nfs: fix real/effective id mismatch in nfs_access
[dragonfly.git] / sys / vfs / nfs / nfs_vnops.c
blob8732980e84100b3c0480ad195775f2c490d788e2
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95
37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
43 * vnode op calls for Sun NFS version 2 and 3
46 #include "opt_inet.h"
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
72 #include <sys/buf2.h>
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
77 #undef DIRBLKSIZ
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
91 #include <sys/thread2.h>
93 /* Defs */
94 #define TRUE 1
95 #define FALSE 0
97 static int nfsfifo_read (struct vop_read_args *);
98 static int nfsfifo_write (struct vop_write_args *);
99 static int nfsfifo_close (struct vop_close_args *);
100 #define nfs_poll vop_nopoll
101 static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
102 static int nfs_lookup (struct vop_old_lookup_args *);
103 static int nfs_create (struct vop_old_create_args *);
104 static int nfs_mknod (struct vop_old_mknod_args *);
105 static int nfs_open (struct vop_open_args *);
106 static int nfs_close (struct vop_close_args *);
107 static int nfs_access (struct vop_access_args *);
108 static int nfs_getattr (struct vop_getattr_args *);
109 static int nfs_setattr (struct vop_setattr_args *);
110 static int nfs_read (struct vop_read_args *);
111 static int nfs_mmap (struct vop_mmap_args *);
112 static int nfs_fsync (struct vop_fsync_args *);
113 static int nfs_remove (struct vop_old_remove_args *);
114 static int nfs_link (struct vop_old_link_args *);
115 static int nfs_rename (struct vop_old_rename_args *);
116 static int nfs_mkdir (struct vop_old_mkdir_args *);
117 static int nfs_rmdir (struct vop_old_rmdir_args *);
118 static int nfs_symlink (struct vop_old_symlink_args *);
119 static int nfs_readdir (struct vop_readdir_args *);
120 static int nfs_bmap (struct vop_bmap_args *);
121 static int nfs_strategy (struct vop_strategy_args *);
122 static int nfs_lookitup (struct vnode *, const char *, int,
123 struct ucred *, struct thread *, struct nfsnode **);
124 static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
125 static int nfs_laccess (struct vop_access_args *);
126 static int nfs_readlink (struct vop_readlink_args *);
127 static int nfs_print (struct vop_print_args *);
128 static int nfs_advlock (struct vop_advlock_args *);
130 static int nfs_nresolve (struct vop_nresolve_args *);
132 * Global vfs data structures for nfs
134 struct vop_ops nfsv2_vnode_vops = {
135 .vop_default = vop_defaultop,
136 .vop_access = nfs_access,
137 .vop_advlock = nfs_advlock,
138 .vop_bmap = nfs_bmap,
139 .vop_close = nfs_close,
140 .vop_old_create = nfs_create,
141 .vop_fsync = nfs_fsync,
142 .vop_getattr = nfs_getattr,
143 .vop_getpages = nfs_getpages,
144 .vop_putpages = nfs_putpages,
145 .vop_inactive = nfs_inactive,
146 .vop_old_link = nfs_link,
147 .vop_old_lookup = nfs_lookup,
148 .vop_old_mkdir = nfs_mkdir,
149 .vop_old_mknod = nfs_mknod,
150 .vop_mmap = nfs_mmap,
151 .vop_open = nfs_open,
152 .vop_poll = nfs_poll,
153 .vop_print = nfs_print,
154 .vop_read = nfs_read,
155 .vop_readdir = nfs_readdir,
156 .vop_readlink = nfs_readlink,
157 .vop_reclaim = nfs_reclaim,
158 .vop_old_remove = nfs_remove,
159 .vop_old_rename = nfs_rename,
160 .vop_old_rmdir = nfs_rmdir,
161 .vop_setattr = nfs_setattr,
162 .vop_strategy = nfs_strategy,
163 .vop_old_symlink = nfs_symlink,
164 .vop_write = nfs_write,
165 .vop_nresolve = nfs_nresolve
169 * Special device vnode ops
171 struct vop_ops nfsv2_spec_vops = {
172 .vop_default = vop_defaultop,
173 .vop_access = nfs_laccess,
174 .vop_close = nfs_close,
175 .vop_fsync = nfs_fsync,
176 .vop_getattr = nfs_getattr,
177 .vop_inactive = nfs_inactive,
178 .vop_print = nfs_print,
179 .vop_read = vop_stdnoread,
180 .vop_reclaim = nfs_reclaim,
181 .vop_setattr = nfs_setattr,
182 .vop_write = vop_stdnowrite
185 struct vop_ops nfsv2_fifo_vops = {
186 .vop_default = fifo_vnoperate,
187 .vop_access = nfs_laccess,
188 .vop_close = nfsfifo_close,
189 .vop_fsync = nfs_fsync,
190 .vop_getattr = nfs_getattr,
191 .vop_inactive = nfs_inactive,
192 .vop_print = nfs_print,
193 .vop_read = nfsfifo_read,
194 .vop_reclaim = nfs_reclaim,
195 .vop_setattr = nfs_setattr,
196 .vop_write = nfsfifo_write
199 static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
200 struct componentname *cnp,
201 struct vattr *vap);
202 static int nfs_removerpc (struct vnode *dvp, const char *name,
203 int namelen,
204 struct ucred *cred, struct thread *td);
205 static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
206 int fnamelen, struct vnode *tdvp,
207 const char *tnameptr, int tnamelen,
208 struct ucred *cred, struct thread *td);
209 static int nfs_renameit (struct vnode *sdvp,
210 struct componentname *scnp,
211 struct sillyrename *sp);
213 SYSCTL_DECL(_vfs_nfs);
215 static int nfs_flush_on_rename = 1;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
217 &nfs_flush_on_rename, 0, "flush fvp prior to rename");
218 static int nfs_flush_on_hlink = 0;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
220 &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
222 static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
223 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
226 static int nfsneg_cache_timeout = NFS_MINATTRTIMO;
227 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
228 &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
230 static int nfspos_cache_timeout = NFS_MINATTRTIMO;
231 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
232 &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
234 static int nfsv3_commit_on_close = 0;
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
236 &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
237 #if 0
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
239 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
242 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
243 #endif
245 #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \
246 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \
247 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
248 static int
249 nfs3_access_otw(struct vnode *vp, int wmode,
250 struct thread *td, struct ucred *cred)
252 struct nfsnode *np = VTONFS(vp);
253 int attrflag;
254 int error = 0;
255 u_int32_t *tl;
256 u_int32_t rmode;
257 struct nfsm_info info;
259 info.mrep = NULL;
260 info.v3 = 1;
262 nfsstats.rpccnt[NFSPROC_ACCESS]++;
263 nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
264 NFSX_FH(info.v3) + NFSX_UNSIGNED);
265 ERROROUT(nfsm_fhtom(&info, vp));
266 tl = nfsm_build(&info, NFSX_UNSIGNED);
267 *tl = txdr_unsigned(wmode);
268 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
269 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
270 if (error == 0) {
271 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
272 rmode = fxdr_unsigned(u_int32_t, *tl);
273 np->n_mode = rmode;
274 np->n_modeuid = cred->cr_uid;
275 np->n_modestamp = mycpu->gd_time_seconds;
277 m_freem(info.mrep);
278 info.mrep = NULL;
279 nfsmout:
280 return error;
284 * nfs access vnode op.
285 * For nfs version 2, just return ok. File accesses may fail later.
286 * For nfs version 3, use the access rpc to check accessibility. If file modes
287 * are changed on the server, accesses might still fail later.
289 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
291 static int
292 nfs_access(struct vop_access_args *ap)
294 struct ucred *cred;
295 struct vnode *vp = ap->a_vp;
296 thread_t td = curthread;
297 int error = 0;
298 u_int32_t mode, wmode;
299 struct nfsnode *np = VTONFS(vp);
300 int v3 = NFS_ISV3(vp);
303 * Disallow write attempts on filesystems mounted read-only;
304 * unless the file is a socket, fifo, or a block or character
305 * device resident on the filesystem.
307 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
308 switch (vp->v_type) {
309 case VREG:
310 case VDIR:
311 case VLNK:
312 return (EROFS);
313 default:
314 break;
319 * The NFS protocol passes only the effective uid/gid over the wire but
320 * we need to check access against real ids if AT_EACCESS not set.
321 * Handle this case by cloning the credentials and setting the
322 * effective ids to the real ones.
324 if (ap->a_flags & AT_EACCESS) {
325 cred = crhold(ap->a_cred);
326 } else {
327 cred = crdup(ap->a_cred);
328 cred->cr_uid = cred->cr_ruid;
329 cred->cr_gid = cred->cr_rgid;
333 * For nfs v3, check to see if we have done this recently, and if
334 * so return our cached result instead of making an ACCESS call.
335 * If not, do an access rpc, otherwise you are stuck emulating
336 * ufs_access() locally using the vattr. This may not be correct,
337 * since the server may apply other access criteria such as
338 * client uid-->server uid mapping that we do not know about.
340 if (v3) {
341 if (ap->a_mode & VREAD)
342 mode = NFSV3ACCESS_READ;
343 else
344 mode = 0;
345 if (vp->v_type != VDIR) {
346 if (ap->a_mode & VWRITE)
347 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
348 if (ap->a_mode & VEXEC)
349 mode |= NFSV3ACCESS_EXECUTE;
350 } else {
351 if (ap->a_mode & VWRITE)
352 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
353 NFSV3ACCESS_DELETE);
354 if (ap->a_mode & VEXEC)
355 mode |= NFSV3ACCESS_LOOKUP;
357 /* XXX safety belt, only make blanket request if caching */
358 if (nfsaccess_cache_timeout > 0) {
359 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
360 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
361 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
362 } else {
363 wmode = mode;
367 * Does our cached result allow us to give a definite yes to
368 * this request?
370 if (np->n_modestamp &&
371 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
372 (cred->cr_uid == np->n_modeuid) &&
373 ((np->n_mode & mode) == mode)) {
374 nfsstats.accesscache_hits++;
375 } else {
377 * Either a no, or a don't know. Go to the wire.
379 nfsstats.accesscache_misses++;
380 error = nfs3_access_otw(vp, wmode, td, cred);
381 if (!error) {
382 if ((np->n_mode & mode) != mode) {
383 error = EACCES;
387 } else {
388 if ((error = nfs_laccess(ap)) != 0) {
389 crfree(cred);
390 return (error);
394 * Attempt to prevent a mapped root from accessing a file
395 * which it shouldn't. We try to read a byte from the file
396 * if the user is root and the file is not zero length.
397 * After calling nfs_laccess, we should have the correct
398 * file size cached.
400 if (cred->cr_uid == 0 && (ap->a_mode & VREAD)
401 && VTONFS(vp)->n_size > 0) {
402 struct iovec aiov;
403 struct uio auio;
404 char buf[1];
406 aiov.iov_base = buf;
407 aiov.iov_len = 1;
408 auio.uio_iov = &aiov;
409 auio.uio_iovcnt = 1;
410 auio.uio_offset = 0;
411 auio.uio_resid = 1;
412 auio.uio_segflg = UIO_SYSSPACE;
413 auio.uio_rw = UIO_READ;
414 auio.uio_td = td;
416 if (vp->v_type == VREG) {
417 error = nfs_readrpc_uio(vp, &auio);
418 } else if (vp->v_type == VDIR) {
419 char* bp;
420 bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
421 aiov.iov_base = bp;
422 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
423 error = nfs_readdirrpc_uio(vp, &auio);
424 kfree(bp, M_TEMP);
425 } else if (vp->v_type == VLNK) {
426 error = nfs_readlinkrpc_uio(vp, &auio);
427 } else {
428 error = EACCES;
433 * [re]record creds for reading and/or writing if access
434 * was granted. Assume the NFS server will grant read access
435 * for execute requests.
437 if (error == 0) {
438 if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) {
439 crhold(cred);
440 if (np->n_rucred)
441 crfree(np->n_rucred);
442 np->n_rucred = cred;
444 if ((ap->a_mode & VWRITE) && cred != np->n_wucred) {
445 crhold(cred);
446 if (np->n_wucred)
447 crfree(np->n_wucred);
448 np->n_wucred = cred;
451 crfree(cred);
452 return(error);
456 * nfs open vnode op
457 * Check to see if the type is ok
458 * and that deletion is not in progress.
459 * For paged in text files, you will need to flush the page cache
460 * if consistency is lost.
462 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
463 * struct file *a_fp)
465 /* ARGSUSED */
466 static int
467 nfs_open(struct vop_open_args *ap)
469 struct vnode *vp = ap->a_vp;
470 struct nfsnode *np = VTONFS(vp);
471 struct vattr vattr;
472 int error;
474 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
475 #ifdef DIAGNOSTIC
476 kprintf("open eacces vtyp=%d\n",vp->v_type);
477 #endif
478 return (EOPNOTSUPP);
482 * Save valid creds for reading and writing for later RPCs.
484 if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
485 crhold(ap->a_cred);
486 if (np->n_rucred)
487 crfree(np->n_rucred);
488 np->n_rucred = ap->a_cred;
490 if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
491 crhold(ap->a_cred);
492 if (np->n_wucred)
493 crfree(np->n_wucred);
494 np->n_wucred = ap->a_cred;
498 * Clear the attribute cache only if opening with write access. It
499 * is unclear if we should do this at all here, but we certainly
500 * should not clear the cache unconditionally simply because a file
501 * is being opened.
503 if (ap->a_mode & FWRITE)
504 np->n_attrstamp = 0;
507 * For normal NFS, reconcile changes made locally verses
508 * changes made remotely. Note that VOP_GETATTR only goes
509 * to the wire if the cached attribute has timed out or been
510 * cleared.
512 * If local modifications have been made clear the attribute
513 * cache to force an attribute and modified time check. If
514 * GETATTR detects that the file has been changed by someone
515 * other then us it will set NRMODIFIED.
517 * If we are opening a directory and local changes have been
518 * made we have to invalidate the cache in order to ensure
519 * that we get the most up-to-date information from the
520 * server. XXX
522 if (np->n_flag & NLMODIFIED) {
523 np->n_attrstamp = 0;
524 if (vp->v_type == VDIR) {
525 error = nfs_vinvalbuf(vp, V_SAVE, 1);
526 if (error == EINTR)
527 return (error);
528 nfs_invaldir(vp);
531 error = VOP_GETATTR(vp, &vattr);
532 if (error)
533 return (error);
534 if (np->n_flag & NRMODIFIED) {
535 if (vp->v_type == VDIR)
536 nfs_invaldir(vp);
537 error = nfs_vinvalbuf(vp, V_SAVE, 1);
538 if (error == EINTR)
539 return (error);
540 np->n_flag &= ~NRMODIFIED;
543 return (vop_stdopen(ap));
547 * nfs close vnode op
548 * What an NFS client should do upon close after writing is a debatable issue.
549 * Most NFS clients push delayed writes to the server upon close, basically for
550 * two reasons:
551 * 1 - So that any write errors may be reported back to the client process
552 * doing the close system call. By far the two most likely errors are
553 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
554 * 2 - To put a worst case upper bound on cache inconsistency between
555 * multiple clients for the file.
556 * There is also a consistency problem for Version 2 of the protocol w.r.t.
557 * not being able to tell if other clients are writing a file concurrently,
558 * since there is no way of knowing if the changed modify time in the reply
559 * is only due to the write for this client.
560 * (NFS Version 3 provides weak cache consistency data in the reply that
561 * should be sufficient to detect and handle this case.)
563 * The current code does the following:
564 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
565 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
566 * or commit them (this satisfies 1 and 2 except for the
567 * case where the server crashes after this close but
568 * before the commit RPC, which is felt to be "good
569 * enough". Changing the last argument to nfs_flush() to
570 * a 1 would force a commit operation, if it is felt a
571 * commit is necessary now.
572 * for NQNFS - do nothing now, since 2 is dealt with via leases and
573 * 1 should be dealt with via an fsync() system call for
574 * cases where write errors are important.
576 * nfs_close(struct vnode *a_vp, int a_fflag)
578 /* ARGSUSED */
579 static int
580 nfs_close(struct vop_close_args *ap)
582 struct vnode *vp = ap->a_vp;
583 struct nfsnode *np = VTONFS(vp);
584 int error = 0;
585 thread_t td = curthread;
587 if (vp->v_type == VREG) {
588 if (np->n_flag & NLMODIFIED) {
589 if (NFS_ISV3(vp)) {
591 * Under NFSv3 we have dirty buffers to dispose of. We
592 * must flush them to the NFS server. We have the option
593 * of waiting all the way through the commit rpc or just
594 * waiting for the initial write. The default is to only
595 * wait through the initial write so the data is in the
596 * server's cache, which is roughly similar to the state
597 * a standard disk subsystem leaves the file in on close().
599 * We cannot clear the NLMODIFIED bit in np->n_flag due to
600 * potential races with other processes, and certainly
601 * cannot clear it if we don't commit.
603 int cm = nfsv3_commit_on_close ? 1 : 0;
604 error = nfs_flush(vp, MNT_WAIT, td, cm);
605 /* np->n_flag &= ~NLMODIFIED; */
606 } else {
607 error = nfs_vinvalbuf(vp, V_SAVE, 1);
609 np->n_attrstamp = 0;
611 if (np->n_flag & NWRITEERR) {
612 np->n_flag &= ~NWRITEERR;
613 error = np->n_error;
616 vop_stdclose(ap);
617 return (error);
621 * nfs getattr call from vfs.
623 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
625 static int
626 nfs_getattr(struct vop_getattr_args *ap)
628 struct vnode *vp = ap->a_vp;
629 struct nfsnode *np = VTONFS(vp);
630 int error = 0;
631 thread_t td = curthread;
632 struct nfsm_info info;
634 info.mrep = NULL;
635 info.v3 = NFS_ISV3(vp);
638 * Update local times for special files.
640 if (np->n_flag & (NACC | NUPD))
641 np->n_flag |= NCHG;
643 * First look in the cache.
645 if (nfs_getattrcache(vp, ap->a_vap) == 0)
646 return (0);
648 if (info.v3 && nfsaccess_cache_timeout > 0) {
649 nfsstats.accesscache_misses++;
650 nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
651 if (nfs_getattrcache(vp, ap->a_vap) == 0)
652 return (0);
655 nfsstats.rpccnt[NFSPROC_GETATTR]++;
656 nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
657 ERROROUT(nfsm_fhtom(&info, vp));
658 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
659 nfs_vpcred(vp, ND_CHECK), &error));
660 if (error == 0) {
661 ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
663 m_freem(info.mrep);
664 info.mrep = NULL;
665 nfsmout:
666 return (error);
670 * nfs setattr call.
672 * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
674 static int
675 nfs_setattr(struct vop_setattr_args *ap)
677 struct vnode *vp = ap->a_vp;
678 struct nfsnode *np = VTONFS(vp);
679 struct vattr *vap = ap->a_vap;
680 struct buf *bp;
681 int biosize = vp->v_mount->mnt_stat.f_iosize;
682 int error = 0;
683 int boff;
684 off_t tsize;
685 thread_t td = curthread;
687 #ifndef nolint
688 tsize = (off_t)0;
689 #endif
692 * Setting of flags is not supported.
694 if (vap->va_flags != VNOVAL)
695 return (EOPNOTSUPP);
698 * Disallow write attempts if the filesystem is mounted read-only.
700 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
701 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
702 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
703 (vp->v_mount->mnt_flag & MNT_RDONLY))
704 return (EROFS);
706 if (vap->va_size != VNOVAL) {
708 * truncation requested
710 switch (vp->v_type) {
711 case VDIR:
712 return (EISDIR);
713 case VCHR:
714 case VBLK:
715 case VSOCK:
716 case VFIFO:
717 if (vap->va_mtime.tv_sec == VNOVAL &&
718 vap->va_atime.tv_sec == VNOVAL &&
719 vap->va_mode == (mode_t)VNOVAL &&
720 vap->va_uid == (uid_t)VNOVAL &&
721 vap->va_gid == (gid_t)VNOVAL)
722 return (0);
723 vap->va_size = VNOVAL;
724 break;
725 default:
727 * Disallow write attempts if the filesystem is
728 * mounted read-only.
730 if (vp->v_mount->mnt_flag & MNT_RDONLY)
731 return (EROFS);
734 * This is nasty. The RPCs we send to flush pending
735 * data often return attribute information which is
736 * cached via a callback to nfs_loadattrcache(), which
737 * has the effect of changing our notion of the file
738 * size. Due to flushed appends and other operations
739 * the file size can be set to virtually anything,
740 * including values that do not match either the old
741 * or intended file size.
743 * When this condition is detected we must loop to
744 * try the operation again. Hopefully no more
745 * flushing is required on the loop so it works the
746 * second time around. THIS CASE ALMOST ALWAYS
747 * HAPPENS!
749 tsize = np->n_size;
750 again:
751 boff = (int)vap->va_size & (biosize - 1);
752 bp = nfs_meta_setsize(vp, td, vap->va_size - boff,
753 boff, 0);
754 if (bp) {
755 error = 0;
756 brelse(bp);
757 } else {
758 error = EINTR;
761 if (np->n_flag & NLMODIFIED) {
762 if (vap->va_size == 0)
763 error = nfs_vinvalbuf(vp, 0, 1);
764 else
765 error = nfs_vinvalbuf(vp, V_SAVE, 1);
768 * note: this loop case almost always happens at
769 * least once per truncation.
771 if (error == 0 && np->n_size != vap->va_size)
772 goto again;
773 np->n_vattr.va_size = vap->va_size;
774 break;
776 } else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
778 * What to do. If we are modifying the mtime we lose
779 * mtime detection of changes made by the server or other
780 * clients. But programs like rsync/rdist/cpdup are going
781 * to call utimes a lot. We don't want to piecemeal sync.
783 * For now sync if any prior remote changes were detected,
784 * but allow us to lose track of remote changes made during
785 * the utimes operation.
787 if (np->n_flag & NRMODIFIED)
788 error = nfs_vinvalbuf(vp, V_SAVE, 1);
789 if (error == EINTR)
790 return (error);
791 if (error == 0) {
792 if (vap->va_mtime.tv_sec != VNOVAL) {
793 np->n_mtime = vap->va_mtime.tv_sec;
797 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
800 * Sanity check if a truncation was issued. This should only occur
801 * if multiple processes are racing on the same file.
803 if (error == 0 && vap->va_size != VNOVAL &&
804 np->n_size != vap->va_size) {
805 kprintf("NFS ftruncate: server disagrees on the file size: "
806 "%jd/%jd/%jd\n",
807 (intmax_t)tsize,
808 (intmax_t)vap->va_size,
809 (intmax_t)np->n_size);
810 goto again;
812 if (error && vap->va_size != VNOVAL) {
813 np->n_size = np->n_vattr.va_size = tsize;
814 boff = (int)np->n_size & (biosize - 1);
815 vnode_pager_setsize(vp, np->n_size);
817 return (error);
821 * Do an nfs setattr rpc.
823 static int
824 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
825 struct ucred *cred, struct thread *td)
827 struct nfsv2_sattr *sp;
828 struct nfsnode *np = VTONFS(vp);
829 u_int32_t *tl;
830 int error = 0, wccflag = NFSV3_WCCRATTR;
831 struct nfsm_info info;
833 info.mrep = NULL;
834 info.v3 = NFS_ISV3(vp);
836 nfsstats.rpccnt[NFSPROC_SETATTR]++;
837 nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
838 NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
839 ERROROUT(nfsm_fhtom(&info, vp));
840 if (info.v3) {
841 nfsm_v3attrbuild(&info, vap, TRUE);
842 tl = nfsm_build(&info, NFSX_UNSIGNED);
843 *tl = nfs_false;
844 } else {
845 sp = nfsm_build(&info, NFSX_V2SATTR);
846 if (vap->va_mode == (mode_t)VNOVAL)
847 sp->sa_mode = nfs_xdrneg1;
848 else
849 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
850 if (vap->va_uid == (uid_t)VNOVAL)
851 sp->sa_uid = nfs_xdrneg1;
852 else
853 sp->sa_uid = txdr_unsigned(vap->va_uid);
854 if (vap->va_gid == (gid_t)VNOVAL)
855 sp->sa_gid = nfs_xdrneg1;
856 else
857 sp->sa_gid = txdr_unsigned(vap->va_gid);
858 sp->sa_size = txdr_unsigned(vap->va_size);
859 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
860 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
862 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
863 if (info.v3) {
864 np->n_modestamp = 0;
865 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
866 } else {
867 ERROROUT(nfsm_loadattr(&info, vp, NULL));
869 m_freem(info.mrep);
870 info.mrep = NULL;
871 nfsmout:
872 return (error);
875 static
876 void
877 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
879 if (nctimeout == 0)
880 nctimeout = 1;
881 else
882 nctimeout *= hz;
883 cache_setvp(nch, vp);
884 cache_settimeout(nch, nctimeout);
888 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove
889 * nfs_lookup() until all remaining new api calls are implemented.
891 * Resolve a namecache entry. This function is passed a locked ncp and
892 * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
894 static int
895 nfs_nresolve(struct vop_nresolve_args *ap)
897 struct thread *td = curthread;
898 struct namecache *ncp;
899 struct ucred *cred;
900 struct nfsnode *np;
901 struct vnode *dvp;
902 struct vnode *nvp;
903 nfsfh_t *fhp;
904 int attrflag;
905 int fhsize;
906 int error;
907 int tmp_error;
908 int len;
909 struct nfsm_info info;
911 cred = ap->a_cred;
912 dvp = ap->a_dvp;
914 if ((error = vget(dvp, LK_SHARED)) != 0)
915 return (error);
917 info.mrep = NULL;
918 info.v3 = NFS_ISV3(dvp);
920 nvp = NULL;
921 nfsstats.lookupcache_misses++;
922 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
923 ncp = ap->a_nch->ncp;
924 len = ncp->nc_nlen;
925 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
926 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
927 ERROROUT(nfsm_fhtom(&info, dvp));
928 ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
929 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
930 ap->a_cred, &error));
931 if (error) {
933 * Cache negatve lookups to reduce NFS traffic, but use
934 * a fast timeout. Otherwise use a timeout of 1 tick.
935 * XXX we should add a namecache flag for no-caching
936 * to uncache the negative hit as soon as possible, but
937 * we cannot simply destroy the entry because it is used
938 * as a placeholder by the caller.
940 * The refactored nfs code will overwrite a non-zero error
941 * with 0 when we use ERROROUT(), so don't here.
943 if (error == ENOENT)
944 nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
945 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
946 NFS_LATTR_NOSHRINK);
947 if (tmp_error) {
948 error = tmp_error;
949 goto nfsmout;
951 m_freem(info.mrep);
952 info.mrep = NULL;
953 goto nfsmout;
957 * Success, get the file handle, do various checks, and load
958 * post-operation data from the reply packet. Theoretically
959 * we should never be looking up "." so, theoretically, we
960 * should never get the same file handle as our directory. But
961 * we check anyway. XXX
963 * Note that no timeout is set for the positive cache hit. We
964 * assume, theoretically, that ESTALE returns will be dealt with
965 * properly to handle NFS races and in anycase we cannot depend
966 * on a timeout to deal with NFS open/create/excl issues so instead
967 * of a bad hack here the rest of the NFS client code needs to do
968 * the right thing.
970 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
972 np = VTONFS(dvp);
973 if (NFS_CMPFH(np, fhp, fhsize)) {
974 vref(dvp);
975 nvp = dvp;
976 } else {
977 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
978 if (error) {
979 m_freem(info.mrep);
980 info.mrep = NULL;
981 vput(dvp);
982 return (error);
984 nvp = NFSTOV(np);
986 if (info.v3) {
987 ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
988 NFS_LATTR_NOSHRINK));
989 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
990 NFS_LATTR_NOSHRINK));
991 } else {
992 ERROROUT(nfsm_loadattr(&info, nvp, NULL));
994 nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
995 m_freem(info.mrep);
996 info.mrep = NULL;
997 nfsmout:
998 vput(dvp);
999 if (nvp) {
1000 if (nvp == dvp)
1001 vrele(nvp);
1002 else
1003 vput(nvp);
1005 return (error);
1009 * 'cached' nfs directory lookup
1011 * NOTE: cannot be removed until NFS implements all the new n*() API calls.
1013 * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
1014 * struct componentname *a_cnp)
1016 static int
1017 nfs_lookup(struct vop_old_lookup_args *ap)
1019 struct componentname *cnp = ap->a_cnp;
1020 struct vnode *dvp = ap->a_dvp;
1021 struct vnode **vpp = ap->a_vpp;
1022 int flags = cnp->cn_flags;
1023 struct vnode *newvp;
1024 struct nfsmount *nmp;
1025 long len;
1026 nfsfh_t *fhp;
1027 struct nfsnode *np;
1028 int lockparent, wantparent, attrflag, fhsize;
1029 int error;
1030 int tmp_error;
1031 struct nfsm_info info;
1033 info.mrep = NULL;
1034 info.v3 = NFS_ISV3(dvp);
1035 error = 0;
1038 * Read-only mount check and directory check.
1040 *vpp = NULLVP;
1041 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1042 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1043 return (EROFS);
1045 if (dvp->v_type != VDIR)
1046 return (ENOTDIR);
1049 * Look it up in the cache. Note that ENOENT is only returned if we
1050 * previously entered a negative hit (see later on). The additional
1051 * nfsneg_cache_timeout check causes previously cached results to
1052 * be instantly ignored if the negative caching is turned off.
1054 lockparent = flags & CNP_LOCKPARENT;
1055 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1056 nmp = VFSTONFS(dvp->v_mount);
1057 np = VTONFS(dvp);
1060 * Go to the wire.
1062 error = 0;
1063 newvp = NULLVP;
1064 nfsstats.lookupcache_misses++;
1065 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1066 len = cnp->cn_namelen;
1067 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1068 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1069 ERROROUT(nfsm_fhtom(&info, dvp));
1070 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1071 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1072 cnp->cn_cred, &error));
1073 if (error) {
1074 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1075 NFS_LATTR_NOSHRINK);
1076 if (tmp_error) {
1077 error = tmp_error;
1078 goto nfsmout;
1081 m_freem(info.mrep);
1082 info.mrep = NULL;
1083 goto nfsmout;
1085 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1088 * Handle RENAME case...
1090 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1091 if (NFS_CMPFH(np, fhp, fhsize)) {
1092 m_freem(info.mrep);
1093 info.mrep = NULL;
1094 return (EISDIR);
1096 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1097 if (error) {
1098 m_freem(info.mrep);
1099 info.mrep = NULL;
1100 return (error);
1102 newvp = NFSTOV(np);
1103 if (info.v3) {
1104 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1105 NFS_LATTR_NOSHRINK));
1106 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1107 NFS_LATTR_NOSHRINK));
1108 } else {
1109 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1111 *vpp = newvp;
1112 m_freem(info.mrep);
1113 info.mrep = NULL;
1114 if (!lockparent) {
1115 vn_unlock(dvp);
1116 cnp->cn_flags |= CNP_PDIRUNLOCK;
1118 return (0);
1121 if (flags & CNP_ISDOTDOT) {
1122 vn_unlock(dvp);
1123 cnp->cn_flags |= CNP_PDIRUNLOCK;
1124 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1125 if (error) {
1126 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1127 cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1128 return (error); /* NOTE: return error from nget */
1130 newvp = NFSTOV(np);
1131 if (lockparent) {
1132 error = vn_lock(dvp, LK_EXCLUSIVE);
1133 if (error) {
1134 vput(newvp);
1135 return (error);
1137 cnp->cn_flags |= CNP_PDIRUNLOCK;
1139 } else if (NFS_CMPFH(np, fhp, fhsize)) {
1140 vref(dvp);
1141 newvp = dvp;
1142 } else {
1143 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1144 if (error) {
1145 m_freem(info.mrep);
1146 info.mrep = NULL;
1147 return (error);
1149 if (!lockparent) {
1150 vn_unlock(dvp);
1151 cnp->cn_flags |= CNP_PDIRUNLOCK;
1153 newvp = NFSTOV(np);
1155 if (info.v3) {
1156 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1157 NFS_LATTR_NOSHRINK));
1158 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1159 NFS_LATTR_NOSHRINK));
1160 } else {
1161 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1163 #if 0
1164 /* XXX MOVE TO nfs_nremove() */
1165 if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1166 cnp->cn_nameiop != NAMEI_DELETE) {
1167 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1169 #endif
1170 *vpp = newvp;
1171 m_freem(info.mrep);
1172 info.mrep = NULL;
1173 nfsmout:
1174 if (error) {
1175 if (newvp != NULLVP) {
1176 vrele(newvp);
1177 *vpp = NULLVP;
1179 if ((cnp->cn_nameiop == NAMEI_CREATE ||
1180 cnp->cn_nameiop == NAMEI_RENAME) &&
1181 error == ENOENT) {
1182 if (!lockparent) {
1183 vn_unlock(dvp);
1184 cnp->cn_flags |= CNP_PDIRUNLOCK;
1186 if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1187 error = EROFS;
1188 else
1189 error = EJUSTRETURN;
1192 return (error);
1196 * nfs read call.
1197 * Just call nfs_bioread() to do the work.
1199 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1200 * struct ucred *a_cred)
1202 static int
1203 nfs_read(struct vop_read_args *ap)
1205 struct vnode *vp = ap->a_vp;
1207 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1211 * nfs readlink call
1213 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1215 static int
1216 nfs_readlink(struct vop_readlink_args *ap)
1218 struct vnode *vp = ap->a_vp;
1220 if (vp->v_type != VLNK)
1221 return (EINVAL);
1222 return (nfs_bioread(vp, ap->a_uio, 0));
1226 * Do a readlink rpc.
1227 * Called by nfs_doio() from below the buffer cache.
1230 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1232 int error = 0, len, attrflag;
1233 struct nfsm_info info;
1235 info.mrep = NULL;
1236 info.v3 = NFS_ISV3(vp);
1238 nfsstats.rpccnt[NFSPROC_READLINK]++;
1239 nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1240 ERROROUT(nfsm_fhtom(&info, vp));
1241 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1242 nfs_vpcred(vp, ND_CHECK), &error));
1243 if (info.v3) {
1244 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1245 NFS_LATTR_NOSHRINK));
1247 if (!error) {
1248 NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1249 if (len == NFS_MAXPATHLEN) {
1250 struct nfsnode *np = VTONFS(vp);
1251 if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1252 len = np->n_size;
1254 ERROROUT(nfsm_mtouio(&info, uiop, len));
1256 m_freem(info.mrep);
1257 info.mrep = NULL;
1258 nfsmout:
1259 return (error);
1263 * nfs synchronous read rpc using UIO
1266 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1268 u_int32_t *tl;
1269 struct nfsmount *nmp;
1270 int error = 0, len, retlen, tsiz, eof, attrflag;
1271 struct nfsm_info info;
1272 off_t tmp_off;
1274 info.mrep = NULL;
1275 info.v3 = NFS_ISV3(vp);
1277 #ifndef nolint
1278 eof = 0;
1279 #endif
1280 nmp = VFSTONFS(vp->v_mount);
1281 tsiz = uiop->uio_resid;
1282 tmp_off = uiop->uio_offset + tsiz;
1283 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1284 return (EFBIG);
1285 tmp_off = uiop->uio_offset;
1286 while (tsiz > 0) {
1287 nfsstats.rpccnt[NFSPROC_READ]++;
1288 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1289 nfsm_reqhead(&info, vp, NFSPROC_READ,
1290 NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1291 ERROROUT(nfsm_fhtom(&info, vp));
1292 tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1293 if (info.v3) {
1294 txdr_hyper(uiop->uio_offset, tl);
1295 *(tl + 2) = txdr_unsigned(len);
1296 } else {
1297 *tl++ = txdr_unsigned(uiop->uio_offset);
1298 *tl++ = txdr_unsigned(len);
1299 *tl = 0;
1301 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1302 nfs_vpcred(vp, ND_READ), &error));
1303 if (info.v3) {
1304 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1305 NFS_LATTR_NOSHRINK));
1306 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1307 eof = fxdr_unsigned(int, *(tl + 1));
1308 } else {
1309 ERROROUT(nfsm_loadattr(&info, vp, NULL));
1311 NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1312 ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1313 m_freem(info.mrep);
1314 info.mrep = NULL;
1317 * Handle short-read from server (NFSv3). If EOF is not
1318 * flagged (and no error occurred), but retlen is less
1319 * then the request size, we must zero-fill the remainder.
1321 if (retlen < len && info.v3 && eof == 0) {
1322 ERROROUT(uiomovez(len - retlen, uiop));
1323 retlen = len;
1325 tsiz -= retlen;
1328 * Terminate loop on EOF or zero-length read.
1330 * For NFSv2 a short-read indicates EOF, not zero-fill,
1331 * and also terminates the loop.
1333 if (info.v3) {
1334 if (eof || retlen == 0)
1335 tsiz = 0;
1336 } else if (retlen < len) {
1337 tsiz = 0;
1340 nfsmout:
1341 return (error);
1345 * nfs write call
1348 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1349 int *iomode, int *must_commit)
1351 u_int32_t *tl;
1352 int32_t backup;
1353 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1354 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1355 int committed = NFSV3WRITE_FILESYNC;
1356 struct nfsm_info info;
1358 info.mrep = NULL;
1359 info.v3 = NFS_ISV3(vp);
1361 #ifndef DIAGNOSTIC
1362 if (uiop->uio_iovcnt != 1)
1363 panic("nfs: writerpc iovcnt > 1");
1364 #endif
1365 *must_commit = 0;
1366 tsiz = uiop->uio_resid;
1367 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1368 return (EFBIG);
1369 while (tsiz > 0) {
1370 nfsstats.rpccnt[NFSPROC_WRITE]++;
1371 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1372 nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1373 NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1374 ERROROUT(nfsm_fhtom(&info, vp));
1375 if (info.v3) {
1376 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1377 txdr_hyper(uiop->uio_offset, tl);
1378 tl += 2;
1379 *tl++ = txdr_unsigned(len);
1380 *tl++ = txdr_unsigned(*iomode);
1381 *tl = txdr_unsigned(len);
1382 } else {
1383 u_int32_t x;
1385 tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1386 /* Set both "begin" and "current" to non-garbage. */
1387 x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1388 *tl++ = x; /* "begin offset" */
1389 *tl++ = x; /* "current offset" */
1390 x = txdr_unsigned(len);
1391 *tl++ = x; /* total to this offset */
1392 *tl = x; /* size of this write */
1394 ERROROUT(nfsm_uiotom(&info, uiop, len));
1395 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1396 nfs_vpcred(vp, ND_WRITE), &error));
1397 if (info.v3) {
1399 * The write RPC returns a before and after mtime. The
1400 * nfsm_wcc_data() macro checks the before n_mtime
1401 * against the before time and stores the after time
1402 * in the nfsnode's cached vattr and n_mtime field.
1403 * The NRMODIFIED bit will be set if the before
1404 * time did not match the original mtime.
1406 wccflag = NFSV3_WCCCHK;
1407 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1408 if (error == 0) {
1409 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1410 rlen = fxdr_unsigned(int, *tl++);
1411 if (rlen == 0) {
1412 error = NFSERR_IO;
1413 m_freem(info.mrep);
1414 info.mrep = NULL;
1415 break;
1416 } else if (rlen < len) {
1417 backup = len - rlen;
1418 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1419 uiop->uio_iov->iov_len += backup;
1420 uiop->uio_offset -= backup;
1421 uiop->uio_resid += backup;
1422 len = rlen;
1424 commit = fxdr_unsigned(int, *tl++);
1427 * Return the lowest committment level
1428 * obtained by any of the RPCs.
1430 if (committed == NFSV3WRITE_FILESYNC)
1431 committed = commit;
1432 else if (committed == NFSV3WRITE_DATASYNC &&
1433 commit == NFSV3WRITE_UNSTABLE)
1434 committed = commit;
1435 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1436 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1437 NFSX_V3WRITEVERF);
1438 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1439 } else if (bcmp((caddr_t)tl,
1440 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1441 *must_commit = 1;
1442 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1443 NFSX_V3WRITEVERF);
1446 } else {
1447 ERROROUT(nfsm_loadattr(&info, vp, NULL));
1449 m_freem(info.mrep);
1450 info.mrep = NULL;
1451 if (error)
1452 break;
1453 tsiz -= len;
1455 nfsmout:
1456 if (vp->v_mount->mnt_flag & MNT_ASYNC)
1457 committed = NFSV3WRITE_FILESYNC;
1458 *iomode = committed;
1459 if (error)
1460 uiop->uio_resid = tsiz;
1461 return (error);
1465 * nfs mknod rpc
1466 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1467 * mode set to specify the file type and the size field for rdev.
1469 static int
1470 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1471 struct vattr *vap)
1473 struct nfsv2_sattr *sp;
1474 u_int32_t *tl;
1475 struct vnode *newvp = NULL;
1476 struct nfsnode *np = NULL;
1477 struct vattr vattr;
1478 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1479 int rmajor, rminor;
1480 struct nfsm_info info;
1482 info.mrep = NULL;
1483 info.v3 = NFS_ISV3(dvp);
1485 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1486 rmajor = txdr_unsigned(vap->va_rmajor);
1487 rminor = txdr_unsigned(vap->va_rminor);
1488 } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1489 rmajor = nfs_xdrneg1;
1490 rminor = nfs_xdrneg1;
1491 } else {
1492 return (EOPNOTSUPP);
1494 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1495 return (error);
1497 nfsstats.rpccnt[NFSPROC_MKNOD]++;
1498 nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1499 NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1500 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1501 ERROROUT(nfsm_fhtom(&info, dvp));
1502 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1503 NFS_MAXNAMLEN));
1504 if (info.v3) {
1505 tl = nfsm_build(&info, NFSX_UNSIGNED);
1506 *tl++ = vtonfsv3_type(vap->va_type);
1507 nfsm_v3attrbuild(&info, vap, FALSE);
1508 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1509 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1510 *tl++ = txdr_unsigned(vap->va_rmajor);
1511 *tl = txdr_unsigned(vap->va_rminor);
1513 } else {
1514 sp = nfsm_build(&info, NFSX_V2SATTR);
1515 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1516 sp->sa_uid = nfs_xdrneg1;
1517 sp->sa_gid = nfs_xdrneg1;
1518 sp->sa_size = makeudev(rmajor, rminor);
1519 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1520 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1522 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1523 cnp->cn_cred, &error));
1524 if (!error) {
1525 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1526 if (!gotvp) {
1527 if (newvp) {
1528 vput(newvp);
1529 newvp = NULL;
1531 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1532 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1533 if (!error)
1534 newvp = NFSTOV(np);
1537 if (info.v3) {
1538 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1540 m_freem(info.mrep);
1541 info.mrep = NULL;
1542 nfsmout:
1543 if (error) {
1544 if (newvp)
1545 vput(newvp);
1546 } else {
1547 *vpp = newvp;
1549 VTONFS(dvp)->n_flag |= NLMODIFIED;
1550 if (!wccflag)
1551 VTONFS(dvp)->n_attrstamp = 0;
1552 return (error);
1556 * nfs mknod vop
1557 * just call nfs_mknodrpc() to do the work.
1559 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1560 * struct componentname *a_cnp, struct vattr *a_vap)
1562 /* ARGSUSED */
1563 static int
1564 nfs_mknod(struct vop_old_mknod_args *ap)
1566 return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1569 static u_long create_verf;
1571 * nfs file create call
1573 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1574 * struct componentname *a_cnp, struct vattr *a_vap)
1576 static int
1577 nfs_create(struct vop_old_create_args *ap)
1579 struct vnode *dvp = ap->a_dvp;
1580 struct vattr *vap = ap->a_vap;
1581 struct componentname *cnp = ap->a_cnp;
1582 struct nfsv2_sattr *sp;
1583 u_int32_t *tl;
1584 struct nfsnode *np = NULL;
1585 struct vnode *newvp = NULL;
1586 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1587 struct vattr vattr;
1588 struct nfsm_info info;
1590 info.mrep = NULL;
1591 info.v3 = NFS_ISV3(dvp);
1594 * Oops, not for me..
1596 if (vap->va_type == VSOCK)
1597 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1599 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1600 return (error);
1602 if (vap->va_vaflags & VA_EXCLUSIVE)
1603 fmode |= O_EXCL;
1604 again:
1605 nfsstats.rpccnt[NFSPROC_CREATE]++;
1606 nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1607 NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1608 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1609 ERROROUT(nfsm_fhtom(&info, dvp));
1610 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1611 NFS_MAXNAMLEN));
1612 if (info.v3) {
1613 tl = nfsm_build(&info, NFSX_UNSIGNED);
1614 if (fmode & O_EXCL) {
1615 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1616 tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1617 #ifdef INET
1618 if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1619 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1620 else
1621 #endif
1622 *tl++ = create_verf;
1623 *tl = ++create_verf;
1624 } else {
1625 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1626 nfsm_v3attrbuild(&info, vap, FALSE);
1628 } else {
1629 sp = nfsm_build(&info, NFSX_V2SATTR);
1630 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1631 sp->sa_uid = nfs_xdrneg1;
1632 sp->sa_gid = nfs_xdrneg1;
1633 sp->sa_size = 0;
1634 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1635 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1637 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1638 cnp->cn_cred, &error));
1639 if (error == 0) {
1640 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1641 if (!gotvp) {
1642 if (newvp) {
1643 vput(newvp);
1644 newvp = NULL;
1646 error = nfs_lookitup(dvp, cnp->cn_nameptr,
1647 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1648 if (!error)
1649 newvp = NFSTOV(np);
1652 if (info.v3) {
1653 if (error == 0)
1654 error = nfsm_wcc_data(&info, dvp, &wccflag);
1655 else
1656 (void)nfsm_wcc_data(&info, dvp, &wccflag);
1658 m_freem(info.mrep);
1659 info.mrep = NULL;
1660 nfsmout:
1661 if (error) {
1662 if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1663 KKASSERT(newvp == NULL);
1664 fmode &= ~O_EXCL;
1665 goto again;
1667 } else if (info.v3 && (fmode & O_EXCL)) {
1669 * We are normally called with only a partially initialized
1670 * VAP. Since the NFSv3 spec says that server may use the
1671 * file attributes to store the verifier, the spec requires
1672 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1673 * in atime, but we can't really assume that all servers will
1674 * so we ensure that our SETATTR sets both atime and mtime.
1676 if (vap->va_mtime.tv_sec == VNOVAL)
1677 vfs_timestamp(&vap->va_mtime);
1678 if (vap->va_atime.tv_sec == VNOVAL)
1679 vap->va_atime = vap->va_mtime;
1680 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1682 if (error == 0) {
1684 * The new np may have enough info for access
1685 * checks, make sure rucred and wucred are
1686 * initialized for read and write rpc's.
1688 np = VTONFS(newvp);
1689 if (np->n_rucred == NULL)
1690 np->n_rucred = crhold(cnp->cn_cred);
1691 if (np->n_wucred == NULL)
1692 np->n_wucred = crhold(cnp->cn_cred);
1693 *ap->a_vpp = newvp;
1694 } else if (newvp) {
1695 vput(newvp);
1697 VTONFS(dvp)->n_flag |= NLMODIFIED;
1698 if (!wccflag)
1699 VTONFS(dvp)->n_attrstamp = 0;
1700 return (error);
1704 * nfs file remove call
1705 * To try and make nfs semantics closer to ufs semantics, a file that has
1706 * other processes using the vnode is renamed instead of removed and then
1707 * removed later on the last close.
1708 * - If v_sysref.refcnt > 1
1709 * If a rename is not already in the works
1710 * call nfs_sillyrename() to set it up
1711 * else
1712 * do the remove rpc
1714 * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1715 * struct componentname *a_cnp)
1717 static int
1718 nfs_remove(struct vop_old_remove_args *ap)
1720 struct vnode *vp = ap->a_vp;
1721 struct vnode *dvp = ap->a_dvp;
1722 struct componentname *cnp = ap->a_cnp;
1723 struct nfsnode *np = VTONFS(vp);
1724 int error = 0;
1725 struct vattr vattr;
1727 #ifndef DIAGNOSTIC
1728 if (vp->v_sysref.refcnt < 1)
1729 panic("nfs_remove: bad v_sysref.refcnt");
1730 #endif
1731 if (vp->v_type == VDIR)
1732 error = EPERM;
1733 else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1734 VOP_GETATTR(vp, &vattr) == 0 &&
1735 vattr.va_nlink > 1)) {
1737 * throw away biocache buffers, mainly to avoid
1738 * unnecessary delayed writes later.
1740 error = nfs_vinvalbuf(vp, 0, 1);
1741 /* Do the rpc */
1742 if (error != EINTR)
1743 error = nfs_removerpc(dvp, cnp->cn_nameptr,
1744 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1746 * Kludge City: If the first reply to the remove rpc is lost..
1747 * the reply to the retransmitted request will be ENOENT
1748 * since the file was in fact removed
1749 * Therefore, we cheat and return success.
1751 if (error == ENOENT)
1752 error = 0;
1753 } else if (!np->n_sillyrename) {
1754 error = nfs_sillyrename(dvp, vp, cnp);
1756 np->n_attrstamp = 0;
1757 return (error);
1761 * nfs file remove rpc called from nfs_inactive
1764 nfs_removeit(struct sillyrename *sp)
1766 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1767 sp->s_cred, NULL));
1771 * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1773 static int
1774 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1775 struct ucred *cred, struct thread *td)
1777 int error = 0, wccflag = NFSV3_WCCRATTR;
1778 struct nfsm_info info;
1780 info.mrep = NULL;
1781 info.v3 = NFS_ISV3(dvp);
1783 nfsstats.rpccnt[NFSPROC_REMOVE]++;
1784 nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1785 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1786 ERROROUT(nfsm_fhtom(&info, dvp));
1787 ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1788 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1789 if (info.v3) {
1790 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1792 m_freem(info.mrep);
1793 info.mrep = NULL;
1794 nfsmout:
1795 VTONFS(dvp)->n_flag |= NLMODIFIED;
1796 if (!wccflag)
1797 VTONFS(dvp)->n_attrstamp = 0;
1798 return (error);
1802 * nfs file rename call
1804 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1805 * struct componentname *a_fcnp, struct vnode *a_tdvp,
1806 * struct vnode *a_tvp, struct componentname *a_tcnp)
1808 static int
1809 nfs_rename(struct vop_old_rename_args *ap)
1811 struct vnode *fvp = ap->a_fvp;
1812 struct vnode *tvp = ap->a_tvp;
1813 struct vnode *fdvp = ap->a_fdvp;
1814 struct vnode *tdvp = ap->a_tdvp;
1815 struct componentname *tcnp = ap->a_tcnp;
1816 struct componentname *fcnp = ap->a_fcnp;
1817 int error;
1819 /* Check for cross-device rename */
1820 if ((fvp->v_mount != tdvp->v_mount) ||
1821 (tvp && (fvp->v_mount != tvp->v_mount))) {
1822 error = EXDEV;
1823 goto out;
1827 * We shouldn't have to flush fvp on rename for most server-side
1828 * filesystems as the file handle should not change. Unfortunately
1829 * the inode for some filesystems (msdosfs) might be tied to the
1830 * file name or directory position so to be completely safe
1831 * vfs.nfs.flush_on_rename is set by default. Clear to improve
1832 * performance.
1834 * We must flush tvp on rename because it might become stale on the
1835 * server after the rename.
1837 if (nfs_flush_on_rename)
1838 VOP_FSYNC(fvp, MNT_WAIT, 0);
1839 if (tvp)
1840 VOP_FSYNC(tvp, MNT_WAIT, 0);
1843 * If the tvp exists and is in use, sillyrename it before doing the
1844 * rename of the new file over it.
1846 * XXX Can't sillyrename a directory.
1848 * We do not attempt to do any namecache purges in this old API
1849 * routine. The new API compat functions have access to the actual
1850 * namecache structures and will do it for us.
1852 if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1853 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1854 vput(tvp);
1855 tvp = NULL;
1856 } else if (tvp) {
1860 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1861 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1862 tcnp->cn_td);
1864 out:
1865 if (tdvp == tvp)
1866 vrele(tdvp);
1867 else
1868 vput(tdvp);
1869 if (tvp)
1870 vput(tvp);
1871 vrele(fdvp);
1872 vrele(fvp);
1874 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1876 if (error == ENOENT)
1877 error = 0;
1878 return (error);
1882 * nfs file rename rpc called from nfs_remove() above
1884 static int
1885 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1886 struct sillyrename *sp)
1888 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1889 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1893 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1895 static int
1896 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1897 struct vnode *tdvp, const char *tnameptr, int tnamelen,
1898 struct ucred *cred, struct thread *td)
1900 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1901 struct nfsm_info info;
1903 info.mrep = NULL;
1904 info.v3 = NFS_ISV3(fdvp);
1906 nfsstats.rpccnt[NFSPROC_RENAME]++;
1907 nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1908 (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1909 nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1910 ERROROUT(nfsm_fhtom(&info, fdvp));
1911 ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1912 ERROROUT(nfsm_fhtom(&info, tdvp));
1913 ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1914 NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1915 if (info.v3) {
1916 ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1917 ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1919 m_freem(info.mrep);
1920 info.mrep = NULL;
1921 nfsmout:
1922 VTONFS(fdvp)->n_flag |= NLMODIFIED;
1923 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1924 if (!fwccflag)
1925 VTONFS(fdvp)->n_attrstamp = 0;
1926 if (!twccflag)
1927 VTONFS(tdvp)->n_attrstamp = 0;
1928 return (error);
1932 * nfs hard link create call
1934 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1935 * struct componentname *a_cnp)
1937 static int
1938 nfs_link(struct vop_old_link_args *ap)
1940 struct vnode *vp = ap->a_vp;
1941 struct vnode *tdvp = ap->a_tdvp;
1942 struct componentname *cnp = ap->a_cnp;
1943 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1944 struct nfsm_info info;
1946 if (vp->v_mount != tdvp->v_mount) {
1947 return (EXDEV);
1951 * The attribute cache may get out of sync with the server on link.
1952 * Pushing writes to the server before handle was inherited from
1953 * long long ago and it is unclear if we still need to do this.
1954 * Defaults to off.
1956 if (nfs_flush_on_hlink)
1957 VOP_FSYNC(vp, MNT_WAIT, 0);
1959 info.mrep = NULL;
1960 info.v3 = NFS_ISV3(vp);
1962 nfsstats.rpccnt[NFSPROC_LINK]++;
1963 nfsm_reqhead(&info, vp, NFSPROC_LINK,
1964 NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1965 nfsm_rndup(cnp->cn_namelen));
1966 ERROROUT(nfsm_fhtom(&info, vp));
1967 ERROROUT(nfsm_fhtom(&info, tdvp));
1968 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1969 NFS_MAXNAMLEN));
1970 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1971 cnp->cn_cred, &error));
1972 if (info.v3) {
1973 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1974 NFS_LATTR_NOSHRINK));
1975 ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1977 m_freem(info.mrep);
1978 info.mrep = NULL;
1979 nfsmout:
1980 VTONFS(tdvp)->n_flag |= NLMODIFIED;
1981 if (!attrflag)
1982 VTONFS(vp)->n_attrstamp = 0;
1983 if (!wccflag)
1984 VTONFS(tdvp)->n_attrstamp = 0;
1986 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1988 if (error == EEXIST)
1989 error = 0;
1990 return (error);
1994 * nfs symbolic link create call
1996 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1997 * struct componentname *a_cnp, struct vattr *a_vap,
1998 * char *a_target)
2000 static int
2001 nfs_symlink(struct vop_old_symlink_args *ap)
2003 struct vnode *dvp = ap->a_dvp;
2004 struct vattr *vap = ap->a_vap;
2005 struct componentname *cnp = ap->a_cnp;
2006 struct nfsv2_sattr *sp;
2007 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2008 struct vnode *newvp = NULL;
2009 struct nfsm_info info;
2011 info.mrep = NULL;
2012 info.v3 = NFS_ISV3(dvp);
2014 nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2015 slen = strlen(ap->a_target);
2016 nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
2017 NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
2018 nfsm_rndup(cnp->cn_namelen) +
2019 nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2020 ERROROUT(nfsm_fhtom(&info, dvp));
2021 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2022 NFS_MAXNAMLEN));
2023 if (info.v3) {
2024 nfsm_v3attrbuild(&info, vap, FALSE);
2026 ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2027 if (info.v3 == 0) {
2028 sp = nfsm_build(&info, NFSX_V2SATTR);
2029 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2030 sp->sa_uid = nfs_xdrneg1;
2031 sp->sa_gid = nfs_xdrneg1;
2032 sp->sa_size = nfs_xdrneg1;
2033 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2034 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2038 * Issue the NFS request and get the rpc response.
2040 * Only NFSv3 responses returning an error of 0 actually return
2041 * a file handle that can be converted into newvp without having
2042 * to do an extra lookup rpc.
2044 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2045 cnp->cn_cred, &error));
2046 if (info.v3) {
2047 if (error == 0) {
2048 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2050 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2054 * out code jumps -> here, mrep is also freed.
2057 m_freem(info.mrep);
2058 info.mrep = NULL;
2059 nfsmout:
2062 * If we get an EEXIST error, silently convert it to no-error
2063 * in case of an NFS retry.
2065 if (error == EEXIST)
2066 error = 0;
2069 * If we do not have (or no longer have) an error, and we could
2070 * not extract the newvp from the response due to the request being
2071 * NFSv2 or the error being EEXIST. We have to do a lookup in order
2072 * to obtain a newvp to return.
2074 if (error == 0 && newvp == NULL) {
2075 struct nfsnode *np = NULL;
2077 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2078 cnp->cn_cred, cnp->cn_td, &np);
2079 if (!error)
2080 newvp = NFSTOV(np);
2082 if (error) {
2083 if (newvp)
2084 vput(newvp);
2085 } else {
2086 *ap->a_vpp = newvp;
2088 VTONFS(dvp)->n_flag |= NLMODIFIED;
2089 if (!wccflag)
2090 VTONFS(dvp)->n_attrstamp = 0;
2091 return (error);
2095 * nfs make dir call
2097 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2098 * struct componentname *a_cnp, struct vattr *a_vap)
2100 static int
2101 nfs_mkdir(struct vop_old_mkdir_args *ap)
2103 struct vnode *dvp = ap->a_dvp;
2104 struct vattr *vap = ap->a_vap;
2105 struct componentname *cnp = ap->a_cnp;
2106 struct nfsv2_sattr *sp;
2107 struct nfsnode *np = NULL;
2108 struct vnode *newvp = NULL;
2109 struct vattr vattr;
2110 int error = 0, wccflag = NFSV3_WCCRATTR;
2111 int gotvp = 0;
2112 int len;
2113 struct nfsm_info info;
2115 info.mrep = NULL;
2116 info.v3 = NFS_ISV3(dvp);
2118 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2119 return (error);
2121 len = cnp->cn_namelen;
2122 nfsstats.rpccnt[NFSPROC_MKDIR]++;
2123 nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2124 NFSX_FH(info.v3) + NFSX_UNSIGNED +
2125 nfsm_rndup(len) + NFSX_SATTR(info.v3));
2126 ERROROUT(nfsm_fhtom(&info, dvp));
2127 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2128 if (info.v3) {
2129 nfsm_v3attrbuild(&info, vap, FALSE);
2130 } else {
2131 sp = nfsm_build(&info, NFSX_V2SATTR);
2132 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2133 sp->sa_uid = nfs_xdrneg1;
2134 sp->sa_gid = nfs_xdrneg1;
2135 sp->sa_size = nfs_xdrneg1;
2136 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2137 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2139 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2140 cnp->cn_cred, &error));
2141 if (error == 0) {
2142 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2144 if (info.v3) {
2145 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2147 m_freem(info.mrep);
2148 info.mrep = NULL;
2149 nfsmout:
2150 VTONFS(dvp)->n_flag |= NLMODIFIED;
2151 if (!wccflag)
2152 VTONFS(dvp)->n_attrstamp = 0;
2154 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2155 * if we can succeed in looking up the directory.
2157 if (error == EEXIST || (!error && !gotvp)) {
2158 if (newvp) {
2159 vrele(newvp);
2160 newvp = NULL;
2162 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2163 cnp->cn_td, &np);
2164 if (!error) {
2165 newvp = NFSTOV(np);
2166 if (newvp->v_type != VDIR)
2167 error = EEXIST;
2170 if (error) {
2171 if (newvp)
2172 vrele(newvp);
2173 } else
2174 *ap->a_vpp = newvp;
2175 return (error);
2179 * nfs remove directory call
2181 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2182 * struct componentname *a_cnp)
2184 static int
2185 nfs_rmdir(struct vop_old_rmdir_args *ap)
2187 struct vnode *vp = ap->a_vp;
2188 struct vnode *dvp = ap->a_dvp;
2189 struct componentname *cnp = ap->a_cnp;
2190 int error = 0, wccflag = NFSV3_WCCRATTR;
2191 struct nfsm_info info;
2193 info.mrep = NULL;
2194 info.v3 = NFS_ISV3(dvp);
2196 if (dvp == vp)
2197 return (EINVAL);
2198 nfsstats.rpccnt[NFSPROC_RMDIR]++;
2199 nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2200 NFSX_FH(info.v3) + NFSX_UNSIGNED +
2201 nfsm_rndup(cnp->cn_namelen));
2202 ERROROUT(nfsm_fhtom(&info, dvp));
2203 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2204 NFS_MAXNAMLEN));
2205 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2206 cnp->cn_cred, &error));
2207 if (info.v3) {
2208 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2210 m_freem(info.mrep);
2211 info.mrep = NULL;
2212 nfsmout:
2213 VTONFS(dvp)->n_flag |= NLMODIFIED;
2214 if (!wccflag)
2215 VTONFS(dvp)->n_attrstamp = 0;
2217 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2219 if (error == ENOENT)
2220 error = 0;
2221 return (error);
2225 * nfs readdir call
2227 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2229 static int
2230 nfs_readdir(struct vop_readdir_args *ap)
2232 struct vnode *vp = ap->a_vp;
2233 struct nfsnode *np = VTONFS(vp);
2234 struct uio *uio = ap->a_uio;
2235 int tresid, error;
2236 struct vattr vattr;
2238 if (vp->v_type != VDIR)
2239 return (EPERM);
2241 if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2242 return (error);
2245 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2246 * and then check that is still valid, or if this is an NQNFS mount
2247 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that
2248 * VOP_GETATTR() does not necessarily go to the wire.
2250 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2251 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2252 if (VOP_GETATTR(vp, &vattr) == 0 &&
2253 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2255 nfsstats.direofcache_hits++;
2256 goto done;
2261 * Call nfs_bioread() to do the real work. nfs_bioread() does its
2262 * own cache coherency checks so we do not have to.
2264 tresid = uio->uio_resid;
2265 error = nfs_bioread(vp, uio, 0);
2267 if (!error && uio->uio_resid == tresid)
2268 nfsstats.direofcache_misses++;
2269 done:
2270 vn_unlock(vp);
2271 return (error);
2275 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc.
2277 * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2278 * offset/block and converts the nfs formatted directory entries for userland
2279 * consumption as well as deals with offsets into the middle of blocks.
2280 * nfs_doio only deals with logical blocks. In particular, uio_offset will
2281 * be block-bounded. It must convert to cookies for the actual RPC.
2284 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2286 int len, left;
2287 struct nfs_dirent *dp = NULL;
2288 u_int32_t *tl;
2289 nfsuint64 *cookiep;
2290 caddr_t cp;
2291 nfsuint64 cookie;
2292 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2293 struct nfsnode *dnp = VTONFS(vp);
2294 u_quad_t fileno;
2295 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2296 int attrflag;
2297 struct nfsm_info info;
2299 info.mrep = NULL;
2300 info.v3 = NFS_ISV3(vp);
2302 #ifndef DIAGNOSTIC
2303 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2304 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2305 panic("nfs readdirrpc bad uio");
2306 #endif
2309 * If there is no cookie, assume directory was stale.
2311 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2312 if (cookiep)
2313 cookie = *cookiep;
2314 else
2315 return (NFSERR_BAD_COOKIE);
2317 * Loop around doing readdir rpc's of size nm_readdirsize
2318 * truncated to a multiple of DIRBLKSIZ.
2319 * The stopping criteria is EOF or buffer full.
2321 while (more_dirs && bigenough) {
2322 nfsstats.rpccnt[NFSPROC_READDIR]++;
2323 nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2324 NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2325 ERROROUT(nfsm_fhtom(&info, vp));
2326 if (info.v3) {
2327 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2328 *tl++ = cookie.nfsuquad[0];
2329 *tl++ = cookie.nfsuquad[1];
2330 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2331 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2332 } else {
2333 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2334 *tl++ = cookie.nfsuquad[0];
2336 *tl = txdr_unsigned(nmp->nm_readdirsize);
2337 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2338 uiop->uio_td,
2339 nfs_vpcred(vp, ND_READ), &error));
2340 if (info.v3) {
2341 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2342 NFS_LATTR_NOSHRINK));
2343 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2344 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2345 dnp->n_cookieverf.nfsuquad[1] = *tl;
2347 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2348 more_dirs = fxdr_unsigned(int, *tl);
2350 /* loop thru the dir entries, converting them to std form */
2351 while (more_dirs && bigenough) {
2352 if (info.v3) {
2353 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2354 fileno = fxdr_hyper(tl);
2355 len = fxdr_unsigned(int, *(tl + 2));
2356 } else {
2357 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2358 fileno = fxdr_unsigned(u_quad_t, *tl++);
2359 len = fxdr_unsigned(int, *tl);
2361 if (len <= 0 || len > NFS_MAXNAMLEN) {
2362 error = EBADRPC;
2363 m_freem(info.mrep);
2364 info.mrep = NULL;
2365 goto nfsmout;
2369 * len is the number of bytes in the path element
2370 * name, not including the \0 termination.
2372 * tlen is the number of bytes w have to reserve for
2373 * the path element name.
2375 tlen = nfsm_rndup(len);
2376 if (tlen == len)
2377 tlen += 4; /* To ensure null termination */
2380 * If the entry would cross a DIRBLKSIZ boundary,
2381 * extend the previous nfs_dirent to cover the
2382 * remaining space.
2384 left = DIRBLKSIZ - blksiz;
2385 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2386 dp->nfs_reclen += left;
2387 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2388 uiop->uio_iov->iov_len -= left;
2389 uiop->uio_offset += left;
2390 uiop->uio_resid -= left;
2391 blksiz = 0;
2393 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2394 bigenough = 0;
2395 if (bigenough) {
2396 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2397 dp->nfs_ino = fileno;
2398 dp->nfs_namlen = len;
2399 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2400 dp->nfs_type = DT_UNKNOWN;
2401 blksiz += dp->nfs_reclen;
2402 if (blksiz == DIRBLKSIZ)
2403 blksiz = 0;
2404 uiop->uio_offset += sizeof(struct nfs_dirent);
2405 uiop->uio_resid -= sizeof(struct nfs_dirent);
2406 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2407 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2408 ERROROUT(nfsm_mtouio(&info, uiop, len));
2411 * The uiop has advanced by nfs_dirent + len
2412 * but really needs to advance by
2413 * nfs_dirent + tlen
2415 cp = uiop->uio_iov->iov_base;
2416 tlen -= len;
2417 *cp = '\0'; /* null terminate */
2418 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2419 uiop->uio_iov->iov_len -= tlen;
2420 uiop->uio_offset += tlen;
2421 uiop->uio_resid -= tlen;
2422 } else {
2424 * NFS strings must be rounded up (nfsm_myouio
2425 * handled that in the bigenough case).
2427 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2429 if (info.v3) {
2430 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2431 } else {
2432 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2436 * If we were able to accomodate the last entry,
2437 * get the cookie for the next one. Otherwise
2438 * hold-over the cookie for the one we were not
2439 * able to accomodate.
2441 if (bigenough) {
2442 cookie.nfsuquad[0] = *tl++;
2443 if (info.v3)
2444 cookie.nfsuquad[1] = *tl++;
2445 } else if (info.v3) {
2446 tl += 2;
2447 } else {
2448 tl++;
2450 more_dirs = fxdr_unsigned(int, *tl);
2453 * If at end of rpc data, get the eof boolean
2455 if (!more_dirs) {
2456 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2457 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2459 m_freem(info.mrep);
2460 info.mrep = NULL;
2463 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2464 * by increasing d_reclen for the last record.
2466 if (blksiz > 0) {
2467 left = DIRBLKSIZ - blksiz;
2468 dp->nfs_reclen += left;
2469 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2470 uiop->uio_iov->iov_len -= left;
2471 uiop->uio_offset += left;
2472 uiop->uio_resid -= left;
2475 if (bigenough) {
2477 * We hit the end of the directory, update direofoffset.
2479 dnp->n_direofoffset = uiop->uio_offset;
2480 } else {
2482 * There is more to go, insert the link cookie so the
2483 * next block can be read.
2485 if (uiop->uio_resid > 0)
2486 kprintf("EEK! readdirrpc resid > 0\n");
2487 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2488 *cookiep = cookie;
2490 nfsmout:
2491 return (error);
2495 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2498 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2500 int len, left;
2501 struct nfs_dirent *dp;
2502 u_int32_t *tl;
2503 struct vnode *newvp;
2504 nfsuint64 *cookiep;
2505 caddr_t dpossav1, dpossav2;
2506 caddr_t cp;
2507 struct mbuf *mdsav1, *mdsav2;
2508 nfsuint64 cookie;
2509 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2510 struct nfsnode *dnp = VTONFS(vp), *np;
2511 nfsfh_t *fhp;
2512 u_quad_t fileno;
2513 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2514 int attrflag, fhsize;
2515 struct nchandle nch;
2516 struct nchandle dnch;
2517 struct nlcomponent nlc;
2518 struct nfsm_info info;
2520 info.mrep = NULL;
2521 info.v3 = 1;
2523 #ifndef nolint
2524 dp = NULL;
2525 #endif
2526 #ifndef DIAGNOSTIC
2527 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2528 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2529 panic("nfs readdirplusrpc bad uio");
2530 #endif
2532 * Obtain the namecache record for the directory so we have something
2533 * to use as a basis for creating the entries. This function will
2534 * return a held (but not locked) ncp. The ncp may be disconnected
2535 * from the tree and cannot be used for upward traversals, and the
2536 * ncp may be unnamed. Note that other unrelated operations may
2537 * cause the ncp to be named at any time.
2539 cache_fromdvp(vp, NULL, 0, &dnch);
2540 bzero(&nlc, sizeof(nlc));
2541 newvp = NULLVP;
2544 * If there is no cookie, assume directory was stale.
2546 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2547 if (cookiep)
2548 cookie = *cookiep;
2549 else
2550 return (NFSERR_BAD_COOKIE);
2552 * Loop around doing readdir rpc's of size nm_readdirsize
2553 * truncated to a multiple of DIRBLKSIZ.
2554 * The stopping criteria is EOF or buffer full.
2556 while (more_dirs && bigenough) {
2557 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2558 nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2559 NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2560 ERROROUT(nfsm_fhtom(&info, vp));
2561 tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2562 *tl++ = cookie.nfsuquad[0];
2563 *tl++ = cookie.nfsuquad[1];
2564 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2565 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2566 *tl++ = txdr_unsigned(nmp->nm_readdirsize);
2567 *tl = txdr_unsigned(nmp->nm_rsize);
2568 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2569 uiop->uio_td,
2570 nfs_vpcred(vp, ND_READ), &error));
2571 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2572 NFS_LATTR_NOSHRINK));
2573 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2574 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2575 dnp->n_cookieverf.nfsuquad[1] = *tl++;
2576 more_dirs = fxdr_unsigned(int, *tl);
2578 /* loop thru the dir entries, doctoring them to 4bsd form */
2579 while (more_dirs && bigenough) {
2580 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2581 fileno = fxdr_hyper(tl);
2582 len = fxdr_unsigned(int, *(tl + 2));
2583 if (len <= 0 || len > NFS_MAXNAMLEN) {
2584 error = EBADRPC;
2585 m_freem(info.mrep);
2586 info.mrep = NULL;
2587 goto nfsmout;
2589 tlen = nfsm_rndup(len);
2590 if (tlen == len)
2591 tlen += 4; /* To ensure null termination*/
2592 left = DIRBLKSIZ - blksiz;
2593 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2594 dp->nfs_reclen += left;
2595 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2596 uiop->uio_iov->iov_len -= left;
2597 uiop->uio_offset += left;
2598 uiop->uio_resid -= left;
2599 blksiz = 0;
2601 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2602 bigenough = 0;
2603 if (bigenough) {
2604 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2605 dp->nfs_ino = fileno;
2606 dp->nfs_namlen = len;
2607 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2608 dp->nfs_type = DT_UNKNOWN;
2609 blksiz += dp->nfs_reclen;
2610 if (blksiz == DIRBLKSIZ)
2611 blksiz = 0;
2612 uiop->uio_offset += sizeof(struct nfs_dirent);
2613 uiop->uio_resid -= sizeof(struct nfs_dirent);
2614 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2615 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2616 nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2617 nlc.nlc_namelen = len;
2618 ERROROUT(nfsm_mtouio(&info, uiop, len));
2619 cp = uiop->uio_iov->iov_base;
2620 tlen -= len;
2621 *cp = '\0';
2622 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2623 uiop->uio_iov->iov_len -= tlen;
2624 uiop->uio_offset += tlen;
2625 uiop->uio_resid -= tlen;
2626 } else {
2627 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2629 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2630 if (bigenough) {
2631 cookie.nfsuquad[0] = *tl++;
2632 cookie.nfsuquad[1] = *tl++;
2633 } else
2634 tl += 2;
2637 * Since the attributes are before the file handle
2638 * (sigh), we must skip over the attributes and then
2639 * come back and get them.
2641 attrflag = fxdr_unsigned(int, *tl);
2642 if (attrflag) {
2643 dpossav1 = info.dpos;
2644 mdsav1 = info.md;
2645 ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2646 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2647 doit = fxdr_unsigned(int, *tl);
2648 if (doit) {
2649 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2650 if (NFS_CMPFH(dnp, fhp, fhsize)) {
2651 vref(vp);
2652 newvp = vp;
2653 np = dnp;
2654 } else {
2655 error = nfs_nget(vp->v_mount, fhp,
2656 fhsize, &np);
2657 if (error)
2658 doit = 0;
2659 else
2660 newvp = NFSTOV(np);
2663 if (doit && bigenough) {
2664 dpossav2 = info.dpos;
2665 info.dpos = dpossav1;
2666 mdsav2 = info.md;
2667 info.md = mdsav1;
2668 ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2669 info.dpos = dpossav2;
2670 info.md = mdsav2;
2671 dp->nfs_type =
2672 IFTODT(VTTOIF(np->n_vattr.va_type));
2673 if (dnch.ncp) {
2674 kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2675 nlc.nlc_namelen, nlc.nlc_namelen,
2676 nlc.nlc_nameptr);
2677 nch = cache_nlookup(&dnch, &nlc);
2678 cache_setunresolved(&nch);
2679 nfs_cache_setvp(&nch, newvp,
2680 nfspos_cache_timeout);
2681 cache_put(&nch);
2682 } else {
2683 kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2684 " %*.*s\n",
2685 nlc.nlc_namelen, nlc.nlc_namelen,
2686 nlc.nlc_nameptr);
2689 } else {
2690 /* Just skip over the file handle */
2691 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2692 i = fxdr_unsigned(int, *tl);
2693 ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2695 if (newvp != NULLVP) {
2696 if (newvp == vp)
2697 vrele(newvp);
2698 else
2699 vput(newvp);
2700 newvp = NULLVP;
2702 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2703 more_dirs = fxdr_unsigned(int, *tl);
2706 * If at end of rpc data, get the eof boolean
2708 if (!more_dirs) {
2709 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2710 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2712 m_freem(info.mrep);
2713 info.mrep = NULL;
2716 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2717 * by increasing d_reclen for the last record.
2719 if (blksiz > 0) {
2720 left = DIRBLKSIZ - blksiz;
2721 dp->nfs_reclen += left;
2722 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2723 uiop->uio_iov->iov_len -= left;
2724 uiop->uio_offset += left;
2725 uiop->uio_resid -= left;
2729 * We are now either at the end of the directory or have filled the
2730 * block.
2732 if (bigenough)
2733 dnp->n_direofoffset = uiop->uio_offset;
2734 else {
2735 if (uiop->uio_resid > 0)
2736 kprintf("EEK! readdirplusrpc resid > 0\n");
2737 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2738 *cookiep = cookie;
2740 nfsmout:
2741 if (newvp != NULLVP) {
2742 if (newvp == vp)
2743 vrele(newvp);
2744 else
2745 vput(newvp);
2746 newvp = NULLVP;
2748 if (dnch.ncp)
2749 cache_drop(&dnch);
2750 return (error);
2754 * Silly rename. To make the NFS filesystem that is stateless look a little
2755 * more like the "ufs" a remove of an active vnode is translated to a rename
2756 * to a funny looking filename that is removed by nfs_inactive on the
2757 * nfsnode. There is the potential for another process on a different client
2758 * to create the same funny name between the nfs_lookitup() fails and the
2759 * nfs_rename() completes, but...
2761 static int
2762 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2764 struct sillyrename *sp;
2765 struct nfsnode *np;
2766 int error;
2769 * We previously purged dvp instead of vp. I don't know why, it
2770 * completely destroys performance. We can't do it anyway with the
2771 * new VFS API since we would be breaking the namecache topology.
2773 cache_purge(vp); /* XXX */
2774 np = VTONFS(vp);
2775 #ifndef DIAGNOSTIC
2776 if (vp->v_type == VDIR)
2777 panic("nfs: sillyrename dir");
2778 #endif
2779 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2780 M_NFSREQ, M_WAITOK);
2781 sp->s_cred = crdup(cnp->cn_cred);
2782 sp->s_dvp = dvp;
2783 vref(dvp);
2785 /* Fudge together a funny name */
2786 sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2787 (int)(intptr_t)cnp->cn_td);
2789 /* Try lookitups until we get one that isn't there */
2790 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2791 cnp->cn_td, NULL) == 0) {
2792 sp->s_name[4]++;
2793 if (sp->s_name[4] > 'z') {
2794 error = EINVAL;
2795 goto bad;
2798 error = nfs_renameit(dvp, cnp, sp);
2799 if (error)
2800 goto bad;
2801 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2802 cnp->cn_td, &np);
2803 np->n_sillyrename = sp;
2804 return (0);
2805 bad:
2806 vrele(sp->s_dvp);
2807 crfree(sp->s_cred);
2808 kfree((caddr_t)sp, M_NFSREQ);
2809 return (error);
2813 * Look up a file name and optionally either update the file handle or
2814 * allocate an nfsnode, depending on the value of npp.
2815 * npp == NULL --> just do the lookup
2816 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2817 * handled too
2818 * *npp != NULL --> update the file handle in the vnode
2820 static int
2821 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2822 struct thread *td, struct nfsnode **npp)
2824 struct vnode *newvp = NULL;
2825 struct nfsnode *np, *dnp = VTONFS(dvp);
2826 int error = 0, fhlen, attrflag;
2827 nfsfh_t *nfhp;
2828 struct nfsm_info info;
2830 info.mrep = NULL;
2831 info.v3 = NFS_ISV3(dvp);
2833 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2834 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2835 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2836 ERROROUT(nfsm_fhtom(&info, dvp));
2837 ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2838 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2839 if (npp && !error) {
2840 NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2841 if (*npp) {
2842 np = *npp;
2843 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2844 kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2845 np->n_fhp = &np->n_fh;
2846 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2847 np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2848 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2849 np->n_fhsize = fhlen;
2850 newvp = NFSTOV(np);
2851 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2852 vref(dvp);
2853 newvp = dvp;
2854 } else {
2855 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2856 if (error) {
2857 m_freem(info.mrep);
2858 info.mrep = NULL;
2859 return (error);
2861 newvp = NFSTOV(np);
2863 if (info.v3) {
2864 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2865 NFS_LATTR_NOSHRINK));
2866 if (!attrflag && *npp == NULL) {
2867 m_freem(info.mrep);
2868 info.mrep = NULL;
2869 if (newvp == dvp)
2870 vrele(newvp);
2871 else
2872 vput(newvp);
2873 return (ENOENT);
2875 } else {
2876 ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2879 m_freem(info.mrep);
2880 info.mrep = NULL;
2881 nfsmout:
2882 if (npp && *npp == NULL) {
2883 if (error) {
2884 if (newvp) {
2885 if (newvp == dvp)
2886 vrele(newvp);
2887 else
2888 vput(newvp);
2890 } else
2891 *npp = np;
2893 return (error);
2897 * Nfs Version 3 commit rpc
2899 * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2900 * involved.
2903 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2905 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2906 int error = 0, wccflag = NFSV3_WCCRATTR;
2907 struct nfsm_info info;
2908 u_int32_t *tl;
2910 info.mrep = NULL;
2911 info.v3 = 1;
2913 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2914 return (0);
2915 nfsstats.rpccnt[NFSPROC_COMMIT]++;
2916 nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2917 ERROROUT(nfsm_fhtom(&info, vp));
2918 tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2919 txdr_hyper(offset, tl);
2920 tl += 2;
2921 *tl = txdr_unsigned(cnt);
2922 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2923 nfs_vpcred(vp, ND_WRITE), &error));
2924 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2925 if (!error) {
2926 NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2927 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2928 NFSX_V3WRITEVERF)) {
2929 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2930 NFSX_V3WRITEVERF);
2931 error = NFSERR_STALEWRITEVERF;
2934 m_freem(info.mrep);
2935 info.mrep = NULL;
2936 nfsmout:
2937 return (error);
2941 * Kludge City..
2942 * - make nfs_bmap() essentially a no-op that does no translation
2943 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2944 * (Maybe I could use the process's page mapping, but I was concerned that
2945 * Kernel Write might not be enabled and also figured copyout() would do
2946 * a lot more work than bcopy() and also it currently happens in the
2947 * context of the swapper process (2).
2949 * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2950 * off_t *a_doffsetp, int *a_runp, int *a_runb)
2952 static int
2953 nfs_bmap(struct vop_bmap_args *ap)
2955 if (ap->a_doffsetp != NULL)
2956 *ap->a_doffsetp = ap->a_loffset;
2957 if (ap->a_runp != NULL)
2958 *ap->a_runp = 0;
2959 if (ap->a_runb != NULL)
2960 *ap->a_runb = 0;
2961 return (0);
2965 * Strategy routine.
2967 static int
2968 nfs_strategy(struct vop_strategy_args *ap)
2970 struct bio *bio = ap->a_bio;
2971 struct bio *nbio;
2972 struct buf *bp = bio->bio_buf;
2973 struct thread *td;
2974 int error;
2976 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2977 ("nfs_strategy: buffer %p unexpectedly marked done", bp));
2978 KASSERT(BUF_REFCNT(bp) > 0,
2979 ("nfs_strategy: buffer %p not locked", bp));
2981 if (bio->bio_flags & BIO_SYNC)
2982 td = curthread; /* XXX */
2983 else
2984 td = NULL;
2987 * We probably don't need to push an nbio any more since no
2988 * block conversion is required due to the use of 64 bit byte
2989 * offsets, but do it anyway.
2991 * NOTE: When NFS callers itself via this strategy routines and
2992 * sets up a synchronous I/O, it expects the I/O to run
2993 * synchronously (its bio_done routine just assumes it),
2994 * so for now we have to honor the bit.
2996 nbio = push_bio(bio);
2997 nbio->bio_offset = bio->bio_offset;
2998 nbio->bio_flags = bio->bio_flags & BIO_SYNC;
3001 * If the op is asynchronous and an i/o daemon is waiting
3002 * queue the request, wake it up and wait for completion
3003 * otherwise just do it ourselves.
3005 if (bio->bio_flags & BIO_SYNC) {
3006 error = nfs_doio(ap->a_vp, nbio, td);
3007 } else {
3008 nfs_asyncio(ap->a_vp, nbio);
3009 error = 0;
3011 return (error);
3015 * Mmap a file
3017 * NB Currently unsupported.
3019 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3021 /* ARGSUSED */
3022 static int
3023 nfs_mmap(struct vop_mmap_args *ap)
3025 return (EINVAL);
3029 * fsync vnode op. Just call nfs_flush() with commit == 1.
3031 * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3033 /* ARGSUSED */
3034 static int
3035 nfs_fsync(struct vop_fsync_args *ap)
3037 return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3041 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be
3042 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains
3043 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is
3044 * set the buffer contains data that has already been written to the server
3045 * and which now needs a commit RPC.
3047 * If commit is 0 we only take one pass and only flush buffers containing new
3048 * dirty data.
3050 * If commit is 1 we take two passes, issuing a commit RPC in the second
3051 * pass.
3053 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3054 * to completely flush all pending data.
3056 * Note that the RB_SCAN code properly handles the case where the
3057 * callback might block and directly or indirectly (another thread) cause
3058 * the RB tree to change.
3061 #ifndef NFS_COMMITBVECSIZ
3062 #define NFS_COMMITBVECSIZ 16
3063 #endif
3065 struct nfs_flush_info {
3066 enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3067 struct thread *td;
3068 struct vnode *vp;
3069 int waitfor;
3070 int slpflag;
3071 int slptimeo;
3072 int loops;
3073 struct buf *bvary[NFS_COMMITBVECSIZ];
3074 int bvsize;
3075 off_t beg_off;
3076 off_t end_off;
3079 static int nfs_flush_bp(struct buf *bp, void *data);
3080 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3083 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3085 struct nfsnode *np = VTONFS(vp);
3086 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3087 struct nfs_flush_info info;
3088 lwkt_tokref vlock;
3089 int error;
3091 bzero(&info, sizeof(info));
3092 info.td = td;
3093 info.vp = vp;
3094 info.waitfor = waitfor;
3095 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3096 info.loops = 0;
3097 lwkt_gettoken(&vlock, &vp->v_token);
3099 do {
3101 * Flush mode
3103 info.mode = NFI_FLUSHNEW;
3104 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3105 nfs_flush_bp, &info);
3108 * Take a second pass if committing and no error occured.
3109 * Clean up any left over collection (whether an error
3110 * occurs or not).
3112 if (commit && error == 0) {
3113 info.mode = NFI_COMMIT;
3114 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3115 nfs_flush_bp, &info);
3116 if (info.bvsize)
3117 error = nfs_flush_docommit(&info, error);
3121 * Wait for pending I/O to complete before checking whether
3122 * any further dirty buffers exist.
3124 while (waitfor == MNT_WAIT &&
3125 bio_track_active(&vp->v_track_write)) {
3126 error = bio_track_wait(&vp->v_track_write,
3127 info.slpflag, info.slptimeo);
3128 if (error) {
3130 * We have to be able to break out if this
3131 * is an 'intr' mount.
3133 if (nfs_sigintr(nmp, NULL, td)) {
3134 error = -EINTR;
3135 break;
3139 * Since we do not process pending signals,
3140 * once we get a PCATCH our tsleep() will no
3141 * longer sleep, switch to a fixed timeout
3142 * instead.
3144 if (info.slpflag == PCATCH) {
3145 info.slpflag = 0;
3146 info.slptimeo = 2 * hz;
3148 error = 0;
3151 ++info.loops;
3153 * Loop if we are flushing synchronous as well as committing,
3154 * and dirty buffers are still present. Otherwise we might livelock.
3156 } while (waitfor == MNT_WAIT && commit &&
3157 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3160 * The callbacks have to return a negative error to terminate the
3161 * RB scan.
3163 if (error < 0)
3164 error = -error;
3167 * Deal with any error collection
3169 if (np->n_flag & NWRITEERR) {
3170 error = np->n_error;
3171 np->n_flag &= ~NWRITEERR;
3173 lwkt_reltoken(&vlock);
3174 return (error);
3177 static
3179 nfs_flush_bp(struct buf *bp, void *data)
3181 struct nfs_flush_info *info = data;
3182 int lkflags;
3183 int error;
3184 off_t toff;
3186 error = 0;
3187 switch(info->mode) {
3188 case NFI_FLUSHNEW:
3189 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3190 if (error && info->loops && info->waitfor == MNT_WAIT) {
3191 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3192 if (error) {
3193 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3194 if (info->slpflag & PCATCH)
3195 lkflags |= LK_PCATCH;
3196 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3197 info->slptimeo);
3202 * Ignore locking errors
3204 if (error) {
3205 error = 0;
3206 break;
3210 * The buffer may have changed out from under us, even if
3211 * we did not block (MPSAFE). Check again now that it is
3212 * locked.
3214 if (bp->b_vp == info->vp &&
3215 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3216 bremfree(bp);
3217 bawrite(bp);
3218 } else {
3219 BUF_UNLOCK(bp);
3221 break;
3222 case NFI_COMMIT:
3224 * Only process buffers in need of a commit which we can
3225 * immediately lock. This may prevent a buffer from being
3226 * committed, but the normal flush loop will block on the
3227 * same buffer so we shouldn't get into an endless loop.
3229 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3230 (B_DELWRI | B_NEEDCOMMIT)) {
3231 break;
3233 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3234 break;
3237 * We must recheck after successfully locking the buffer.
3239 if (bp->b_vp != info->vp ||
3240 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3241 (B_DELWRI | B_NEEDCOMMIT)) {
3242 BUF_UNLOCK(bp);
3243 break;
3247 * NOTE: storing the bp in the bvary[] basically sets
3248 * it up for a commit operation.
3250 * We must call vfs_busy_pages() now so the commit operation
3251 * is interlocked with user modifications to memory mapped
3252 * pages. The b_dirtyoff/b_dirtyend range is not correct
3253 * until after the pages have been busied.
3255 * Note: to avoid loopback deadlocks, we do not
3256 * assign b_runningbufspace.
3258 bremfree(bp);
3259 bp->b_cmd = BUF_CMD_WRITE;
3260 vfs_busy_pages(bp->b_vp, bp);
3261 info->bvary[info->bvsize] = bp;
3262 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3263 if (info->bvsize == 0 || toff < info->beg_off)
3264 info->beg_off = toff;
3265 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3266 if (info->bvsize == 0 || toff > info->end_off)
3267 info->end_off = toff;
3268 ++info->bvsize;
3269 if (info->bvsize == NFS_COMMITBVECSIZ) {
3270 error = nfs_flush_docommit(info, 0);
3271 KKASSERT(info->bvsize == 0);
3274 return (error);
3277 static
3279 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3281 struct vnode *vp;
3282 struct buf *bp;
3283 off_t bytes;
3284 int retv;
3285 int i;
3287 vp = info->vp;
3289 if (info->bvsize > 0) {
3291 * Commit data on the server, as required. Note that
3292 * nfs_commit will use the vnode's cred for the commit.
3293 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3295 bytes = info->end_off - info->beg_off;
3296 if (bytes > 0x40000000)
3297 bytes = 0x40000000;
3298 if (error) {
3299 retv = -error;
3300 } else {
3301 retv = nfs_commitrpc_uio(vp, info->beg_off,
3302 (int)bytes, info->td);
3303 if (retv == NFSERR_STALEWRITEVERF)
3304 nfs_clearcommit(vp->v_mount);
3308 * Now, either mark the blocks I/O done or mark the
3309 * blocks dirty, depending on whether the commit
3310 * succeeded.
3312 for (i = 0; i < info->bvsize; ++i) {
3313 bp = info->bvary[i];
3314 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3315 if (retv) {
3317 * Error, leave B_DELWRI intact
3319 vfs_unbusy_pages(bp);
3320 bp->b_cmd = BUF_CMD_DONE;
3321 brelse(bp);
3322 } else {
3324 * Success, remove B_DELWRI ( bundirty() ).
3326 * b_dirtyoff/b_dirtyend seem to be NFS
3327 * specific. We should probably move that
3328 * into bundirty(). XXX
3330 * We are faking an I/O write, we have to
3331 * start the transaction in order to
3332 * immediately biodone() it.
3334 bundirty(bp);
3335 bp->b_flags &= ~B_ERROR;
3336 bp->b_dirtyoff = bp->b_dirtyend = 0;
3337 biodone(&bp->b_bio1);
3340 info->bvsize = 0;
3342 return (error);
3346 * NFS advisory byte-level locks.
3347 * Currently unsupported.
3349 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3350 * int a_flags)
3352 static int
3353 nfs_advlock(struct vop_advlock_args *ap)
3355 struct nfsnode *np = VTONFS(ap->a_vp);
3358 * The following kludge is to allow diskless support to work
3359 * until a real NFS lockd is implemented. Basically, just pretend
3360 * that this is a local lock.
3362 return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3366 * Print out the contents of an nfsnode.
3368 * nfs_print(struct vnode *a_vp)
3370 static int
3371 nfs_print(struct vop_print_args *ap)
3373 struct vnode *vp = ap->a_vp;
3374 struct nfsnode *np = VTONFS(vp);
3376 kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3377 (long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3378 if (vp->v_type == VFIFO)
3379 fifo_printinfo(vp);
3380 kprintf("\n");
3381 return (0);
3385 * nfs special file access vnode op.
3387 * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3389 static int
3390 nfs_laccess(struct vop_access_args *ap)
3392 struct vattr vattr;
3393 int error;
3395 error = VOP_GETATTR(ap->a_vp, &vattr);
3396 if (!error)
3397 error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3398 vattr.va_mode, 0);
3399 return (error);
3403 * Read wrapper for fifos.
3405 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3406 * struct ucred *a_cred)
3408 static int
3409 nfsfifo_read(struct vop_read_args *ap)
3411 struct nfsnode *np = VTONFS(ap->a_vp);
3414 * Set access flag.
3416 np->n_flag |= NACC;
3417 getnanotime(&np->n_atim);
3418 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3422 * Write wrapper for fifos.
3424 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3425 * struct ucred *a_cred)
3427 static int
3428 nfsfifo_write(struct vop_write_args *ap)
3430 struct nfsnode *np = VTONFS(ap->a_vp);
3433 * Set update flag.
3435 np->n_flag |= NUPD;
3436 getnanotime(&np->n_mtim);
3437 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3441 * Close wrapper for fifos.
3443 * Update the times on the nfsnode then do fifo close.
3445 * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3447 static int
3448 nfsfifo_close(struct vop_close_args *ap)
3450 struct vnode *vp = ap->a_vp;
3451 struct nfsnode *np = VTONFS(vp);
3452 struct vattr vattr;
3453 struct timespec ts;
3455 if (np->n_flag & (NACC | NUPD)) {
3456 getnanotime(&ts);
3457 if (np->n_flag & NACC)
3458 np->n_atim = ts;
3459 if (np->n_flag & NUPD)
3460 np->n_mtim = ts;
3461 np->n_flag |= NCHG;
3462 if (vp->v_sysref.refcnt == 1 &&
3463 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3464 VATTR_NULL(&vattr);
3465 if (np->n_flag & NACC)
3466 vattr.va_atime = np->n_atim;
3467 if (np->n_flag & NUPD)
3468 vattr.va_mtime = np->n_mtim;
3469 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3472 return (VOCALL(&fifo_vnode_vops, &ap->a_head));