1 /* SCC value numbering for trees
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dan@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-inline.h"
31 #include "tree-flow.h"
33 #include "tree-dump.h"
37 #include "tree-iterator.h"
39 #include "alloc-pool.h"
40 #include "tree-pass.h"
43 #include "langhooks.h"
46 #include "tree-ssa-propagate.h"
47 #include "tree-ssa-sccvn.h"
49 /* This algorithm is based on the SCC algorithm presented by Keith
50 Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
51 (http://citeseer.ist.psu.edu/41805.html). In
52 straight line code, it is equivalent to a regular hash based value
53 numbering that is performed in reverse postorder.
55 For code with cycles, there are two alternatives, both of which
56 require keeping the hashtables separate from the actual list of
57 value numbers for SSA names.
59 1. Iterate value numbering in an RPO walk of the blocks, removing
60 all the entries from the hashtable after each iteration (but
61 keeping the SSA name->value number mapping between iterations).
62 Iterate until it does not change.
64 2. Perform value numbering as part of an SCC walk on the SSA graph,
65 iterating only the cycles in the SSA graph until they do not change
66 (using a separate, optimistic hashtable for value numbering the SCC
69 The second is not just faster in practice (because most SSA graph
70 cycles do not involve all the variables in the graph), it also has
73 One of these nice properties is that when we pop an SCC off the
74 stack, we are guaranteed to have processed all the operands coming from
75 *outside of that SCC*, so we do not need to do anything special to
76 ensure they have value numbers.
78 Another nice property is that the SCC walk is done as part of a DFS
79 of the SSA graph, which makes it easy to perform combining and
80 simplifying operations at the same time.
82 The code below is deliberately written in a way that makes it easy
83 to separate the SCC walk from the other work it does.
85 In order to propagate constants through the code, we track which
86 expressions contain constants, and use those while folding. In
87 theory, we could also track expressions whose value numbers are
88 replaced, in case we end up folding based on expression
91 In order to value number memory, we assign value numbers to vuses.
92 This enables us to note that, for example, stores to the same
93 address of the same value from the same starting memory states are
97 1. We can iterate only the changing portions of the SCC's, but
98 I have not seen an SCC big enough for this to be a win.
99 2. If you differentiate between phi nodes for loops and phi nodes
100 for if-then-else, you can properly consider phi nodes in different
101 blocks for equivalence.
102 3. We could value number vuses in more cases, particularly, whole
106 /* The set of hashtables and alloc_pool's for their items. */
108 typedef struct vn_tables_s
113 struct obstack nary_obstack
;
114 alloc_pool phis_pool
;
115 alloc_pool references_pool
;
118 static htab_t constant_to_value_id
;
119 static bitmap constant_value_ids
;
122 /* Valid hashtables storing information we have proven to be
125 static vn_tables_t valid_info
;
127 /* Optimistic hashtables storing information we are making assumptions about
128 during iterations. */
130 static vn_tables_t optimistic_info
;
132 /* Pointer to the set of hashtables that is currently being used.
133 Should always point to either the optimistic_info, or the
136 static vn_tables_t current_info
;
139 /* Reverse post order index for each basic block. */
141 static int *rpo_numbers
;
143 #define SSA_VAL(x) (VN_INFO ((x))->valnum)
145 /* This represents the top of the VN lattice, which is the universal
150 /* Unique counter for our value ids. */
152 static unsigned int next_value_id
;
154 /* Next DFS number and the stack for strongly connected component
157 static unsigned int next_dfs_num
;
158 static VEC (tree
, heap
) *sccstack
;
160 static bool may_insert
;
163 DEF_VEC_P(vn_ssa_aux_t
);
164 DEF_VEC_ALLOC_P(vn_ssa_aux_t
, heap
);
166 /* Table of vn_ssa_aux_t's, one per ssa_name. The vn_ssa_aux_t objects
167 are allocated on an obstack for locality reasons, and to free them
168 without looping over the VEC. */
170 static VEC (vn_ssa_aux_t
, heap
) *vn_ssa_aux_table
;
171 static struct obstack vn_ssa_aux_obstack
;
173 /* Return the value numbering information for a given SSA name. */
178 vn_ssa_aux_t res
= VEC_index (vn_ssa_aux_t
, vn_ssa_aux_table
,
179 SSA_NAME_VERSION (name
));
184 /* Set the value numbering info for a given SSA name to a given
188 VN_INFO_SET (tree name
, vn_ssa_aux_t value
)
190 VEC_replace (vn_ssa_aux_t
, vn_ssa_aux_table
,
191 SSA_NAME_VERSION (name
), value
);
194 /* Initialize the value numbering info for a given SSA name.
195 This should be called just once for every SSA name. */
198 VN_INFO_GET (tree name
)
200 vn_ssa_aux_t newinfo
;
202 newinfo
= XOBNEW (&vn_ssa_aux_obstack
, struct vn_ssa_aux
);
203 memset (newinfo
, 0, sizeof (struct vn_ssa_aux
));
204 if (SSA_NAME_VERSION (name
) >= VEC_length (vn_ssa_aux_t
, vn_ssa_aux_table
))
205 VEC_safe_grow (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
,
206 SSA_NAME_VERSION (name
) + 1);
207 VEC_replace (vn_ssa_aux_t
, vn_ssa_aux_table
,
208 SSA_NAME_VERSION (name
), newinfo
);
213 /* Get the representative expression for the SSA_NAME NAME. Returns
214 the representative SSA_NAME if there is no expression associated with it. */
217 vn_get_expr_for (tree name
)
219 vn_ssa_aux_t vn
= VN_INFO (name
);
221 tree expr
= NULL_TREE
;
223 if (vn
->valnum
== VN_TOP
)
226 /* If the value-number is a constant it is the representative
228 if (TREE_CODE (vn
->valnum
) != SSA_NAME
)
231 /* Get to the information of the value of this SSA_NAME. */
232 vn
= VN_INFO (vn
->valnum
);
234 /* If the value-number is a constant it is the representative
236 if (TREE_CODE (vn
->valnum
) != SSA_NAME
)
239 /* Else if we have an expression, return it. */
240 if (vn
->expr
!= NULL_TREE
)
243 /* Otherwise use the defining statement to build the expression. */
244 def_stmt
= SSA_NAME_DEF_STMT (vn
->valnum
);
246 /* If the value number is a default-definition or a PHI result
248 if (gimple_nop_p (def_stmt
)
249 || gimple_code (def_stmt
) == GIMPLE_PHI
)
252 if (!is_gimple_assign (def_stmt
))
255 /* FIXME tuples. This is incomplete and likely will miss some
257 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)))
260 if ((gimple_assign_rhs_code (def_stmt
) == VIEW_CONVERT_EXPR
261 || gimple_assign_rhs_code (def_stmt
) == REALPART_EXPR
262 || gimple_assign_rhs_code (def_stmt
) == IMAGPART_EXPR
)
263 && TREE_CODE (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
)
264 expr
= fold_build1 (gimple_assign_rhs_code (def_stmt
),
265 gimple_expr_type (def_stmt
),
266 TREE_OPERAND (gimple_assign_rhs1 (def_stmt
), 0));
270 expr
= fold_build1 (gimple_assign_rhs_code (def_stmt
),
271 gimple_expr_type (def_stmt
),
272 gimple_assign_rhs1 (def_stmt
));
276 expr
= fold_build2 (gimple_assign_rhs_code (def_stmt
),
277 gimple_expr_type (def_stmt
),
278 gimple_assign_rhs1 (def_stmt
),
279 gimple_assign_rhs2 (def_stmt
));
284 if (expr
== NULL_TREE
)
287 /* Cache the expression. */
294 /* Free a phi operation structure VP. */
299 vn_phi_t phi
= (vn_phi_t
) vp
;
300 VEC_free (tree
, heap
, phi
->phiargs
);
303 /* Free a reference operation structure VP. */
306 free_reference (void *vp
)
308 vn_reference_t vr
= (vn_reference_t
) vp
;
309 VEC_free (vn_reference_op_s
, heap
, vr
->operands
);
312 /* Hash table equality function for vn_constant_t. */
315 vn_constant_eq (const void *p1
, const void *p2
)
317 const struct vn_constant_s
*vc1
= (const struct vn_constant_s
*) p1
;
318 const struct vn_constant_s
*vc2
= (const struct vn_constant_s
*) p2
;
320 if (vc1
->hashcode
!= vc2
->hashcode
)
323 return vn_constant_eq_with_type (vc1
->constant
, vc2
->constant
);
326 /* Hash table hash function for vn_constant_t. */
329 vn_constant_hash (const void *p1
)
331 const struct vn_constant_s
*vc1
= (const struct vn_constant_s
*) p1
;
332 return vc1
->hashcode
;
335 /* Lookup a value id for CONSTANT and return it. If it does not
339 get_constant_value_id (tree constant
)
342 struct vn_constant_s vc
;
344 vc
.hashcode
= vn_hash_constant_with_type (constant
);
345 vc
.constant
= constant
;
346 slot
= htab_find_slot_with_hash (constant_to_value_id
, &vc
,
347 vc
.hashcode
, NO_INSERT
);
349 return ((vn_constant_t
)*slot
)->value_id
;
353 /* Lookup a value id for CONSTANT, and if it does not exist, create a
354 new one and return it. If it does exist, return it. */
357 get_or_alloc_constant_value_id (tree constant
)
360 vn_constant_t vc
= XNEW (struct vn_constant_s
);
362 vc
->hashcode
= vn_hash_constant_with_type (constant
);
363 vc
->constant
= constant
;
364 slot
= htab_find_slot_with_hash (constant_to_value_id
, vc
,
365 vc
->hashcode
, INSERT
);
369 return ((vn_constant_t
)*slot
)->value_id
;
371 vc
->value_id
= get_next_value_id ();
373 bitmap_set_bit (constant_value_ids
, vc
->value_id
);
377 /* Return true if V is a value id for a constant. */
380 value_id_constant_p (unsigned int v
)
382 return bitmap_bit_p (constant_value_ids
, v
);
385 /* Compare two reference operands P1 and P2 for equality. Return true if
386 they are equal, and false otherwise. */
389 vn_reference_op_eq (const void *p1
, const void *p2
)
391 const_vn_reference_op_t
const vro1
= (const_vn_reference_op_t
) p1
;
392 const_vn_reference_op_t
const vro2
= (const_vn_reference_op_t
) p2
;
394 return vro1
->opcode
== vro2
->opcode
395 && types_compatible_p (vro1
->type
, vro2
->type
)
396 && expressions_equal_p (vro1
->op0
, vro2
->op0
)
397 && expressions_equal_p (vro1
->op1
, vro2
->op1
)
398 && expressions_equal_p (vro1
->op2
, vro2
->op2
);
401 /* Compute the hash for a reference operand VRO1. */
404 vn_reference_op_compute_hash (const vn_reference_op_t vro1
)
406 hashval_t result
= 0;
408 result
+= iterative_hash_expr (vro1
->op0
, vro1
->opcode
);
410 result
+= iterative_hash_expr (vro1
->op1
, vro1
->opcode
);
412 result
+= iterative_hash_expr (vro1
->op2
, vro1
->opcode
);
416 /* Return the hashcode for a given reference operation P1. */
419 vn_reference_hash (const void *p1
)
421 const_vn_reference_t
const vr1
= (const_vn_reference_t
) p1
;
422 return vr1
->hashcode
;
425 /* Compute a hash for the reference operation VR1 and return it. */
428 vn_reference_compute_hash (const vn_reference_t vr1
)
430 hashval_t result
= 0;
433 vn_reference_op_t vro
;
435 for (i
= 0; VEC_iterate (tree
, vr1
->vuses
, i
, v
); i
++)
436 result
+= iterative_hash_expr (v
, 0);
437 for (i
= 0; VEC_iterate (vn_reference_op_s
, vr1
->operands
, i
, vro
); i
++)
438 result
+= vn_reference_op_compute_hash (vro
);
443 /* Return true if reference operations P1 and P2 are equivalent. This
444 means they have the same set of operands and vuses. */
447 vn_reference_eq (const void *p1
, const void *p2
)
451 vn_reference_op_t vro
;
453 const_vn_reference_t
const vr1
= (const_vn_reference_t
) p1
;
454 const_vn_reference_t
const vr2
= (const_vn_reference_t
) p2
;
455 if (vr1
->hashcode
!= vr2
->hashcode
)
458 if (vr1
->vuses
== vr2
->vuses
459 && vr1
->operands
== vr2
->operands
)
462 /* Impossible for them to be equivalent if they have different
464 if (VEC_length (tree
, vr1
->vuses
) != VEC_length (tree
, vr2
->vuses
))
467 /* We require that address operands be canonicalized in a way that
468 two memory references will have the same operands if they are
470 if (VEC_length (vn_reference_op_s
, vr1
->operands
)
471 != VEC_length (vn_reference_op_s
, vr2
->operands
))
474 /* The memory state is more often different than the address of the
475 store/load, so check it first. */
476 for (i
= 0; VEC_iterate (tree
, vr1
->vuses
, i
, v
); i
++)
478 if (VEC_index (tree
, vr2
->vuses
, i
) != v
)
482 for (i
= 0; VEC_iterate (vn_reference_op_s
, vr1
->operands
, i
, vro
); i
++)
484 if (!vn_reference_op_eq (VEC_index (vn_reference_op_s
, vr2
->operands
, i
),
491 /* Place the vuses from STMT into *result. */
494 vuses_to_vec (gimple stmt
, VEC (tree
, gc
) **result
)
502 VEC_reserve_exact (tree
, gc
, *result
,
503 num_ssa_operands (stmt
, SSA_OP_VIRTUAL_USES
));
505 FOR_EACH_SSA_TREE_OPERAND (vuse
, stmt
, iter
, SSA_OP_VIRTUAL_USES
)
506 VEC_quick_push (tree
, *result
, vuse
);
510 /* Copy the VUSE names in STMT into a vector, and return
513 static VEC (tree
, gc
) *
514 copy_vuses_from_stmt (gimple stmt
)
516 VEC (tree
, gc
) *vuses
= NULL
;
518 vuses_to_vec (stmt
, &vuses
);
523 /* Place the vdefs from STMT into *result. */
526 vdefs_to_vec (gimple stmt
, VEC (tree
, gc
) **result
)
534 *result
= VEC_alloc (tree
, gc
, num_ssa_operands (stmt
, SSA_OP_VIRTUAL_DEFS
));
536 FOR_EACH_SSA_TREE_OPERAND (vdef
, stmt
, iter
, SSA_OP_VIRTUAL_DEFS
)
537 VEC_quick_push (tree
, *result
, vdef
);
540 /* Copy the names of vdef results in STMT into a vector, and return
543 static VEC (tree
, gc
) *
544 copy_vdefs_from_stmt (gimple stmt
)
546 VEC (tree
, gc
) *vdefs
= NULL
;
548 vdefs_to_vec (stmt
, &vdefs
);
553 /* Place for shared_v{uses/defs}_from_stmt to shove vuses/vdefs. */
554 static VEC (tree
, gc
) *shared_lookup_vops
;
556 /* Copy the virtual uses from STMT into SHARED_LOOKUP_VOPS.
557 This function will overwrite the current SHARED_LOOKUP_VOPS
561 shared_vuses_from_stmt (gimple stmt
)
563 VEC_truncate (tree
, shared_lookup_vops
, 0);
564 vuses_to_vec (stmt
, &shared_lookup_vops
);
566 return shared_lookup_vops
;
569 /* Copy the operations present in load/store REF into RESULT, a vector of
570 vn_reference_op_s's. */
573 copy_reference_ops_from_ref (tree ref
, VEC(vn_reference_op_s
, heap
) **result
)
575 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
577 vn_reference_op_s temp
;
579 memset (&temp
, 0, sizeof (temp
));
580 /* We do not care for spurious type qualifications. */
581 temp
.type
= TYPE_MAIN_VARIANT (TREE_TYPE (ref
));
582 temp
.opcode
= TREE_CODE (ref
);
583 temp
.op0
= TMR_SYMBOL (ref
) ? TMR_SYMBOL (ref
) : TMR_BASE (ref
);
584 temp
.op1
= TMR_INDEX (ref
);
585 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
587 memset (&temp
, 0, sizeof (temp
));
588 temp
.type
= NULL_TREE
;
589 temp
.opcode
= TREE_CODE (ref
);
590 temp
.op0
= TMR_STEP (ref
);
591 temp
.op1
= TMR_OFFSET (ref
);
592 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
596 /* For non-calls, store the information that makes up the address. */
600 vn_reference_op_s temp
;
602 memset (&temp
, 0, sizeof (temp
));
603 /* We do not care for spurious type qualifications. */
604 temp
.type
= TYPE_MAIN_VARIANT (TREE_TYPE (ref
));
605 temp
.opcode
= TREE_CODE (ref
);
609 case ALIGN_INDIRECT_REF
:
611 /* The only operand is the address, which gets its own
612 vn_reference_op_s structure. */
614 case MISALIGNED_INDIRECT_REF
:
615 temp
.op0
= TREE_OPERAND (ref
, 1);
618 /* Record bits and position. */
619 temp
.op0
= TREE_OPERAND (ref
, 1);
620 temp
.op1
= TREE_OPERAND (ref
, 2);
623 /* The field decl is enough to unambiguously specify the field,
624 a matching type is not necessary and a mismatching type
625 is always a spurious difference. */
626 temp
.type
= NULL_TREE
;
627 /* If this is a reference to a union member, record the union
628 member size as operand. Do so only if we are doing
629 expression insertion (during FRE), as PRE currently gets
630 confused with this. */
632 && TREE_OPERAND (ref
, 2) == NULL_TREE
633 && TREE_CODE (DECL_CONTEXT (TREE_OPERAND (ref
, 1))) == UNION_TYPE
634 && integer_zerop (DECL_FIELD_OFFSET (TREE_OPERAND (ref
, 1)))
635 && integer_zerop (DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1))))
636 temp
.op0
= TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref
, 1)));
639 /* Record field as operand. */
640 temp
.op0
= TREE_OPERAND (ref
, 1);
641 temp
.op1
= TREE_OPERAND (ref
, 2);
644 case ARRAY_RANGE_REF
:
646 /* Record index as operand. */
647 temp
.op0
= TREE_OPERAND (ref
, 1);
648 temp
.op1
= TREE_OPERAND (ref
, 2);
649 temp
.op2
= TREE_OPERAND (ref
, 3);
665 if (is_gimple_min_invariant (ref
))
671 /* These are only interesting for their operands, their
672 existence, and their type. They will never be the last
673 ref in the chain of references (IE they require an
674 operand), so we don't have to put anything
675 for op* as it will be handled by the iteration */
678 case VIEW_CONVERT_EXPR
:
683 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
685 if (REFERENCE_CLASS_P (ref
)
686 || (TREE_CODE (ref
) == ADDR_EXPR
687 && !is_gimple_min_invariant (ref
)))
688 ref
= TREE_OPERAND (ref
, 0);
694 /* Re-create a reference tree from the reference ops OPS.
695 Returns NULL_TREE if the ops were not handled.
696 This routine needs to be kept in sync with copy_reference_ops_from_ref. */
699 get_ref_from_reference_ops (VEC(vn_reference_op_s
, heap
) *ops
)
701 vn_reference_op_t op
;
703 tree ref
, *op0_p
= &ref
;
705 for (i
= 0; VEC_iterate (vn_reference_op_s
, ops
, i
, op
); ++i
)
712 case ALIGN_INDIRECT_REF
:
714 *op0_p
= build1 (op
->opcode
, op
->type
, NULL_TREE
);
715 op0_p
= &TREE_OPERAND (*op0_p
, 0);
718 case MISALIGNED_INDIRECT_REF
:
719 *op0_p
= build2 (MISALIGNED_INDIRECT_REF
, op
->type
,
721 op0_p
= &TREE_OPERAND (*op0_p
, 0);
725 *op0_p
= build3 (BIT_FIELD_REF
, op
->type
, NULL_TREE
,
727 op0_p
= &TREE_OPERAND (*op0_p
, 0);
731 *op0_p
= build3 (COMPONENT_REF
, TREE_TYPE (op
->op0
), NULL_TREE
,
733 op0_p
= &TREE_OPERAND (*op0_p
, 0);
736 case ARRAY_RANGE_REF
:
738 *op0_p
= build4 (op
->opcode
, op
->type
, NULL_TREE
,
739 op
->op0
, op
->op1
, op
->op2
);
740 op0_p
= &TREE_OPERAND (*op0_p
, 0);
758 if (op
->op0
!= NULL_TREE
)
760 gcc_assert (is_gimple_min_invariant (op
->op0
));
767 case VIEW_CONVERT_EXPR
:
768 *op0_p
= build1 (op
->opcode
, op
->type
, NULL_TREE
);
769 op0_p
= &TREE_OPERAND (*op0_p
, 0);
780 /* Copy the operations present in load/store/call REF into RESULT, a vector of
781 vn_reference_op_s's. */
784 copy_reference_ops_from_call (gimple call
,
785 VEC(vn_reference_op_s
, heap
) **result
)
787 vn_reference_op_s temp
;
790 /* Copy the type, opcode, function being called and static chain. */
791 memset (&temp
, 0, sizeof (temp
));
792 temp
.type
= gimple_call_return_type (call
);
793 temp
.opcode
= CALL_EXPR
;
794 temp
.op0
= gimple_call_fn (call
);
795 temp
.op1
= gimple_call_chain (call
);
796 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
798 /* Copy the call arguments. As they can be references as well,
799 just chain them together. */
800 for (i
= 0; i
< gimple_call_num_args (call
); ++i
)
802 tree callarg
= gimple_call_arg (call
, i
);
803 copy_reference_ops_from_ref (callarg
, result
);
807 /* Create a vector of vn_reference_op_s structures from REF, a
808 REFERENCE_CLASS_P tree. The vector is not shared. */
810 static VEC(vn_reference_op_s
, heap
) *
811 create_reference_ops_from_ref (tree ref
)
813 VEC (vn_reference_op_s
, heap
) *result
= NULL
;
815 copy_reference_ops_from_ref (ref
, &result
);
819 /* Create a vector of vn_reference_op_s structures from CALL, a
820 call statement. The vector is not shared. */
822 static VEC(vn_reference_op_s
, heap
) *
823 create_reference_ops_from_call (gimple call
)
825 VEC (vn_reference_op_s
, heap
) *result
= NULL
;
827 copy_reference_ops_from_call (call
, &result
);
831 static VEC(vn_reference_op_s
, heap
) *shared_lookup_references
;
833 /* Create a vector of vn_reference_op_s structures from REF, a
834 REFERENCE_CLASS_P tree. The vector is shared among all callers of
837 static VEC(vn_reference_op_s
, heap
) *
838 shared_reference_ops_from_ref (tree ref
)
842 VEC_truncate (vn_reference_op_s
, shared_lookup_references
, 0);
843 copy_reference_ops_from_ref (ref
, &shared_lookup_references
);
844 return shared_lookup_references
;
847 /* Create a vector of vn_reference_op_s structures from CALL, a
848 call statement. The vector is shared among all callers of
851 static VEC(vn_reference_op_s
, heap
) *
852 shared_reference_ops_from_call (gimple call
)
856 VEC_truncate (vn_reference_op_s
, shared_lookup_references
, 0);
857 copy_reference_ops_from_call (call
, &shared_lookup_references
);
858 return shared_lookup_references
;
862 /* Transform any SSA_NAME's in a vector of vn_reference_op_s
863 structures into their value numbers. This is done in-place, and
864 the vector passed in is returned. */
866 static VEC (vn_reference_op_s
, heap
) *
867 valueize_refs (VEC (vn_reference_op_s
, heap
) *orig
)
869 vn_reference_op_t vro
;
872 for (i
= 0; VEC_iterate (vn_reference_op_s
, orig
, i
, vro
); i
++)
874 if (vro
->opcode
== SSA_NAME
875 || (vro
->op0
&& TREE_CODE (vro
->op0
) == SSA_NAME
))
877 vro
->op0
= SSA_VAL (vro
->op0
);
878 /* If it transforms from an SSA_NAME to a constant, update
880 if (TREE_CODE (vro
->op0
) != SSA_NAME
&& vro
->opcode
== SSA_NAME
)
881 vro
->opcode
= TREE_CODE (vro
->op0
);
883 /* TODO: Do we want to valueize op2 and op1 of
884 ARRAY_REF/COMPONENT_REF for Ada */
891 /* Transform any SSA_NAME's in ORIG, a vector of vuse trees, into
892 their value numbers. This is done in-place, and the vector passed
895 static VEC (tree
, gc
) *
896 valueize_vuses (VEC (tree
, gc
) *orig
)
898 bool made_replacement
= false;
902 for (i
= 0; VEC_iterate (tree
, orig
, i
, vuse
); i
++)
904 if (vuse
!= SSA_VAL (vuse
))
906 made_replacement
= true;
907 VEC_replace (tree
, orig
, i
, SSA_VAL (vuse
));
911 if (made_replacement
&& VEC_length (tree
, orig
) > 1)
917 /* Return the single reference statement defining all virtual uses
918 in VUSES or NULL_TREE, if there are multiple defining statements.
919 Take into account only definitions that alias REF if following
923 get_def_ref_stmt_vuses (tree ref
, VEC (tree
, gc
) *vuses
)
929 gcc_assert (VEC_length (tree
, vuses
) >= 1);
931 def_stmt
= SSA_NAME_DEF_STMT (VEC_index (tree
, vuses
, 0));
932 if (gimple_code (def_stmt
) == GIMPLE_PHI
)
934 /* We can only handle lookups over PHI nodes for a single
936 if (VEC_length (tree
, vuses
) == 1)
938 def_stmt
= get_single_def_stmt_from_phi (ref
, def_stmt
);
945 /* Verify each VUSE reaches the same defining stmt. */
946 for (i
= 1; VEC_iterate (tree
, vuses
, i
, vuse
); ++i
)
948 gimple tmp
= SSA_NAME_DEF_STMT (vuse
);
953 /* Now see if the definition aliases ref, and loop until it does. */
956 && is_gimple_assign (def_stmt
)
957 && !refs_may_alias_p (ref
, gimple_get_lhs (def_stmt
)))
958 def_stmt
= get_single_def_stmt_with_phi (ref
, def_stmt
);
963 /* Lookup a SCCVN reference operation VR in the current hash table.
964 Returns the resulting value number if it exists in the hash table,
965 NULL_TREE otherwise. VNRESULT will be filled in with the actual
966 vn_reference_t stored in the hashtable if something is found. */
969 vn_reference_lookup_1 (vn_reference_t vr
, vn_reference_t
*vnresult
)
975 slot
= htab_find_slot_with_hash (current_info
->references
, vr
,
977 if (!slot
&& current_info
== optimistic_info
)
978 slot
= htab_find_slot_with_hash (valid_info
->references
, vr
,
983 *vnresult
= (vn_reference_t
)*slot
;
984 return ((vn_reference_t
)*slot
)->result
;
991 /* Lookup a reference operation by it's parts, in the current hash table.
992 Returns the resulting value number if it exists in the hash table,
993 NULL_TREE otherwise. VNRESULT will be filled in with the actual
994 vn_reference_t stored in the hashtable if something is found. */
997 vn_reference_lookup_pieces (VEC (tree
, gc
) *vuses
,
998 VEC (vn_reference_op_s
, heap
) *operands
,
999 vn_reference_t
*vnresult
, bool maywalk
)
1001 struct vn_reference_s vr1
;
1006 vr1
.vuses
= valueize_vuses (vuses
);
1007 vr1
.operands
= valueize_refs (operands
);
1008 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1009 result
= vn_reference_lookup_1 (&vr1
, vnresult
);
1011 /* If there is a single defining statement for all virtual uses, we can
1012 use that, following virtual use-def chains. */
1016 && VEC_length (tree
, vr1
.vuses
) >= 1)
1018 tree ref
= get_ref_from_reference_ops (operands
);
1021 && (def_stmt
= get_def_ref_stmt_vuses (ref
, vr1
.vuses
))
1022 && is_gimple_assign (def_stmt
))
1024 /* We are now at an aliasing definition for the vuses we want to
1025 look up. Re-do the lookup with the vdefs for this stmt. */
1026 vdefs_to_vec (def_stmt
, &vuses
);
1027 vr1
.vuses
= valueize_vuses (vuses
);
1028 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1029 result
= vn_reference_lookup_1 (&vr1
, vnresult
);
1036 /* Lookup OP in the current hash table, and return the resulting value
1037 number if it exists in the hash table. Return NULL_TREE if it does
1038 not exist in the hash table or if the result field of the structure
1039 was NULL.. VNRESULT will be filled in with the vn_reference_t
1040 stored in the hashtable if one exists. */
1043 vn_reference_lookup (tree op
, VEC (tree
, gc
) *vuses
, bool maywalk
,
1044 vn_reference_t
*vnresult
)
1046 struct vn_reference_s vr1
;
1052 vr1
.vuses
= valueize_vuses (vuses
);
1053 vr1
.operands
= valueize_refs (shared_reference_ops_from_ref (op
));
1054 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1055 result
= vn_reference_lookup_1 (&vr1
, vnresult
);
1057 /* If there is a single defining statement for all virtual uses, we can
1058 use that, following virtual use-def chains. */
1062 && VEC_length (tree
, vr1
.vuses
) >= 1
1063 && (def_stmt
= get_def_ref_stmt_vuses (op
, vr1
.vuses
))
1064 && is_gimple_assign (def_stmt
))
1066 /* We are now at an aliasing definition for the vuses we want to
1067 look up. Re-do the lookup with the vdefs for this stmt. */
1068 vdefs_to_vec (def_stmt
, &vuses
);
1069 vr1
.vuses
= valueize_vuses (vuses
);
1070 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1071 result
= vn_reference_lookup_1 (&vr1
, vnresult
);
1078 /* Insert OP into the current hash table with a value number of
1079 RESULT, and return the resulting reference structure we created. */
1082 vn_reference_insert (tree op
, tree result
, VEC (tree
, gc
) *vuses
)
1087 vr1
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1088 if (TREE_CODE (result
) == SSA_NAME
)
1089 vr1
->value_id
= VN_INFO (result
)->value_id
;
1091 vr1
->value_id
= get_or_alloc_constant_value_id (result
);
1092 vr1
->vuses
= valueize_vuses (vuses
);
1093 vr1
->operands
= valueize_refs (create_reference_ops_from_ref (op
));
1094 vr1
->hashcode
= vn_reference_compute_hash (vr1
);
1095 vr1
->result
= TREE_CODE (result
) == SSA_NAME
? SSA_VAL (result
) : result
;
1097 slot
= htab_find_slot_with_hash (current_info
->references
, vr1
, vr1
->hashcode
,
1100 /* Because we lookup stores using vuses, and value number failures
1101 using the vdefs (see visit_reference_op_store for how and why),
1102 it's possible that on failure we may try to insert an already
1103 inserted store. This is not wrong, there is no ssa name for a
1104 store that we could use as a differentiator anyway. Thus, unlike
1105 the other lookup functions, you cannot gcc_assert (!*slot)
1108 /* But free the old slot in case of a collision. */
1110 free_reference (*slot
);
1116 /* Insert a reference by it's pieces into the current hash table with
1117 a value number of RESULT. Return the resulting reference
1118 structure we created. */
1121 vn_reference_insert_pieces (VEC (tree
, gc
) *vuses
,
1122 VEC (vn_reference_op_s
, heap
) *operands
,
1123 tree result
, unsigned int value_id
)
1129 vr1
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1130 vr1
->value_id
= value_id
;
1131 vr1
->vuses
= valueize_vuses (vuses
);
1132 vr1
->operands
= valueize_refs (operands
);
1133 vr1
->hashcode
= vn_reference_compute_hash (vr1
);
1134 if (result
&& TREE_CODE (result
) == SSA_NAME
)
1135 result
= SSA_VAL (result
);
1136 vr1
->result
= result
;
1138 slot
= htab_find_slot_with_hash (current_info
->references
, vr1
, vr1
->hashcode
,
1141 /* At this point we should have all the things inserted that we have
1142 seen before, and we should never try inserting something that
1144 gcc_assert (!*slot
);
1146 free_reference (*slot
);
1152 /* Compute and return the hash value for nary operation VBO1. */
1155 vn_nary_op_compute_hash (const vn_nary_op_t vno1
)
1160 for (i
= 0; i
< vno1
->length
; ++i
)
1161 if (TREE_CODE (vno1
->op
[i
]) == SSA_NAME
)
1162 vno1
->op
[i
] = SSA_VAL (vno1
->op
[i
]);
1164 if (vno1
->length
== 2
1165 && commutative_tree_code (vno1
->opcode
)
1166 && tree_swap_operands_p (vno1
->op
[0], vno1
->op
[1], false))
1168 tree temp
= vno1
->op
[0];
1169 vno1
->op
[0] = vno1
->op
[1];
1173 for (i
= 0; i
< vno1
->length
; ++i
)
1174 hash
+= iterative_hash_expr (vno1
->op
[i
], vno1
->opcode
);
1179 /* Return the computed hashcode for nary operation P1. */
1182 vn_nary_op_hash (const void *p1
)
1184 const_vn_nary_op_t
const vno1
= (const_vn_nary_op_t
) p1
;
1185 return vno1
->hashcode
;
1188 /* Compare nary operations P1 and P2 and return true if they are
1192 vn_nary_op_eq (const void *p1
, const void *p2
)
1194 const_vn_nary_op_t
const vno1
= (const_vn_nary_op_t
) p1
;
1195 const_vn_nary_op_t
const vno2
= (const_vn_nary_op_t
) p2
;
1198 if (vno1
->hashcode
!= vno2
->hashcode
)
1201 if (vno1
->opcode
!= vno2
->opcode
1202 || !types_compatible_p (vno1
->type
, vno2
->type
))
1205 for (i
= 0; i
< vno1
->length
; ++i
)
1206 if (!expressions_equal_p (vno1
->op
[i
], vno2
->op
[i
]))
1212 /* Lookup a n-ary operation by its pieces and return the resulting value
1213 number if it exists in the hash table. Return NULL_TREE if it does
1214 not exist in the hash table or if the result field of the operation
1215 is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
1219 vn_nary_op_lookup_pieces (unsigned int length
, enum tree_code code
,
1220 tree type
, tree op0
, tree op1
, tree op2
,
1221 tree op3
, vn_nary_op_t
*vnresult
)
1224 struct vn_nary_op_s vno1
;
1228 vno1
.length
= length
;
1234 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1235 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1237 if (!slot
&& current_info
== optimistic_info
)
1238 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1243 *vnresult
= (vn_nary_op_t
)*slot
;
1244 return ((vn_nary_op_t
)*slot
)->result
;
1247 /* Lookup OP in the current hash table, and return the resulting value
1248 number if it exists in the hash table. Return NULL_TREE if it does
1249 not exist in the hash table or if the result field of the operation
1250 is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
1254 vn_nary_op_lookup (tree op
, vn_nary_op_t
*vnresult
)
1257 struct vn_nary_op_s vno1
;
1262 vno1
.opcode
= TREE_CODE (op
);
1263 vno1
.length
= TREE_CODE_LENGTH (TREE_CODE (op
));
1264 vno1
.type
= TREE_TYPE (op
);
1265 for (i
= 0; i
< vno1
.length
; ++i
)
1266 vno1
.op
[i
] = TREE_OPERAND (op
, i
);
1267 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1268 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1270 if (!slot
&& current_info
== optimistic_info
)
1271 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1276 *vnresult
= (vn_nary_op_t
)*slot
;
1277 return ((vn_nary_op_t
)*slot
)->result
;
1280 /* Lookup the rhs of STMT in the current hash table, and return the resulting
1281 value number if it exists in the hash table. Return NULL_TREE if
1282 it does not exist in the hash table. VNRESULT will contain the
1283 vn_nary_op_t from the hashtable if it exists. */
1286 vn_nary_op_lookup_stmt (gimple stmt
, vn_nary_op_t
*vnresult
)
1289 struct vn_nary_op_s vno1
;
1294 vno1
.opcode
= gimple_assign_rhs_code (stmt
);
1295 vno1
.length
= gimple_num_ops (stmt
) - 1;
1296 vno1
.type
= gimple_expr_type (stmt
);
1297 for (i
= 0; i
< vno1
.length
; ++i
)
1298 vno1
.op
[i
] = gimple_op (stmt
, i
+ 1);
1299 if (vno1
.opcode
== REALPART_EXPR
1300 || vno1
.opcode
== IMAGPART_EXPR
1301 || vno1
.opcode
== VIEW_CONVERT_EXPR
)
1302 vno1
.op
[0] = TREE_OPERAND (vno1
.op
[0], 0);
1303 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1304 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1306 if (!slot
&& current_info
== optimistic_info
)
1307 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1312 *vnresult
= (vn_nary_op_t
)*slot
;
1313 return ((vn_nary_op_t
)*slot
)->result
;
1316 /* Insert a n-ary operation into the current hash table using it's
1317 pieces. Return the vn_nary_op_t structure we created and put in
1321 vn_nary_op_insert_pieces (unsigned int length
, enum tree_code code
,
1322 tree type
, tree op0
,
1323 tree op1
, tree op2
, tree op3
,
1325 unsigned int value_id
)
1330 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1331 (sizeof (struct vn_nary_op_s
)
1332 - sizeof (tree
) * (4 - length
)));
1333 vno1
->value_id
= value_id
;
1334 vno1
->opcode
= code
;
1335 vno1
->length
= length
;
1345 vno1
->result
= result
;
1346 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1347 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1349 gcc_assert (!*slot
);
1356 /* Insert OP into the current hash table with a value number of
1357 RESULT. Return the vn_nary_op_t structure we created and put in
1361 vn_nary_op_insert (tree op
, tree result
)
1363 unsigned length
= TREE_CODE_LENGTH (TREE_CODE (op
));
1368 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1369 (sizeof (struct vn_nary_op_s
)
1370 - sizeof (tree
) * (4 - length
)));
1371 vno1
->value_id
= VN_INFO (result
)->value_id
;
1372 vno1
->opcode
= TREE_CODE (op
);
1373 vno1
->length
= length
;
1374 vno1
->type
= TREE_TYPE (op
);
1375 for (i
= 0; i
< vno1
->length
; ++i
)
1376 vno1
->op
[i
] = TREE_OPERAND (op
, i
);
1377 vno1
->result
= result
;
1378 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1379 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1381 gcc_assert (!*slot
);
1387 /* Insert the rhs of STMT into the current hash table with a value number of
1391 vn_nary_op_insert_stmt (gimple stmt
, tree result
)
1393 unsigned length
= gimple_num_ops (stmt
) - 1;
1398 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1399 (sizeof (struct vn_nary_op_s
)
1400 - sizeof (tree
) * (4 - length
)));
1401 vno1
->value_id
= VN_INFO (result
)->value_id
;
1402 vno1
->opcode
= gimple_assign_rhs_code (stmt
);
1403 vno1
->length
= length
;
1404 vno1
->type
= gimple_expr_type (stmt
);
1405 for (i
= 0; i
< vno1
->length
; ++i
)
1406 vno1
->op
[i
] = gimple_op (stmt
, i
+ 1);
1407 if (vno1
->opcode
== REALPART_EXPR
1408 || vno1
->opcode
== IMAGPART_EXPR
1409 || vno1
->opcode
== VIEW_CONVERT_EXPR
)
1410 vno1
->op
[0] = TREE_OPERAND (vno1
->op
[0], 0);
1411 vno1
->result
= result
;
1412 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1413 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1415 gcc_assert (!*slot
);
1421 /* Compute a hashcode for PHI operation VP1 and return it. */
1423 static inline hashval_t
1424 vn_phi_compute_hash (vn_phi_t vp1
)
1426 hashval_t result
= 0;
1431 result
= vp1
->block
->index
;
1433 /* If all PHI arguments are constants we need to distinguish
1434 the PHI node via its type. */
1435 type
= TREE_TYPE (VEC_index (tree
, vp1
->phiargs
, 0));
1436 result
+= (INTEGRAL_TYPE_P (type
)
1437 + (INTEGRAL_TYPE_P (type
)
1438 ? TYPE_PRECISION (type
) + TYPE_UNSIGNED (type
) : 0));
1440 for (i
= 0; VEC_iterate (tree
, vp1
->phiargs
, i
, phi1op
); i
++)
1442 if (phi1op
== VN_TOP
)
1444 result
+= iterative_hash_expr (phi1op
, result
);
1450 /* Return the computed hashcode for phi operation P1. */
1453 vn_phi_hash (const void *p1
)
1455 const_vn_phi_t
const vp1
= (const_vn_phi_t
) p1
;
1456 return vp1
->hashcode
;
1459 /* Compare two phi entries for equality, ignoring VN_TOP arguments. */
1462 vn_phi_eq (const void *p1
, const void *p2
)
1464 const_vn_phi_t
const vp1
= (const_vn_phi_t
) p1
;
1465 const_vn_phi_t
const vp2
= (const_vn_phi_t
) p2
;
1467 if (vp1
->hashcode
!= vp2
->hashcode
)
1470 if (vp1
->block
== vp2
->block
)
1475 /* If the PHI nodes do not have compatible types
1476 they are not the same. */
1477 if (!types_compatible_p (TREE_TYPE (VEC_index (tree
, vp1
->phiargs
, 0)),
1478 TREE_TYPE (VEC_index (tree
, vp2
->phiargs
, 0))))
1481 /* Any phi in the same block will have it's arguments in the
1482 same edge order, because of how we store phi nodes. */
1483 for (i
= 0; VEC_iterate (tree
, vp1
->phiargs
, i
, phi1op
); i
++)
1485 tree phi2op
= VEC_index (tree
, vp2
->phiargs
, i
);
1486 if (phi1op
== VN_TOP
|| phi2op
== VN_TOP
)
1488 if (!expressions_equal_p (phi1op
, phi2op
))
1496 static VEC(tree
, heap
) *shared_lookup_phiargs
;
1498 /* Lookup PHI in the current hash table, and return the resulting
1499 value number if it exists in the hash table. Return NULL_TREE if
1500 it does not exist in the hash table. */
1503 vn_phi_lookup (gimple phi
)
1506 struct vn_phi_s vp1
;
1509 VEC_truncate (tree
, shared_lookup_phiargs
, 0);
1511 /* Canonicalize the SSA_NAME's to their value number. */
1512 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1514 tree def
= PHI_ARG_DEF (phi
, i
);
1515 def
= TREE_CODE (def
) == SSA_NAME
? SSA_VAL (def
) : def
;
1516 VEC_safe_push (tree
, heap
, shared_lookup_phiargs
, def
);
1518 vp1
.phiargs
= shared_lookup_phiargs
;
1519 vp1
.block
= gimple_bb (phi
);
1520 vp1
.hashcode
= vn_phi_compute_hash (&vp1
);
1521 slot
= htab_find_slot_with_hash (current_info
->phis
, &vp1
, vp1
.hashcode
,
1523 if (!slot
&& current_info
== optimistic_info
)
1524 slot
= htab_find_slot_with_hash (valid_info
->phis
, &vp1
, vp1
.hashcode
,
1528 return ((vn_phi_t
)*slot
)->result
;
1531 /* Insert PHI into the current hash table with a value number of
1535 vn_phi_insert (gimple phi
, tree result
)
1538 vn_phi_t vp1
= (vn_phi_t
) pool_alloc (current_info
->phis_pool
);
1540 VEC (tree
, heap
) *args
= NULL
;
1542 /* Canonicalize the SSA_NAME's to their value number. */
1543 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1545 tree def
= PHI_ARG_DEF (phi
, i
);
1546 def
= TREE_CODE (def
) == SSA_NAME
? SSA_VAL (def
) : def
;
1547 VEC_safe_push (tree
, heap
, args
, def
);
1549 vp1
->value_id
= VN_INFO (result
)->value_id
;
1550 vp1
->phiargs
= args
;
1551 vp1
->block
= gimple_bb (phi
);
1552 vp1
->result
= result
;
1553 vp1
->hashcode
= vn_phi_compute_hash (vp1
);
1555 slot
= htab_find_slot_with_hash (current_info
->phis
, vp1
, vp1
->hashcode
,
1558 /* Because we iterate over phi operations more than once, it's
1559 possible the slot might already exist here, hence no assert.*/
1565 /* Print set of components in strongly connected component SCC to OUT. */
1568 print_scc (FILE *out
, VEC (tree
, heap
) *scc
)
1573 fprintf (out
, "SCC consists of: ");
1574 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
1576 print_generic_expr (out
, var
, 0);
1579 fprintf (out
, "\n");
1582 /* Set the value number of FROM to TO, return true if it has changed
1586 set_ssa_val_to (tree from
, tree to
)
1591 && TREE_CODE (to
) == SSA_NAME
1592 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to
))
1595 /* The only thing we allow as value numbers are VN_TOP, ssa_names
1596 and invariants. So assert that here. */
1597 gcc_assert (to
!= NULL_TREE
1599 || TREE_CODE (to
) == SSA_NAME
1600 || is_gimple_min_invariant (to
)));
1602 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1604 fprintf (dump_file
, "Setting value number of ");
1605 print_generic_expr (dump_file
, from
, 0);
1606 fprintf (dump_file
, " to ");
1607 print_generic_expr (dump_file
, to
, 0);
1610 currval
= SSA_VAL (from
);
1612 if (currval
!= to
&& !operand_equal_p (currval
, to
, OEP_PURE_SAME
))
1614 SSA_VAL (from
) = to
;
1615 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1616 fprintf (dump_file
, " (changed)\n");
1619 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1620 fprintf (dump_file
, "\n");
1624 /* Set all definitions in STMT to value number to themselves.
1625 Return true if a value number changed. */
1628 defs_to_varying (gimple stmt
)
1630 bool changed
= false;
1634 FOR_EACH_SSA_DEF_OPERAND (defp
, stmt
, iter
, SSA_OP_ALL_DEFS
)
1636 tree def
= DEF_FROM_PTR (defp
);
1638 VN_INFO (def
)->use_processed
= true;
1639 changed
|= set_ssa_val_to (def
, def
);
1644 static bool expr_has_constants (tree expr
);
1645 static tree
valueize_expr (tree expr
);
1647 /* Visit a copy between LHS and RHS, return true if the value number
1651 visit_copy (tree lhs
, tree rhs
)
1653 /* Follow chains of copies to their destination. */
1654 while (TREE_CODE (rhs
) == SSA_NAME
1655 && SSA_VAL (rhs
) != rhs
)
1656 rhs
= SSA_VAL (rhs
);
1658 /* The copy may have a more interesting constant filled expression
1659 (we don't, since we know our RHS is just an SSA name). */
1660 if (TREE_CODE (rhs
) == SSA_NAME
)
1662 VN_INFO (lhs
)->has_constants
= VN_INFO (rhs
)->has_constants
;
1663 VN_INFO (lhs
)->expr
= VN_INFO (rhs
)->expr
;
1666 return set_ssa_val_to (lhs
, rhs
);
1669 /* Visit a unary operator RHS, value number it, and return true if the
1670 value number of LHS has changed as a result. */
1673 visit_unary_op (tree lhs
, gimple stmt
)
1675 bool changed
= false;
1676 tree result
= vn_nary_op_lookup_stmt (stmt
, NULL
);
1680 changed
= set_ssa_val_to (lhs
, result
);
1684 changed
= set_ssa_val_to (lhs
, lhs
);
1685 vn_nary_op_insert_stmt (stmt
, lhs
);
1691 /* Visit a binary operator RHS, value number it, and return true if the
1692 value number of LHS has changed as a result. */
1695 visit_binary_op (tree lhs
, gimple stmt
)
1697 bool changed
= false;
1698 tree result
= vn_nary_op_lookup_stmt (stmt
, NULL
);
1702 changed
= set_ssa_val_to (lhs
, result
);
1706 changed
= set_ssa_val_to (lhs
, lhs
);
1707 vn_nary_op_insert_stmt (stmt
, lhs
);
1713 /* Visit a call STMT storing into LHS. Return true if the value number
1714 of the LHS has changed as a result. */
1717 visit_reference_op_call (tree lhs
, gimple stmt
)
1719 bool changed
= false;
1720 struct vn_reference_s vr1
;
1723 vr1
.vuses
= valueize_vuses (shared_vuses_from_stmt (stmt
));
1724 vr1
.operands
= valueize_refs (shared_reference_ops_from_call (stmt
));
1725 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1726 result
= vn_reference_lookup_1 (&vr1
, NULL
);
1729 changed
= set_ssa_val_to (lhs
, result
);
1730 if (TREE_CODE (result
) == SSA_NAME
1731 && VN_INFO (result
)->has_constants
)
1732 VN_INFO (lhs
)->has_constants
= true;
1738 changed
= set_ssa_val_to (lhs
, lhs
);
1739 vr2
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1740 vr2
->vuses
= valueize_vuses (copy_vuses_from_stmt (stmt
));
1741 vr2
->operands
= valueize_refs (create_reference_ops_from_call (stmt
));
1742 vr2
->hashcode
= vr1
.hashcode
;
1744 slot
= htab_find_slot_with_hash (current_info
->references
,
1745 vr2
, vr2
->hashcode
, INSERT
);
1747 free_reference (*slot
);
1754 /* Visit a load from a reference operator RHS, part of STMT, value number it,
1755 and return true if the value number of the LHS has changed as a result. */
1758 visit_reference_op_load (tree lhs
, tree op
, gimple stmt
)
1760 bool changed
= false;
1761 tree result
= vn_reference_lookup (op
, shared_vuses_from_stmt (stmt
), true,
1764 /* We handle type-punning through unions by value-numbering based
1765 on offset and size of the access. Be prepared to handle a
1766 type-mismatch here via creating a VIEW_CONVERT_EXPR. */
1768 && !useless_type_conversion_p (TREE_TYPE (result
), TREE_TYPE (op
)))
1770 /* We will be setting the value number of lhs to the value number
1771 of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
1772 So first simplify and lookup this expression to see if it
1773 is already available. */
1774 tree val
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (op
), result
);
1775 if ((CONVERT_EXPR_P (val
)
1776 || TREE_CODE (val
) == VIEW_CONVERT_EXPR
)
1777 && TREE_CODE (TREE_OPERAND (val
, 0)) == SSA_NAME
)
1779 tree tem
= valueize_expr (vn_get_expr_for (TREE_OPERAND (val
, 0)));
1780 if ((CONVERT_EXPR_P (tem
)
1781 || TREE_CODE (tem
) == VIEW_CONVERT_EXPR
)
1782 && (tem
= fold_unary_ignore_overflow (TREE_CODE (val
),
1783 TREE_TYPE (val
), tem
)))
1787 if (!is_gimple_min_invariant (val
)
1788 && TREE_CODE (val
) != SSA_NAME
)
1789 result
= vn_nary_op_lookup (val
, NULL
);
1790 /* If the expression is not yet available, value-number lhs to
1791 a new SSA_NAME we create. */
1792 if (!result
&& may_insert
)
1794 result
= make_ssa_name (SSA_NAME_VAR (lhs
), NULL
);
1795 /* Initialize value-number information properly. */
1796 VN_INFO_GET (result
)->valnum
= result
;
1797 VN_INFO (result
)->value_id
= get_next_value_id ();
1798 VN_INFO (result
)->expr
= val
;
1799 VN_INFO (result
)->has_constants
= expr_has_constants (val
);
1800 VN_INFO (result
)->needs_insertion
= true;
1801 /* As all "inserted" statements are singleton SCCs, insert
1802 to the valid table. This is strictly needed to
1803 avoid re-generating new value SSA_NAMEs for the same
1804 expression during SCC iteration over and over (the
1805 optimistic table gets cleared after each iteration).
1806 We do not need to insert into the optimistic table, as
1807 lookups there will fall back to the valid table. */
1808 if (current_info
== optimistic_info
)
1810 current_info
= valid_info
;
1811 vn_nary_op_insert (val
, result
);
1812 current_info
= optimistic_info
;
1815 vn_nary_op_insert (val
, result
);
1816 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1818 fprintf (dump_file
, "Inserting name ");
1819 print_generic_expr (dump_file
, result
, 0);
1820 fprintf (dump_file
, " for expression ");
1821 print_generic_expr (dump_file
, val
, 0);
1822 fprintf (dump_file
, "\n");
1829 changed
= set_ssa_val_to (lhs
, result
);
1830 if (TREE_CODE (result
) == SSA_NAME
1831 && VN_INFO (result
)->has_constants
)
1833 VN_INFO (lhs
)->expr
= VN_INFO (result
)->expr
;
1834 VN_INFO (lhs
)->has_constants
= true;
1839 changed
= set_ssa_val_to (lhs
, lhs
);
1840 vn_reference_insert (op
, lhs
, copy_vuses_from_stmt (stmt
));
1847 /* Visit a store to a reference operator LHS, part of STMT, value number it,
1848 and return true if the value number of the LHS has changed as a result. */
1851 visit_reference_op_store (tree lhs
, tree op
, gimple stmt
)
1853 bool changed
= false;
1855 bool resultsame
= false;
1857 /* First we want to lookup using the *vuses* from the store and see
1858 if there the last store to this location with the same address
1861 The vuses represent the memory state before the store. If the
1862 memory state, address, and value of the store is the same as the
1863 last store to this location, then this store will produce the
1864 same memory state as that store.
1866 In this case the vdef versions for this store are value numbered to those
1867 vuse versions, since they represent the same memory state after
1870 Otherwise, the vdefs for the store are used when inserting into
1871 the table, since the store generates a new memory state. */
1873 result
= vn_reference_lookup (lhs
, shared_vuses_from_stmt (stmt
), false,
1878 if (TREE_CODE (result
) == SSA_NAME
)
1879 result
= SSA_VAL (result
);
1880 if (TREE_CODE (op
) == SSA_NAME
)
1882 resultsame
= expressions_equal_p (result
, op
);
1885 if (!result
|| !resultsame
)
1887 VEC(tree
, gc
) *vdefs
= copy_vdefs_from_stmt (stmt
);
1891 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1893 fprintf (dump_file
, "No store match\n");
1894 fprintf (dump_file
, "Value numbering store ");
1895 print_generic_expr (dump_file
, lhs
, 0);
1896 fprintf (dump_file
, " to ");
1897 print_generic_expr (dump_file
, op
, 0);
1898 fprintf (dump_file
, "\n");
1900 /* Have to set value numbers before insert, since insert is
1901 going to valueize the references in-place. */
1902 for (i
= 0; VEC_iterate (tree
, vdefs
, i
, vdef
); i
++)
1904 VN_INFO (vdef
)->use_processed
= true;
1905 changed
|= set_ssa_val_to (vdef
, vdef
);
1908 /* Do not insert structure copies into the tables. */
1909 if (is_gimple_min_invariant (op
)
1910 || is_gimple_reg (op
))
1911 vn_reference_insert (lhs
, op
, vdefs
);
1915 /* We had a match, so value number the vdefs to have the value
1916 number of the vuses they came from. */
1917 ssa_op_iter op_iter
;
1921 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1922 fprintf (dump_file
, "Store matched earlier value,"
1923 "value numbering store vdefs to matching vuses.\n");
1925 FOR_EACH_SSA_VDEF_OPERAND (var
, vv
, stmt
, op_iter
)
1927 tree def
= DEF_FROM_PTR (var
);
1930 /* Uh, if the vuse is a multiuse, we can't really do much
1931 here, sadly, since we don't know which value number of
1932 which vuse to use. */
1933 if (VUSE_VECT_NUM_ELEM (*vv
) != 1)
1936 use
= VUSE_ELEMENT_VAR (*vv
, 0);
1938 VN_INFO (def
)->use_processed
= true;
1939 changed
|= set_ssa_val_to (def
, SSA_VAL (use
));
1946 /* Visit and value number PHI, return true if the value number
1950 visit_phi (gimple phi
)
1952 bool changed
= false;
1954 tree sameval
= VN_TOP
;
1955 bool allsame
= true;
1958 /* TODO: We could check for this in init_sccvn, and replace this
1959 with a gcc_assert. */
1960 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1961 return set_ssa_val_to (PHI_RESULT (phi
), PHI_RESULT (phi
));
1963 /* See if all non-TOP arguments have the same value. TOP is
1964 equivalent to everything, so we can ignore it. */
1965 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1967 tree def
= PHI_ARG_DEF (phi
, i
);
1969 if (TREE_CODE (def
) == SSA_NAME
)
1970 def
= SSA_VAL (def
);
1973 if (sameval
== VN_TOP
)
1979 if (!expressions_equal_p (def
, sameval
))
1987 /* If all value numbered to the same value, the phi node has that
1991 if (is_gimple_min_invariant (sameval
))
1993 VN_INFO (PHI_RESULT (phi
))->has_constants
= true;
1994 VN_INFO (PHI_RESULT (phi
))->expr
= sameval
;
1998 VN_INFO (PHI_RESULT (phi
))->has_constants
= false;
1999 VN_INFO (PHI_RESULT (phi
))->expr
= sameval
;
2002 if (TREE_CODE (sameval
) == SSA_NAME
)
2003 return visit_copy (PHI_RESULT (phi
), sameval
);
2005 return set_ssa_val_to (PHI_RESULT (phi
), sameval
);
2008 /* Otherwise, see if it is equivalent to a phi node in this block. */
2009 result
= vn_phi_lookup (phi
);
2012 if (TREE_CODE (result
) == SSA_NAME
)
2013 changed
= visit_copy (PHI_RESULT (phi
), result
);
2015 changed
= set_ssa_val_to (PHI_RESULT (phi
), result
);
2019 vn_phi_insert (phi
, PHI_RESULT (phi
));
2020 VN_INFO (PHI_RESULT (phi
))->has_constants
= false;
2021 VN_INFO (PHI_RESULT (phi
))->expr
= PHI_RESULT (phi
);
2022 changed
= set_ssa_val_to (PHI_RESULT (phi
), PHI_RESULT (phi
));
2028 /* Return true if EXPR contains constants. */
2031 expr_has_constants (tree expr
)
2033 switch (TREE_CODE_CLASS (TREE_CODE (expr
)))
2036 return is_gimple_min_invariant (TREE_OPERAND (expr
, 0));
2039 return is_gimple_min_invariant (TREE_OPERAND (expr
, 0))
2040 || is_gimple_min_invariant (TREE_OPERAND (expr
, 1));
2041 /* Constants inside reference ops are rarely interesting, but
2042 it can take a lot of looking to find them. */
2044 case tcc_declaration
:
2047 return is_gimple_min_invariant (expr
);
2052 /* Return true if STMT contains constants. */
2055 stmt_has_constants (gimple stmt
)
2057 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2060 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
2062 case GIMPLE_UNARY_RHS
:
2063 return is_gimple_min_invariant (gimple_assign_rhs1 (stmt
));
2065 case GIMPLE_BINARY_RHS
:
2066 return (is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))
2067 || is_gimple_min_invariant (gimple_assign_rhs2 (stmt
)));
2068 case GIMPLE_SINGLE_RHS
:
2069 /* Constants inside reference ops are rarely interesting, but
2070 it can take a lot of looking to find them. */
2071 return is_gimple_min_invariant (gimple_assign_rhs1 (stmt
));
2078 /* Replace SSA_NAMES in expr with their value numbers, and return the
2080 This is performed in place. */
2083 valueize_expr (tree expr
)
2085 switch (TREE_CODE_CLASS (TREE_CODE (expr
)))
2088 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
2089 && SSA_VAL (TREE_OPERAND (expr
, 0)) != VN_TOP
)
2090 TREE_OPERAND (expr
, 0) = SSA_VAL (TREE_OPERAND (expr
, 0));
2093 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
2094 && SSA_VAL (TREE_OPERAND (expr
, 0)) != VN_TOP
)
2095 TREE_OPERAND (expr
, 0) = SSA_VAL (TREE_OPERAND (expr
, 0));
2096 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == SSA_NAME
2097 && SSA_VAL (TREE_OPERAND (expr
, 1)) != VN_TOP
)
2098 TREE_OPERAND (expr
, 1) = SSA_VAL (TREE_OPERAND (expr
, 1));
2106 /* Simplify the binary expression RHS, and return the result if
2110 simplify_binary_expression (gimple stmt
)
2112 tree result
= NULL_TREE
;
2113 tree op0
= gimple_assign_rhs1 (stmt
);
2114 tree op1
= gimple_assign_rhs2 (stmt
);
2116 /* This will not catch every single case we could combine, but will
2117 catch those with constants. The goal here is to simultaneously
2118 combine constants between expressions, but avoid infinite
2119 expansion of expressions during simplification. */
2120 if (TREE_CODE (op0
) == SSA_NAME
)
2122 if (VN_INFO (op0
)->has_constants
2123 || TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
2124 op0
= valueize_expr (vn_get_expr_for (op0
));
2125 else if (SSA_VAL (op0
) != VN_TOP
&& SSA_VAL (op0
) != op0
)
2126 op0
= SSA_VAL (op0
);
2129 if (TREE_CODE (op1
) == SSA_NAME
)
2131 if (VN_INFO (op1
)->has_constants
)
2132 op1
= valueize_expr (vn_get_expr_for (op1
));
2133 else if (SSA_VAL (op1
) != VN_TOP
&& SSA_VAL (op1
) != op1
)
2134 op1
= SSA_VAL (op1
);
2137 /* Avoid folding if nothing changed. */
2138 if (op0
== gimple_assign_rhs1 (stmt
)
2139 && op1
== gimple_assign_rhs2 (stmt
))
2142 fold_defer_overflow_warnings ();
2144 result
= fold_binary (gimple_assign_rhs_code (stmt
),
2145 gimple_expr_type (stmt
), op0
, op1
);
2147 STRIP_USELESS_TYPE_CONVERSION (result
);
2149 fold_undefer_overflow_warnings (result
&& valid_gimple_rhs_p (result
),
2152 /* Make sure result is not a complex expression consisting
2153 of operators of operators (IE (a + b) + (a + c))
2154 Otherwise, we will end up with unbounded expressions if
2155 fold does anything at all. */
2156 if (result
&& valid_gimple_rhs_p (result
))
2162 /* Simplify the unary expression RHS, and return the result if
2166 simplify_unary_expression (gimple stmt
)
2168 tree result
= NULL_TREE
;
2169 tree orig_op0
, op0
= gimple_assign_rhs1 (stmt
);
2171 /* We handle some tcc_reference codes here that are all
2172 GIMPLE_ASSIGN_SINGLE codes. */
2173 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2174 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2175 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2176 op0
= TREE_OPERAND (op0
, 0);
2178 if (TREE_CODE (op0
) != SSA_NAME
)
2182 if (VN_INFO (op0
)->has_constants
)
2183 op0
= valueize_expr (vn_get_expr_for (op0
));
2184 else if (gimple_assign_cast_p (stmt
)
2185 || gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2186 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2187 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2189 /* We want to do tree-combining on conversion-like expressions.
2190 Make sure we feed only SSA_NAMEs or constants to fold though. */
2191 tree tem
= valueize_expr (vn_get_expr_for (op0
));
2192 if (UNARY_CLASS_P (tem
)
2193 || BINARY_CLASS_P (tem
)
2194 || TREE_CODE (tem
) == VIEW_CONVERT_EXPR
2195 || TREE_CODE (tem
) == SSA_NAME
2196 || is_gimple_min_invariant (tem
))
2200 /* Avoid folding if nothing changed, but remember the expression. */
2201 if (op0
== orig_op0
)
2204 result
= fold_unary_ignore_overflow (gimple_assign_rhs_code (stmt
),
2205 gimple_expr_type (stmt
), op0
);
2208 STRIP_USELESS_TYPE_CONVERSION (result
);
2209 if (valid_gimple_rhs_p (result
))
2216 /* Try to simplify RHS using equivalences and constant folding. */
2219 try_to_simplify (gimple stmt
)
2223 /* For stores we can end up simplifying a SSA_NAME rhs. Just return
2224 in this case, there is no point in doing extra work. */
2225 if (gimple_assign_copy_p (stmt
)
2226 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2229 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)))
2231 case tcc_declaration
:
2232 tem
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
));
2238 /* Do not do full-blown reference lookup here, but simplify
2239 reads from constant aggregates. */
2240 tem
= fold_const_aggregate_ref (gimple_assign_rhs1 (stmt
));
2244 /* Fallthrough for some codes that can operate on registers. */
2245 if (!(TREE_CODE (gimple_assign_rhs1 (stmt
)) == REALPART_EXPR
2246 || TREE_CODE (gimple_assign_rhs1 (stmt
)) == IMAGPART_EXPR
2247 || TREE_CODE (gimple_assign_rhs1 (stmt
)) == VIEW_CONVERT_EXPR
))
2249 /* We could do a little more with unary ops, if they expand
2250 into binary ops, but it's debatable whether it is worth it. */
2252 return simplify_unary_expression (stmt
);
2254 case tcc_comparison
:
2256 return simplify_binary_expression (stmt
);
2265 /* Visit and value number USE, return true if the value number
2269 visit_use (tree use
)
2271 bool changed
= false;
2272 gimple stmt
= SSA_NAME_DEF_STMT (use
);
2274 VN_INFO (use
)->use_processed
= true;
2276 gcc_assert (!SSA_NAME_IN_FREE_LIST (use
));
2277 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
2278 && !SSA_NAME_IS_DEFAULT_DEF (use
))
2280 fprintf (dump_file
, "Value numbering ");
2281 print_generic_expr (dump_file
, use
, 0);
2282 fprintf (dump_file
, " stmt = ");
2283 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2286 /* Handle uninitialized uses. */
2287 if (SSA_NAME_IS_DEFAULT_DEF (use
))
2288 changed
= set_ssa_val_to (use
, use
);
2291 if (gimple_code (stmt
) == GIMPLE_PHI
)
2292 changed
= visit_phi (stmt
);
2293 else if (!gimple_has_lhs (stmt
)
2294 || gimple_has_volatile_ops (stmt
)
2295 || stmt_could_throw_p (stmt
))
2296 changed
= defs_to_varying (stmt
);
2297 else if (is_gimple_assign (stmt
))
2299 tree lhs
= gimple_assign_lhs (stmt
);
2302 /* Shortcut for copies. Simplifying copies is pointless,
2303 since we copy the expression and value they represent. */
2304 if (gimple_assign_copy_p (stmt
)
2305 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2306 && TREE_CODE (lhs
) == SSA_NAME
)
2308 changed
= visit_copy (lhs
, gimple_assign_rhs1 (stmt
));
2311 simplified
= try_to_simplify (stmt
);
2314 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2316 fprintf (dump_file
, "RHS ");
2317 print_gimple_expr (dump_file
, stmt
, 0, 0);
2318 fprintf (dump_file
, " simplified to ");
2319 print_generic_expr (dump_file
, simplified
, 0);
2320 if (TREE_CODE (lhs
) == SSA_NAME
)
2321 fprintf (dump_file
, " has constants %d\n",
2322 expr_has_constants (simplified
));
2324 fprintf (dump_file
, "\n");
2327 /* Setting value numbers to constants will occasionally
2328 screw up phi congruence because constants are not
2329 uniquely associated with a single ssa name that can be
2332 && is_gimple_min_invariant (simplified
)
2333 && TREE_CODE (lhs
) == SSA_NAME
)
2335 VN_INFO (lhs
)->expr
= simplified
;
2336 VN_INFO (lhs
)->has_constants
= true;
2337 changed
= set_ssa_val_to (lhs
, simplified
);
2341 && TREE_CODE (simplified
) == SSA_NAME
2342 && TREE_CODE (lhs
) == SSA_NAME
)
2344 changed
= visit_copy (lhs
, simplified
);
2347 else if (simplified
)
2349 if (TREE_CODE (lhs
) == SSA_NAME
)
2351 VN_INFO (lhs
)->has_constants
= expr_has_constants (simplified
);
2352 /* We have to unshare the expression or else
2353 valuizing may change the IL stream. */
2354 VN_INFO (lhs
)->expr
= unshare_expr (simplified
);
2357 else if (stmt_has_constants (stmt
)
2358 && TREE_CODE (lhs
) == SSA_NAME
)
2359 VN_INFO (lhs
)->has_constants
= true;
2360 else if (TREE_CODE (lhs
) == SSA_NAME
)
2362 /* We reset expr and constantness here because we may
2363 have been value numbering optimistically, and
2364 iterating. They may become non-constant in this case,
2365 even if they were optimistically constant. */
2367 VN_INFO (lhs
)->has_constants
= false;
2368 VN_INFO (lhs
)->expr
= NULL_TREE
;
2371 if ((TREE_CODE (lhs
) == SSA_NAME
2372 /* We can substitute SSA_NAMEs that are live over
2373 abnormal edges with their constant value. */
2374 && !(gimple_assign_copy_p (stmt
)
2375 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2377 && is_gimple_min_invariant (simplified
))
2378 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
2379 /* Stores or copies from SSA_NAMEs that are live over
2380 abnormal edges are a problem. */
2381 || (gimple_assign_single_p (stmt
)
2382 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2383 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt
))))
2384 changed
= defs_to_varying (stmt
);
2385 else if (REFERENCE_CLASS_P (lhs
) || DECL_P (lhs
))
2387 changed
= visit_reference_op_store (lhs
, gimple_assign_rhs1 (stmt
), stmt
);
2389 else if (TREE_CODE (lhs
) == SSA_NAME
)
2391 if ((gimple_assign_copy_p (stmt
)
2392 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2394 && is_gimple_min_invariant (simplified
)))
2396 VN_INFO (lhs
)->has_constants
= true;
2398 changed
= set_ssa_val_to (lhs
, simplified
);
2400 changed
= set_ssa_val_to (lhs
, gimple_assign_rhs1 (stmt
));
2404 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
2406 case GIMPLE_UNARY_RHS
:
2407 changed
= visit_unary_op (lhs
, stmt
);
2409 case GIMPLE_BINARY_RHS
:
2410 changed
= visit_binary_op (lhs
, stmt
);
2412 case GIMPLE_SINGLE_RHS
:
2413 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)))
2416 /* VOP-less references can go through unary case. */
2417 if ((gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2418 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2419 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2420 && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0)) == SSA_NAME
)
2422 changed
= visit_unary_op (lhs
, stmt
);
2426 case tcc_declaration
:
2427 changed
= visit_reference_op_load
2428 (lhs
, gimple_assign_rhs1 (stmt
), stmt
);
2430 case tcc_expression
:
2431 if (gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
2433 changed
= visit_unary_op (lhs
, stmt
);
2438 changed
= defs_to_varying (stmt
);
2442 changed
= defs_to_varying (stmt
);
2448 changed
= defs_to_varying (stmt
);
2450 else if (is_gimple_call (stmt
))
2452 tree lhs
= gimple_call_lhs (stmt
);
2454 /* ??? We could try to simplify calls. */
2456 if (stmt_has_constants (stmt
)
2457 && TREE_CODE (lhs
) == SSA_NAME
)
2458 VN_INFO (lhs
)->has_constants
= true;
2459 else if (TREE_CODE (lhs
) == SSA_NAME
)
2461 /* We reset expr and constantness here because we may
2462 have been value numbering optimistically, and
2463 iterating. They may become non-constant in this case,
2464 even if they were optimistically constant. */
2465 VN_INFO (lhs
)->has_constants
= false;
2466 VN_INFO (lhs
)->expr
= NULL_TREE
;
2469 if (TREE_CODE (lhs
) == SSA_NAME
2470 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
2471 changed
= defs_to_varying (stmt
);
2472 /* ??? We should handle stores from calls. */
2473 else if (TREE_CODE (lhs
) == SSA_NAME
)
2475 if (gimple_call_flags (stmt
) & (ECF_PURE
| ECF_CONST
))
2476 changed
= visit_reference_op_call (lhs
, stmt
);
2478 changed
= defs_to_varying (stmt
);
2481 changed
= defs_to_varying (stmt
);
2488 /* Compare two operands by reverse postorder index */
2491 compare_ops (const void *pa
, const void *pb
)
2493 const tree opa
= *((const tree
*)pa
);
2494 const tree opb
= *((const tree
*)pb
);
2495 gimple opstmta
= SSA_NAME_DEF_STMT (opa
);
2496 gimple opstmtb
= SSA_NAME_DEF_STMT (opb
);
2500 if (gimple_nop_p (opstmta
) && gimple_nop_p (opstmtb
))
2502 else if (gimple_nop_p (opstmta
))
2504 else if (gimple_nop_p (opstmtb
))
2507 bba
= gimple_bb (opstmta
);
2508 bbb
= gimple_bb (opstmtb
);
2519 if (gimple_code (opstmta
) == GIMPLE_PHI
2520 && gimple_code (opstmtb
) == GIMPLE_PHI
)
2522 else if (gimple_code (opstmta
) == GIMPLE_PHI
)
2524 else if (gimple_code (opstmtb
) == GIMPLE_PHI
)
2526 return gimple_uid (opstmta
) - gimple_uid (opstmtb
);
2528 return rpo_numbers
[bba
->index
] - rpo_numbers
[bbb
->index
];
2531 /* Sort an array containing members of a strongly connected component
2532 SCC so that the members are ordered by RPO number.
2533 This means that when the sort is complete, iterating through the
2534 array will give you the members in RPO order. */
2537 sort_scc (VEC (tree
, heap
) *scc
)
2539 qsort (VEC_address (tree
, scc
),
2540 VEC_length (tree
, scc
),
2545 /* Process a strongly connected component in the SSA graph. */
2548 process_scc (VEC (tree
, heap
) *scc
)
2550 /* If the SCC has a single member, just visit it. */
2552 if (VEC_length (tree
, scc
) == 1)
2554 tree use
= VEC_index (tree
, scc
, 0);
2555 if (!VN_INFO (use
)->use_processed
)
2562 unsigned int iterations
= 0;
2563 bool changed
= true;
2565 /* Iterate over the SCC with the optimistic table until it stops
2567 current_info
= optimistic_info
;
2572 /* As we are value-numbering optimistically we have to
2573 clear the expression tables and the simplified expressions
2574 in each iteration until we converge. */
2575 htab_empty (optimistic_info
->nary
);
2576 htab_empty (optimistic_info
->phis
);
2577 htab_empty (optimistic_info
->references
);
2578 obstack_free (&optimistic_info
->nary_obstack
, NULL
);
2579 gcc_obstack_init (&optimistic_info
->nary_obstack
);
2580 empty_alloc_pool (optimistic_info
->phis_pool
);
2581 empty_alloc_pool (optimistic_info
->references_pool
);
2582 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2583 VN_INFO (var
)->expr
= NULL_TREE
;
2584 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2585 changed
|= visit_use (var
);
2588 statistics_histogram_event (cfun
, "SCC iterations", iterations
);
2590 /* Finally, visit the SCC once using the valid table. */
2591 current_info
= valid_info
;
2592 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2597 DEF_VEC_O(ssa_op_iter
);
2598 DEF_VEC_ALLOC_O(ssa_op_iter
,heap
);
2600 /* Pop the components of the found SCC for NAME off the SCC stack
2601 and process them. Returns true if all went well, false if
2602 we run into resource limits. */
2605 extract_and_process_scc_for_name (tree name
)
2607 VEC (tree
, heap
) *scc
= NULL
;
2610 /* Found an SCC, pop the components off the SCC stack and
2614 x
= VEC_pop (tree
, sccstack
);
2616 VN_INFO (x
)->on_sccstack
= false;
2617 VEC_safe_push (tree
, heap
, scc
, x
);
2618 } while (x
!= name
);
2620 /* Bail out of SCCVN in case a SCC turns out to be incredibly large. */
2621 if (VEC_length (tree
, scc
)
2622 > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE
))
2625 fprintf (dump_file
, "WARNING: Giving up with SCCVN due to "
2626 "SCC size %u exceeding %u\n", VEC_length (tree
, scc
),
2627 (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE
));
2631 if (VEC_length (tree
, scc
) > 1)
2634 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2635 print_scc (dump_file
, scc
);
2639 VEC_free (tree
, heap
, scc
);
2644 /* Depth first search on NAME to discover and process SCC's in the SSA
2646 Execution of this algorithm relies on the fact that the SCC's are
2647 popped off the stack in topological order.
2648 Returns true if successful, false if we stopped processing SCC's due
2649 to resource constraints. */
2654 VEC(ssa_op_iter
, heap
) *itervec
= NULL
;
2655 VEC(tree
, heap
) *namevec
= NULL
;
2656 use_operand_p usep
= NULL
;
2663 VN_INFO (name
)->dfsnum
= next_dfs_num
++;
2664 VN_INFO (name
)->visited
= true;
2665 VN_INFO (name
)->low
= VN_INFO (name
)->dfsnum
;
2667 VEC_safe_push (tree
, heap
, sccstack
, name
);
2668 VN_INFO (name
)->on_sccstack
= true;
2669 defstmt
= SSA_NAME_DEF_STMT (name
);
2671 /* Recursively DFS on our operands, looking for SCC's. */
2672 if (!gimple_nop_p (defstmt
))
2674 /* Push a new iterator. */
2675 if (gimple_code (defstmt
) == GIMPLE_PHI
)
2676 usep
= op_iter_init_phiuse (&iter
, defstmt
, SSA_OP_ALL_USES
);
2678 usep
= op_iter_init_use (&iter
, defstmt
, SSA_OP_ALL_USES
);
2681 clear_and_done_ssa_iter (&iter
);
2685 /* If we are done processing uses of a name, go up the stack
2686 of iterators and process SCCs as we found them. */
2687 if (op_iter_done (&iter
))
2689 /* See if we found an SCC. */
2690 if (VN_INFO (name
)->low
== VN_INFO (name
)->dfsnum
)
2691 if (!extract_and_process_scc_for_name (name
))
2693 VEC_free (tree
, heap
, namevec
);
2694 VEC_free (ssa_op_iter
, heap
, itervec
);
2698 /* Check if we are done. */
2699 if (VEC_empty (tree
, namevec
))
2701 VEC_free (tree
, heap
, namevec
);
2702 VEC_free (ssa_op_iter
, heap
, itervec
);
2706 /* Restore the last use walker and continue walking there. */
2708 name
= VEC_pop (tree
, namevec
);
2709 memcpy (&iter
, VEC_last (ssa_op_iter
, itervec
),
2710 sizeof (ssa_op_iter
));
2711 VEC_pop (ssa_op_iter
, itervec
);
2712 goto continue_walking
;
2715 use
= USE_FROM_PTR (usep
);
2717 /* Since we handle phi nodes, we will sometimes get
2718 invariants in the use expression. */
2719 if (TREE_CODE (use
) == SSA_NAME
)
2721 if (! (VN_INFO (use
)->visited
))
2723 /* Recurse by pushing the current use walking state on
2724 the stack and starting over. */
2725 VEC_safe_push(ssa_op_iter
, heap
, itervec
, &iter
);
2726 VEC_safe_push(tree
, heap
, namevec
, name
);
2731 VN_INFO (name
)->low
= MIN (VN_INFO (name
)->low
,
2732 VN_INFO (use
)->low
);
2734 if (VN_INFO (use
)->dfsnum
< VN_INFO (name
)->dfsnum
2735 && VN_INFO (use
)->on_sccstack
)
2737 VN_INFO (name
)->low
= MIN (VN_INFO (use
)->dfsnum
,
2738 VN_INFO (name
)->low
);
2742 usep
= op_iter_next_use (&iter
);
2746 /* Allocate a value number table. */
2749 allocate_vn_table (vn_tables_t table
)
2751 table
->phis
= htab_create (23, vn_phi_hash
, vn_phi_eq
, free_phi
);
2752 table
->nary
= htab_create (23, vn_nary_op_hash
, vn_nary_op_eq
, NULL
);
2753 table
->references
= htab_create (23, vn_reference_hash
, vn_reference_eq
,
2756 gcc_obstack_init (&table
->nary_obstack
);
2757 table
->phis_pool
= create_alloc_pool ("VN phis",
2758 sizeof (struct vn_phi_s
),
2760 table
->references_pool
= create_alloc_pool ("VN references",
2761 sizeof (struct vn_reference_s
),
2765 /* Free a value number table. */
2768 free_vn_table (vn_tables_t table
)
2770 htab_delete (table
->phis
);
2771 htab_delete (table
->nary
);
2772 htab_delete (table
->references
);
2773 obstack_free (&table
->nary_obstack
, NULL
);
2774 free_alloc_pool (table
->phis_pool
);
2775 free_alloc_pool (table
->references_pool
);
2783 int *rpo_numbers_temp
;
2785 calculate_dominance_info (CDI_DOMINATORS
);
2787 constant_to_value_id
= htab_create (23, vn_constant_hash
, vn_constant_eq
,
2790 constant_value_ids
= BITMAP_ALLOC (NULL
);
2795 vn_ssa_aux_table
= VEC_alloc (vn_ssa_aux_t
, heap
, num_ssa_names
+ 1);
2796 /* VEC_alloc doesn't actually grow it to the right size, it just
2797 preallocates the space to do so. */
2798 VEC_safe_grow_cleared (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
, num_ssa_names
+ 1);
2799 gcc_obstack_init (&vn_ssa_aux_obstack
);
2801 shared_lookup_phiargs
= NULL
;
2802 shared_lookup_vops
= NULL
;
2803 shared_lookup_references
= NULL
;
2804 rpo_numbers
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
2805 rpo_numbers_temp
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
2806 pre_and_rev_post_order_compute (NULL
, rpo_numbers_temp
, false);
2808 /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
2809 the i'th block in RPO order is bb. We want to map bb's to RPO
2810 numbers, so we need to rearrange this array. */
2811 for (j
= 0; j
< n_basic_blocks
- NUM_FIXED_BLOCKS
; j
++)
2812 rpo_numbers
[rpo_numbers_temp
[j
]] = j
;
2814 XDELETE (rpo_numbers_temp
);
2816 VN_TOP
= create_tmp_var_raw (void_type_node
, "vn_top");
2818 /* Create the VN_INFO structures, and initialize value numbers to
2820 for (i
= 0; i
< num_ssa_names
; i
++)
2822 tree name
= ssa_name (i
);
2825 VN_INFO_GET (name
)->valnum
= VN_TOP
;
2826 VN_INFO (name
)->expr
= NULL_TREE
;
2827 VN_INFO (name
)->value_id
= 0;
2831 renumber_gimple_stmt_uids ();
2833 /* Create the valid and optimistic value numbering tables. */
2834 valid_info
= XCNEW (struct vn_tables_s
);
2835 allocate_vn_table (valid_info
);
2836 optimistic_info
= XCNEW (struct vn_tables_s
);
2837 allocate_vn_table (optimistic_info
);
2845 htab_delete (constant_to_value_id
);
2846 BITMAP_FREE (constant_value_ids
);
2847 VEC_free (tree
, heap
, shared_lookup_phiargs
);
2848 VEC_free (tree
, gc
, shared_lookup_vops
);
2849 VEC_free (vn_reference_op_s
, heap
, shared_lookup_references
);
2850 XDELETEVEC (rpo_numbers
);
2852 for (i
= 0; i
< num_ssa_names
; i
++)
2854 tree name
= ssa_name (i
);
2856 && VN_INFO (name
)->needs_insertion
)
2857 release_ssa_name (name
);
2859 obstack_free (&vn_ssa_aux_obstack
, NULL
);
2860 VEC_free (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
);
2862 VEC_free (tree
, heap
, sccstack
);
2863 free_vn_table (valid_info
);
2864 XDELETE (valid_info
);
2865 free_vn_table (optimistic_info
);
2866 XDELETE (optimistic_info
);
2869 /* Set the value ids in the valid hash tables. */
2872 set_hashtable_value_ids (void)
2879 /* Now set the value ids of the things we had put in the hash
2882 FOR_EACH_HTAB_ELEMENT (valid_info
->nary
,
2883 vno
, vn_nary_op_t
, hi
)
2887 if (TREE_CODE (vno
->result
) == SSA_NAME
)
2888 vno
->value_id
= VN_INFO (vno
->result
)->value_id
;
2889 else if (is_gimple_min_invariant (vno
->result
))
2890 vno
->value_id
= get_or_alloc_constant_value_id (vno
->result
);
2894 FOR_EACH_HTAB_ELEMENT (valid_info
->phis
,
2899 if (TREE_CODE (vp
->result
) == SSA_NAME
)
2900 vp
->value_id
= VN_INFO (vp
->result
)->value_id
;
2901 else if (is_gimple_min_invariant (vp
->result
))
2902 vp
->value_id
= get_or_alloc_constant_value_id (vp
->result
);
2906 FOR_EACH_HTAB_ELEMENT (valid_info
->references
,
2907 vr
, vn_reference_t
, hi
)
2911 if (TREE_CODE (vr
->result
) == SSA_NAME
)
2912 vr
->value_id
= VN_INFO (vr
->result
)->value_id
;
2913 else if (is_gimple_min_invariant (vr
->result
))
2914 vr
->value_id
= get_or_alloc_constant_value_id (vr
->result
);
2919 /* Do SCCVN. Returns true if it finished, false if we bailed out
2920 due to resource constraints. */
2923 run_scc_vn (bool may_insert_arg
)
2927 bool changed
= true;
2929 may_insert
= may_insert_arg
;
2932 current_info
= valid_info
;
2934 for (param
= DECL_ARGUMENTS (current_function_decl
);
2936 param
= TREE_CHAIN (param
))
2938 if (gimple_default_def (cfun
, param
) != NULL
)
2940 tree def
= gimple_default_def (cfun
, param
);
2941 SSA_VAL (def
) = def
;
2945 for (i
= 1; i
< num_ssa_names
; ++i
)
2947 tree name
= ssa_name (i
);
2949 && VN_INFO (name
)->visited
== false
2950 && !has_zero_uses (name
))
2959 /* Initialize the value ids. */
2961 for (i
= 1; i
< num_ssa_names
; ++i
)
2963 tree name
= ssa_name (i
);
2967 info
= VN_INFO (name
);
2968 if (info
->valnum
== name
)
2969 info
->value_id
= get_next_value_id ();
2970 else if (is_gimple_min_invariant (info
->valnum
))
2971 info
->value_id
= get_or_alloc_constant_value_id (info
->valnum
);
2974 /* Propagate until they stop changing. */
2978 for (i
= 1; i
< num_ssa_names
; ++i
)
2980 tree name
= ssa_name (i
);
2984 info
= VN_INFO (name
);
2985 if (TREE_CODE (info
->valnum
) == SSA_NAME
2986 && info
->valnum
!= name
2987 && info
->value_id
!= VN_INFO (info
->valnum
)->value_id
)
2990 info
->value_id
= VN_INFO (info
->valnum
)->value_id
;
2995 set_hashtable_value_ids ();
2997 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2999 fprintf (dump_file
, "Value numbers:\n");
3000 for (i
= 0; i
< num_ssa_names
; i
++)
3002 tree name
= ssa_name (i
);
3004 && VN_INFO (name
)->visited
3005 && SSA_VAL (name
) != name
)
3007 print_generic_expr (dump_file
, name
, 0);
3008 fprintf (dump_file
, " = ");
3009 print_generic_expr (dump_file
, SSA_VAL (name
), 0);
3010 fprintf (dump_file
, "\n");
3019 /* Return the maximum value id we have ever seen. */
3022 get_max_value_id (void)
3024 return next_value_id
;
3027 /* Return the next unique value id. */
3030 get_next_value_id (void)
3032 return next_value_id
++;
3036 /* Compare two expressions E1 and E2 and return true if they are equal. */
3039 expressions_equal_p (tree e1
, tree e2
)
3041 /* The obvious case. */
3045 /* If only one of them is null, they cannot be equal. */
3049 /* Recurse on elements of lists. */
3050 if (TREE_CODE (e1
) == TREE_LIST
&& TREE_CODE (e2
) == TREE_LIST
)
3054 for (lop1
= e1
, lop2
= e2
;
3056 lop1
= TREE_CHAIN (lop1
), lop2
= TREE_CHAIN (lop2
))
3060 if (!expressions_equal_p (TREE_VALUE (lop1
), TREE_VALUE (lop2
)))
3066 /* Now perform the actual comparison. */
3067 if (TREE_CODE (e1
) == TREE_CODE (e2
)
3068 && operand_equal_p (e1
, e2
, OEP_PURE_SAME
))
3074 /* Sort the VUSE array so that we can do equality comparisons
3075 quicker on two vuse vecs. */
3078 sort_vuses (VEC (tree
,gc
) *vuses
)
3080 if (VEC_length (tree
, vuses
) > 1)
3081 qsort (VEC_address (tree
, vuses
),
3082 VEC_length (tree
, vuses
),
3087 /* Sort the VUSE array so that we can do equality comparisons
3088 quicker on two vuse vecs. */
3091 sort_vuses_heap (VEC (tree
,heap
) *vuses
)
3093 if (VEC_length (tree
, vuses
) > 1)
3094 qsort (VEC_address (tree
, vuses
),
3095 VEC_length (tree
, vuses
),
3101 /* Return true if the nary operation NARY may trap. This is a copy
3102 of stmt_could_throw_1_p adjusted to the SCCVN IL. */
3105 vn_nary_may_trap (vn_nary_op_t nary
)
3109 bool honor_nans
= false;
3110 bool honor_snans
= false;
3111 bool fp_operation
= false;
3112 bool honor_trapv
= false;
3116 if (TREE_CODE_CLASS (nary
->opcode
) == tcc_comparison
3117 || TREE_CODE_CLASS (nary
->opcode
) == tcc_unary
3118 || TREE_CODE_CLASS (nary
->opcode
) == tcc_binary
)
3121 fp_operation
= FLOAT_TYPE_P (type
);
3124 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
3125 honor_snans
= flag_signaling_nans
!= 0;
3127 else if (INTEGRAL_TYPE_P (type
)
3128 && TYPE_OVERFLOW_TRAPS (type
))
3132 ret
= operation_could_trap_helper_p (nary
->opcode
, fp_operation
,
3134 honor_nans
, honor_snans
, rhs2
,
3140 for (i
= 0; i
< nary
->length
; ++i
)
3141 if (tree_could_trap_p (nary
->op
[i
]))