dhcpcd: Note update to 9.4.1
[dragonfly.git] / sys / vm / vm_swapcache.c
blobcb20a209fe6ea10bf4690d574fdd68b913ff50f0
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2010,2019 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Implement the swapcache daemon. When enabled swap is assumed to be
39 * configured on a fast storage device such as a SSD. Swap is assigned
40 * to clean vnode-backed pages in the inactive queue, clustered by object
41 * if possible, and written out. The swap assignment sticks around even
42 * after the underlying pages have been recycled.
44 * The daemon manages write bandwidth based on sysctl settings to control
45 * wear on the SSD.
47 * The vnode strategy code will check for the swap assignments and divert
48 * reads to the swap device when the data is present in the swapcache.
50 * This operates on both regular files and the block device vnodes used by
51 * filesystems to manage meta-data.
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 struct swmarker {
82 struct vm_object dummy_obj;
83 struct vm_object *save_obj;
84 vm_ooffset_t save_off;
87 typedef struct swmarker swmarker_t;
89 /* the kernel process "vm_pageout"*/
90 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
91 static int vm_swapcache_test(vm_page_t m);
92 static int vm_swapcache_writing_heuristic(void);
93 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
94 static void vm_swapcache_cleaning(swmarker_t *marker,
95 struct vm_object_hash **swindexp);
96 static void vm_swapcache_movemarker(swmarker_t *marker,
97 struct vm_object_hash *swindex, vm_object_t object);
98 struct thread *swapcached_thread;
100 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
102 int vm_swapcache_read_enable;
103 static long vm_swapcache_wtrigger;
104 static int vm_swapcache_sleep;
105 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
106 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
107 static int vm_swapcache_data_enable = 0;
108 static int vm_swapcache_meta_enable = 0;
109 static int vm_swapcache_maxswappct = 75;
110 static int vm_swapcache_hysteresis;
111 static int vm_swapcache_min_hysteresis;
112 int vm_swapcache_use_chflags = 0; /* require chflags cache */
113 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
114 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
115 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
116 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
117 static int64_t vm_swapcache_write_count;
118 static int64_t vm_swapcache_maxfilesize;
119 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
122 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
124 CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
127 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
129 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
131 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
132 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
133 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
134 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
135 CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
136 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
137 CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
138 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
139 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
142 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
144 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
146 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
147 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
148 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
149 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
150 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
151 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
152 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
153 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
154 CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
156 #define SWAPMAX(adj) \
157 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
160 * When shutting down the machine we want to stop swapcache operation
161 * immediately so swap is not accessed after devices have been shuttered.
163 static void
164 shutdown_swapcache(void *arg __unused)
166 vm_swapcache_read_enable = 0;
167 vm_swapcache_data_enable = 0;
168 vm_swapcache_meta_enable = 0;
169 wakeup(&vm_swapcache_sleep); /* shortcut 5-second wait */
173 * vm_swapcached is the high level pageout daemon.
175 * No requirements.
177 static void
178 vm_swapcached_thread(void)
180 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
181 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
182 static struct vm_page page_marker[PQ_L2_SIZE];
183 static swmarker_t swmarker;
184 static struct vm_object_hash *swindex;
185 int q;
188 * Thread setup
190 curthread->td_flags |= TDF_SYSTHREAD;
191 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
192 swapcached_thread, SHUTDOWN_PRI_FIRST);
193 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
194 NULL, SHUTDOWN_PRI_SECOND);
197 * Initialize our marker for the inactive scan (SWAPC_WRITING)
199 bzero(&page_marker, sizeof(page_marker));
200 for (q = 0; q < PQ_L2_SIZE; ++q) {
201 page_marker[q].flags = PG_FICTITIOUS | PG_MARKER;
202 page_marker[q].busy_count = PBUSY_LOCKED;
203 page_marker[q].queue = PQ_INACTIVE + q;
204 page_marker[q].pc = q;
205 page_marker[q].wire_count = 1;
206 vm_page_queues_spin_lock(PQ_INACTIVE + q);
207 TAILQ_INSERT_HEAD(
208 &vm_page_queues[PQ_INACTIVE + q].pl,
209 &page_marker[q], pageq);
210 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
213 vm_swapcache_min_hysteresis = 1024;
214 vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
215 vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
218 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
220 bzero(&swmarker, sizeof(swmarker));
221 swmarker.dummy_obj.type = OBJT_MARKER;
222 swindex = &vm_object_hash[0];
223 lwkt_gettoken(&swindex->token);
224 TAILQ_INSERT_HEAD(&swindex->list, &swmarker.dummy_obj, object_entry);
225 lwkt_reltoken(&swindex->token);
227 for (;;) {
228 int reached_end;
229 int scount;
230 int count;
233 * Handle shutdown
235 kproc_suspend_loop();
238 * Check every 5 seconds when not enabled or if no swap
239 * is present.
241 if ((vm_swapcache_data_enable == 0 &&
242 vm_swapcache_meta_enable == 0 &&
243 vm_swap_cache_use <= SWAPMAX(0)) ||
244 vm_swap_max == 0) {
245 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
246 continue;
250 * Polling rate when enabled is approximately 10 hz.
252 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
255 * State hysteresis. Generate write activity up to 75% of
256 * swap, then clean out swap assignments down to 70%, then
257 * repeat.
259 if (state == SWAPC_WRITING) {
260 if (vm_swap_cache_use > SWAPMAX(0))
261 state = SWAPC_CLEANING;
262 } else {
263 if (vm_swap_cache_use < SWAPMAX(-10))
264 state = SWAPC_WRITING;
268 * We are allowed to continue accumulating burst value
269 * in either state. Allow the user to set curburst > maxburst
270 * for the initial load-in.
272 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
273 vm_swapcache_curburst += vm_swapcache_accrate / 10;
274 if (vm_swapcache_curburst > vm_swapcache_maxburst)
275 vm_swapcache_curburst = vm_swapcache_maxburst;
279 * We don't want to nickle-and-dime the scan as that will
280 * create unnecessary fragmentation. The minimum burst
281 * is one-seconds worth of accumulation.
283 if (state != SWAPC_WRITING) {
284 vm_swapcache_cleaning(&swmarker, &swindex);
285 continue;
287 if (vm_swapcache_curburst < vm_swapcache_accrate)
288 continue;
290 reached_end = 0;
291 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
292 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
294 if (burst == SWAPB_BURSTING) {
295 if (vm_swapcache_writing_heuristic()) {
296 for (q = 0; q < PQ_L2_SIZE; ++q) {
297 reached_end +=
298 vm_swapcache_writing(
299 &page_marker[q],
300 count,
301 scount);
304 if (vm_swapcache_curburst <= 0)
305 burst = SWAPB_RECOVERING;
306 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
307 if (vm_swapcache_writing_heuristic()) {
308 for (q = 0; q < PQ_L2_SIZE; ++q) {
309 reached_end +=
310 vm_swapcache_writing(
311 &page_marker[q],
312 count,
313 scount);
316 burst = SWAPB_BURSTING;
318 if (reached_end == PQ_L2_SIZE) {
319 vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
324 * Cleanup (NOT REACHED)
326 for (q = 0; q < PQ_L2_SIZE; ++q) {
327 vm_page_queues_spin_lock(PQ_INACTIVE + q);
328 TAILQ_REMOVE(
329 &vm_page_queues[PQ_INACTIVE + q].pl,
330 &page_marker[q], pageq);
331 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
334 lwkt_gettoken(&swindex->token);
335 TAILQ_REMOVE(&swindex->list, &swmarker.dummy_obj, object_entry);
336 lwkt_reltoken(&swindex->token);
339 static struct kproc_desc swpc_kp = {
340 "swapcached",
341 vm_swapcached_thread,
342 &swapcached_thread
344 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
347 * Deal with an overflow of the heuristic counter or if the user
348 * manually changes the hysteresis.
350 * Try to avoid small incremental pageouts by waiting for enough
351 * pages to buildup in the inactive queue to hopefully get a good
352 * burst in. This heuristic is bumped by the VM system and reset
353 * when our scan hits the end of the queue.
355 * Return TRUE if we need to take a writing pass.
357 static int
358 vm_swapcache_writing_heuristic(void)
360 int hyst;
361 int q;
362 long adds;
364 hyst = vmstats.v_inactive_count / 4;
365 if (hyst < vm_swapcache_min_hysteresis)
366 hyst = vm_swapcache_min_hysteresis;
367 cpu_ccfence();
368 vm_swapcache_hysteresis = hyst;
370 adds = 0;
371 for (q = PQ_INACTIVE; q < PQ_INACTIVE + PQ_L2_SIZE; ++q) {
372 adds += atomic_swap_long(&vm_page_queues[q].adds, 0);
374 vm_swapcache_wtrigger += adds;
375 if (vm_swapcache_wtrigger < -hyst)
376 vm_swapcache_wtrigger = -hyst;
377 return (vm_swapcache_wtrigger >= 0);
381 * Take a writing pass on one of the inactive queues, return non-zero if
382 * we hit the end of the queue.
384 static int
385 vm_swapcache_writing(vm_page_t marker, int count, int scount)
387 vm_object_t object;
388 struct vnode *vp;
389 vm_page_t m;
390 int isblkdev;
393 * Scan the inactive queue from our marker to locate
394 * suitable pages to push to the swap cache.
396 * We are looking for clean vnode-backed pages.
398 vm_page_queues_spin_lock(marker->queue);
399 while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
400 count > 0 && scount-- > 0) {
401 KKASSERT(m->queue == marker->queue);
404 * Stop using swap if paniced, dumping, or dumped.
405 * Don't try to write if our curburst has been exhausted.
407 if (panicstr || dumping)
408 break;
409 if (vm_swapcache_curburst < 0)
410 break;
413 * Move marker
415 TAILQ_REMOVE(
416 &vm_page_queues[marker->queue].pl, marker, pageq);
417 TAILQ_INSERT_AFTER(
418 &vm_page_queues[marker->queue].pl, m, marker, pageq);
421 * Ignore markers and ignore pages that already have a swap
422 * assignment.
424 if (m->flags & (PG_MARKER | PG_SWAPPED))
425 continue;
426 if (vm_page_busy_try(m, TRUE))
427 continue;
428 vm_page_queues_spin_unlock(marker->queue);
430 if ((object = m->object) == NULL) {
431 vm_page_wakeup(m);
432 vm_page_queues_spin_lock(marker->queue);
433 continue;
435 vm_object_hold(object);
436 if (m->object != object) {
437 vm_object_drop(object);
438 vm_page_wakeup(m);
439 vm_page_queues_spin_lock(marker->queue);
440 continue;
442 if (vm_swapcache_test(m)) {
443 vm_object_drop(object);
444 vm_page_wakeup(m);
445 vm_page_queues_spin_lock(marker->queue);
446 continue;
449 vp = object->handle;
450 if (vp == NULL) {
451 vm_object_drop(object);
452 vm_page_wakeup(m);
453 vm_page_queues_spin_lock(marker->queue);
454 continue;
457 switch(vp->v_type) {
458 case VREG:
460 * PG_NOTMETA generically means 'don't swapcache this',
461 * and HAMMER will set this for regular data buffers
462 * (and leave it unset for meta-data buffers) as
463 * appropriate when double buffering is enabled.
465 if (m->flags & PG_NOTMETA) {
466 vm_object_drop(object);
467 vm_page_wakeup(m);
468 vm_page_queues_spin_lock(marker->queue);
469 continue;
473 * If data_enable is 0 do not try to swapcache data.
474 * If use_chflags is set then only swapcache data for
475 * VSWAPCACHE marked vnodes, otherwise any vnode.
477 if (vm_swapcache_data_enable == 0 ||
478 ((vp->v_flag & VSWAPCACHE) == 0 &&
479 vm_swapcache_use_chflags)) {
480 vm_object_drop(object);
481 vm_page_wakeup(m);
482 vm_page_queues_spin_lock(marker->queue);
483 continue;
485 if (vm_swapcache_maxfilesize &&
486 object->size >
487 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
488 vm_object_drop(object);
489 vm_page_wakeup(m);
490 vm_page_queues_spin_lock(marker->queue);
491 continue;
493 isblkdev = 0;
494 break;
495 case VCHR:
497 * PG_NOTMETA generically means 'don't swapcache this',
498 * and HAMMER will set this for regular data buffers
499 * (and leave it unset for meta-data buffers) as
500 * appropriate when double buffering is enabled.
502 if (m->flags & PG_NOTMETA) {
503 vm_object_drop(object);
504 vm_page_wakeup(m);
505 vm_page_queues_spin_lock(marker->queue);
506 continue;
508 if (vm_swapcache_meta_enable == 0) {
509 vm_object_drop(object);
510 vm_page_wakeup(m);
511 vm_page_queues_spin_lock(marker->queue);
512 continue;
514 isblkdev = 1;
515 break;
516 default:
517 vm_object_drop(object);
518 vm_page_wakeup(m);
519 vm_page_queues_spin_lock(marker->queue);
520 continue;
525 * Assign swap and initiate I/O.
527 * (adjust for the --count which also occurs in the loop)
529 count -= vm_swapcached_flush(m, isblkdev);
532 * Setup for next loop using marker.
534 vm_object_drop(object);
535 vm_page_queues_spin_lock(marker->queue);
539 * The marker could wind up at the end, which is ok. If we hit the
540 * end of the list adjust the heuristic.
542 * Earlier inactive pages that were dirty and become clean
543 * are typically moved to the end of PQ_INACTIVE by virtue
544 * of vfs_vmio_release() when they become unwired from the
545 * buffer cache.
547 vm_page_queues_spin_unlock(marker->queue);
550 * m invalid but can be used to test for NULL
552 return (m == NULL);
556 * Flush the specified page using the swap_pager. The page
557 * must be busied by the caller and its disposition will become
558 * the responsibility of this function.
560 * Try to collect surrounding pages, including pages which may
561 * have already been assigned swap. Try to cluster within a
562 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
563 * to match what swap_pager_putpages() can do.
565 * We also want to try to match against the buffer cache blocksize
566 * but we don't really know what it is here. Since the buffer cache
567 * wires and unwires pages in groups the fact that we skip wired pages
568 * should be sufficient.
570 * Returns a count of pages we might have flushed (minimum 1)
572 static
574 vm_swapcached_flush(vm_page_t m, int isblkdev)
576 vm_object_t object;
577 vm_page_t marray[SWAP_META_PAGES];
578 vm_pindex_t basei;
579 int rtvals[SWAP_META_PAGES];
580 int x;
581 int i;
582 int j;
583 int count;
584 int error;
586 vm_page_io_start(m);
587 vm_page_protect(m, VM_PROT_READ);
588 object = m->object;
589 vm_object_hold(object);
592 * Try to cluster around (m), keeping in mind that the swap pager
593 * can only do SMAP_META_PAGES worth of continguous write.
595 x = (int)m->pindex & SWAP_META_MASK;
596 marray[x] = m;
597 basei = m->pindex;
598 vm_page_wakeup(m);
600 for (i = x - 1; i >= 0; --i) {
601 m = vm_page_lookup_busy_try(object, basei - x + i,
602 TRUE, &error);
603 if (error || m == NULL)
604 break;
605 if (vm_swapcache_test(m)) {
606 vm_page_wakeup(m);
607 break;
609 if (isblkdev && (m->flags & PG_NOTMETA)) {
610 vm_page_wakeup(m);
611 break;
613 vm_page_io_start(m);
614 vm_page_protect(m, VM_PROT_READ);
615 if (m->queue - m->pc == PQ_CACHE) {
616 vm_page_unqueue_nowakeup(m);
617 vm_page_deactivate(m);
619 marray[i] = m;
620 vm_page_wakeup(m);
622 ++i;
624 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
625 m = vm_page_lookup_busy_try(object, basei - x + j,
626 TRUE, &error);
627 if (error || m == NULL)
628 break;
629 if (vm_swapcache_test(m)) {
630 vm_page_wakeup(m);
631 break;
633 if (isblkdev && (m->flags & PG_NOTMETA)) {
634 vm_page_wakeup(m);
635 break;
637 vm_page_io_start(m);
638 vm_page_protect(m, VM_PROT_READ);
639 if (m->queue - m->pc == PQ_CACHE) {
640 vm_page_unqueue_nowakeup(m);
641 vm_page_deactivate(m);
643 marray[j] = m;
644 vm_page_wakeup(m);
647 count = j - i;
648 vm_object_pip_add(object, count);
649 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
650 vm_swapcache_write_count += count * PAGE_SIZE;
651 vm_swapcache_curburst -= count * PAGE_SIZE;
653 while (i < j) {
654 if (rtvals[i] != VM_PAGER_PEND) {
655 vm_page_busy_wait(marray[i], FALSE, "swppgfd");
656 vm_page_io_finish(marray[i]);
657 vm_page_wakeup(marray[i]);
658 vm_object_pip_wakeup(object);
660 ++i;
662 vm_object_drop(object);
663 return(count);
667 * Test whether a VM page is suitable for writing to the swapcache.
668 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
670 * Returns 0 on success, 1 on failure
672 static int
673 vm_swapcache_test(vm_page_t m)
675 vm_object_t object;
677 if (m->flags & (PG_UNQUEUED | PG_FICTITIOUS))
678 return(1);
679 if (m->hold_count || m->wire_count)
680 return(1);
681 if (m->valid != VM_PAGE_BITS_ALL)
682 return(1);
683 if (m->dirty & m->valid)
684 return(1);
685 if ((object = m->object) == NULL)
686 return(1);
687 if (object->type != OBJT_VNODE ||
688 (object->flags & OBJ_DEAD)) {
689 return(1);
691 vm_page_test_dirty(m);
692 if (m->dirty & m->valid)
693 return(1);
694 return(0);
698 * Cleaning pass.
700 * We clean whole objects up to 16MB
702 static
703 void
704 vm_swapcache_cleaning(swmarker_t *marker, struct vm_object_hash **swindexp)
706 vm_object_t object;
707 struct vnode *vp;
708 int count;
709 int scount;
710 int n;
711 int didmove;
713 count = vm_swapcache_maxlaunder;
714 scount = vm_swapcache_maxscan;
717 * Look for vnode objects
719 lwkt_gettoken(&(*swindexp)->token);
721 didmove = 0;
722 outerloop:
723 while ((object = TAILQ_NEXT(&marker->dummy_obj,
724 object_entry)) != NULL) {
726 * We have to skip markers. We cannot hold/drop marker
727 * objects!
729 if (object->type == OBJT_MARKER) {
730 vm_swapcache_movemarker(marker, *swindexp, object);
731 didmove = 1;
732 continue;
736 * Safety, or in case there are millions of VM objects
737 * without swapcache backing.
739 if (--scount <= 0)
740 goto breakout;
743 * We must hold the object before potentially yielding.
745 vm_object_hold(object);
746 lwkt_yield();
749 * Only operate on live VNODE objects that are either
750 * VREG or VCHR (VCHR for meta-data).
752 if ((object->type != OBJT_VNODE) ||
753 ((object->flags & OBJ_DEAD) ||
754 object->swblock_count == 0) ||
755 ((vp = object->handle) == NULL) ||
756 (vp->v_type != VREG && vp->v_type != VCHR)) {
757 vm_object_drop(object);
758 /* object may be invalid now */
759 vm_swapcache_movemarker(marker, *swindexp, object);
760 didmove = 1;
761 continue;
765 * Reset the object pindex stored in the marker if the
766 * working object has changed.
768 if (marker->save_obj != object || didmove) {
769 marker->dummy_obj.size = 0;
770 marker->save_off = 0;
771 marker->save_obj = object;
772 didmove = 0;
776 * Look for swblocks starting at our iterator.
778 * The swap_pager_condfree() function attempts to free
779 * swap space starting at the specified index. The index
780 * will be updated on return. The function will return
781 * a scan factor (NOT the number of blocks freed).
783 * If it must cut its scan of the object short due to an
784 * excessive number of swblocks, or is able to free the
785 * requested number of blocks, it will return n >= count
786 * and we break and pick it back up on a future attempt.
788 * Scan the object linearly and try to batch large sets of
789 * blocks that are likely to clean out entire swap radix
790 * tree leafs.
792 lwkt_token_swap();
793 lwkt_reltoken(&(*swindexp)->token);
795 n = swap_pager_condfree(object, &marker->dummy_obj.size,
796 (count + SWAP_META_MASK) & ~SWAP_META_MASK);
798 vm_object_drop(object); /* object may be invalid now */
799 lwkt_gettoken(&(*swindexp)->token);
802 * If we have exhausted the object or deleted our per-pass
803 * page limit then move us to the next object. Note that
804 * the current object may no longer be on the vm_object_entry.
806 if (n <= 0 ||
807 marker->save_off > vm_swapcache_cleanperobj) {
808 vm_swapcache_movemarker(marker, *swindexp, object);
809 didmove = 1;
813 * If we have exhausted our max-launder stop for now.
815 count -= n;
816 marker->save_off += n * PAGE_SIZE;
817 if (count < 0)
818 goto breakout;
822 * Iterate vm_object_hash[] hash table
824 TAILQ_REMOVE(&(*swindexp)->list, &marker->dummy_obj, object_entry);
825 lwkt_reltoken(&(*swindexp)->token);
826 if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
827 *swindexp = &vm_object_hash[0];
828 lwkt_gettoken(&(*swindexp)->token);
829 TAILQ_INSERT_HEAD(&(*swindexp)->list, &marker->dummy_obj, object_entry);
831 if (*swindexp != &vm_object_hash[0])
832 goto outerloop;
834 breakout:
835 lwkt_reltoken(&(*swindexp)->token);
839 * Move the marker past the current object. Object can be stale, but we
840 * still need it to determine if the marker has to be moved. If the object
841 * is still the 'current object' (object after the marker), we hop-scotch
842 * the marker past it.
844 static void
845 vm_swapcache_movemarker(swmarker_t *marker, struct vm_object_hash *swindex,
846 vm_object_t object)
848 if (TAILQ_NEXT(&marker->dummy_obj, object_entry) == object) {
849 TAILQ_REMOVE(&swindex->list, &marker->dummy_obj, object_entry);
850 TAILQ_INSERT_AFTER(&swindex->list, object,
851 &marker->dummy_obj, object_entry);