Add CAM_NEW_TRAN_CODE as a kernel option.
[dragonfly.git] / sbin / routed / radix.c
blobf823c6109c14483deb3cce1fa53702aa6efe1e5b
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgment:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)radix.c 8.4 (Berkeley) 11/2/94
35 * $FreeBSD: src/sbin/routed/radix.c,v 1.5 1999/09/05 17:49:11 peter Exp $
36 * $DragonFly: src/sbin/routed/radix.c,v 1.3 2004/02/04 17:40:01 joerg Exp $
40 * Routines to build and maintain radix trees for routing lookups.
43 #include "defs.h"
45 #if !defined(sgi) && !defined(__NetBSD__)
46 static char sccsid[] __attribute__((unused)) = "@(#)rdisc.c 8.1 (Berkeley) x/y/95";
47 #elif defined(__NetBSD__)
48 __RCSID("$NetBSD$");
49 #endif
50 #ident "$FreeBSD: src/sbin/routed/radix.c,v 1.5 1999/09/05 17:49:11 peter Exp $"
52 #define log(x, msg) syslog(x, msg)
53 #define panic(s) {log(LOG_ERR,s); exit(1);}
54 #define min(a,b) (((a)<(b))?(a):(b))
56 int max_keylen;
57 struct radix_mask *rn_mkfreelist;
58 struct radix_node_head *mask_rnhead;
59 static char *addmask_key;
60 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
61 static char *rn_zeros, *rn_ones;
63 #define rn_masktop (mask_rnhead->rnh_treetop)
64 #undef Bcmp
65 #define Bcmp(a, b, l) (l == 0 ? 0 \
66 : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))
68 static int rn_satisfies_leaf(char *, struct radix_node *, int);
71 * The data structure for the keys is a radix tree with one way
72 * branching removed. The index rn_b at an internal node n represents a bit
73 * position to be tested. The tree is arranged so that all descendants
74 * of a node n have keys whose bits all agree up to position rn_b - 1.
75 * (We say the index of n is rn_b.)
77 * There is at least one descendant which has a one bit at position rn_b,
78 * and at least one with a zero there.
80 * A route is determined by a pair of key and mask. We require that the
81 * bit-wise logical and of the key and mask to be the key.
82 * We define the index of a route to associated with the mask to be
83 * the first bit number in the mask where 0 occurs (with bit number 0
84 * representing the highest order bit).
86 * We say a mask is normal if every bit is 0, past the index of the mask.
87 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
88 * and m is a normal mask, then the route applies to every descendant of n.
89 * If the index(m) < rn_b, this implies the trailing last few bits of k
90 * before bit b are all 0, (and hence consequently true of every descendant
91 * of n), so the route applies to all descendants of the node as well.
93 * Similar logic shows that a non-normal mask m such that
94 * index(m) <= index(n) could potentially apply to many children of n.
95 * Thus, for each non-host route, we attach its mask to a list at an internal
96 * node as high in the tree as we can go.
98 * The present version of the code makes use of normal routes in short-
99 * circuiting an explict mask and compare operation when testing whether
100 * a key satisfies a normal route, and also in remembering the unique leaf
101 * that governs a subtree.
104 struct radix_node *
105 rn_search(void *v_arg,
106 struct radix_node *head)
108 struct radix_node *x;
109 caddr_t v;
111 for (x = head, v = v_arg; x->rn_b >= 0;) {
112 if (x->rn_bmask & v[x->rn_off])
113 x = x->rn_r;
114 else
115 x = x->rn_l;
117 return (x);
120 struct radix_node *
121 rn_search_m(void *v_arg,
122 struct radix_node *head,
123 void *m_arg)
125 struct radix_node *x;
126 caddr_t v = v_arg, m = m_arg;
128 for (x = head; x->rn_b >= 0;) {
129 if ((x->rn_bmask & m[x->rn_off]) &&
130 (x->rn_bmask & v[x->rn_off]))
131 x = x->rn_r;
132 else
133 x = x->rn_l;
135 return x;
139 rn_refines(void* m_arg, void *n_arg)
141 caddr_t m = m_arg, n = n_arg;
142 caddr_t lim, lim2 = lim = n + *(u_char *)n;
143 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
144 int masks_are_equal = 1;
146 if (longer > 0)
147 lim -= longer;
148 while (n < lim) {
149 if (*n & ~(*m))
150 return 0;
151 if (*n++ != *m++)
152 masks_are_equal = 0;
154 while (n < lim2)
155 if (*n++)
156 return 0;
157 if (masks_are_equal && (longer < 0))
158 for (lim2 = m - longer; m < lim2; )
159 if (*m++)
160 return 1;
161 return (!masks_are_equal);
164 struct radix_node *
165 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
167 struct radix_node *x;
168 caddr_t netmask = 0;
170 if (m_arg) {
171 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
172 return (0);
173 netmask = x->rn_key;
175 x = rn_match(v_arg, head);
176 if (x && netmask) {
177 while (x && x->rn_mask != netmask)
178 x = x->rn_dupedkey;
180 return x;
183 static int
184 rn_satisfies_leaf(char *trial,
185 struct radix_node *leaf,
186 int skip)
188 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
189 char *cplim;
190 int length = min(*(u_char *)cp, *(u_char *)cp2);
192 if (cp3 == 0)
193 cp3 = rn_ones;
194 else
195 length = min(length, *(u_char *)cp3);
196 cplim = cp + length; cp3 += skip; cp2 += skip;
197 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
198 if ((*cp ^ *cp2) & *cp3)
199 return 0;
200 return 1;
203 struct radix_node *
204 rn_match(void *v_arg,
205 struct radix_node_head *head)
207 caddr_t v = v_arg;
208 struct radix_node *t = head->rnh_treetop, *x;
209 caddr_t cp = v, cp2;
210 caddr_t cplim;
211 struct radix_node *saved_t, *top = t;
212 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
213 int test, b, rn_b;
216 * Open code rn_search(v, top) to avoid overhead of extra
217 * subroutine call.
219 for (; t->rn_b >= 0; ) {
220 if (t->rn_bmask & cp[t->rn_off])
221 t = t->rn_r;
222 else
223 t = t->rn_l;
226 * See if we match exactly as a host destination
227 * or at least learn how many bits match, for normal mask finesse.
229 * It doesn't hurt us to limit how many bytes to check
230 * to the length of the mask, since if it matches we had a genuine
231 * match and the leaf we have is the most specific one anyway;
232 * if it didn't match with a shorter length it would fail
233 * with a long one. This wins big for class B&C netmasks which
234 * are probably the most common case...
236 if (t->rn_mask)
237 vlen = *(u_char *)t->rn_mask;
238 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
239 for (; cp < cplim; cp++, cp2++)
240 if (*cp != *cp2)
241 goto on1;
243 * This extra grot is in case we are explicitly asked
244 * to look up the default. Ugh!
245 * Or 255.255.255.255
247 * In this case, we have a complete match of the key. Unless
248 * the node is one of the roots, we are finished.
249 * If it is the zeros root, then take what we have, prefering
250 * any real data.
251 * If it is the ones root, then pretend the target key was followed
252 * by a byte of zeros.
254 if (!(t->rn_flags & RNF_ROOT))
255 return t; /* not a root */
256 if (t->rn_dupedkey) {
257 t = t->rn_dupedkey;
258 return t; /* have some real data */
260 if (*(cp-1) == 0)
261 return t; /* not the ones root */
262 b = 0; /* fake a zero after 255.255.255.255 */
263 goto on2;
264 on1:
265 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
266 for (b = 7; (test >>= 1) > 0;)
267 b--;
268 on2:
269 matched_off = cp - v;
270 b += matched_off << 3;
271 rn_b = -1 - b;
273 * If there is a host route in a duped-key chain, it will be first.
275 if ((saved_t = t)->rn_mask == 0)
276 t = t->rn_dupedkey;
277 for (; t; t = t->rn_dupedkey) {
279 * Even if we don't match exactly as a host,
280 * we may match if the leaf we wound up at is
281 * a route to a net.
283 if (t->rn_flags & RNF_NORMAL) {
284 if (rn_b <= t->rn_b)
285 return t;
286 } else if (rn_satisfies_leaf(v, t, matched_off)) {
287 return t;
290 t = saved_t;
291 /* start searching up the tree */
292 do {
293 struct radix_mask *m;
294 t = t->rn_p;
295 if ((m = t->rn_mklist)) {
297 * If non-contiguous masks ever become important
298 * we can restore the masking and open coding of
299 * the search and satisfaction test and put the
300 * calculation of "off" back before the "do".
302 do {
303 if (m->rm_flags & RNF_NORMAL) {
304 if (rn_b <= m->rm_b)
305 return (m->rm_leaf);
306 } else {
307 off = min(t->rn_off, matched_off);
308 x = rn_search_m(v, t, m->rm_mask);
309 while (x && x->rn_mask != m->rm_mask)
310 x = x->rn_dupedkey;
311 if (x && rn_satisfies_leaf(v, x, off))
312 return x;
314 } while ((m = m->rm_mklist));
316 } while (t != top);
317 return 0;
320 #ifdef RN_DEBUG
321 int rn_nodenum;
322 struct radix_node *rn_clist;
323 int rn_saveinfo;
324 int rn_debug = 1;
325 #endif
327 struct radix_node *
328 rn_newpair(void *v, int b, struct radix_node nodes[2])
330 struct radix_node *tt = nodes, *t = tt + 1;
331 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
332 t->rn_l = tt; t->rn_off = b >> 3;
333 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
334 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
335 #ifdef RN_DEBUG
336 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
337 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
338 #endif
339 return t;
342 struct radix_node *
343 rn_insert(void* v_arg,
344 struct radix_node_head *head,
345 int *dupentry,
346 struct radix_node nodes[2])
348 caddr_t v = v_arg;
349 struct radix_node *top = head->rnh_treetop;
350 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
351 struct radix_node *t = rn_search(v_arg, top);
352 caddr_t cp = v + head_off;
353 int b;
354 struct radix_node *tt;
357 * Find first bit at which v and t->rn_key differ
360 caddr_t cp2 = t->rn_key + head_off;
361 int cmp_res;
362 caddr_t cplim = v + vlen;
364 while (cp < cplim)
365 if (*cp2++ != *cp++)
366 goto on1;
367 /* handle adding 255.255.255.255 */
368 if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
369 *dupentry = 1;
370 return t;
372 on1:
373 *dupentry = 0;
374 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
375 for (b = (cp - v) << 3; cmp_res; b--)
376 cmp_res >>= 1;
379 struct radix_node *p, *x = top;
380 cp = v;
381 do {
382 p = x;
383 if (cp[x->rn_off] & x->rn_bmask)
384 x = x->rn_r;
385 else x = x->rn_l;
386 } while ((unsigned)b > (unsigned)x->rn_b);
387 #ifdef RN_DEBUG
388 if (rn_debug)
389 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
390 #endif
391 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
392 if ((cp[p->rn_off] & p->rn_bmask) == 0)
393 p->rn_l = t;
394 else
395 p->rn_r = t;
396 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
397 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
398 t->rn_r = x;
399 } else {
400 t->rn_r = tt; t->rn_l = x;
402 #ifdef RN_DEBUG
403 if (rn_debug)
404 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
405 #endif
407 return (tt);
410 struct radix_node *
411 rn_addmask(void *n_arg, int search, int skip)
413 caddr_t netmask = (caddr_t)n_arg;
414 struct radix_node *x;
415 caddr_t cp, cplim;
416 int b = 0, mlen, j;
417 int maskduplicated, m0, isnormal;
418 struct radix_node *saved_x;
419 static int last_zeroed = 0;
421 if ((mlen = *(u_char *)netmask) > max_keylen)
422 mlen = max_keylen;
423 if (skip == 0)
424 skip = 1;
425 if (mlen <= skip)
426 return (mask_rnhead->rnh_nodes);
427 if (skip > 1)
428 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
429 if ((m0 = mlen) > skip)
430 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
432 * Trim trailing zeroes.
434 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
435 cp--;
436 mlen = cp - addmask_key;
437 if (mlen <= skip) {
438 if (m0 >= last_zeroed)
439 last_zeroed = mlen;
440 return (mask_rnhead->rnh_nodes);
442 if (m0 < last_zeroed)
443 Bzero(addmask_key + m0, last_zeroed - m0);
444 *addmask_key = last_zeroed = mlen;
445 x = rn_search(addmask_key, rn_masktop);
446 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
447 x = 0;
448 if (x || search)
449 return (x);
450 x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
451 "rn_addmask");
452 saved_x = x;
453 Bzero(x, max_keylen + 2 * sizeof (*x));
454 netmask = cp = (caddr_t)(x + 2);
455 Bcopy(addmask_key, cp, mlen);
456 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
457 if (maskduplicated) {
458 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
459 Free(saved_x);
460 return (x);
463 * Calculate index of mask, and check for normalcy.
465 cplim = netmask + mlen; isnormal = 1;
466 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
467 cp++;
468 if (cp != cplim) {
469 for (j = 0x80; (j & *cp) != 0; j >>= 1)
470 b++;
471 if (*cp != normal_chars[b] || cp != (cplim - 1))
472 isnormal = 0;
474 b += (cp - netmask) << 3;
475 x->rn_b = -1 - b;
476 if (isnormal)
477 x->rn_flags |= RNF_NORMAL;
478 return (x);
481 static int /* XXX: arbitrary ordering for non-contiguous masks */
482 rn_lexobetter(void *m_arg, void *n_arg)
484 u_char *mp = m_arg, *np = n_arg, *lim;
486 if (*mp > *np)
487 return 1; /* not really, but need to check longer one first */
488 if (*mp == *np)
489 for (lim = mp + *mp; mp < lim;)
490 if (*mp++ > *np++)
491 return 1;
492 return 0;
495 static struct radix_mask *
496 rn_new_radix_mask(struct radix_node *tt,
497 struct radix_mask *next)
499 struct radix_mask *m;
501 MKGet(m);
502 if (m == 0) {
503 log(LOG_ERR, "Mask for route not entered\n");
504 return (0);
506 Bzero(m, sizeof *m);
507 m->rm_b = tt->rn_b;
508 m->rm_flags = tt->rn_flags;
509 if (tt->rn_flags & RNF_NORMAL)
510 m->rm_leaf = tt;
511 else
512 m->rm_mask = tt->rn_mask;
513 m->rm_mklist = next;
514 tt->rn_mklist = m;
515 return m;
518 struct radix_node *
519 rn_addroute(void *v_arg,
520 void *n_arg,
521 struct radix_node_head *head,
522 struct radix_node treenodes[2])
524 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
525 struct radix_node *t, *x = 0, *tt;
526 struct radix_node *saved_tt, *top = head->rnh_treetop;
527 short b = 0, b_leaf = 0;
528 int keyduplicated;
529 caddr_t mmask;
530 struct radix_mask *m, **mp;
533 * In dealing with non-contiguous masks, there may be
534 * many different routes which have the same mask.
535 * We will find it useful to have a unique pointer to
536 * the mask to speed avoiding duplicate references at
537 * nodes and possibly save time in calculating indices.
539 if (netmask) {
540 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
541 return (0);
542 b_leaf = x->rn_b;
543 b = -1 - x->rn_b;
544 netmask = x->rn_key;
547 * Deal with duplicated keys: attach node to previous instance
549 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
550 if (keyduplicated) {
551 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
552 if (tt->rn_mask == netmask)
553 return (0);
554 if (netmask == 0 ||
555 (tt->rn_mask &&
556 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
557 rn_refines(netmask, tt->rn_mask) ||
558 rn_lexobetter(netmask, tt->rn_mask))))
559 break;
562 * If the mask is not duplicated, we wouldn't
563 * find it among possible duplicate key entries
564 * anyway, so the above test doesn't hurt.
566 * We sort the masks for a duplicated key the same way as
567 * in a masklist -- most specific to least specific.
568 * This may require the unfortunate nuisance of relocating
569 * the head of the list.
571 if (tt == saved_tt) {
572 struct radix_node *xx = x;
573 /* link in at head of list */
574 (tt = treenodes)->rn_dupedkey = t;
575 tt->rn_flags = t->rn_flags;
576 tt->rn_p = x = t->rn_p;
577 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
578 saved_tt = tt; x = xx;
579 } else {
580 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
581 t->rn_dupedkey = tt;
583 #ifdef RN_DEBUG
584 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
585 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
586 #endif
587 tt->rn_key = (caddr_t) v;
588 tt->rn_b = -1;
589 tt->rn_flags = RNF_ACTIVE;
592 * Put mask in tree.
594 if (netmask) {
595 tt->rn_mask = netmask;
596 tt->rn_b = x->rn_b;
597 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
599 t = saved_tt->rn_p;
600 if (keyduplicated)
601 goto on2;
602 b_leaf = -1 - t->rn_b;
603 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
604 /* Promote general routes from below */
605 if (x->rn_b < 0) {
606 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
607 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
608 if ((*mp = m = rn_new_radix_mask(x, 0)))
609 mp = &m->rm_mklist;
611 } else if (x->rn_mklist) {
613 * Skip over masks whose index is > that of new node
615 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
616 if (m->rm_b >= b_leaf)
617 break;
618 t->rn_mklist = m; *mp = 0;
620 on2:
621 /* Add new route to highest possible ancestor's list */
622 if ((netmask == 0) || (b > t->rn_b ))
623 return tt; /* can't lift at all */
624 b_leaf = tt->rn_b;
625 do {
626 x = t;
627 t = t->rn_p;
628 } while (b <= t->rn_b && x != top);
630 * Search through routes associated with node to
631 * insert new route according to index.
632 * Need same criteria as when sorting dupedkeys to avoid
633 * double loop on deletion.
635 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
636 if (m->rm_b < b_leaf)
637 continue;
638 if (m->rm_b > b_leaf)
639 break;
640 if (m->rm_flags & RNF_NORMAL) {
641 mmask = m->rm_leaf->rn_mask;
642 if (tt->rn_flags & RNF_NORMAL) {
643 log(LOG_ERR,
644 "Non-unique normal route, mask not entered");
645 return tt;
647 } else
648 mmask = m->rm_mask;
649 if (mmask == netmask) {
650 m->rm_refs++;
651 tt->rn_mklist = m;
652 return tt;
654 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
655 break;
657 *mp = rn_new_radix_mask(tt, *mp);
658 return tt;
661 struct radix_node *
662 rn_delete(void *v_arg,
663 void *netmask_arg,
664 struct radix_node_head *head)
666 struct radix_node *t, *p, *x, *tt;
667 struct radix_mask *m, *saved_m, **mp;
668 struct radix_node *dupedkey, *saved_tt, *top;
669 caddr_t v, netmask;
670 int b, head_off, vlen;
672 v = v_arg;
673 netmask = netmask_arg;
674 x = head->rnh_treetop;
675 tt = rn_search(v, x);
676 head_off = x->rn_off;
677 vlen = *(u_char *)v;
678 saved_tt = tt;
679 top = x;
680 if (tt == 0 ||
681 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
682 return (0);
684 * Delete our route from mask lists.
686 if (netmask) {
687 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
688 return (0);
689 netmask = x->rn_key;
690 while (tt->rn_mask != netmask)
691 if ((tt = tt->rn_dupedkey) == 0)
692 return (0);
694 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
695 goto on1;
696 if (tt->rn_flags & RNF_NORMAL) {
697 if (m->rm_leaf != tt || m->rm_refs > 0) {
698 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
699 return 0; /* dangling ref could cause disaster */
701 } else {
702 if (m->rm_mask != tt->rn_mask) {
703 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
704 goto on1;
706 if (--m->rm_refs >= 0)
707 goto on1;
709 b = -1 - tt->rn_b;
710 t = saved_tt->rn_p;
711 if (b > t->rn_b)
712 goto on1; /* Wasn't lifted at all */
713 do {
714 x = t;
715 t = t->rn_p;
716 } while (b <= t->rn_b && x != top);
717 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
718 if (m == saved_m) {
719 *mp = m->rm_mklist;
720 MKFree(m);
721 break;
723 if (m == 0) {
724 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
725 if (tt->rn_flags & RNF_NORMAL)
726 return (0); /* Dangling ref to us */
728 on1:
730 * Eliminate us from tree
732 if (tt->rn_flags & RNF_ROOT)
733 return (0);
734 #ifdef RN_DEBUG
735 /* Get us out of the creation list */
736 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
737 if (t) t->rn_ybro = tt->rn_ybro;
738 #endif
739 t = tt->rn_p;
740 if ((dupedkey = saved_tt->rn_dupedkey)) {
741 if (tt == saved_tt) {
742 x = dupedkey; x->rn_p = t;
743 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
744 } else {
745 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
746 p = p->rn_dupedkey;
747 if (p) p->rn_dupedkey = tt->rn_dupedkey;
748 else log(LOG_ERR, "rn_delete: couldn't find us\n");
750 t = tt + 1;
751 if (t->rn_flags & RNF_ACTIVE) {
752 #ifndef RN_DEBUG
753 *++x = *t; p = t->rn_p;
754 #else
755 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
756 #endif
757 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
758 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
760 goto out;
762 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
763 p = t->rn_p;
764 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
765 x->rn_p = p;
767 * Demote routes attached to us.
769 if (t->rn_mklist) {
770 if (x->rn_b >= 0) {
771 for (mp = &x->rn_mklist; (m = *mp);)
772 mp = &m->rm_mklist;
773 *mp = t->rn_mklist;
774 } else {
775 /* If there are any key,mask pairs in a sibling
776 duped-key chain, some subset will appear sorted
777 in the same order attached to our mklist */
778 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
779 if (m == x->rn_mklist) {
780 struct radix_mask *mm = m->rm_mklist;
781 x->rn_mklist = 0;
782 if (--(m->rm_refs) < 0)
783 MKFree(m);
784 m = mm;
786 if (m)
787 syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
788 "rn_delete: Orphaned Mask",
789 (unsigned long)m,
790 (unsigned long)x);
794 * We may be holding an active internal node in the tree.
796 x = tt + 1;
797 if (t != x) {
798 #ifndef RN_DEBUG
799 *t = *x;
800 #else
801 b = t->rn_info; *t = *x; t->rn_info = b;
802 #endif
803 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
804 p = x->rn_p;
805 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
807 out:
808 tt->rn_flags &= ~RNF_ACTIVE;
809 tt[1].rn_flags &= ~RNF_ACTIVE;
810 return (tt);
814 rn_walktree(struct radix_node_head *h,
815 int (*f)(struct radix_node *, struct walkarg *),
816 struct walkarg *w)
818 int error;
819 struct radix_node *base, *next;
820 struct radix_node *rn = h->rnh_treetop;
822 * This gets complicated because we may delete the node
823 * while applying the function f to it, so we need to calculate
824 * the successor node in advance.
826 /* First time through node, go left */
827 while (rn->rn_b >= 0)
828 rn = rn->rn_l;
829 for (;;) {
830 base = rn;
831 /* If at right child go back up, otherwise, go right */
832 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
833 rn = rn->rn_p;
834 /* Find the next *leaf* since next node might vanish, too */
835 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
836 rn = rn->rn_l;
837 next = rn;
838 /* Process leaves */
839 while ((rn = base)) {
840 base = rn->rn_dupedkey;
841 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
842 return (error);
844 rn = next;
845 if (rn->rn_flags & RNF_ROOT)
846 return (0);
848 /* NOTREACHED */
852 rn_inithead(struct radix_node_head **head, int off)
854 struct radix_node_head *rnh;
855 struct radix_node *t, *tt, *ttt;
856 if (*head)
857 return (1);
858 rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
859 Bzero(rnh, sizeof (*rnh));
860 *head = rnh;
861 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
862 ttt = rnh->rnh_nodes + 2;
863 t->rn_r = ttt;
864 t->rn_p = t;
865 tt = t->rn_l;
866 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
867 tt->rn_b = -1 - off;
868 *ttt = *tt;
869 ttt->rn_key = rn_ones;
870 rnh->rnh_addaddr = rn_addroute;
871 rnh->rnh_deladdr = rn_delete;
872 rnh->rnh_matchaddr = rn_match;
873 rnh->rnh_lookup = rn_lookup;
874 rnh->rnh_walktree = rn_walktree;
875 rnh->rnh_treetop = t;
876 return (1);
879 void
880 rn_init(void)
882 char *cp, *cplim;
883 if (max_keylen == 0) {
884 printf("rn_init: radix functions require max_keylen be set\n");
885 return;
887 rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
888 Bzero(rn_zeros, 3 * max_keylen);
889 rn_ones = cp = rn_zeros + max_keylen;
890 addmask_key = cplim = rn_ones + max_keylen;
891 while (cp < cplim)
892 *cp++ = -1;
893 if (rn_inithead(&mask_rnhead, 0) == 0)
894 panic("rn_init 2");