More multi-threaded support for virtualization. Move the save context
[dragonfly.git] / sys / platform / pc32 / i386 / machdep.c
blobe63e84345b73e9ffe7fdd9d5e1c7e1e7a705ebe5
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/machdep.c,v 1.125 2007/07/01 01:11:38 dillon Exp $
42 #include "use_apm.h"
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_maxmem.h"
54 #include "opt_msgbuf.h"
55 #include "opt_perfmon.h"
56 #include "opt_swap.h"
57 #include "opt_userconfig.h"
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/sysproto.h>
62 #include <sys/signalvar.h>
63 #include <sys/kernel.h>
64 #include <sys/linker.h>
65 #include <sys/malloc.h>
66 #include <sys/proc.h>
67 #include <sys/buf.h>
68 #include <sys/reboot.h>
69 #include <sys/mbuf.h>
70 #include <sys/msgbuf.h>
71 #include <sys/sysent.h>
72 #include <sys/sysctl.h>
73 #include <sys/vmmeter.h>
74 #include <sys/bus.h>
75 #include <sys/upcall.h>
76 #include <sys/usched.h>
77 #include <sys/reg.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
89 #include <sys/thread2.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
95 #include <ddb/ddb.h>
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #include <machine/bootinfo.h>
101 #include <machine/md_var.h>
102 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
103 #include <machine/globaldata.h> /* CPU_prvspace */
104 #include <machine/smp.h>
105 #ifdef PERFMON
106 #include <machine/perfmon.h>
107 #endif
108 #include <machine/cputypes.h>
110 #ifdef OLD_BUS_ARCH
111 #include <bus/isa/i386/isa_device.h>
112 #endif
113 #include <machine_base/isa/intr_machdep.h>
114 #include <bus/isa/rtc.h>
115 #include <machine/vm86.h>
116 #include <sys/random.h>
117 #include <sys/ptrace.h>
118 #include <machine/sigframe.h>
120 #define PHYSMAP_ENTRIES 10
122 extern void init386 (int first);
123 extern void dblfault_handler (void);
125 extern void printcpuinfo(void); /* XXX header file */
126 extern void finishidentcpu(void);
127 extern void panicifcpuunsupported(void);
128 extern void initializecpu(void);
130 static void cpu_startup (void *);
131 #ifndef CPU_DISABLE_SSE
132 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
133 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
134 #endif /* CPU_DISABLE_SSE */
135 #ifdef DIRECTIO
136 extern void ffs_rawread_setup(void);
137 #endif /* DIRECTIO */
138 static void init_locks(void);
140 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
142 int _udatasel, _ucodesel;
143 u_int atdevbase;
144 #ifdef SMP
145 int64_t tsc_offsets[MAXCPU];
146 #else
147 int64_t tsc_offsets[1];
148 #endif
150 #if defined(SWTCH_OPTIM_STATS)
151 extern int swtch_optim_stats;
152 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
153 CTLFLAG_RD, &swtch_optim_stats, 0, "");
154 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
155 CTLFLAG_RD, &tlb_flush_count, 0, "");
156 #endif
158 int physmem = 0;
160 static int
161 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
163 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
164 return (error);
167 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
168 0, 0, sysctl_hw_physmem, "IU", "");
170 static int
171 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
173 int error = sysctl_handle_int(oidp, 0,
174 ctob(physmem - vmstats.v_wire_count), req);
175 return (error);
178 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
179 0, 0, sysctl_hw_usermem, "IU", "");
181 static int
182 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
184 int error = sysctl_handle_int(oidp, 0,
185 i386_btop(avail_end - avail_start), req);
186 return (error);
189 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
190 0, 0, sysctl_hw_availpages, "I", "");
192 static int
193 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
195 int error;
197 /* Unwind the buffer, so that it's linear (possibly starting with
198 * some initial nulls).
200 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
201 msgbufp->msg_size-msgbufp->msg_bufr,req);
202 if(error) return(error);
203 if(msgbufp->msg_bufr>0) {
204 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
205 msgbufp->msg_bufr,req);
207 return(error);
210 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
211 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
213 static int msgbuf_clear;
215 static int
216 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
218 int error;
219 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
220 req);
221 if (!error && req->newptr) {
222 /* Clear the buffer and reset write pointer */
223 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
224 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
225 msgbuf_clear=0;
227 return (error);
230 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
231 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
232 "Clear kernel message buffer");
234 vm_paddr_t Maxmem = 0;
236 vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
238 static vm_offset_t buffer_sva, buffer_eva;
239 vm_offset_t clean_sva, clean_eva;
240 static vm_offset_t pager_sva, pager_eva;
241 static struct trapframe proc0_tf;
243 static void
244 cpu_startup(void *dummy)
246 caddr_t v;
247 vm_size_t size = 0;
248 vm_offset_t firstaddr;
250 if (boothowto & RB_VERBOSE)
251 bootverbose++;
254 * Good {morning,afternoon,evening,night}.
256 kprintf("%s", version);
257 startrtclock();
258 printcpuinfo();
259 panicifcpuunsupported();
260 #ifdef PERFMON
261 perfmon_init();
262 #endif
263 kprintf("real memory = %llu (%lluK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
265 * Display any holes after the first chunk of extended memory.
267 if (bootverbose) {
268 int indx;
270 kprintf("Physical memory chunk(s):\n");
271 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
272 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
274 kprintf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
275 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
276 size1 / PAGE_SIZE);
281 * Allocate space for system data structures.
282 * The first available kernel virtual address is in "v".
283 * As pages of kernel virtual memory are allocated, "v" is incremented.
284 * As pages of memory are allocated and cleared,
285 * "firstaddr" is incremented.
286 * An index into the kernel page table corresponding to the
287 * virtual memory address maintained in "v" is kept in "mapaddr".
291 * Make two passes. The first pass calculates how much memory is
292 * needed and allocates it. The second pass assigns virtual
293 * addresses to the various data structures.
295 firstaddr = 0;
296 again:
297 v = (caddr_t)firstaddr;
299 #define valloc(name, type, num) \
300 (name) = (type *)v; v = (caddr_t)((name)+(num))
301 #define valloclim(name, type, num, lim) \
302 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
305 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
306 * For the first 64MB of ram nominally allocate sufficient buffers to
307 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
308 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
309 * the buffer cache we limit the eventual kva reservation to
310 * maxbcache bytes.
312 * factor represents the 1/4 x ram conversion.
314 if (nbuf == 0) {
315 int factor = 4 * BKVASIZE / 1024;
316 int kbytes = physmem * (PAGE_SIZE / 1024);
318 nbuf = 50;
319 if (kbytes > 4096)
320 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
321 if (kbytes > 65536)
322 nbuf += (kbytes - 65536) * 2 / (factor * 5);
323 if (maxbcache && nbuf > maxbcache / BKVASIZE)
324 nbuf = maxbcache / BKVASIZE;
328 * Do not allow the buffer_map to be more then 1/2 the size of the
329 * kernel_map.
331 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
332 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
333 kprintf("Warning: nbufs capped at %d\n", nbuf);
336 nswbuf = max(min(nbuf/4, 256), 16);
337 #ifdef NSWBUF_MIN
338 if (nswbuf < NSWBUF_MIN)
339 nswbuf = NSWBUF_MIN;
340 #endif
341 #ifdef DIRECTIO
342 ffs_rawread_setup();
343 #endif
345 valloc(swbuf, struct buf, nswbuf);
346 valloc(buf, struct buf, nbuf);
349 * End of first pass, size has been calculated so allocate memory
351 if (firstaddr == 0) {
352 size = (vm_size_t)(v - firstaddr);
353 firstaddr = kmem_alloc(&kernel_map, round_page(size));
354 if (firstaddr == 0)
355 panic("startup: no room for tables");
356 goto again;
360 * End of second pass, addresses have been assigned
362 if ((vm_size_t)(v - firstaddr) != size)
363 panic("startup: table size inconsistency");
365 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
366 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
367 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
368 (nbuf*BKVASIZE));
369 buffer_map.system_map = 1;
370 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
371 (nswbuf*MAXPHYS) + pager_map_size);
372 pager_map.system_map = 1;
374 #if defined(USERCONFIG)
375 userconfig();
376 cninit(); /* the preferred console may have changed */
377 #endif
379 kprintf("avail memory = %u (%uK bytes)\n", ptoa(vmstats.v_free_count),
380 ptoa(vmstats.v_free_count) / 1024);
383 * Set up buffers, so they can be used to read disk labels.
385 bufinit();
386 vm_pager_bufferinit();
388 #ifdef SMP
390 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
392 mp_start(); /* fire up the APs and APICs */
393 mp_announce();
394 #endif /* SMP */
395 cpu_setregs();
399 * Send an interrupt to process.
401 * Stack is set up to allow sigcode stored
402 * at top to call routine, followed by kcall
403 * to sigreturn routine below. After sigreturn
404 * resets the signal mask, the stack, and the
405 * frame pointer, it returns to the user
406 * specified pc, psl.
408 void
409 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
411 struct lwp *lp = curthread->td_lwp;
412 struct proc *p = lp->lwp_proc;
413 struct trapframe *regs;
414 struct sigacts *psp = p->p_sigacts;
415 struct sigframe sf, *sfp;
416 int oonstack;
418 regs = lp->lwp_md.md_regs;
419 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
421 /* save user context */
422 bzero(&sf, sizeof(struct sigframe));
423 sf.sf_uc.uc_sigmask = *mask;
424 sf.sf_uc.uc_stack = lp->lwp_sigstk;
425 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
426 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
428 /* make the size of the saved context visible to userland */
429 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
431 /* save mailbox pending state for syscall interlock semantics */
432 if (p->p_flag & P_MAILBOX)
433 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
435 /* Allocate and validate space for the signal handler context. */
436 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
437 SIGISMEMBER(psp->ps_sigonstack, sig)) {
438 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
439 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
440 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
441 } else {
442 sfp = (struct sigframe *)regs->tf_esp - 1;
445 /* Translate the signal is appropriate */
446 if (p->p_sysent->sv_sigtbl) {
447 if (sig <= p->p_sysent->sv_sigsize)
448 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
451 /* Build the argument list for the signal handler. */
452 sf.sf_signum = sig;
453 sf.sf_ucontext = (register_t)&sfp->sf_uc;
454 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
455 /* Signal handler installed with SA_SIGINFO. */
456 sf.sf_siginfo = (register_t)&sfp->sf_si;
457 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
459 /* fill siginfo structure */
460 sf.sf_si.si_signo = sig;
461 sf.sf_si.si_code = code;
462 sf.sf_si.si_addr = (void*)regs->tf_err;
464 else {
465 /* Old FreeBSD-style arguments. */
466 sf.sf_siginfo = code;
467 sf.sf_addr = regs->tf_err;
468 sf.sf_ahu.sf_handler = catcher;
472 * If we're a vm86 process, we want to save the segment registers.
473 * We also change eflags to be our emulated eflags, not the actual
474 * eflags.
476 if (regs->tf_eflags & PSL_VM) {
477 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
478 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
480 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
481 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
482 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
483 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
485 if (vm86->vm86_has_vme == 0)
486 sf.sf_uc.uc_mcontext.mc_eflags =
487 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
488 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
491 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
492 * syscalls made by the signal handler. This just avoids
493 * wasting time for our lazy fixup of such faults. PSL_NT
494 * does nothing in vm86 mode, but vm86 programs can set it
495 * almost legitimately in probes for old cpu types.
497 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
501 * Copy the sigframe out to the user's stack.
503 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
505 * Something is wrong with the stack pointer.
506 * ...Kill the process.
508 sigexit(p, SIGILL);
511 regs->tf_esp = (int)sfp;
512 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
513 regs->tf_eflags &= ~PSL_T;
514 regs->tf_cs = _ucodesel;
515 regs->tf_ds = _udatasel;
516 regs->tf_es = _udatasel;
519 * Allow the signal handler to inherit %fs in addition to %gs as
520 * the userland program might be using both.
522 * However, if a T_PROTFLT occured the segment registers could be
523 * totally broken. They must be reset in order to be able to
524 * return to userland.
526 if (regs->tf_trapno == T_PROTFLT) {
527 regs->tf_fs = _udatasel;
528 regs->tf_gs = _udatasel;
530 regs->tf_ss = _udatasel;
534 * Sanitize the trapframe for a virtual kernel passing control to a custom
535 * VM context. Remove any items that would otherwise create a privilage
536 * issue.
538 * XXX at the moment we allow userland to set the resume flag. Is this a
539 * bad idea?
542 cpu_sanitize_frame(struct trapframe *frame)
544 frame->tf_cs = _ucodesel;
545 frame->tf_ds = _udatasel;
546 frame->tf_es = _udatasel; /* XXX allow userland this one too? */
547 #if 0
548 frame->tf_fs = _udatasel;
549 frame->tf_gs = _udatasel;
550 #endif
551 frame->tf_ss = _udatasel;
552 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
553 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
554 return(0);
558 cpu_sanitize_tls(struct savetls *tls)
560 struct segment_descriptor *desc;
561 int i;
563 for (i = 0; i < NGTLS; ++i) {
564 desc = &tls->tls[i];
565 if (desc->sd_dpl == 0 && desc->sd_type == 0)
566 continue;
567 if (desc->sd_def32 == 0)
568 return(ENXIO);
569 if (desc->sd_type != SDT_MEMRWA)
570 return(ENXIO);
571 if (desc->sd_dpl != SEL_UPL)
572 return(ENXIO);
573 if (desc->sd_xx != 0 || desc->sd_p != 1)
574 return(ENXIO);
576 return(0);
580 * sigreturn(ucontext_t *sigcntxp)
582 * System call to cleanup state after a signal
583 * has been taken. Reset signal mask and
584 * stack state from context left by sendsig (above).
585 * Return to previous pc and psl as specified by
586 * context left by sendsig. Check carefully to
587 * make sure that the user has not modified the
588 * state to gain improper privileges.
590 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
591 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
594 sys_sigreturn(struct sigreturn_args *uap)
596 struct lwp *lp = curthread->td_lwp;
597 struct proc *p = lp->lwp_proc;
598 struct trapframe *regs;
599 ucontext_t *ucp;
600 int cs, eflags;
602 ucp = uap->sigcntxp;
604 if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
605 return (EFAULT);
607 regs = lp->lwp_md.md_regs;
608 eflags = ucp->uc_mcontext.mc_eflags;
610 if (eflags & PSL_VM) {
611 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
612 struct vm86_kernel *vm86;
615 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
616 * set up the vm86 area, and we can't enter vm86 mode.
618 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
619 return (EINVAL);
620 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
621 if (vm86->vm86_inited == 0)
622 return (EINVAL);
624 /* go back to user mode if both flags are set */
625 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
626 trapsignal(lp, SIGBUS, 0);
628 if (vm86->vm86_has_vme) {
629 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
630 (eflags & VME_USERCHANGE) | PSL_VM;
631 } else {
632 vm86->vm86_eflags = eflags; /* save VIF, VIP */
633 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
634 (eflags & VM_USERCHANGE) | PSL_VM;
636 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
637 tf->tf_eflags = eflags;
638 tf->tf_vm86_ds = tf->tf_ds;
639 tf->tf_vm86_es = tf->tf_es;
640 tf->tf_vm86_fs = tf->tf_fs;
641 tf->tf_vm86_gs = tf->tf_gs;
642 tf->tf_ds = _udatasel;
643 tf->tf_es = _udatasel;
644 #if 0
645 tf->tf_fs = _udatasel;
646 tf->tf_gs = _udatasel;
647 #endif
648 } else {
650 * Don't allow users to change privileged or reserved flags.
653 * XXX do allow users to change the privileged flag PSL_RF.
654 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
655 * should sometimes set it there too. tf_eflags is kept in
656 * the signal context during signal handling and there is no
657 * other place to remember it, so the PSL_RF bit may be
658 * corrupted by the signal handler without us knowing.
659 * Corruption of the PSL_RF bit at worst causes one more or
660 * one less debugger trap, so allowing it is fairly harmless.
662 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
663 kprintf("sigreturn: eflags = 0x%x\n", eflags);
664 return(EINVAL);
668 * Don't allow users to load a valid privileged %cs. Let the
669 * hardware check for invalid selectors, excess privilege in
670 * other selectors, invalid %eip's and invalid %esp's.
672 cs = ucp->uc_mcontext.mc_cs;
673 if (!CS_SECURE(cs)) {
674 kprintf("sigreturn: cs = 0x%x\n", cs);
675 trapsignal(lp, SIGBUS, T_PROTFLT);
676 return(EINVAL);
678 bcopy(&ucp->uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
682 * Merge saved signal mailbox pending flag to maintain interlock
683 * semantics against system calls.
685 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
686 p->p_flag |= P_MAILBOX;
688 if (ucp->uc_mcontext.mc_onstack & 1)
689 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
690 else
691 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
693 lp->lwp_sigmask = ucp->uc_sigmask;
694 SIG_CANTMASK(lp->lwp_sigmask);
695 return(EJUSTRETURN);
699 * Stack frame on entry to function. %eax will contain the function vector,
700 * %ecx will contain the function data. flags, ecx, and eax will have
701 * already been pushed on the stack.
703 struct upc_frame {
704 register_t eax;
705 register_t ecx;
706 register_t edx;
707 register_t flags;
708 register_t oldip;
711 void
712 sendupcall(struct vmupcall *vu, int morepending)
714 struct lwp *lp = curthread->td_lwp;
715 struct trapframe *regs;
716 struct upcall upcall;
717 struct upc_frame upc_frame;
718 int crit_count = 0;
721 * If we are a virtual kernel running an emulated user process
722 * context, switch back to the virtual kernel context before
723 * trying to post the signal.
725 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
726 lp->lwp_md.md_regs->tf_trapno = 0;
727 vkernel_trap(lp, lp->lwp_md.md_regs);
731 * Get the upcall data structure
733 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
734 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
736 vu->vu_pending = 0;
737 kprintf("bad upcall address\n");
738 return;
742 * If the data structure is already marked pending or has a critical
743 * section count, mark the data structure as pending and return
744 * without doing an upcall. vu_pending is left set.
746 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
747 if (upcall.upc_pending < vu->vu_pending) {
748 upcall.upc_pending = vu->vu_pending;
749 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
750 sizeof(upcall.upc_pending));
752 return;
756 * We can run this upcall now, clear vu_pending.
758 * Bump our critical section count and set or clear the
759 * user pending flag depending on whether more upcalls are
760 * pending. The user will be responsible for calling
761 * upc_dispatch(-1) to process remaining upcalls.
763 vu->vu_pending = 0;
764 upcall.upc_pending = morepending;
765 crit_count += TDPRI_CRIT;
766 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
767 sizeof(upcall.upc_pending));
768 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
769 sizeof(int));
772 * Construct a stack frame and issue the upcall
774 regs = lp->lwp_md.md_regs;
775 upc_frame.eax = regs->tf_eax;
776 upc_frame.ecx = regs->tf_ecx;
777 upc_frame.edx = regs->tf_edx;
778 upc_frame.flags = regs->tf_eflags;
779 upc_frame.oldip = regs->tf_eip;
780 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
781 sizeof(upc_frame)) != 0) {
782 kprintf("bad stack on upcall\n");
783 } else {
784 regs->tf_eax = (register_t)vu->vu_func;
785 regs->tf_ecx = (register_t)vu->vu_data;
786 regs->tf_edx = (register_t)lp->lwp_upcall;
787 regs->tf_eip = (register_t)vu->vu_ctx;
788 regs->tf_esp -= sizeof(upc_frame);
793 * fetchupcall occurs in the context of a system call, which means that
794 * we have to return EJUSTRETURN in order to prevent eax and edx from
795 * being overwritten by the syscall return value.
797 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
798 * and the function pointer in %eax.
801 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
803 struct upc_frame upc_frame;
804 struct lwp *lp = curthread->td_lwp;
805 struct trapframe *regs;
806 int error;
807 struct upcall upcall;
808 int crit_count;
810 regs = lp->lwp_md.md_regs;
812 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
813 if (error == 0) {
814 if (vu) {
816 * This jumps us to the next ready context.
818 vu->vu_pending = 0;
819 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
820 crit_count = 0;
821 if (error == 0)
822 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
823 crit_count += TDPRI_CRIT;
824 if (error == 0)
825 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
826 regs->tf_eax = (register_t)vu->vu_func;
827 regs->tf_ecx = (register_t)vu->vu_data;
828 regs->tf_edx = (register_t)lp->lwp_upcall;
829 regs->tf_eip = (register_t)vu->vu_ctx;
830 regs->tf_esp = (register_t)rsp;
831 } else {
833 * This returns us to the originally interrupted code.
835 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
836 regs->tf_eax = upc_frame.eax;
837 regs->tf_ecx = upc_frame.ecx;
838 regs->tf_edx = upc_frame.edx;
839 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
840 (upc_frame.flags & PSL_USERCHANGE);
841 regs->tf_eip = upc_frame.oldip;
842 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
845 if (error == 0)
846 error = EJUSTRETURN;
847 return(error);
851 * Machine dependent boot() routine
853 * I haven't seen anything to put here yet
854 * Possibly some stuff might be grafted back here from boot()
856 void
857 cpu_boot(int howto)
862 * Shutdown the CPU as much as possible
864 void
865 cpu_halt(void)
867 for (;;)
868 __asm__ __volatile("hlt");
872 * cpu_idle() represents the idle LWKT. You cannot return from this function
873 * (unless you want to blow things up!). Instead we look for runnable threads
874 * and loop or halt as appropriate. Giant is not held on entry to the thread.
876 * The main loop is entered with a critical section held, we must release
877 * the critical section before doing anything else. lwkt_switch() will
878 * check for pending interrupts due to entering and exiting its own
879 * critical section.
881 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
882 * to wake a HLTed cpu up. However, there are cases where the idlethread
883 * will be entered with the possibility that no IPI will occur and in such
884 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
886 static int cpu_idle_hlt = 1;
887 static int cpu_idle_hltcnt;
888 static int cpu_idle_spincnt;
889 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
890 &cpu_idle_hlt, 0, "Idle loop HLT enable");
891 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
892 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
893 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
894 &cpu_idle_spincnt, 0, "Idle loop entry spins");
896 static void
897 cpu_idle_default_hook(void)
900 * We must guarentee that hlt is exactly the instruction
901 * following the sti.
903 __asm __volatile("sti; hlt");
906 /* Other subsystems (e.g., ACPI) can hook this later. */
907 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
909 void
910 cpu_idle(void)
912 struct thread *td = curthread;
914 crit_exit();
915 KKASSERT(td->td_pri < TDPRI_CRIT);
916 for (;;) {
918 * See if there are any LWKTs ready to go.
920 lwkt_switch();
923 * If we are going to halt call splz unconditionally after
924 * CLIing to catch any interrupt races. Note that we are
925 * at SPL0 and interrupts are enabled.
927 if (cpu_idle_hlt && !lwkt_runnable() &&
928 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
929 __asm __volatile("cli");
930 splz();
931 if (!lwkt_runnable())
932 cpu_idle_hook();
933 #ifdef SMP
934 else
935 __asm __volatile("pause");
936 #endif
937 ++cpu_idle_hltcnt;
938 } else {
939 td->td_flags &= ~TDF_IDLE_NOHLT;
940 splz();
941 #ifdef SMP
942 __asm __volatile("sti; pause");
943 #else
944 __asm __volatile("sti");
945 #endif
946 ++cpu_idle_spincnt;
952 * Clear registers on exec
954 void
955 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
957 struct thread *td = curthread;
958 struct lwp *lp = td->td_lwp;
959 struct pcb *pcb = td->td_pcb;
960 struct trapframe *regs = lp->lwp_md.md_regs;
962 /* was i386_user_cleanup() in NetBSD */
963 user_ldt_free(pcb);
965 bzero((char *)regs, sizeof(struct trapframe));
966 regs->tf_eip = entry;
967 regs->tf_esp = stack;
968 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
969 regs->tf_ss = _udatasel;
970 regs->tf_ds = _udatasel;
971 regs->tf_es = _udatasel;
972 regs->tf_fs = _udatasel;
973 regs->tf_gs = _udatasel;
974 regs->tf_cs = _ucodesel;
976 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
977 regs->tf_ebx = ps_strings;
980 * Reset the hardware debug registers if they were in use.
981 * They won't have any meaning for the newly exec'd process.
983 if (pcb->pcb_flags & PCB_DBREGS) {
984 pcb->pcb_dr0 = 0;
985 pcb->pcb_dr1 = 0;
986 pcb->pcb_dr2 = 0;
987 pcb->pcb_dr3 = 0;
988 pcb->pcb_dr6 = 0;
989 pcb->pcb_dr7 = 0;
990 if (pcb == td->td_pcb) {
992 * Clear the debug registers on the running
993 * CPU, otherwise they will end up affecting
994 * the next process we switch to.
996 reset_dbregs();
998 pcb->pcb_flags &= ~PCB_DBREGS;
1002 * Initialize the math emulator (if any) for the current process.
1003 * Actually, just clear the bit that says that the emulator has
1004 * been initialized. Initialization is delayed until the process
1005 * traps to the emulator (if it is done at all) mainly because
1006 * emulators don't provide an entry point for initialization.
1008 pcb->pcb_flags &= ~FP_SOFTFP;
1011 * note: do not set CR0_TS here. npxinit() must do it after clearing
1012 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
1013 * in npxdna().
1015 crit_enter();
1016 load_cr0(rcr0() | CR0_MP);
1018 #if NNPX > 0
1019 /* Initialize the npx (if any) for the current process. */
1020 npxinit(__INITIAL_NPXCW__);
1021 #endif
1022 crit_exit();
1025 * note: linux emulator needs edx to be 0x0 on entry, which is
1026 * handled in execve simply by setting the 64 bit syscall
1027 * return value to 0.
1031 void
1032 cpu_setregs(void)
1034 unsigned int cr0;
1036 cr0 = rcr0();
1037 cr0 |= CR0_NE; /* Done by npxinit() */
1038 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1039 #ifdef I386_CPU
1040 if (cpu_class != CPUCLASS_386)
1041 #endif
1042 cr0 |= CR0_WP | CR0_AM;
1043 load_cr0(cr0);
1044 load_gs(_udatasel);
1047 static int
1048 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1050 int error;
1051 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1052 req);
1053 if (!error && req->newptr)
1054 resettodr();
1055 return (error);
1058 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1059 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1061 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1062 CTLFLAG_RW, &disable_rtc_set, 0, "");
1064 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1065 CTLFLAG_RD, &bootinfo, bootinfo, "");
1067 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1068 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1070 extern u_long bootdev; /* not a cdev_t - encoding is different */
1071 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1072 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1075 * Initialize 386 and configure to run kernel
1079 * Initialize segments & interrupt table
1082 int _default_ldt;
1083 union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1084 static struct gate_descriptor idt0[NIDT];
1085 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1086 union descriptor ldt[NLDT]; /* local descriptor table */
1088 /* table descriptors - used to load tables by cpu */
1089 struct region_descriptor r_gdt, r_idt;
1091 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1092 extern int has_f00f_bug;
1093 #endif
1095 static struct i386tss dblfault_tss;
1096 static char dblfault_stack[PAGE_SIZE];
1098 extern struct user *proc0paddr;
1101 /* software prototypes -- in more palatable form */
1102 struct soft_segment_descriptor gdt_segs[] = {
1103 /* GNULL_SEL 0 Null Descriptor */
1104 { 0x0, /* segment base address */
1105 0x0, /* length */
1106 0, /* segment type */
1107 0, /* segment descriptor priority level */
1108 0, /* segment descriptor present */
1109 0, 0,
1110 0, /* default 32 vs 16 bit size */
1111 0 /* limit granularity (byte/page units)*/ },
1112 /* GCODE_SEL 1 Code Descriptor for kernel */
1113 { 0x0, /* segment base address */
1114 0xfffff, /* length - all address space */
1115 SDT_MEMERA, /* segment type */
1116 0, /* segment descriptor priority level */
1117 1, /* segment descriptor present */
1118 0, 0,
1119 1, /* default 32 vs 16 bit size */
1120 1 /* limit granularity (byte/page units)*/ },
1121 /* GDATA_SEL 2 Data Descriptor for kernel */
1122 { 0x0, /* segment base address */
1123 0xfffff, /* length - all address space */
1124 SDT_MEMRWA, /* segment type */
1125 0, /* segment descriptor priority level */
1126 1, /* segment descriptor present */
1127 0, 0,
1128 1, /* default 32 vs 16 bit size */
1129 1 /* limit granularity (byte/page units)*/ },
1130 /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1131 { 0x0, /* segment base address */
1132 0xfffff, /* length - all address space */
1133 SDT_MEMRWA, /* segment type */
1134 0, /* segment descriptor priority level */
1135 1, /* segment descriptor present */
1136 0, 0,
1137 1, /* default 32 vs 16 bit size */
1138 1 /* limit granularity (byte/page units)*/ },
1139 /* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1141 0x0, /* segment base address */
1142 sizeof(struct i386tss)-1,/* length - all address space */
1143 SDT_SYS386TSS, /* segment type */
1144 0, /* segment descriptor priority level */
1145 1, /* segment descriptor present */
1146 0, 0,
1147 0, /* unused - default 32 vs 16 bit size */
1148 0 /* limit granularity (byte/page units)*/ },
1149 /* GLDT_SEL 5 LDT Descriptor */
1150 { (int) ldt, /* segment base address */
1151 sizeof(ldt)-1, /* length - all address space */
1152 SDT_SYSLDT, /* segment type */
1153 SEL_UPL, /* segment descriptor priority level */
1154 1, /* segment descriptor present */
1155 0, 0,
1156 0, /* unused - default 32 vs 16 bit size */
1157 0 /* limit granularity (byte/page units)*/ },
1158 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
1159 { (int) ldt, /* segment base address */
1160 (512 * sizeof(union descriptor)-1), /* length */
1161 SDT_SYSLDT, /* segment type */
1162 0, /* segment descriptor priority level */
1163 1, /* segment descriptor present */
1164 0, 0,
1165 0, /* unused - default 32 vs 16 bit size */
1166 0 /* limit granularity (byte/page units)*/ },
1167 /* GTGATE_SEL 7 Null Descriptor - Placeholder */
1168 { 0x0, /* segment base address */
1169 0x0, /* length - all address space */
1170 0, /* segment type */
1171 0, /* segment descriptor priority level */
1172 0, /* segment descriptor present */
1173 0, 0,
1174 0, /* default 32 vs 16 bit size */
1175 0 /* limit granularity (byte/page units)*/ },
1176 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1177 { 0x400, /* segment base address */
1178 0xfffff, /* length */
1179 SDT_MEMRWA, /* segment type */
1180 0, /* segment descriptor priority level */
1181 1, /* segment descriptor present */
1182 0, 0,
1183 1, /* default 32 vs 16 bit size */
1184 1 /* limit granularity (byte/page units)*/ },
1185 /* GPANIC_SEL 9 Panic Tss Descriptor */
1186 { (int) &dblfault_tss, /* segment base address */
1187 sizeof(struct i386tss)-1,/* length - all address space */
1188 SDT_SYS386TSS, /* segment type */
1189 0, /* segment descriptor priority level */
1190 1, /* segment descriptor present */
1191 0, 0,
1192 0, /* unused - default 32 vs 16 bit size */
1193 0 /* limit granularity (byte/page units)*/ },
1194 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1195 { 0, /* segment base address (overwritten) */
1196 0xfffff, /* length */
1197 SDT_MEMERA, /* segment type */
1198 0, /* segment descriptor priority level */
1199 1, /* segment descriptor present */
1200 0, 0,
1201 0, /* default 32 vs 16 bit size */
1202 1 /* limit granularity (byte/page units)*/ },
1203 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1204 { 0, /* segment base address (overwritten) */
1205 0xfffff, /* length */
1206 SDT_MEMERA, /* segment type */
1207 0, /* segment descriptor priority level */
1208 1, /* segment descriptor present */
1209 0, 0,
1210 0, /* default 32 vs 16 bit size */
1211 1 /* limit granularity (byte/page units)*/ },
1212 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1213 { 0, /* segment base address (overwritten) */
1214 0xfffff, /* length */
1215 SDT_MEMRWA, /* segment type */
1216 0, /* segment descriptor priority level */
1217 1, /* segment descriptor present */
1218 0, 0,
1219 1, /* default 32 vs 16 bit size */
1220 1 /* limit granularity (byte/page units)*/ },
1221 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1222 { 0, /* segment base address (overwritten) */
1223 0xfffff, /* length */
1224 SDT_MEMRWA, /* segment type */
1225 0, /* segment descriptor priority level */
1226 1, /* segment descriptor present */
1227 0, 0,
1228 0, /* default 32 vs 16 bit size */
1229 1 /* limit granularity (byte/page units)*/ },
1230 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1231 { 0, /* segment base address (overwritten) */
1232 0xfffff, /* length */
1233 SDT_MEMRWA, /* segment type */
1234 0, /* segment descriptor priority level */
1235 1, /* segment descriptor present */
1236 0, 0,
1237 0, /* default 32 vs 16 bit size */
1238 1 /* limit granularity (byte/page units)*/ },
1239 /* GTLS_START 15 TLS */
1240 { 0x0, /* segment base address */
1241 0x0, /* length */
1242 0, /* segment type */
1243 0, /* segment descriptor priority level */
1244 0, /* segment descriptor present */
1245 0, 0,
1246 0, /* default 32 vs 16 bit size */
1247 0 /* limit granularity (byte/page units)*/ },
1248 /* GTLS_START+1 16 TLS */
1249 { 0x0, /* segment base address */
1250 0x0, /* length */
1251 0, /* segment type */
1252 0, /* segment descriptor priority level */
1253 0, /* segment descriptor present */
1254 0, 0,
1255 0, /* default 32 vs 16 bit size */
1256 0 /* limit granularity (byte/page units)*/ },
1257 /* GTLS_END 17 TLS */
1258 { 0x0, /* segment base address */
1259 0x0, /* length */
1260 0, /* segment type */
1261 0, /* segment descriptor priority level */
1262 0, /* segment descriptor present */
1263 0, 0,
1264 0, /* default 32 vs 16 bit size */
1265 0 /* limit granularity (byte/page units)*/ },
1268 static struct soft_segment_descriptor ldt_segs[] = {
1269 /* Null Descriptor - overwritten by call gate */
1270 { 0x0, /* segment base address */
1271 0x0, /* length - all address space */
1272 0, /* segment type */
1273 0, /* segment descriptor priority level */
1274 0, /* segment descriptor present */
1275 0, 0,
1276 0, /* default 32 vs 16 bit size */
1277 0 /* limit granularity (byte/page units)*/ },
1278 /* Null Descriptor - overwritten by call gate */
1279 { 0x0, /* segment base address */
1280 0x0, /* length - all address space */
1281 0, /* segment type */
1282 0, /* segment descriptor priority level */
1283 0, /* segment descriptor present */
1284 0, 0,
1285 0, /* default 32 vs 16 bit size */
1286 0 /* limit granularity (byte/page units)*/ },
1287 /* Null Descriptor - overwritten by call gate */
1288 { 0x0, /* segment base address */
1289 0x0, /* length - all address space */
1290 0, /* segment type */
1291 0, /* segment descriptor priority level */
1292 0, /* segment descriptor present */
1293 0, 0,
1294 0, /* default 32 vs 16 bit size */
1295 0 /* limit granularity (byte/page units)*/ },
1296 /* Code Descriptor for user */
1297 { 0x0, /* segment base address */
1298 0xfffff, /* length - all address space */
1299 SDT_MEMERA, /* segment type */
1300 SEL_UPL, /* segment descriptor priority level */
1301 1, /* segment descriptor present */
1302 0, 0,
1303 1, /* default 32 vs 16 bit size */
1304 1 /* limit granularity (byte/page units)*/ },
1305 /* Null Descriptor - overwritten by call gate */
1306 { 0x0, /* segment base address */
1307 0x0, /* length - all address space */
1308 0, /* segment type */
1309 0, /* segment descriptor priority level */
1310 0, /* segment descriptor present */
1311 0, 0,
1312 0, /* default 32 vs 16 bit size */
1313 0 /* limit granularity (byte/page units)*/ },
1314 /* Data Descriptor for user */
1315 { 0x0, /* segment base address */
1316 0xfffff, /* length - all address space */
1317 SDT_MEMRWA, /* segment type */
1318 SEL_UPL, /* segment descriptor priority level */
1319 1, /* segment descriptor present */
1320 0, 0,
1321 1, /* default 32 vs 16 bit size */
1322 1 /* limit granularity (byte/page units)*/ },
1325 void
1326 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1328 struct gate_descriptor *ip;
1330 ip = idt + idx;
1331 ip->gd_looffset = (int)func;
1332 ip->gd_selector = selec;
1333 ip->gd_stkcpy = 0;
1334 ip->gd_xx = 0;
1335 ip->gd_type = typ;
1336 ip->gd_dpl = dpl;
1337 ip->gd_p = 1;
1338 ip->gd_hioffset = ((int)func)>>16 ;
1341 #define IDTVEC(name) __CONCAT(X,name)
1343 extern inthand_t
1344 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1345 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1346 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1347 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1348 IDTVEC(xmm), IDTVEC(syscall),
1349 IDTVEC(rsvd0);
1350 extern inthand_t
1351 IDTVEC(int0x80_syscall);
1353 #ifdef DEBUG_INTERRUPTS
1354 extern inthand_t *Xrsvdary[256];
1355 #endif
1357 void
1358 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1360 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1361 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1362 ssd->ssd_type = sd->sd_type;
1363 ssd->ssd_dpl = sd->sd_dpl;
1364 ssd->ssd_p = sd->sd_p;
1365 ssd->ssd_def32 = sd->sd_def32;
1366 ssd->ssd_gran = sd->sd_gran;
1370 * Populate the (physmap) array with base/bound pairs describing the
1371 * available physical memory in the system, then test this memory and
1372 * build the phys_avail array describing the actually-available memory.
1374 * If we cannot accurately determine the physical memory map, then use
1375 * value from the 0xE801 call, and failing that, the RTC.
1377 * Total memory size may be set by the kernel environment variable
1378 * hw.physmem or the compile-time define MAXMEM.
1380 static void
1381 getmemsize(int first)
1383 int i, physmap_idx, pa_indx;
1384 int hasbrokenint12;
1385 u_int basemem, extmem;
1386 struct vm86frame vmf;
1387 struct vm86context vmc;
1388 vm_offset_t pa;
1389 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1390 pt_entry_t *pte;
1391 const char *cp;
1392 struct {
1393 u_int64_t base;
1394 u_int64_t length;
1395 u_int32_t type;
1396 } *smap;
1397 quad_t dcons_addr, dcons_size;
1399 hasbrokenint12 = 0;
1400 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1401 bzero(&vmf, sizeof(struct vm86frame));
1402 bzero(physmap, sizeof(physmap));
1403 basemem = 0;
1406 * Some newer BIOSes has broken INT 12H implementation which cause
1407 * kernel panic immediately. In this case, we need to scan SMAP
1408 * with INT 15:E820 first, then determine base memory size.
1410 if (hasbrokenint12) {
1411 goto int15e820;
1415 * Perform "base memory" related probes & setup. If we get a crazy
1416 * value give the bios some scribble space just in case.
1418 vm86_intcall(0x12, &vmf);
1419 basemem = vmf.vmf_ax;
1420 if (basemem > 640) {
1421 kprintf("Preposterous BIOS basemem of %uK, "
1422 "truncating to < 640K\n", basemem);
1423 basemem = 636;
1427 * XXX if biosbasemem is now < 640, there is a `hole'
1428 * between the end of base memory and the start of
1429 * ISA memory. The hole may be empty or it may
1430 * contain BIOS code or data. Map it read/write so
1431 * that the BIOS can write to it. (Memory from 0 to
1432 * the physical end of the kernel is mapped read-only
1433 * to begin with and then parts of it are remapped.
1434 * The parts that aren't remapped form holes that
1435 * remain read-only and are unused by the kernel.
1436 * The base memory area is below the physical end of
1437 * the kernel and right now forms a read-only hole.
1438 * The part of it from PAGE_SIZE to
1439 * (trunc_page(biosbasemem * 1024) - 1) will be
1440 * remapped and used by the kernel later.)
1442 * This code is similar to the code used in
1443 * pmap_mapdev, but since no memory needs to be
1444 * allocated we simply change the mapping.
1446 for (pa = trunc_page(basemem * 1024);
1447 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1448 pte = vtopte(pa + KERNBASE);
1449 *pte = pa | PG_RW | PG_V;
1453 * if basemem != 640, map pages r/w into vm86 page table so
1454 * that the bios can scribble on it.
1456 pte = vm86paddr;
1457 for (i = basemem / 4; i < 160; i++)
1458 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1460 int15e820:
1462 * map page 1 R/W into the kernel page table so we can use it
1463 * as a buffer. The kernel will unmap this page later.
1465 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1466 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1469 * get memory map with INT 15:E820
1471 #define SMAPSIZ sizeof(*smap)
1472 #define SMAP_SIG 0x534D4150 /* 'SMAP' */
1474 vmc.npages = 0;
1475 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1476 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1478 physmap_idx = 0;
1479 vmf.vmf_ebx = 0;
1480 do {
1481 vmf.vmf_eax = 0xE820;
1482 vmf.vmf_edx = SMAP_SIG;
1483 vmf.vmf_ecx = SMAPSIZ;
1484 i = vm86_datacall(0x15, &vmf, &vmc);
1485 if (i || vmf.vmf_eax != SMAP_SIG)
1486 break;
1487 if (boothowto & RB_VERBOSE)
1488 kprintf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1489 smap->type,
1490 *(u_int32_t *)((char *)&smap->base + 4),
1491 (u_int32_t)smap->base,
1492 *(u_int32_t *)((char *)&smap->length + 4),
1493 (u_int32_t)smap->length);
1495 if (smap->type != 0x01)
1496 goto next_run;
1498 if (smap->length == 0)
1499 goto next_run;
1501 if (smap->base >= 0xffffffff) {
1502 kprintf("%uK of memory above 4GB ignored\n",
1503 (u_int)(smap->length / 1024));
1504 goto next_run;
1507 for (i = 0; i <= physmap_idx; i += 2) {
1508 if (smap->base < physmap[i + 1]) {
1509 if (boothowto & RB_VERBOSE)
1510 kprintf(
1511 "Overlapping or non-montonic memory region, ignoring second region\n");
1512 goto next_run;
1516 if (smap->base == physmap[physmap_idx + 1]) {
1517 physmap[physmap_idx + 1] += smap->length;
1518 goto next_run;
1521 physmap_idx += 2;
1522 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1523 kprintf(
1524 "Too many segments in the physical address map, giving up\n");
1525 break;
1527 physmap[physmap_idx] = smap->base;
1528 physmap[physmap_idx + 1] = smap->base + smap->length;
1529 next_run:
1530 ; /* fix GCC3.x warning */
1531 } while (vmf.vmf_ebx != 0);
1534 * Perform "base memory" related probes & setup based on SMAP
1536 if (basemem == 0) {
1537 for (i = 0; i <= physmap_idx; i += 2) {
1538 if (physmap[i] == 0x00000000) {
1539 basemem = physmap[i + 1] / 1024;
1540 break;
1544 if (basemem == 0) {
1545 basemem = 640;
1548 if (basemem > 640) {
1549 kprintf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1550 basemem);
1551 basemem = 640;
1554 for (pa = trunc_page(basemem * 1024);
1555 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1556 pte = vtopte(pa + KERNBASE);
1557 *pte = pa | PG_RW | PG_V;
1560 pte = vm86paddr;
1561 for (i = basemem / 4; i < 160; i++)
1562 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1565 if (physmap[1] != 0)
1566 goto physmap_done;
1569 * If we failed above, try memory map with INT 15:E801
1571 vmf.vmf_ax = 0xE801;
1572 if (vm86_intcall(0x15, &vmf) == 0) {
1573 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1574 } else {
1575 #if 0
1576 vmf.vmf_ah = 0x88;
1577 vm86_intcall(0x15, &vmf);
1578 extmem = vmf.vmf_ax;
1579 #else
1581 * Prefer the RTC value for extended memory.
1583 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1584 #endif
1588 * Special hack for chipsets that still remap the 384k hole when
1589 * there's 16MB of memory - this really confuses people that
1590 * are trying to use bus mastering ISA controllers with the
1591 * "16MB limit"; they only have 16MB, but the remapping puts
1592 * them beyond the limit.
1594 * If extended memory is between 15-16MB (16-17MB phys address range),
1595 * chop it to 15MB.
1597 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1598 extmem = 15 * 1024;
1600 physmap[0] = 0;
1601 physmap[1] = basemem * 1024;
1602 physmap_idx = 2;
1603 physmap[physmap_idx] = 0x100000;
1604 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1606 physmap_done:
1608 * Now, physmap contains a map of physical memory.
1611 #ifdef SMP
1612 /* make hole for AP bootstrap code YYY */
1613 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1615 /* look for the MP hardware - needed for apic addresses */
1616 mp_probe();
1617 #endif
1620 * Maxmem isn't the "maximum memory", it's one larger than the
1621 * highest page of the physical address space. It should be
1622 * called something like "Maxphyspage". We may adjust this
1623 * based on ``hw.physmem'' and the results of the memory test.
1625 Maxmem = atop(physmap[physmap_idx + 1]);
1627 #ifdef MAXMEM
1628 Maxmem = MAXMEM / 4;
1629 #endif
1632 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1633 * for the appropriate modifiers. This overrides MAXMEM.
1635 if ((cp = kgetenv("hw.physmem")) != NULL) {
1636 u_int64_t AllowMem, sanity;
1637 char *ep;
1639 sanity = AllowMem = strtouq(cp, &ep, 0);
1640 if ((ep != cp) && (*ep != 0)) {
1641 switch(*ep) {
1642 case 'g':
1643 case 'G':
1644 AllowMem <<= 10;
1645 case 'm':
1646 case 'M':
1647 AllowMem <<= 10;
1648 case 'k':
1649 case 'K':
1650 AllowMem <<= 10;
1651 break;
1652 default:
1653 AllowMem = sanity = 0;
1655 if (AllowMem < sanity)
1656 AllowMem = 0;
1658 if (AllowMem == 0)
1659 kprintf("Ignoring invalid memory size of '%s'\n", cp);
1660 else
1661 Maxmem = atop(AllowMem);
1664 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1665 (boothowto & RB_VERBOSE))
1666 kprintf("Physical memory use set to %lluK\n", Maxmem * 4);
1669 * If Maxmem has been increased beyond what the system has detected,
1670 * extend the last memory segment to the new limit.
1672 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1673 physmap[physmap_idx + 1] = ptoa(Maxmem);
1675 /* call pmap initialization to make new kernel address space */
1676 pmap_bootstrap(first, 0);
1679 * Size up each available chunk of physical memory.
1681 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1682 pa_indx = 0;
1683 phys_avail[pa_indx++] = physmap[0];
1684 phys_avail[pa_indx] = physmap[0];
1685 pte = CMAP1;
1688 * Get dcons buffer address
1690 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1691 kgetenv_quad("dcons.size", &dcons_size) == 0)
1692 dcons_addr = 0;
1695 * physmap is in bytes, so when converting to page boundaries,
1696 * round up the start address and round down the end address.
1698 for (i = 0; i <= physmap_idx; i += 2) {
1699 vm_offset_t end;
1701 end = ptoa(Maxmem);
1702 if (physmap[i + 1] < end)
1703 end = trunc_page(physmap[i + 1]);
1704 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1705 int tmp, page_bad;
1706 #if 0
1707 int *ptr = 0;
1708 #else
1709 int *ptr = (int *)CADDR1;
1710 #endif
1713 * block out kernel memory as not available.
1715 if (pa >= 0x100000 && pa < first)
1716 continue;
1719 * block out dcons buffer
1721 if (dcons_addr > 0
1722 && pa >= trunc_page(dcons_addr)
1723 && pa < dcons_addr + dcons_size)
1724 continue;
1726 page_bad = FALSE;
1729 * map page into kernel: valid, read/write,non-cacheable
1731 *pte = pa | PG_V | PG_RW | PG_N;
1732 cpu_invltlb();
1734 tmp = *(int *)ptr;
1736 * Test for alternating 1's and 0's
1738 *(volatile int *)ptr = 0xaaaaaaaa;
1739 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1740 page_bad = TRUE;
1743 * Test for alternating 0's and 1's
1745 *(volatile int *)ptr = 0x55555555;
1746 if (*(volatile int *)ptr != 0x55555555) {
1747 page_bad = TRUE;
1750 * Test for all 1's
1752 *(volatile int *)ptr = 0xffffffff;
1753 if (*(volatile int *)ptr != 0xffffffff) {
1754 page_bad = TRUE;
1757 * Test for all 0's
1759 *(volatile int *)ptr = 0x0;
1760 if (*(volatile int *)ptr != 0x0) {
1761 page_bad = TRUE;
1764 * Restore original value.
1766 *(int *)ptr = tmp;
1769 * Adjust array of valid/good pages.
1771 if (page_bad == TRUE) {
1772 continue;
1775 * If this good page is a continuation of the
1776 * previous set of good pages, then just increase
1777 * the end pointer. Otherwise start a new chunk.
1778 * Note that "end" points one higher than end,
1779 * making the range >= start and < end.
1780 * If we're also doing a speculative memory
1781 * test and we at or past the end, bump up Maxmem
1782 * so that we keep going. The first bad page
1783 * will terminate the loop.
1785 if (phys_avail[pa_indx] == pa) {
1786 phys_avail[pa_indx] += PAGE_SIZE;
1787 } else {
1788 pa_indx++;
1789 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1790 kprintf("Too many holes in the physical address space, giving up\n");
1791 pa_indx--;
1792 break;
1794 phys_avail[pa_indx++] = pa; /* start */
1795 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1797 physmem++;
1800 *pte = 0;
1801 cpu_invltlb();
1804 * XXX
1805 * The last chunk must contain at least one page plus the message
1806 * buffer to avoid complicating other code (message buffer address
1807 * calculation, etc.).
1809 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1810 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1811 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1812 phys_avail[pa_indx--] = 0;
1813 phys_avail[pa_indx--] = 0;
1816 Maxmem = atop(phys_avail[pa_indx]);
1818 /* Trim off space for the message buffer. */
1819 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1821 avail_end = phys_avail[pa_indx];
1825 * IDT VECTORS:
1826 * 0 Divide by zero
1827 * 1 Debug
1828 * 2 NMI
1829 * 3 BreakPoint
1830 * 4 OverFlow
1831 * 5 Bound-Range
1832 * 6 Invalid OpCode
1833 * 7 Device Not Available (x87)
1834 * 8 Double-Fault
1835 * 9 Coprocessor Segment overrun (unsupported, reserved)
1836 * 10 Invalid-TSS
1837 * 11 Segment not present
1838 * 12 Stack
1839 * 13 General Protection
1840 * 14 Page Fault
1841 * 15 Reserved
1842 * 16 x87 FP Exception pending
1843 * 17 Alignment Check
1844 * 18 Machine Check
1845 * 19 SIMD floating point
1846 * 20-31 reserved
1847 * 32-255 INTn/external sources
1849 void
1850 init386(int first)
1852 struct gate_descriptor *gdp;
1853 int gsel_tss, metadata_missing, off, x;
1854 struct mdglobaldata *gd;
1857 * Prevent lowering of the ipl if we call tsleep() early.
1859 gd = &CPU_prvspace[0].mdglobaldata;
1860 bzero(gd, sizeof(*gd));
1862 gd->mi.gd_curthread = &thread0;
1863 thread0.td_gd = &gd->mi;
1865 atdevbase = ISA_HOLE_START + KERNBASE;
1867 metadata_missing = 0;
1868 if (bootinfo.bi_modulep) {
1869 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1870 preload_bootstrap_relocate(KERNBASE);
1871 } else {
1872 metadata_missing = 1;
1874 if (bootinfo.bi_envp)
1875 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1878 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1879 * and ncpus_fit_mask remain 0.
1881 ncpus = 1;
1882 ncpus2 = 1;
1883 ncpus_fit = 1;
1884 /* Init basic tunables, hz etc */
1885 init_param1();
1888 * make gdt memory segments, the code segment goes up to end of the
1889 * page with etext in it, the data segment goes to the end of
1890 * the address space
1893 * XXX text protection is temporarily (?) disabled. The limit was
1894 * i386_btop(round_page(etext)) - 1.
1896 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1897 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1899 gdt_segs[GPRIV_SEL].ssd_limit =
1900 atop(sizeof(struct privatespace) - 1);
1901 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1902 gdt_segs[GPROC0_SEL].ssd_base =
1903 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1905 gd->mi.gd_prvspace = &CPU_prvspace[0];
1908 * Note: on both UP and SMP curthread must be set non-NULL
1909 * early in the boot sequence because the system assumes
1910 * that 'curthread' is never NULL.
1913 for (x = 0; x < NGDT; x++) {
1914 #ifdef BDE_DEBUGGER
1915 /* avoid overwriting db entries with APM ones */
1916 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1917 continue;
1918 #endif
1919 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1922 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1923 r_gdt.rd_base = (int) gdt;
1924 lgdt(&r_gdt);
1926 mi_gdinit(&gd->mi, 0);
1927 cpu_gdinit(gd, 0);
1928 mi_proc0init(&gd->mi, proc0paddr);
1929 safepri = TDPRI_MAX;
1931 /* make ldt memory segments */
1933 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max. And it
1934 * should be spelled ...MAX_USER...
1936 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1937 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1938 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1939 ssdtosd(&ldt_segs[x], &ldt[x].sd);
1941 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1942 lldt(_default_ldt);
1943 gd->gd_currentldt = _default_ldt;
1944 /* spinlocks and the BGL */
1945 init_locks();
1948 * Setup the hardware exception table. Most exceptions use
1949 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
1950 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
1951 * an 'interrupt trap gate', which disables interrupts on entry,
1952 * in order to be able to poll the appropriate CRn register to
1953 * determine the fault address.
1955 for (x = 0; x < NIDT; x++) {
1956 #ifdef DEBUG_INTERRUPTS
1957 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1958 #else
1959 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1960 #endif
1962 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1963 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1964 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1965 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1966 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1967 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1968 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1969 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1970 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1971 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1972 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1973 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1974 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1975 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1976 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1977 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1978 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1979 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1980 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1981 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1982 setidt(0x80, &IDTVEC(int0x80_syscall),
1983 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1985 r_idt.rd_limit = sizeof(idt0) - 1;
1986 r_idt.rd_base = (int) idt;
1987 lidt(&r_idt);
1990 * Initialize the console before we print anything out.
1992 cninit();
1994 if (metadata_missing)
1995 kprintf("WARNING: loader(8) metadata is missing!\n");
1997 #if NISA >0
1998 isa_defaultirq();
1999 #endif
2000 rand_initialize();
2002 #ifdef DDB
2003 kdb_init();
2004 if (boothowto & RB_KDB)
2005 Debugger("Boot flags requested debugger");
2006 #endif
2008 finishidentcpu(); /* Final stage of CPU initialization */
2009 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2010 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2011 initializecpu(); /* Initialize CPU registers */
2014 * make an initial tss so cpu can get interrupt stack on syscall!
2015 * The 16 bytes is to save room for a VM86 context.
2017 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
2018 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
2019 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2020 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
2021 gd->gd_common_tssd = *gd->gd_tss_gdt;
2022 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
2023 ltr(gsel_tss);
2025 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2026 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2027 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2028 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2029 dblfault_tss.tss_cr3 = (int)IdlePTD;
2030 dblfault_tss.tss_eip = (int) dblfault_handler;
2031 dblfault_tss.tss_eflags = PSL_KERNEL;
2032 dblfault_tss.tss_ds = dblfault_tss.tss_es =
2033 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2034 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2035 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2036 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2038 vm86_initialize();
2039 getmemsize(first);
2040 init_param2(physmem);
2042 /* now running on new page tables, configured,and u/iom is accessible */
2044 /* Map the message buffer. */
2045 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2046 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2048 msgbufinit(msgbufp, MSGBUF_SIZE);
2050 /* make a call gate to reenter kernel with */
2051 gdp = &ldt[LSYS5CALLS_SEL].gd;
2053 x = (int) &IDTVEC(syscall);
2054 gdp->gd_looffset = x++;
2055 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2056 gdp->gd_stkcpy = 1;
2057 gdp->gd_type = SDT_SYS386CGT;
2058 gdp->gd_dpl = SEL_UPL;
2059 gdp->gd_p = 1;
2060 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2062 /* XXX does this work? */
2063 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2064 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2066 /* transfer to user mode */
2068 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2069 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2071 /* setup proc 0's pcb */
2072 thread0.td_pcb->pcb_flags = 0;
2073 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2074 thread0.td_pcb->pcb_ext = 0;
2075 lwp0.lwp_md.md_regs = &proc0_tf;
2079 * Initialize machine-dependant portions of the global data structure.
2080 * Note that the global data area and cpu0's idlestack in the private
2081 * data space were allocated in locore.
2083 * Note: the idlethread's cpl is 0
2085 * WARNING! Called from early boot, 'mycpu' may not work yet.
2087 void
2088 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2090 if (cpu)
2091 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2093 lwkt_init_thread(&gd->mi.gd_idlethread,
2094 gd->mi.gd_prvspace->idlestack,
2095 sizeof(gd->mi.gd_prvspace->idlestack),
2096 TDF_MPSAFE, &gd->mi);
2097 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2098 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2099 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2100 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2104 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2106 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2107 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2108 return (TRUE);
2110 return (FALSE);
2113 struct globaldata *
2114 globaldata_find(int cpu)
2116 KKASSERT(cpu >= 0 && cpu < ncpus);
2117 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2120 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2121 static void f00f_hack(void *unused);
2122 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
2124 static void
2125 f00f_hack(void *unused)
2127 struct gate_descriptor *new_idt;
2128 vm_offset_t tmp;
2130 if (!has_f00f_bug)
2131 return;
2133 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
2135 r_idt.rd_limit = sizeof(idt0) - 1;
2137 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
2138 if (tmp == 0)
2139 panic("kmem_alloc returned 0");
2140 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2141 panic("kmem_alloc returned non-page-aligned memory");
2142 /* Put the first seven entries in the lower page */
2143 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2144 bcopy(idt, new_idt, sizeof(idt0));
2145 r_idt.rd_base = (int)new_idt;
2146 lidt(&r_idt);
2147 idt = new_idt;
2148 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
2149 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2150 panic("vm_map_protect failed");
2151 return;
2153 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2156 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2158 lp->lwp_md.md_regs->tf_eip = addr;
2159 return (0);
2163 ptrace_single_step(struct lwp *lp)
2165 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2166 return (0);
2170 fill_regs(struct lwp *lp, struct reg *regs)
2172 struct pcb *pcb;
2173 struct trapframe *tp;
2175 tp = lp->lwp_md.md_regs;
2176 regs->r_gs = tp->tf_gs;
2177 regs->r_fs = tp->tf_fs;
2178 regs->r_es = tp->tf_es;
2179 regs->r_ds = tp->tf_ds;
2180 regs->r_edi = tp->tf_edi;
2181 regs->r_esi = tp->tf_esi;
2182 regs->r_ebp = tp->tf_ebp;
2183 regs->r_ebx = tp->tf_ebx;
2184 regs->r_edx = tp->tf_edx;
2185 regs->r_ecx = tp->tf_ecx;
2186 regs->r_eax = tp->tf_eax;
2187 regs->r_eip = tp->tf_eip;
2188 regs->r_cs = tp->tf_cs;
2189 regs->r_eflags = tp->tf_eflags;
2190 regs->r_esp = tp->tf_esp;
2191 regs->r_ss = tp->tf_ss;
2192 pcb = lp->lwp_thread->td_pcb;
2193 return (0);
2197 set_regs(struct lwp *lp, struct reg *regs)
2199 struct pcb *pcb;
2200 struct trapframe *tp;
2202 tp = lp->lwp_md.md_regs;
2203 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2204 !CS_SECURE(regs->r_cs))
2205 return (EINVAL);
2206 tp->tf_gs = regs->r_gs;
2207 tp->tf_fs = regs->r_fs;
2208 tp->tf_es = regs->r_es;
2209 tp->tf_ds = regs->r_ds;
2210 tp->tf_edi = regs->r_edi;
2211 tp->tf_esi = regs->r_esi;
2212 tp->tf_ebp = regs->r_ebp;
2213 tp->tf_ebx = regs->r_ebx;
2214 tp->tf_edx = regs->r_edx;
2215 tp->tf_ecx = regs->r_ecx;
2216 tp->tf_eax = regs->r_eax;
2217 tp->tf_eip = regs->r_eip;
2218 tp->tf_cs = regs->r_cs;
2219 tp->tf_eflags = regs->r_eflags;
2220 tp->tf_esp = regs->r_esp;
2221 tp->tf_ss = regs->r_ss;
2222 pcb = lp->lwp_thread->td_pcb;
2223 return (0);
2226 #ifndef CPU_DISABLE_SSE
2227 static void
2228 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2230 struct env87 *penv_87 = &sv_87->sv_env;
2231 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2232 int i;
2234 /* FPU control/status */
2235 penv_87->en_cw = penv_xmm->en_cw;
2236 penv_87->en_sw = penv_xmm->en_sw;
2237 penv_87->en_tw = penv_xmm->en_tw;
2238 penv_87->en_fip = penv_xmm->en_fip;
2239 penv_87->en_fcs = penv_xmm->en_fcs;
2240 penv_87->en_opcode = penv_xmm->en_opcode;
2241 penv_87->en_foo = penv_xmm->en_foo;
2242 penv_87->en_fos = penv_xmm->en_fos;
2244 /* FPU registers */
2245 for (i = 0; i < 8; ++i)
2246 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2248 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2251 static void
2252 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2254 struct env87 *penv_87 = &sv_87->sv_env;
2255 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2256 int i;
2258 /* FPU control/status */
2259 penv_xmm->en_cw = penv_87->en_cw;
2260 penv_xmm->en_sw = penv_87->en_sw;
2261 penv_xmm->en_tw = penv_87->en_tw;
2262 penv_xmm->en_fip = penv_87->en_fip;
2263 penv_xmm->en_fcs = penv_87->en_fcs;
2264 penv_xmm->en_opcode = penv_87->en_opcode;
2265 penv_xmm->en_foo = penv_87->en_foo;
2266 penv_xmm->en_fos = penv_87->en_fos;
2268 /* FPU registers */
2269 for (i = 0; i < 8; ++i)
2270 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2272 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2274 #endif /* CPU_DISABLE_SSE */
2277 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2279 #ifndef CPU_DISABLE_SSE
2280 if (cpu_fxsr) {
2281 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2282 (struct save87 *)fpregs);
2283 return (0);
2285 #endif /* CPU_DISABLE_SSE */
2286 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2287 return (0);
2291 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2293 #ifndef CPU_DISABLE_SSE
2294 if (cpu_fxsr) {
2295 set_fpregs_xmm((struct save87 *)fpregs,
2296 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2297 return (0);
2299 #endif /* CPU_DISABLE_SSE */
2300 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2301 return (0);
2305 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2307 if (lp == NULL) {
2308 dbregs->dr0 = rdr0();
2309 dbregs->dr1 = rdr1();
2310 dbregs->dr2 = rdr2();
2311 dbregs->dr3 = rdr3();
2312 dbregs->dr4 = rdr4();
2313 dbregs->dr5 = rdr5();
2314 dbregs->dr6 = rdr6();
2315 dbregs->dr7 = rdr7();
2316 } else {
2317 struct pcb *pcb;
2319 pcb = lp->lwp_thread->td_pcb;
2320 dbregs->dr0 = pcb->pcb_dr0;
2321 dbregs->dr1 = pcb->pcb_dr1;
2322 dbregs->dr2 = pcb->pcb_dr2;
2323 dbregs->dr3 = pcb->pcb_dr3;
2324 dbregs->dr4 = 0;
2325 dbregs->dr5 = 0;
2326 dbregs->dr6 = pcb->pcb_dr6;
2327 dbregs->dr7 = pcb->pcb_dr7;
2329 return (0);
2333 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2335 if (lp == NULL) {
2336 load_dr0(dbregs->dr0);
2337 load_dr1(dbregs->dr1);
2338 load_dr2(dbregs->dr2);
2339 load_dr3(dbregs->dr3);
2340 load_dr4(dbregs->dr4);
2341 load_dr5(dbregs->dr5);
2342 load_dr6(dbregs->dr6);
2343 load_dr7(dbregs->dr7);
2344 } else {
2345 struct pcb *pcb;
2346 struct ucred *ucred;
2347 int i;
2348 uint32_t mask1, mask2;
2351 * Don't let an illegal value for dr7 get set. Specifically,
2352 * check for undefined settings. Setting these bit patterns
2353 * result in undefined behaviour and can lead to an unexpected
2354 * TRCTRAP.
2356 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2357 i++, mask1 <<= 2, mask2 <<= 2)
2358 if ((dbregs->dr7 & mask1) == mask2)
2359 return (EINVAL);
2361 pcb = lp->lwp_thread->td_pcb;
2362 ucred = lp->lwp_proc->p_ucred;
2365 * Don't let a process set a breakpoint that is not within the
2366 * process's address space. If a process could do this, it
2367 * could halt the system by setting a breakpoint in the kernel
2368 * (if ddb was enabled). Thus, we need to check to make sure
2369 * that no breakpoints are being enabled for addresses outside
2370 * process's address space, unless, perhaps, we were called by
2371 * uid 0.
2373 * XXX - what about when the watched area of the user's
2374 * address space is written into from within the kernel
2375 * ... wouldn't that still cause a breakpoint to be generated
2376 * from within kernel mode?
2379 if (suser_cred(ucred, 0) != 0) {
2380 if (dbregs->dr7 & 0x3) {
2381 /* dr0 is enabled */
2382 if (dbregs->dr0 >= VM_MAX_USER_ADDRESS)
2383 return (EINVAL);
2386 if (dbregs->dr7 & (0x3<<2)) {
2387 /* dr1 is enabled */
2388 if (dbregs->dr1 >= VM_MAX_USER_ADDRESS)
2389 return (EINVAL);
2392 if (dbregs->dr7 & (0x3<<4)) {
2393 /* dr2 is enabled */
2394 if (dbregs->dr2 >= VM_MAX_USER_ADDRESS)
2395 return (EINVAL);
2398 if (dbregs->dr7 & (0x3<<6)) {
2399 /* dr3 is enabled */
2400 if (dbregs->dr3 >= VM_MAX_USER_ADDRESS)
2401 return (EINVAL);
2405 pcb->pcb_dr0 = dbregs->dr0;
2406 pcb->pcb_dr1 = dbregs->dr1;
2407 pcb->pcb_dr2 = dbregs->dr2;
2408 pcb->pcb_dr3 = dbregs->dr3;
2409 pcb->pcb_dr6 = dbregs->dr6;
2410 pcb->pcb_dr7 = dbregs->dr7;
2412 pcb->pcb_flags |= PCB_DBREGS;
2415 return (0);
2419 * Return > 0 if a hardware breakpoint has been hit, and the
2420 * breakpoint was in user space. Return 0, otherwise.
2423 user_dbreg_trap(void)
2425 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2426 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2427 int nbp; /* number of breakpoints that triggered */
2428 caddr_t addr[4]; /* breakpoint addresses */
2429 int i;
2431 dr7 = rdr7();
2432 if ((dr7 & 0x000000ff) == 0) {
2434 * all GE and LE bits in the dr7 register are zero,
2435 * thus the trap couldn't have been caused by the
2436 * hardware debug registers
2438 return 0;
2441 nbp = 0;
2442 dr6 = rdr6();
2443 bp = dr6 & 0x0000000f;
2445 if (!bp) {
2447 * None of the breakpoint bits are set meaning this
2448 * trap was not caused by any of the debug registers
2450 return 0;
2454 * at least one of the breakpoints were hit, check to see
2455 * which ones and if any of them are user space addresses
2458 if (bp & 0x01) {
2459 addr[nbp++] = (caddr_t)rdr0();
2461 if (bp & 0x02) {
2462 addr[nbp++] = (caddr_t)rdr1();
2464 if (bp & 0x04) {
2465 addr[nbp++] = (caddr_t)rdr2();
2467 if (bp & 0x08) {
2468 addr[nbp++] = (caddr_t)rdr3();
2471 for (i=0; i<nbp; i++) {
2472 if (addr[i] <
2473 (caddr_t)VM_MAX_USER_ADDRESS) {
2475 * addr[i] is in user space
2477 return nbp;
2482 * None of the breakpoints are in user space.
2484 return 0;
2488 #ifndef DDB
2489 void
2490 Debugger(const char *msg)
2492 kprintf("Debugger(\"%s\") called.\n", msg);
2494 #endif /* no DDB */
2496 #ifdef DDB
2499 * Provide inb() and outb() as functions. They are normally only
2500 * available as macros calling inlined functions, thus cannot be
2501 * called inside DDB.
2503 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2506 #undef inb
2507 #undef outb
2509 /* silence compiler warnings */
2510 u_char inb(u_int);
2511 void outb(u_int, u_char);
2513 u_char
2514 inb(u_int port)
2516 u_char data;
2518 * We use %%dx and not %1 here because i/o is done at %dx and not at
2519 * %edx, while gcc generates inferior code (movw instead of movl)
2520 * if we tell it to load (u_short) port.
2522 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2523 return (data);
2526 void
2527 outb(u_int port, u_char data)
2529 u_char al;
2531 * Use an unnecessary assignment to help gcc's register allocator.
2532 * This make a large difference for gcc-1.40 and a tiny difference
2533 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2534 * best results. gcc-2.6.0 can't handle this.
2536 al = data;
2537 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2540 #endif /* DDB */
2544 #include "opt_cpu.h"
2548 * initialize all the SMP locks
2551 /* critical region when masking or unmasking interupts */
2552 struct spinlock_deprecated imen_spinlock;
2554 /* Make FAST_INTR() routines sequential */
2555 struct spinlock_deprecated fast_intr_spinlock;
2557 /* critical region for old style disable_intr/enable_intr */
2558 struct spinlock_deprecated mpintr_spinlock;
2560 /* critical region around INTR() routines */
2561 struct spinlock_deprecated intr_spinlock;
2563 /* lock region used by kernel profiling */
2564 struct spinlock_deprecated mcount_spinlock;
2566 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2567 struct spinlock_deprecated com_spinlock;
2569 /* locks kernel kprintfs */
2570 struct spinlock_deprecated cons_spinlock;
2572 /* lock regions around the clock hardware */
2573 struct spinlock_deprecated clock_spinlock;
2575 /* lock around the MP rendezvous */
2576 struct spinlock_deprecated smp_rv_spinlock;
2578 static void
2579 init_locks(void)
2582 * mp_lock = 0; BSP already owns the MP lock
2585 * Get the initial mp_lock with a count of 1 for the BSP.
2586 * This uses a LOGICAL cpu ID, ie BSP == 0.
2588 #ifdef SMP
2589 cpu_get_initial_mplock();
2590 #endif
2591 /* DEPRECATED */
2592 spin_lock_init(&mcount_spinlock);
2593 spin_lock_init(&fast_intr_spinlock);
2594 spin_lock_init(&intr_spinlock);
2595 spin_lock_init(&mpintr_spinlock);
2596 spin_lock_init(&imen_spinlock);
2597 spin_lock_init(&smp_rv_spinlock);
2598 spin_lock_init(&com_spinlock);
2599 spin_lock_init(&clock_spinlock);
2600 spin_lock_init(&cons_spinlock);
2602 /* our token pool needs to work early */
2603 lwkt_token_pool_init();