1 /* OPENBSD ORIGINAL: sys/sys/queue.h */
3 /* $OpenBSD: queue.h,v 1.23 2003/06/02 23:28:21 millert Exp $ */
4 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
7 * Copyright (c) 1991, 1993
8 * The Regents of the University of California. All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)queue.h 8.5 (Berkeley) 8/20/94
37 #ifndef _FAKE_QUEUE_H_
38 #define _FAKE_QUEUE_H_
41 * Ignore all <sys/queue.h> since older platforms have broken/incomplete
42 * <sys/queue.h> that are too hard to work around.
45 #undef SLIST_HEAD_INITIALIZER
53 #undef SLIST_INSERT_AFTER
54 #undef SLIST_INSERT_HEAD
55 #undef SLIST_REMOVE_HEAD
58 #undef LIST_HEAD_INITIALIZER
66 #undef LIST_INSERT_AFTER
67 #undef LIST_INSERT_BEFORE
68 #undef LIST_INSERT_HEAD
72 #undef SIMPLEQ_HEAD_INITIALIZER
78 #undef SIMPLEQ_FOREACH
80 #undef SIMPLEQ_INSERT_HEAD
81 #undef SIMPLEQ_INSERT_TAIL
82 #undef SIMPLEQ_INSERT_AFTER
83 #undef SIMPLEQ_REMOVE_HEAD
85 #undef TAILQ_HEAD_INITIALIZER
94 #undef TAILQ_FOREACH_REVERSE
96 #undef TAILQ_INSERT_HEAD
97 #undef TAILQ_INSERT_TAIL
98 #undef TAILQ_INSERT_AFTER
99 #undef TAILQ_INSERT_BEFORE
103 #undef CIRCLEQ_HEAD_INITIALIZER
111 #undef CIRCLEQ_FOREACH
112 #undef CIRCLEQ_FOREACH_REVERSE
114 #undef CIRCLEQ_INSERT_AFTER
115 #undef CIRCLEQ_INSERT_BEFORE
116 #undef CIRCLEQ_INSERT_HEAD
117 #undef CIRCLEQ_INSERT_TAIL
118 #undef CIRCLEQ_REMOVE
119 #undef CIRCLEQ_REPLACE
122 * This file defines five types of data structures: singly-linked lists,
123 * lists, simple queues, tail queues, and circular queues.
126 * A singly-linked list is headed by a single forward pointer. The elements
127 * are singly linked for minimum space and pointer manipulation overhead at
128 * the expense of O(n) removal for arbitrary elements. New elements can be
129 * added to the list after an existing element or at the head of the list.
130 * Elements being removed from the head of the list should use the explicit
131 * macro for this purpose for optimum efficiency. A singly-linked list may
132 * only be traversed in the forward direction. Singly-linked lists are ideal
133 * for applications with large datasets and few or no removals or for
134 * implementing a LIFO queue.
136 * A list is headed by a single forward pointer (or an array of forward
137 * pointers for a hash table header). The elements are doubly linked
138 * so that an arbitrary element can be removed without a need to
139 * traverse the list. New elements can be added to the list before
140 * or after an existing element or at the head of the list. A list
141 * may only be traversed in the forward direction.
143 * A simple queue is headed by a pair of pointers, one the head of the
144 * list and the other to the tail of the list. The elements are singly
145 * linked to save space, so elements can only be removed from the
146 * head of the list. New elements can be added to the list before or after
147 * an existing element, at the head of the list, or at the end of the
148 * list. A simple queue may only be traversed in the forward direction.
150 * A tail queue is headed by a pair of pointers, one to the head of the
151 * list and the other to the tail of the list. The elements are doubly
152 * linked so that an arbitrary element can be removed without a need to
153 * traverse the list. New elements can be added to the list before or
154 * after an existing element, at the head of the list, or at the end of
155 * the list. A tail queue may be traversed in either direction.
157 * A circle queue is headed by a pair of pointers, one to the head of the
158 * list and the other to the tail of the list. The elements are doubly
159 * linked so that an arbitrary element can be removed without a need to
160 * traverse the list. New elements can be added to the list before or after
161 * an existing element, at the head of the list, or at the end of the list.
162 * A circle queue may be traversed in either direction, but has a more
163 * complex end of list detection.
165 * For details on the use of these macros, see the queue(3) manual page.
169 * Singly-linked List definitions.
171 #define SLIST_HEAD(name, type) \
173 struct type *slh_first; /* first element */ \
176 #define SLIST_HEAD_INITIALIZER(head) \
179 #define SLIST_ENTRY(type) \
181 struct type *sle_next; /* next element */ \
185 * Singly-linked List access methods.
187 #define SLIST_FIRST(head) ((head)->slh_first)
188 #define SLIST_END(head) NULL
189 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
190 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
192 #define SLIST_FOREACH(var, head, field) \
193 for((var) = SLIST_FIRST(head); \
194 (var) != SLIST_END(head); \
195 (var) = SLIST_NEXT(var, field))
198 * Singly-linked List functions.
200 #define SLIST_INIT(head) { \
201 SLIST_FIRST(head) = SLIST_END(head); \
204 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
205 (elm)->field.sle_next = (slistelm)->field.sle_next; \
206 (slistelm)->field.sle_next = (elm); \
209 #define SLIST_INSERT_HEAD(head, elm, field) do { \
210 (elm)->field.sle_next = (head)->slh_first; \
211 (head)->slh_first = (elm); \
214 #define SLIST_REMOVE_HEAD(head, field) do { \
215 (head)->slh_first = (head)->slh_first->field.sle_next; \
218 #define SLIST_REMOVE(head, elm, type, field) do { \
219 if ((head)->slh_first == (elm)) { \
220 SLIST_REMOVE_HEAD((head), field); \
223 struct type *curelm = (head)->slh_first; \
224 while( curelm->field.sle_next != (elm) ) \
225 curelm = curelm->field.sle_next; \
226 curelm->field.sle_next = \
227 curelm->field.sle_next->field.sle_next; \
234 #define LIST_HEAD(name, type) \
236 struct type *lh_first; /* first element */ \
239 #define LIST_HEAD_INITIALIZER(head) \
242 #define LIST_ENTRY(type) \
244 struct type *le_next; /* next element */ \
245 struct type **le_prev; /* address of previous next element */ \
249 * List access methods
251 #define LIST_FIRST(head) ((head)->lh_first)
252 #define LIST_END(head) NULL
253 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
254 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
256 #define LIST_FOREACH(var, head, field) \
257 for((var) = LIST_FIRST(head); \
258 (var)!= LIST_END(head); \
259 (var) = LIST_NEXT(var, field))
264 #define LIST_INIT(head) do { \
265 LIST_FIRST(head) = LIST_END(head); \
268 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
269 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
270 (listelm)->field.le_next->field.le_prev = \
271 &(elm)->field.le_next; \
272 (listelm)->field.le_next = (elm); \
273 (elm)->field.le_prev = &(listelm)->field.le_next; \
276 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
277 (elm)->field.le_prev = (listelm)->field.le_prev; \
278 (elm)->field.le_next = (listelm); \
279 *(listelm)->field.le_prev = (elm); \
280 (listelm)->field.le_prev = &(elm)->field.le_next; \
283 #define LIST_INSERT_HEAD(head, elm, field) do { \
284 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
285 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
286 (head)->lh_first = (elm); \
287 (elm)->field.le_prev = &(head)->lh_first; \
290 #define LIST_REMOVE(elm, field) do { \
291 if ((elm)->field.le_next != NULL) \
292 (elm)->field.le_next->field.le_prev = \
293 (elm)->field.le_prev; \
294 *(elm)->field.le_prev = (elm)->field.le_next; \
297 #define LIST_REPLACE(elm, elm2, field) do { \
298 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
299 (elm2)->field.le_next->field.le_prev = \
300 &(elm2)->field.le_next; \
301 (elm2)->field.le_prev = (elm)->field.le_prev; \
302 *(elm2)->field.le_prev = (elm2); \
306 * Simple queue definitions.
308 #define SIMPLEQ_HEAD(name, type) \
310 struct type *sqh_first; /* first element */ \
311 struct type **sqh_last; /* addr of last next element */ \
314 #define SIMPLEQ_HEAD_INITIALIZER(head) \
315 { NULL, &(head).sqh_first }
317 #define SIMPLEQ_ENTRY(type) \
319 struct type *sqe_next; /* next element */ \
323 * Simple queue access methods.
325 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
326 #define SIMPLEQ_END(head) NULL
327 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
328 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
330 #define SIMPLEQ_FOREACH(var, head, field) \
331 for((var) = SIMPLEQ_FIRST(head); \
332 (var) != SIMPLEQ_END(head); \
333 (var) = SIMPLEQ_NEXT(var, field))
336 * Simple queue functions.
338 #define SIMPLEQ_INIT(head) do { \
339 (head)->sqh_first = NULL; \
340 (head)->sqh_last = &(head)->sqh_first; \
343 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
344 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
345 (head)->sqh_last = &(elm)->field.sqe_next; \
346 (head)->sqh_first = (elm); \
349 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
350 (elm)->field.sqe_next = NULL; \
351 *(head)->sqh_last = (elm); \
352 (head)->sqh_last = &(elm)->field.sqe_next; \
355 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
356 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
357 (head)->sqh_last = &(elm)->field.sqe_next; \
358 (listelm)->field.sqe_next = (elm); \
361 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
362 if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
363 (head)->sqh_last = &(head)->sqh_first; \
367 * Tail queue definitions.
369 #define TAILQ_HEAD(name, type) \
371 struct type *tqh_first; /* first element */ \
372 struct type **tqh_last; /* addr of last next element */ \
375 #define TAILQ_HEAD_INITIALIZER(head) \
376 { NULL, &(head).tqh_first }
378 #define TAILQ_ENTRY(type) \
380 struct type *tqe_next; /* next element */ \
381 struct type **tqe_prev; /* address of previous next element */ \
385 * tail queue access methods
387 #define TAILQ_FIRST(head) ((head)->tqh_first)
388 #define TAILQ_END(head) NULL
389 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
390 #define TAILQ_LAST(head, headname) \
391 (*(((struct headname *)((head)->tqh_last))->tqh_last))
393 #define TAILQ_PREV(elm, headname, field) \
394 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
395 #define TAILQ_EMPTY(head) \
396 (TAILQ_FIRST(head) == TAILQ_END(head))
398 #define TAILQ_FOREACH(var, head, field) \
399 for((var) = TAILQ_FIRST(head); \
400 (var) != TAILQ_END(head); \
401 (var) = TAILQ_NEXT(var, field))
403 #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
404 for((var) = TAILQ_LAST(head, headname); \
405 (var) != TAILQ_END(head); \
406 (var) = TAILQ_PREV(var, headname, field))
409 * Tail queue functions.
411 #define TAILQ_INIT(head) do { \
412 (head)->tqh_first = NULL; \
413 (head)->tqh_last = &(head)->tqh_first; \
416 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
417 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
418 (head)->tqh_first->field.tqe_prev = \
419 &(elm)->field.tqe_next; \
421 (head)->tqh_last = &(elm)->field.tqe_next; \
422 (head)->tqh_first = (elm); \
423 (elm)->field.tqe_prev = &(head)->tqh_first; \
426 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
427 (elm)->field.tqe_next = NULL; \
428 (elm)->field.tqe_prev = (head)->tqh_last; \
429 *(head)->tqh_last = (elm); \
430 (head)->tqh_last = &(elm)->field.tqe_next; \
433 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
434 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
435 (elm)->field.tqe_next->field.tqe_prev = \
436 &(elm)->field.tqe_next; \
438 (head)->tqh_last = &(elm)->field.tqe_next; \
439 (listelm)->field.tqe_next = (elm); \
440 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
443 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
444 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
445 (elm)->field.tqe_next = (listelm); \
446 *(listelm)->field.tqe_prev = (elm); \
447 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
450 #define TAILQ_REMOVE(head, elm, field) do { \
451 if (((elm)->field.tqe_next) != NULL) \
452 (elm)->field.tqe_next->field.tqe_prev = \
453 (elm)->field.tqe_prev; \
455 (head)->tqh_last = (elm)->field.tqe_prev; \
456 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
459 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
460 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
461 (elm2)->field.tqe_next->field.tqe_prev = \
462 &(elm2)->field.tqe_next; \
464 (head)->tqh_last = &(elm2)->field.tqe_next; \
465 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
466 *(elm2)->field.tqe_prev = (elm2); \
470 * Circular queue definitions.
472 #define CIRCLEQ_HEAD(name, type) \
474 struct type *cqh_first; /* first element */ \
475 struct type *cqh_last; /* last element */ \
478 #define CIRCLEQ_HEAD_INITIALIZER(head) \
479 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
481 #define CIRCLEQ_ENTRY(type) \
483 struct type *cqe_next; /* next element */ \
484 struct type *cqe_prev; /* previous element */ \
488 * Circular queue access methods
490 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
491 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
492 #define CIRCLEQ_END(head) ((void *)(head))
493 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
494 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
495 #define CIRCLEQ_EMPTY(head) \
496 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
498 #define CIRCLEQ_FOREACH(var, head, field) \
499 for((var) = CIRCLEQ_FIRST(head); \
500 (var) != CIRCLEQ_END(head); \
501 (var) = CIRCLEQ_NEXT(var, field))
503 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
504 for((var) = CIRCLEQ_LAST(head); \
505 (var) != CIRCLEQ_END(head); \
506 (var) = CIRCLEQ_PREV(var, field))
509 * Circular queue functions.
511 #define CIRCLEQ_INIT(head) do { \
512 (head)->cqh_first = CIRCLEQ_END(head); \
513 (head)->cqh_last = CIRCLEQ_END(head); \
516 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
517 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
518 (elm)->field.cqe_prev = (listelm); \
519 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
520 (head)->cqh_last = (elm); \
522 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
523 (listelm)->field.cqe_next = (elm); \
526 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
527 (elm)->field.cqe_next = (listelm); \
528 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
529 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
530 (head)->cqh_first = (elm); \
532 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
533 (listelm)->field.cqe_prev = (elm); \
536 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
537 (elm)->field.cqe_next = (head)->cqh_first; \
538 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
539 if ((head)->cqh_last == CIRCLEQ_END(head)) \
540 (head)->cqh_last = (elm); \
542 (head)->cqh_first->field.cqe_prev = (elm); \
543 (head)->cqh_first = (elm); \
546 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
547 (elm)->field.cqe_next = CIRCLEQ_END(head); \
548 (elm)->field.cqe_prev = (head)->cqh_last; \
549 if ((head)->cqh_first == CIRCLEQ_END(head)) \
550 (head)->cqh_first = (elm); \
552 (head)->cqh_last->field.cqe_next = (elm); \
553 (head)->cqh_last = (elm); \
556 #define CIRCLEQ_REMOVE(head, elm, field) do { \
557 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
558 (head)->cqh_last = (elm)->field.cqe_prev; \
560 (elm)->field.cqe_next->field.cqe_prev = \
561 (elm)->field.cqe_prev; \
562 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
563 (head)->cqh_first = (elm)->field.cqe_next; \
565 (elm)->field.cqe_prev->field.cqe_next = \
566 (elm)->field.cqe_next; \
569 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
570 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
572 (head).cqh_last = (elm2); \
574 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
575 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
577 (head).cqh_first = (elm2); \
579 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
582 #endif /* !_FAKE_QUEUE_H_ */