Sync ACPICA with Intel's version 20170728.
[dragonfly.git] / lib / libdevstat / devstat.c
blob019a29fba923faddbbbaf241269a639a6fd7f840
1 /*
2 * Copyright (c) 1997, 1998 Kenneth D. Merry.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * $FreeBSD: src/lib/libdevstat/devstat.c,v 1.6 1999/08/28 00:04:26 peter Exp $
29 * $DragonFly: src/lib/libdevstat/devstat.c,v 1.5 2005/01/08 19:19:26 joerg Exp $
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
36 #include <ctype.h>
37 #include <err.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
42 #include "devstat.h"
44 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
47 * Table to match descriptive strings with device types. These are in
48 * order from most common to least common to speed search time.
50 struct devstat_match_table match_table[] = {
51 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE},
52 {"nvme", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE},
53 {"xa", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE},
54 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE},
55 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF},
56 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF},
57 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF},
58 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE},
59 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
60 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS},
61 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE},
62 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
63 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE},
64 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE},
65 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE},
66 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE},
67 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
68 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE},
69 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
70 {NULL, 0, 0}
74 * Local function declarations.
76 static int compare_select(const void *arg1, const void *arg2);
78 int
79 getnumdevs(void)
81 size_t numdevsize;
82 int numdevs;
83 const char *func_name = "getnumdevs";
85 numdevsize = sizeof(int);
88 * Find out how many devices we have in the system.
90 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
91 &numdevsize, NULL, 0) == -1) {
92 sprintf(devstat_errbuf, "%s: error getting number of devices\n"
93 "%s: %s", func_name, func_name, strerror(errno));
94 return(-1);
95 } else
96 return(numdevs);
100 * This is an easy way to get the generation number, but the generation is
101 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
102 * Because this generation sysctl is separate from the statistics sysctl,
103 * the device list and the generation could change between the time that
104 * this function is called and the device list is retreived.
106 long
107 getgeneration(void)
109 size_t gensize;
110 long generation;
111 const char *func_name = "getgeneration";
113 gensize = sizeof(long);
116 * Get the current generation number.
118 if (sysctlbyname("kern.devstat.generation", &generation,
119 &gensize, NULL, 0) == -1) {
120 sprintf(devstat_errbuf,"%s: error getting devstat generation\n"
121 "%s: %s", func_name, func_name, strerror(errno));
122 return(-1);
123 } else
124 return(generation);
128 * Get the current devstat version. The return value of this function
129 * should be compared with DEVSTAT_VERSION, which is defined in
130 * sys/devicestat.h. This will enable userland programs to determine
131 * whether they are out of sync with the kernel.
134 getversion(void)
136 size_t versize;
137 int version;
138 const char *func_name = "getversion";
140 versize = sizeof(int);
143 * Get the current devstat version.
145 if (sysctlbyname("kern.devstat.version", &version, &versize,
146 NULL, 0) == -1) {
147 sprintf(devstat_errbuf, "%s: error getting devstat version\n"
148 "%s: %s", func_name, func_name, strerror(errno));
149 return(-1);
150 } else
151 return(version);
155 * Check the devstat version we know about against the devstat version the
156 * kernel knows about. If they don't match, print an error into the
157 * devstat error buffer, and return -1. If they match, return 0.
160 checkversion(void)
162 int retval = 0;
163 int errlen = 0;
164 const char *func_name = "checkversion";
165 int version;
167 version = getversion();
169 if (version != DEVSTAT_VERSION) {
170 int buflen = 0;
171 char tmpstr[256];
174 * This is really pretty silly, but basically the idea is
175 * that if getversion() returns an error (i.e. -1), then it
176 * has printed an error message in the buffer. Therefore,
177 * we need to add a \n to the end of that message before we
178 * print our own message in the buffer.
180 if (version == -1) {
181 buflen = strlen(devstat_errbuf);
182 errlen = snprintf(tmpstr, sizeof(tmpstr), "\n");
183 strncat(devstat_errbuf, tmpstr,
184 DEVSTAT_ERRBUF_SIZE - buflen - 1);
185 buflen += errlen;
188 errlen = snprintf(tmpstr, sizeof(tmpstr),
189 "%s: userland devstat version %d is not "
190 "the same as the kernel\n%s: devstat "
191 "version %d\n", func_name, DEVSTAT_VERSION,
192 func_name, version);
194 if (version == -1) {
195 strncat(devstat_errbuf, tmpstr,
196 DEVSTAT_ERRBUF_SIZE - buflen - 1);
197 buflen += errlen;
198 } else {
199 strncpy(devstat_errbuf, tmpstr, DEVSTAT_ERRBUF_SIZE);
200 devstat_errbuf[DEVSTAT_ERRBUF_SIZE - 1] = '\0';
203 if (version < DEVSTAT_VERSION)
204 snprintf(tmpstr, sizeof(tmpstr),
205 "%s: libdevstat newer than kernel\n",
206 func_name);
207 else
208 snprintf(tmpstr, sizeof(tmpstr),
209 "%s: kernel newer than libdevstat\n",
210 func_name);
212 strncat(devstat_errbuf, tmpstr,
213 DEVSTAT_ERRBUF_SIZE - buflen - 1);
215 retval = -1;
218 return(retval);
222 * Get the current list of devices and statistics, and the current
223 * generation number.
225 * Return values:
226 * -1 -- error
227 * 0 -- device list is unchanged
228 * 1 -- device list has changed
231 getdevs(struct statinfo *stats)
233 int error;
234 size_t dssize;
235 long oldgeneration;
236 int retval = 0;
237 struct devinfo *dinfo;
238 const char *func_name = "getdevs";
240 dinfo = stats->dinfo;
242 if (dinfo == NULL) {
243 sprintf(devstat_errbuf, "%s: stats->dinfo was NULL", func_name);
244 return(-1);
247 oldgeneration = dinfo->generation;
250 * If this is our first time through, mem_ptr will be null.
252 if (dinfo->mem_ptr == NULL) {
254 * Get the number of devices. If it's negative, it's an
255 * error. Don't bother setting the error string, since
256 * getnumdevs() has already done that for us.
258 if ((dinfo->numdevs = getnumdevs()) < 0)
259 return(-1);
262 * The kern.devstat.all sysctl returns the current generation
263 * number, as well as all the devices. So we need four
264 * bytes more.
266 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
267 dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
268 } else
269 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
271 /* Get the current time when we get the stats */
272 gettimeofday(&stats->busy_time, NULL);
275 * Request all of the devices. We only really allow for one
276 * ENOMEM failure. It would, of course, be possible to just go in
277 * a loop and keep reallocing the device structure until we don't
278 * get ENOMEM back. I'm not sure it's worth it, though. If
279 * devices are being added to the system that quickly, maybe the
280 * user can just wait until all devices are added.
282 if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr,
283 &dssize, NULL, 0)) == -1) {
285 * If we get ENOMEM back, that means that there are
286 * more devices now, so we need to allocate more
287 * space for the device array.
289 if (errno == ENOMEM) {
291 * No need to set the error string here, getnumdevs()
292 * will do that if it fails.
294 if ((dinfo->numdevs = getnumdevs()) < 0)
295 return(-1);
297 dssize = (dinfo->numdevs * sizeof(struct devstat)) +
298 sizeof(long);
299 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
300 dssize);
301 if ((error = sysctlbyname("kern.devstat.all",
302 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
303 sprintf(devstat_errbuf,
304 "%s: error getting device stats\n"
305 "%s: %s", func_name, func_name,
306 strerror(errno));
307 return(-1);
309 } else {
310 sprintf(devstat_errbuf,
311 "%s: error getting device stats\n"
312 "%s: %s", func_name, func_name,
313 strerror(errno));
314 return(-1);
319 * The sysctl spits out the generation as the first four bytes,
320 * then all of the device statistics structures.
322 dinfo->generation = *(long *)dinfo->mem_ptr;
325 * If the generation has changed, and if the current number of
326 * devices is not the same as the number of devices recorded in the
327 * devinfo structure, it is likely that the device list has shrunk.
328 * The reason that it is likely that the device list has shrunk in
329 * this case is that if the device list has grown, the sysctl above
330 * will return an ENOMEM error, and we will reset the number of
331 * devices and reallocate the device array. If the second sysctl
332 * fails, we will return an error and therefore never get to this
333 * point. If the device list has shrunk, the sysctl will not
334 * return an error since we have more space allocated than is
335 * necessary. So, in the shrinkage case, we catch it here and
336 * reallocate the array so that we don't use any more space than is
337 * necessary.
339 if (oldgeneration != dinfo->generation) {
340 if (getnumdevs() != dinfo->numdevs) {
341 if ((dinfo->numdevs = getnumdevs()) < 0)
342 return(-1);
343 dssize = (dinfo->numdevs * sizeof(struct devstat)) +
344 sizeof(long);
345 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
346 dssize);
348 retval = 1;
351 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
353 return(retval);
357 * selectdevs():
359 * Devices are selected/deselected based upon the following criteria:
360 * - devices specified by the user on the command line
361 * - devices matching any device type expressions given on the command line
362 * - devices with the highest I/O, if 'top' mode is enabled
363 * - the first n unselected devices in the device list, if maxshowdevs
364 * devices haven't already been selected and if the user has not
365 * specified any devices on the command line and if we're in "add" mode.
367 * Input parameters:
368 * - device selection list (dev_select)
369 * - current number of devices selected (num_selected)
370 * - total number of devices in the selection list (num_selections)
371 * - devstat generation as of the last time selectdevs() was called
372 * (select_generation)
373 * - current devstat generation (current_generation)
374 * - current list of devices and statistics (devices)
375 * - number of devices in the current device list (numdevs)
376 * - compiled version of the command line device type arguments (matches)
377 * - This is optional. If the number of devices is 0, this will be ignored.
378 * - The matching code pays attention to the current selection mode. So
379 * if you pass in a matching expression, it will be evaluated based
380 * upon the selection mode that is passed in. See below for details.
381 * - number of device type matching expressions (num_matches)
382 * - Set to 0 to disable the matching code.
383 * - list of devices specified on the command line by the user (dev_selections)
384 * - number of devices selected on the command line by the user
385 * (num_dev_selections)
386 * - Our selection mode. There are four different selection modes:
387 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly
388 * selected by the user or devices matching a pattern given by the
389 * user will be selected in addition to devices that are already
390 * selected. Additional devices will be selected, up to maxshowdevs
391 * number of devices.
392 * - only mode. (DS_SELECT_ONLY) Only devices matching devices
393 * explicitly given by the user or devices matching a pattern
394 * given by the user will be selected. No other devices will be
395 * selected.
396 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and
397 * only. Basically, this will not de-select any devices that are
398 * current selected, as only mode would, but it will also not
399 * gratuitously select up to maxshowdevs devices as add mode would.
400 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices
401 * explicitly selected by the user or devices matching a pattern
402 * given by the user will be de-selected.
403 * - maximum number of devices we can select (maxshowdevs)
404 * - flag indicating whether or not we're in 'top' mode (perf_select)
406 * Output data:
407 * - the device selection list may be modified and passed back out
408 * - the number of devices selected and the total number of items in the
409 * device selection list may be changed
410 * - the selection generation may be changed to match the current generation
412 * Return values:
413 * -1 -- error
414 * 0 -- selected devices are unchanged
415 * 1 -- selected devices changed
418 selectdevs(struct device_selection **dev_select, int *num_selected,
419 int *num_selections, long *select_generation,
420 long current_generation, struct devstat *devices, int numdevs,
421 struct devstat_match *matches, int num_matches,
422 char **dev_selections, int num_dev_selections,
423 devstat_select_mode select_mode, int maxshowdevs, int perf_select)
425 int i, j, k;
426 int init_selections = 0, init_selected_var = 0;
427 struct device_selection *old_dev_select = NULL;
428 int old_num_selections = 0, old_num_selected;
429 int selection_number = 0;
430 int changed = 0, found = 0;
432 if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0))
433 return(-1);
436 * We always want to make sure that we have as many dev_select
437 * entries as there are devices.
440 * In this case, we haven't selected devices before.
442 if (*dev_select == NULL) {
443 *dev_select = (struct device_selection *)malloc(numdevs *
444 sizeof(struct device_selection));
445 *select_generation = current_generation;
446 init_selections = 1;
447 changed = 1;
449 * In this case, we have selected devices before, but the device
450 * list has changed since we last selected devices, so we need to
451 * either enlarge or reduce the size of the device selection list.
453 } else if (*num_selections != numdevs) {
454 *dev_select = (struct device_selection *)realloc(*dev_select,
455 numdevs * sizeof(struct device_selection));
456 *select_generation = current_generation;
457 init_selections = 1;
459 * In this case, we've selected devices before, and the selection
460 * list is the same size as it was the last time, but the device
461 * list has changed.
463 } else if (*select_generation < current_generation) {
464 *select_generation = current_generation;
465 init_selections = 1;
469 * If we're in "only" mode, we want to clear out the selected
470 * variable since we're going to select exactly what the user wants
471 * this time through.
473 if (select_mode == DS_SELECT_ONLY)
474 init_selected_var = 1;
477 * In all cases, we want to back up the number of selected devices.
478 * It is a quick and accurate way to determine whether the selected
479 * devices have changed.
481 old_num_selected = *num_selected;
484 * We want to make a backup of the current selection list if
485 * the list of devices has changed, or if we're in performance
486 * selection mode. In both cases, we don't want to make a backup
487 * if we already know for sure that the list will be different.
488 * This is certainly the case if this is our first time through the
489 * selection code.
491 if (((init_selected_var != 0) || (init_selections != 0)
492 || (perf_select != 0)) && (changed == 0)){
493 old_dev_select = (struct device_selection *)malloc(
494 *num_selections * sizeof(struct device_selection));
495 old_num_selections = *num_selections;
496 bcopy(*dev_select, old_dev_select,
497 sizeof(struct device_selection) * *num_selections);
500 if (init_selections != 0) {
501 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
503 for (i = 0; i < numdevs; i++) {
504 (*dev_select)[i].device_number =
505 devices[i].device_number;
506 strncpy((*dev_select)[i].device_name,
507 devices[i].device_name,
508 DEVSTAT_NAME_LEN);
509 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
510 (*dev_select)[i].unit_number = devices[i].unit_number;
511 (*dev_select)[i].position = i;
513 *num_selections = numdevs;
514 } else if (init_selected_var != 0) {
515 for (i = 0; i < numdevs; i++)
516 (*dev_select)[i].selected = 0;
519 /* we haven't gotten around to selecting anything yet.. */
520 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
521 || (init_selected_var != 0))
522 *num_selected = 0;
525 * Look through any devices the user specified on the command line
526 * and see if they match known devices. If so, select them.
528 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
529 char tmpstr[80];
531 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
532 (*dev_select)[i].device_name,
533 (*dev_select)[i].unit_number);
534 for (j = 0; j < num_dev_selections; j++) {
535 if (strcmp(tmpstr, dev_selections[j]) == 0) {
537 * Here we do different things based on the
538 * mode we're in. If we're in add or
539 * addonly mode, we only select this device
540 * if it hasn't already been selected.
541 * Otherwise, we would be unnecessarily
542 * changing the selection order and
543 * incrementing the selection count. If
544 * we're in only mode, we unconditionally
545 * select this device, since in only mode
546 * any previous selections are erased and
547 * manually specified devices are the first
548 * ones to be selected. If we're in remove
549 * mode, we de-select the specified device and
550 * decrement the selection count.
552 switch(select_mode) {
553 case DS_SELECT_ADD:
554 case DS_SELECT_ADDONLY:
555 if ((*dev_select)[i].selected)
556 break;
557 /* FALLTHROUGH */
558 case DS_SELECT_ONLY:
559 (*dev_select)[i].selected =
560 ++selection_number;
561 (*num_selected)++;
562 break;
563 case DS_SELECT_REMOVE:
564 (*dev_select)[i].selected = 0;
565 (*num_selected)--;
567 * This isn't passed back out, we
568 * just use it to keep track of
569 * how many devices we've removed.
571 num_dev_selections--;
572 break;
574 break;
580 * Go through the user's device type expressions and select devices
581 * accordingly. We only do this if the number of devices already
582 * selected is less than the maximum number we can show.
584 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
585 /* We should probably indicate some error here */
586 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
587 || (matches[i].num_match_categories <= 0))
588 continue;
590 for (j = 0; j < numdevs; j++) {
591 int num_match_categories;
593 num_match_categories = matches[i].num_match_categories;
596 * Determine whether or not the current device
597 * matches the given matching expression. This if
598 * statement consists of three components:
599 * - the device type check
600 * - the device interface check
601 * - the passthrough check
602 * If a the matching test is successful, it
603 * decrements the number of matching categories,
604 * and if we've reached the last element that
605 * needed to be matched, the if statement succeeds.
608 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
609 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
610 (matches[i].device_type & DEVSTAT_TYPE_MASK))
611 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
612 || (((devices[j].device_type &
613 DEVSTAT_TYPE_PASS) == 0)))
614 && (--num_match_categories == 0))
615 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
616 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
617 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
618 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
619 || (((devices[j].device_type &
620 DEVSTAT_TYPE_PASS) == 0)))
621 && (--num_match_categories == 0))
622 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
623 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
624 && (--num_match_categories == 0))) {
627 * This is probably a non-optimal solution
628 * to the problem that the devices in the
629 * device list will not be in the same
630 * order as the devices in the selection
631 * array.
633 for (k = 0; k < numdevs; k++) {
634 if ((*dev_select)[k].position == j) {
635 found = 1;
636 break;
641 * There shouldn't be a case where a device
642 * in the device list is not in the
643 * selection list...but it could happen.
645 if (found != 1) {
646 fprintf(stderr, "selectdevs: couldn't"
647 " find %s%d in selection "
648 "list\n",
649 devices[j].device_name,
650 devices[j].unit_number);
651 break;
655 * We do different things based upon the
656 * mode we're in. If we're in add or only
657 * mode, we go ahead and select this device
658 * if it hasn't already been selected. If
659 * it has already been selected, we leave
660 * it alone so we don't mess up the
661 * selection ordering. Manually specified
662 * devices have already been selected, and
663 * they have higher priority than pattern
664 * matched devices. If we're in remove
665 * mode, we de-select the given device and
666 * decrement the selected count.
668 switch(select_mode) {
669 case DS_SELECT_ADD:
670 case DS_SELECT_ADDONLY:
671 case DS_SELECT_ONLY:
672 if ((*dev_select)[k].selected != 0)
673 break;
674 (*dev_select)[k].selected =
675 ++selection_number;
676 (*num_selected)++;
677 break;
678 case DS_SELECT_REMOVE:
679 (*dev_select)[k].selected = 0;
680 (*num_selected)--;
681 break;
688 * Here we implement "top" mode. Devices are sorted in the
689 * selection array based on two criteria: whether or not they are
690 * selected (not selection number, just the fact that they are
691 * selected!) and the number of bytes in the "bytes" field of the
692 * selection structure. The bytes field generally must be kept up
693 * by the user. In the future, it may be maintained by library
694 * functions, but for now the user has to do the work.
696 * At first glance, it may seem wrong that we don't go through and
697 * select every device in the case where the user hasn't specified
698 * any devices or patterns. In fact, though, it won't make any
699 * difference in the device sorting. In that particular case (i.e.
700 * when we're in "add" or "only" mode, and the user hasn't
701 * specified anything) the first time through no devices will be
702 * selected, so the only criterion used to sort them will be their
703 * performance. The second time through, and every time thereafter,
704 * all devices will be selected, so again selection won't matter.
706 if (perf_select != 0) {
708 /* Sort the device array by throughput */
709 qsort(*dev_select, *num_selections,
710 sizeof(struct device_selection),
711 compare_select);
713 if (*num_selected == 0) {
715 * Here we select every device in the array, if it
716 * isn't already selected. Because the 'selected'
717 * variable in the selection array entries contains
718 * the selection order, the devstats routine can show
719 * the devices that were selected first.
721 for (i = 0; i < *num_selections; i++) {
722 if ((*dev_select)[i].selected == 0) {
723 (*dev_select)[i].selected =
724 ++selection_number;
725 (*num_selected)++;
728 } else {
729 selection_number = 0;
730 for (i = 0; i < *num_selections; i++) {
731 if ((*dev_select)[i].selected != 0) {
732 (*dev_select)[i].selected =
733 ++selection_number;
740 * If we're in the "add" selection mode and if we haven't already
741 * selected maxshowdevs number of devices, go through the array and
742 * select any unselected devices. If we're in "only" mode, we
743 * obviously don't want to select anything other than what the user
744 * specifies. If we're in "remove" mode, it probably isn't a good
745 * idea to go through and select any more devices, since we might
746 * end up selecting something that the user wants removed. Through
747 * more complicated logic, we could actually figure this out, but
748 * that would probably require combining this loop with the various
749 * selections loops above.
751 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
752 for (i = 0; i < *num_selections; i++)
753 if ((*dev_select)[i].selected == 0) {
754 (*dev_select)[i].selected = ++selection_number;
755 (*num_selected)++;
760 * Look at the number of devices that have been selected. If it
761 * has changed, set the changed variable. Otherwise, if we've
762 * made a backup of the selection list, compare it to the current
763 * selection list to see if the selected devices have changed.
765 if ((changed == 0) && (old_num_selected != *num_selected))
766 changed = 1;
767 else if ((changed == 0) && (old_dev_select != NULL)) {
769 * Now we go through the selection list and we look at
770 * it three different ways.
772 for (i = 0; (i < *num_selections) && (changed == 0) &&
773 (i < old_num_selections); i++) {
775 * If the device at index i in both the new and old
776 * selection arrays has the same device number and
777 * selection status, it hasn't changed. We
778 * continue on to the next index.
780 if (((*dev_select)[i].device_number ==
781 old_dev_select[i].device_number)
782 && ((*dev_select)[i].selected ==
783 old_dev_select[i].selected))
784 continue;
787 * Now, if we're still going through the if
788 * statement, the above test wasn't true. So we
789 * check here to see if the device at index i in
790 * the current array is the same as the device at
791 * index i in the old array. If it is, that means
792 * that its selection number has changed. Set
793 * changed to 1 and exit the loop.
795 else if ((*dev_select)[i].device_number ==
796 old_dev_select[i].device_number) {
797 changed = 1;
798 break;
801 * If we get here, then the device at index i in
802 * the current array isn't the same device as the
803 * device at index i in the old array.
805 else {
806 found = 0;
809 * Search through the old selection array
810 * looking for a device with the same
811 * device number as the device at index i
812 * in the current array. If the selection
813 * status is the same, then we mark it as
814 * found. If the selection status isn't
815 * the same, we break out of the loop.
816 * Since found isn't set, changed will be
817 * set to 1 below.
819 for (j = 0; j < old_num_selections; j++) {
820 if (((*dev_select)[i].device_number ==
821 old_dev_select[j].device_number)
822 && ((*dev_select)[i].selected ==
823 old_dev_select[j].selected)){
824 found = 1;
825 break;
827 else if ((*dev_select)[i].device_number
828 == old_dev_select[j].device_number)
829 break;
831 if (found == 0)
832 changed = 1;
836 if (old_dev_select != NULL)
837 free(old_dev_select);
839 return(changed);
843 * Comparison routine for qsort() above. Note that the comparison here is
844 * backwards -- generally, it should return a value to indicate whether
845 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason
846 * it returns the opposite is so that the selection array will be sorted in
847 * order of decreasing performance. We sort on two parameters. The first
848 * sort key is whether or not one or the other of the devices in question
849 * has been selected. If one of them has, and the other one has not, the
850 * selected device is automatically more important than the unselected
851 * device. If neither device is selected, we judge the devices based upon
852 * performance.
854 static int
855 compare_select(const void *arg1, const void *arg2)
857 if ((((const struct device_selection *)arg1)->selected)
858 && (((const struct device_selection *)arg2)->selected == 0))
859 return(-1);
860 else if ((((const struct device_selection *)arg1)->selected == 0)
861 && (((const struct device_selection *)arg2)->selected))
862 return(1);
863 else if (((const struct device_selection *)arg2)->bytes <
864 ((const struct device_selection *)arg1)->bytes)
865 return(-1);
866 else if (((const struct device_selection *)arg2)->bytes >
867 ((const struct device_selection *)arg1)->bytes)
868 return(1);
869 else
870 return(0);
874 * Take a string with the general format "arg1,arg2,arg3", and build a
875 * device matching expression from it.
878 buildmatch(const char *match_str, struct devstat_match **matches,
879 int *num_matches)
881 char *tstr[5];
882 char **tempstr;
883 char *matchbuf_orig; /* strdup of match_str */
884 char *matchbuf; /* allow strsep to clobber */
885 int num_args;
886 int i, j;
887 int retval = -1;
889 /* We can't do much without a string to parse */
890 if (match_str == NULL) {
891 sprintf(devstat_errbuf, "%s: no match expression", __func__);
892 return(-1);
896 * Break the (comma delimited) input string out into separate strings.
897 * strsep is destructive, so copy the string first.
899 matchbuf = matchbuf_orig = strdup(match_str);
900 if (matchbuf == NULL) {
901 sprintf(devstat_errbuf, "%s: out of memory", __func__);
902 return(-1);
904 for (tempstr = tstr, num_args = 0;
905 (*tempstr = strsep(&matchbuf, ",")) != NULL && (num_args < 5);
906 num_args++)
907 if (**tempstr != '\0')
908 if (++tempstr >= &tstr[5])
909 break;
911 /* The user gave us too many type arguments */
912 if (num_args > 3) {
913 sprintf(devstat_errbuf, "%s: too many type arguments",
914 __func__);
915 goto cleanup;
919 * Since you can't realloc a pointer that hasn't been malloced
920 * first, we malloc first and then realloc.
922 if (*num_matches == 0)
923 *matches = (struct devstat_match *)malloc(
924 sizeof(struct devstat_match));
925 else
926 *matches = (struct devstat_match *)realloc(*matches,
927 sizeof(struct devstat_match) * (*num_matches + 1));
929 /* Make sure the current entry is clear */
930 bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
933 * Step through the arguments the user gave us and build a device
934 * matching expression from them.
936 for (i = 0; i < num_args; i++) {
937 char *tempstr2, *tempstr3;
940 * Get rid of leading white space.
942 tempstr2 = tstr[i];
943 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
944 tempstr2++;
947 * Get rid of trailing white space.
949 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
951 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
952 && (isspace(*tempstr3))) {
953 *tempstr3 = '\0';
954 tempstr3--;
958 * Go through the match table comparing the user's
959 * arguments to known device types, interfaces, etc.
961 for (j = 0; match_table[j].match_str != NULL; j++) {
963 * We do case-insensitive matching, in case someone
964 * wants to enter "SCSI" instead of "scsi" or
965 * something like that. Only compare as many
966 * characters as are in the string in the match
967 * table. This should help if someone tries to use
968 * a super-long match expression.
970 if (strncasecmp(tempstr2, match_table[j].match_str,
971 strlen(match_table[j].match_str)) == 0) {
973 * Make sure the user hasn't specified two
974 * items of the same type, like "da" and
975 * "cd". One device cannot be both.
977 if (((*matches)[*num_matches].match_fields &
978 match_table[j].match_field) != 0) {
979 sprintf(devstat_errbuf,
980 "%s: cannot have more than "
981 "one match item in a single "
982 "category", __func__);
983 goto cleanup;
986 * If we've gotten this far, we have a
987 * winner. Set the appropriate fields in
988 * the match entry.
990 (*matches)[*num_matches].match_fields |=
991 match_table[j].match_field;
992 (*matches)[*num_matches].device_type |=
993 match_table[j].type;
994 (*matches)[*num_matches].num_match_categories++;
995 break;
999 * We should have found a match in the above for loop. If
1000 * not, that means the user entered an invalid device type
1001 * or interface.
1003 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1004 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1005 "%s: unknown match item \"%s\"", __func__,
1006 tstr[i]);
1007 goto cleanup;
1011 (*num_matches)++;
1012 retval = 0;
1013 cleanup:
1014 free(matchbuf_orig);
1015 return(retval);
1019 * Compute a number of device statistics. Only one field is mandatory, and
1020 * that is "current". Everything else is optional. The caller passes in
1021 * pointers to variables to hold the various statistics he desires. If he
1022 * doesn't want a particular staistic, he should pass in a NULL pointer.
1023 * Return values:
1024 * 0 -- success
1025 * -1 -- failure
1028 compute_stats(struct devstat *current, struct devstat *previous,
1029 long double etime, u_int64_t *total_bytes,
1030 u_int64_t *total_transfers, u_int64_t *total_blocks,
1031 long double *kb_per_transfer, long double *transfers_per_second,
1032 long double *mb_per_second, long double *blocks_per_second,
1033 long double *ms_per_transaction)
1035 u_int64_t totalbytes, totaltransfers, totalblocks;
1038 * current is the only mandatory field.
1040 if (current == NULL) {
1041 sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1042 __func__);
1043 return(-1);
1046 totalbytes = (current->bytes_written + current->bytes_read) -
1047 ((previous) ? (previous->bytes_written +
1048 previous->bytes_read) : 0);
1050 if (total_bytes)
1051 *total_bytes = totalbytes;
1053 totaltransfers = (current->num_reads +
1054 current->num_writes +
1055 current->num_other) -
1056 ((previous) ?
1057 (previous->num_reads +
1058 previous->num_writes +
1059 previous->num_other) : 0);
1060 if (total_transfers)
1061 *total_transfers = totaltransfers;
1063 if (transfers_per_second) {
1064 if (etime > 0.0) {
1065 *transfers_per_second = totaltransfers;
1066 *transfers_per_second /= etime;
1067 } else
1068 *transfers_per_second = 0.0;
1071 if (kb_per_transfer) {
1072 *kb_per_transfer = totalbytes;
1073 *kb_per_transfer /= 1024;
1074 if (totaltransfers > 0)
1075 *kb_per_transfer /= totaltransfers;
1076 else
1077 *kb_per_transfer = 0.0;
1080 if (mb_per_second) {
1081 *mb_per_second = totalbytes;
1082 *mb_per_second /= 1024 * 1024;
1083 if (etime > 0.0)
1084 *mb_per_second /= etime;
1085 else
1086 *mb_per_second = 0.0;
1089 totalblocks = totalbytes;
1090 if (current->block_size > 0)
1091 totalblocks /= current->block_size;
1092 else
1093 totalblocks /= 512;
1095 if (total_blocks)
1096 *total_blocks = totalblocks;
1098 if (blocks_per_second) {
1099 *blocks_per_second = totalblocks;
1100 if (etime > 0.0)
1101 *blocks_per_second /= etime;
1102 else
1103 *blocks_per_second = 0.0;
1106 if (ms_per_transaction) {
1107 if (totaltransfers > 0) {
1108 *ms_per_transaction = etime;
1109 *ms_per_transaction /= totaltransfers;
1110 *ms_per_transaction *= 1000;
1111 } else
1112 *ms_per_transaction = 0.0;
1115 return(0);
1119 compute_stats_read(struct devstat *current, struct devstat *previous,
1120 long double etime, u_int64_t *total_bytes,
1121 u_int64_t *total_transfers, u_int64_t *total_blocks,
1122 long double *kb_per_transfer, long double *transfers_per_second,
1123 long double *mb_per_second, long double *blocks_per_second,
1124 long double *ms_per_transaction)
1126 u_int64_t totalbytes, totaltransfers, totalblocks;
1129 * current is the only mandatory field.
1131 if (current == NULL) {
1132 sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1133 __func__);
1134 return(-1);
1137 totalbytes = current->bytes_read -
1138 (previous ? previous->bytes_read : 0);
1140 if (total_bytes)
1141 *total_bytes = totalbytes;
1143 totaltransfers = current->num_reads -
1144 (previous ? previous->num_reads : 0);
1145 if (total_transfers)
1146 *total_transfers = totaltransfers;
1148 if (transfers_per_second) {
1149 if (etime > 0.0) {
1150 *transfers_per_second = totaltransfers;
1151 *transfers_per_second /= etime;
1152 } else
1153 *transfers_per_second = 0.0;
1156 if (kb_per_transfer) {
1157 *kb_per_transfer = totalbytes;
1158 *kb_per_transfer /= 1024;
1159 if (totaltransfers > 0)
1160 *kb_per_transfer /= totaltransfers;
1161 else
1162 *kb_per_transfer = 0.0;
1165 if (mb_per_second) {
1166 *mb_per_second = totalbytes;
1167 *mb_per_second /= 1024 * 1024;
1168 if (etime > 0.0)
1169 *mb_per_second /= etime;
1170 else
1171 *mb_per_second = 0.0;
1174 totalblocks = totalbytes;
1175 if (current->block_size > 0)
1176 totalblocks /= current->block_size;
1177 else
1178 totalblocks /= 512;
1180 if (total_blocks)
1181 *total_blocks = totalblocks;
1183 if (blocks_per_second) {
1184 *blocks_per_second = totalblocks;
1185 if (etime > 0.0)
1186 *blocks_per_second /= etime;
1187 else
1188 *blocks_per_second = 0.0;
1191 if (ms_per_transaction) {
1192 if (totaltransfers > 0) {
1193 *ms_per_transaction = etime;
1194 *ms_per_transaction /= totaltransfers;
1195 *ms_per_transaction *= 1000;
1196 } else
1197 *ms_per_transaction = 0.0;
1200 return(0);
1204 compute_stats_write(struct devstat *current, struct devstat *previous,
1205 long double etime, u_int64_t *total_bytes,
1206 u_int64_t *total_transfers, u_int64_t *total_blocks,
1207 long double *kb_per_transfer, long double *transfers_per_second,
1208 long double *mb_per_second, long double *blocks_per_second,
1209 long double *ms_per_transaction)
1211 u_int64_t totalbytes, totaltransfers, totalblocks;
1214 * current is the only mandatory field.
1216 if (current == NULL) {
1217 sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1218 __func__);
1219 return(-1);
1222 totalbytes = current->bytes_written -
1223 (previous ? previous->bytes_written : 0);
1225 if (total_bytes)
1226 *total_bytes = totalbytes;
1228 totaltransfers = current->num_writes -
1229 (previous ? previous->num_writes : 0);
1230 if (total_transfers)
1231 *total_transfers = totaltransfers;
1233 if (transfers_per_second) {
1234 if (etime > 0.0) {
1235 *transfers_per_second = totaltransfers;
1236 *transfers_per_second /= etime;
1237 } else
1238 *transfers_per_second = 0.0;
1241 if (kb_per_transfer) {
1242 *kb_per_transfer = totalbytes;
1243 *kb_per_transfer /= 1024;
1244 if (totaltransfers > 0)
1245 *kb_per_transfer /= totaltransfers;
1246 else
1247 *kb_per_transfer = 0.0;
1250 if (mb_per_second) {
1251 *mb_per_second = totalbytes;
1252 *mb_per_second /= 1024 * 1024;
1253 if (etime > 0.0)
1254 *mb_per_second /= etime;
1255 else
1256 *mb_per_second = 0.0;
1259 totalblocks = totalbytes;
1260 if (current->block_size > 0)
1261 totalblocks /= current->block_size;
1262 else
1263 totalblocks /= 512;
1265 if (total_blocks)
1266 *total_blocks = totalblocks;
1268 if (blocks_per_second) {
1269 *blocks_per_second = totalblocks;
1270 if (etime > 0.0)
1271 *blocks_per_second /= etime;
1272 else
1273 *blocks_per_second = 0.0;
1276 if (ms_per_transaction) {
1277 if (totaltransfers > 0) {
1278 *ms_per_transaction = etime;
1279 *ms_per_transaction /= totaltransfers;
1280 *ms_per_transaction *= 1000;
1281 } else
1282 *ms_per_transaction = 0.0;
1285 return(0);
1288 long double
1289 compute_etime(struct timeval cur_time, struct timeval prev_time)
1291 struct timeval busy_time;
1292 u_int64_t busy_usec;
1293 long double etime;
1295 timersub(&cur_time, &prev_time, &busy_time);
1297 busy_usec = busy_time.tv_sec;
1298 busy_usec *= 1000000;
1299 busy_usec += busy_time.tv_usec;
1300 etime = busy_usec;
1301 etime /= 1000000;
1303 return(etime);