
1221 vm_pindex_t new_pindex
;
1222 vm_pindex_t backing_offset_index
;
1225 new_pindex
= p
->pindex
- info
->backing_offset_index
;
1227 object
= info
->object
;
1228 backing_object
= info
->backing_object
;
1229 backing_offset_index
= info
->backing_offset_index
;
1231 if (op
& OBSC_TEST_ALL_SHADOWED
) {
1235 * Ignore pages outside the parent object's range
1236 * and outside the parent object's mapping of the
1239 * note that we do not busy the backing object's
1243 p
->pindex
< backing_offset_index
||
1244 new_pindex
>= object
->size
1250 * See if the parent has the page or if the parent's
1251 * object pager has the page. If the parent has the
1252 * page but the page is not valid, the parent's
1253 * object pager must have the page.
1255 * If this fails, the parent does not completely shadow
1256 * the object and we might as well give up now.
1259 pp
= vm_page_lookup(object
, new_pindex
);
1260 if ((pp
== NULL
|| pp
->valid
== 0) &&
1261 !vm_pager_has_page(object
, new_pindex
)
1263 info
->error
= 0; /* problemo */
1264 return(-1); /* stop the scan */
1269 * Check for busy page
1272 if (op
& (OBSC_COLLAPSE_WAIT
| OBSC_COLLAPSE_NOWAIT
)) {
1275 if (op
& OBSC_COLLAPSE_NOWAIT
) {
1277 (p
->flags
& PG_BUSY
) ||
1285 } else if (op
& OBSC_COLLAPSE_WAIT
) {
1286 if (vm_page_sleep_busy(p
, TRUE
, "vmocol")) {
1288 * If we slept, anything could have
1289 * happened. Ask that the scan be restarted.
1291 * Since the object is marked dead, the
1292 * backing offset should not have changed.
1305 p
->object
== backing_object
,
1306 ("vm_object_qcollapse(): object mismatch")
1310 * Destroy any associated swap
1312 if (backing_object
->type
== OBJT_SWAP
)
1313 swap_pager_freespace(backing_object
, p
->pindex
, 1);
1316 p
->pindex
< backing_offset_index
||
1317 new_pindex
>= object
->size
1320 * Page is out of the parent object's range, we
1321 * can simply destroy it.
1323 vm_page_protect(p
, VM_PROT_NONE
);
1328 pp
= vm_page_lookup(object
, new_pindex
);
1329 if (pp
!= NULL
|| vm_pager_has_page(object
, new_pindex
)) {
1331 * page already exists in parent OR swap exists
1332 * for this location in the parent. Destroy
1333 * the original page from the backing object.
1335 * Leave the parent's page alone
1337 vm_page_protect(p
, VM_PROT_NONE
);
1343 * Page does not exist in parent, rename the
1344 * page from the backing object to the main object.
1346 * If the page was mapped to a process, it can remain
1347 * mapped through the rename.
1349 if ((p
->queue
- p
->pc
) == PQ_CACHE
)
1350 vm_page_deactivate(p
);
1352 vm_page_rename(p
, object
, new_pindex
);
1353 /* page automatically made dirty by rename */
1359 * This version of collapse allows the operation to occur earlier and
1360 * when paging_in_progress is true for an object... This is not a complete
1361 * operation, but should plug 99.9% of the rest of the leaks.
1363 * The caller must hold vm_token and vmobj_token.
1364 * (only called from vm_object_collapse)
1367 vm_object_qcollapse(vm_object_t object
)
1369 vm_object_t backing_object
= object
->backing_object
;
1371 if (backing_object
->ref_count
!= 1)
1374 backing_object
->ref_count
+= 2;
1376 vm_object_backing_scan(object
, OBSC_COLLAPSE_NOWAIT
);
1378 backing_object
->ref_count
-= 2;
1382 * Collapse an object with the object backing it. Pages in the backing
1383 * object are moved into the parent, and the backing object is deallocated.
1386 vm_object_collapse(vm_object_t object
)
1388 ASSERT_LWKT_TOKEN_HELD(&vm_token
);
1389 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
1392 vm_object_t backing_object
;
1395 * Verify that the conditions are right for collapse:
1397 * The object exists and the backing object exists.
1402 if ((backing_object
= object
->backing_object
) == NULL
)
1406 * we check the backing object first, because it is most likely
1409 if (backing_object
->handle
!= NULL
||
1410 (backing_object
->type
!= OBJT_DEFAULT
&&
1411 backing_object
->type
!= OBJT_SWAP
) ||
1412 (backing_object
->flags
& OBJ_DEAD
) ||
1413 object
->handle
!= NULL
||
1414 (object
->type
!= OBJT_DEFAULT
&&
1415 object
->type
!= OBJT_SWAP
) ||
1416 (object
->flags
& OBJ_DEAD
)) {
1421 object
->paging_in_progress
!= 0 ||
1422 backing_object
->paging_in_progress
!= 0
1424 vm_object_qcollapse(object
);
1429 * We know that we can either collapse the backing object (if
1430 * the parent is the only reference to it) or (perhaps) have
1431 * the parent bypass the object if the parent happens to shadow
1432 * all the resident pages in the entire backing object.
1434 * This is ignoring pager-backed pages such as swap pages.
1435 * vm_object_backing_scan fails the shadowing test in this
1439 if (backing_object
->ref_count
== 1) {
1441 * If there is exactly one reference to the backing
1442 * object, we can collapse it into the parent.
1444 vm_object_backing_scan(object
, OBSC_COLLAPSE_WAIT
);
1447 * Move the pager from backing_object to object.
1450 if (backing_object
->type
== OBJT_SWAP
) {
1451 vm_object_pip_add(backing_object
, 1);
1454 * scrap the paging_offset junk and do a
1455 * discrete copy. This also removes major
1456 * assumptions about how the swap-pager
1457 * works from where it doesn't belong. The
1458 * new swapper is able to optimize the
1459 * destroy-source case.
1462 vm_object_pip_add(object
, 1);
1466 OFF_TO_IDX(object
->backing_object_offset
), TRUE
);
1467 vm_object_pip_wakeup(object
);
1469 vm_object_pip_wakeup(backing_object
);
1472 * Object now shadows whatever backing_object did.
1473 * Note that the reference to
1474 * backing_object->backing_object moves from within
1475 * backing_object to within object.
1478 LIST_REMOVE(object
, shadow_list
);
1479 object
->backing_object
->shadow_count
--;
1480 object
->backing_object
->generation
++;
1481 if (backing_object
->backing_object
) {
1482 LIST_REMOVE(backing_object
, shadow_list
);
1483 backing_object
->backing_object
->shadow_count
--;
1484 backing_object
->backing_object
->generation
++;
1486 object
->backing_object
= backing_object
->backing_object
;
1487 if (object
->backing_object
) {
1489 &object
->backing_object
->shadow_head
,
1493 object
->backing_object
->shadow_count
++;
1494 object
->backing_object
->generation
++;
1497 object
->backing_object_offset
+=
1498 backing_object
->backing_object_offset
;
1501 * Discard backing_object.
1503 * Since the backing object has no pages, no pager left,
1504 * and no object references within it, all that is
1505 * necessary is to dispose of it.
1508 KASSERT(backing_object
->ref_count
== 1,
1509 ("backing_object %p was somehow "
1510 "re-referenced during collapse!",
1512 KASSERT(RB_EMPTY(&backing_object
->rb_memq
),
1513 ("backing_object %p somehow has left "
1514 "over pages during collapse!",
1517 /* (we are holding vmobj_token) */
1518 TAILQ_REMOVE(&vm_object_list
, backing_object
,
1522 zfree(obj_zone
, backing_object
);
1526 vm_object_t new_backing_object
;
1529 * If we do not entirely shadow the backing object,
1530 * there is nothing we can do so we give up.
1533 if (vm_object_backing_scan(object
, OBSC_TEST_ALL_SHADOWED
) == 0) {
1538 * Make the parent shadow the next object in the
1539 * chain. Deallocating backing_object will not remove
1540 * it, since its reference count is at least 2.
1543 LIST_REMOVE(object
, shadow_list
);
1544 backing_object
->shadow_count
--;
1545 backing_object
->generation
++;
1547 new_backing_object
= backing_object
->backing_object
;
1548 if ((object
->backing_object
= new_backing_object
) != NULL
) {
1549 vm_object_reference(new_backing_object
);
1551 &new_backing_object
->shadow_head
,
1555 new_backing_object
->shadow_count
++;
1556 new_backing_object
->generation
++;
1557 object
->backing_object_offset
+=
1558 backing_object
->backing_object_offset
;
1562 * Drop the reference count on backing_object. Since
1563 * its ref_count was at least 2, it will not vanish;
1564 * so we don't need to call vm_object_deallocate, but
1567 vm_object_deallocate_locked(backing_object
);
1572 * Try again with this object's new backing object.
1578 * Removes all physical pages in the specified object range from the
1579 * object's list of pages.
1583 static int vm_object_page_remove_callback(vm_page_t p
, void *data
);
1586 vm_object_page_remove(vm_object_t object
, vm_pindex_t start
, vm_pindex_t end
,
1587 boolean_t clean_only
)
1589 struct rb_vm_page_scan_info info
;
1593 * Degenerate cases and assertions
1595 lwkt_gettoken(&vm_token
);
1596 if (object
== NULL
||
1597 (object
->resident_page_count
== 0 && object
->swblock_count
== 0)) {
1598 lwkt_reltoken(&vm_token
);
1601 KASSERT(object
->type
!= OBJT_PHYS
,
1602 ("attempt to remove pages from a physical object"));
1605 * Indicate that paging is occuring on the object
1608 vm_object_pip_add(object
, 1);
1611 * Figure out the actual removal range and whether we are removing
1612 * the entire contents of the object or not. If removing the entire
1613 * contents, be sure to get all pages, even those that might be
1614 * beyond the end of the object.
1616 info
.start_pindex
= start
;
1618 info
.end_pindex
= (vm_pindex_t
)-1;
1620 info
.end_pindex
= end
- 1;
1621 info
.limit
= clean_only
;
1622 all
= (start
== 0 && info
.end_pindex
>= object
->size
- 1);
1625 * Loop until we are sure we have gotten them all.
1629 vm_page_rb_tree_RB_SCAN(&object
->rb_memq
, rb_vm_page_scancmp
,
1630 vm_object_page_remove_callback
, &info
);
1631 } while (info
.error
);
1634 * Remove any related swap if throwing away pages, or for
1635 * non-swap objects (the swap is a clean copy in that case).
1637 if (object
->type
!= OBJT_SWAP
|| clean_only
== FALSE
) {
1639 swap_pager_freespace_all(object
);
1641 swap_pager_freespace(object
, info
.start_pindex
,
1642 info
.end_pindex
- info
.start_pindex
+ 1);
1648 vm_object_pip_wakeup(object
);
1650 lwkt_reltoken(&vm_token
);
1654 * The caller must hold vm_token.
1657 vm_object_page_remove_callback(vm_page_t p
, void *data
)
1659 struct rb_vm_page_scan_info
*info
= data
;
1662 * Wired pages cannot be destroyed, but they can be invalidated
1663 * and we do so if clean_only (limit) is not set.
1665 * WARNING! The page may be wired due to being part of a buffer
1666 * cache buffer, and the buffer might be marked B_CACHE.
1667 * This is fine as part of a truncation but VFSs must be
1668 * sure to fix the buffer up when re-extending the file.
1670 if (p
->wire_count
!= 0) {
1671 vm_page_protect(p
, VM_PROT_NONE
);
1672 if (info
->limit
== 0)
1678 * The busy flags are only cleared at
1679 * interrupt -- minimize the spl transitions
1682 if (vm_page_sleep_busy(p
, TRUE
, "vmopar")) {
1688 * limit is our clean_only flag. If set and the page is dirty, do
1689 * not free it. If set and the page is being held by someone, do
1692 if (info
->limit
&& p
->valid
) {
1693 vm_page_test_dirty(p
);
1694 if (p
->valid
& p
->dirty
)
1704 vm_page_protect(p
, VM_PROT_NONE
);
1710 * Coalesces two objects backing up adjoining regions of memory into a
1713 * returns TRUE if objects were combined.
1715 * NOTE: Only works at the moment if the second object is NULL -
1716 * if it's not, which object do we lock first?
1719 * prev_object First object to coalesce
1720 * prev_offset Offset into prev_object
1721 * next_object Second object into coalesce
1722 * next_offset Offset into next_object
1724 * prev_size Size of reference to prev_object
1725 * next_size Size of reference to next_object
1727 * The object must not be locked.
1728 * The caller must hold vm_token and vmobj_token.
1731 vm_object_coalesce(vm_object_t prev_object
, vm_pindex_t prev_pindex
,
1732 vm_size_t prev_size
, vm_size_t next_size
)
1734 vm_pindex_t next_pindex
;
1736 ASSERT_LWKT_TOKEN_HELD(&vm_token
);
1737 ASSERT_LWKT_TOKEN_HELD(&vmobj_token
);
1739 if (prev_object
== NULL
) {
1743 if (prev_object
->type
!= OBJT_DEFAULT
&&
1744 prev_object
->type
!= OBJT_SWAP
) {
1749 * Try to collapse the object first
1751 vm_object_collapse(prev_object
);
1754 * Can't coalesce if: . more than one reference . paged out . shadows
1755 * another object . has a copy elsewhere (any of which mean that the
1756 * pages not mapped to prev_entry may be in use anyway)
1759 if (prev_object
->backing_object
!= NULL
)
1762 prev_size
>>= PAGE_SHIFT
;
1763 next_size
>>= PAGE_SHIFT
;
1764 next_pindex
= prev_pindex
+ prev_size
;
1766 if ((prev_object
->ref_count
> 1) &&
1767 (prev_object
->size
!= next_pindex
)) {
1772 * Remove any pages that may still be in the object from a previous
1775 if (next_pindex
< prev_object
->size
) {
1776 vm_object_page_remove(prev_object
,
1778 next_pindex
+ next_size
, FALSE
);
1779 if (prev_object
->type
== OBJT_SWAP
)
1780 swap_pager_freespace(prev_object
,
1781 next_pindex
, next_size
);
1785 * Extend the object if necessary.
1787 if (next_pindex
+ next_size
> prev_object
->size
)
1788 prev_object
->size
= next_pindex
+ next_size
;
1793 * Make the object writable and flag is being possibly dirty.
1798 vm_object_set_writeable_dirty(vm_object_t object
)
1802 lwkt_gettoken(&vm_token
);
1803 vm_object_set_flag(object
, OBJ_WRITEABLE
|OBJ_MIGHTBEDIRTY
);
1804 if (object
->type
== OBJT_VNODE
&&
1805 (vp
= (struct vnode
*)object
->handle
) != NULL
) {
1806 if ((vp
->v_flag
& VOBJDIRTY
) == 0) {
1807 vsetflags(vp
, VOBJDIRTY
);
1810 lwkt_reltoken(&vm_token
);
1813 #include "opt_ddb.h"
1815 #include <sys/kernel.h>
1817 #include <sys/cons.h>
1819 #include <ddb/ddb.h>
1821 static int _vm_object_in_map (vm_map_t map
, vm_object_t object
,
1822 vm_map_entry_t entry
);
1823 static int vm_object_in_map (vm_object_t object
);
1826 * The caller must hold vm_token.
1829 _vm_object_in_map(vm_map_t map
, vm_object_t object
, vm_map_entry_t entry
)
1832 vm_map_entry_t tmpe
;
1839 tmpe
= map
->header
.next
;
1840 entcount
= map
->nentries
;
1841 while (entcount
-- && (tmpe
!= &map
->header
)) {
1842 if( _vm_object_in_map(map
, object
, tmpe
)) {
1849 switch(entry
->maptype
) {
1850 case VM_MAPTYPE_SUBMAP
:
1851 tmpm
= entry
->object
.sub_map
;
1852 tmpe
= tmpm
->header
.next
;
1853 entcount
= tmpm
->nentries
;
1854 while (entcount
-- && tmpe
!= &tmpm
->header
) {
1855 if( _vm_object_in_map(tmpm
, object
, tmpe
)) {
1861 case VM_MAPTYPE_NORMAL
:
1862 case VM_MAPTYPE_VPAGETABLE
:
1863 obj
= entry
->object
.vm_object
;
1867 obj
= obj
->backing_object
;
1876 static int vm_object_in_map_callback(struct proc
*p
, void *data
);
1878 struct vm_object_in_map_info
{
1887 vm_object_in_map(vm_object_t object
)
1889 struct vm_object_in_map_info info
;
1892 info
.object
= object
;
1894 allproc_scan(vm_object_in_map_callback
, &info
);
1897 if( _vm_object_in_map(&kernel_map
, object
, 0))
1899 if( _vm_object_in_map(&pager_map
, object
, 0))
1901 if( _vm_object_in_map(&buffer_map
, object
, 0))
1910 vm_object_in_map_callback(struct proc
*p
, void *data
)
1912 struct vm_object_in_map_info
*info
= data
;
1915 if (_vm_object_in_map(&p
->p_vmspace
->vm_map
, info
->object
, 0)) {
1923 DB_SHOW_COMMAND(vmochk
, vm_object_check
)
1928 * make sure that internal objs are in a map somewhere
1929 * and none have zero ref counts.
1931 for (object
= TAILQ_FIRST(&vm_object_list
);
1933 object
= TAILQ_NEXT(object
, object_list
)) {
1934 if (object
->type
== OBJT_MARKER
)
1936 if (object
->handle
== NULL
&&
1937 (object
->type
== OBJT_DEFAULT
|| object
->type
== OBJT_SWAP
)) {
1938 if (object
->ref_count
== 0) {
1939 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1940 (long)object
->size
);
1942 if (!vm_object_in_map(object
)) {
1944 "vmochk: internal obj is not in a map: "
1945 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1946 object
->ref_count
, (u_long
)object
->size
,
1947 (u_long
)object
->size
,
1948 (void *)object
->backing_object
);
1957 DB_SHOW_COMMAND(object
, vm_object_print_static
)
1959 /* XXX convert args. */
1960 vm_object_t object
= (vm_object_t
)addr
;
1961 boolean_t full
= have_addr
;
1965 /* XXX count is an (unused) arg. Avoid shadowing it. */
1966 #define count was_count
1974 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1975 object
, (int)object
->type
, (u_long
)object
->size
,
1976 object
->resident_page_count
, object
->ref_count
, object
->flags
);
1978 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1980 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1981 object
->shadow_count
,
1982 object
->backing_object
? object
->backing_object
->ref_count
: 0,
1983 object
->backing_object
, (long)object
->backing_object_offset
);
1990 RB_FOREACH(p
, vm_page_rb_tree
, &object
->rb_memq
) {
1992 db_iprintf("memory:=");
1993 else if (count
== 6) {
2001 db_printf("(off=0x%lx,page=0x%lx)",
2002 (u_long
) p
->pindex
, (u_long
) VM_PAGE_TO_PHYS(p
));
2013 * XXX need this non-static entry for calling from vm_map_print.
2018 vm_object_print(/* db_expr_t */ long addr
,
2019 boolean_t have_addr
,
2020 /* db_expr_t */ long count
,
2023 vm_object_print_static(addr
, have_addr
, count
, modif
);
2029 DB_SHOW_COMMAND(vmopag
, vm_object_print_pages
)
2034 for (object
= TAILQ_FIRST(&vm_object_list
);
2036 object
= TAILQ_NEXT(object
, object_list
)) {
2037 vm_pindex_t idx
, fidx
;
2039 vm_paddr_t pa
= -1, padiff
;
2043 if (object
->type
== OBJT_MARKER
)
2045 db_printf("new object: %p\n", (void *)object
);
2055 osize
= object
->size
;
2058 for (idx
= 0; idx
< osize
; idx
++) {
2059 m
= vm_page_lookup(object
, idx
);
2062 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2063 (long)fidx
, rcount
, (long)pa
);
2078 (VM_PAGE_TO_PHYS(m
) == pa
+ rcount
* PAGE_SIZE
)) {
2083 padiff
= pa
+ rcount
* PAGE_SIZE
- VM_PAGE_TO_PHYS(m
);
2084 padiff
>>= PAGE_SHIFT
;
2085 padiff
&= PQ_L2_MASK
;
2087 pa
= VM_PAGE_TO_PHYS(m
) - rcount
* PAGE_SIZE
;
2091 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2092 (long)fidx
, rcount
, (long)pa
);
2093 db_printf("pd(%ld)\n", (long)padiff
);
2103 pa
= VM_PAGE_TO_PHYS(m
);
2107 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2108 (long)fidx
, rcount
, (long)pa
);