Sync ACPICA with Intel's version 20161222.
[dragonfly.git] / sys / vm / vm_page.c
blob33c22c17d5323c31323690eb350fba6e671ba5ec
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 #include <sys/cpu_topology.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/vm_kern.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
93 #include <machine/inttypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
97 #include <vm/vm_page2.h>
98 #include <sys/spinlock2.h>
101 * Action hash for user umtx support.
103 #define VMACTION_HSIZE 256
104 #define VMACTION_HMASK (VMACTION_HSIZE - 1)
107 * SET - Minimum required set associative size, must be a power of 2. We
108 * want this to match or exceed the set-associativeness of the cpu.
110 * GRP - A larger set that allows bleed-over into the domains of other
111 * nearby cpus. Also must be a power of 2. Used by the page zeroing
112 * code to smooth things out a bit.
114 #define PQ_SET_ASSOC 16
115 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
117 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
118 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
120 static void vm_page_queue_init(void);
121 static void vm_page_free_wakeup(void);
122 static vm_page_t vm_page_select_cache(u_short pg_color);
123 static vm_page_t _vm_page_list_find2(int basequeue, int index);
124 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
127 * Array of tailq lists
129 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
131 LIST_HEAD(vm_page_action_list, vm_page_action);
132 struct vm_page_action_list action_list[VMACTION_HSIZE];
133 static volatile int vm_pages_waiting;
135 static struct alist vm_contig_alist;
136 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
137 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
139 static u_long vm_dma_reserved = 0;
140 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
141 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
142 "Memory reserved for DMA");
143 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
144 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
146 static int vm_contig_verbose = 0;
147 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
149 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
150 vm_pindex_t, pindex);
152 static void
153 vm_page_queue_init(void)
155 int i;
157 for (i = 0; i < PQ_L2_SIZE; i++)
158 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
159 for (i = 0; i < PQ_L2_SIZE; i++)
160 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
163 for (i = 0; i < PQ_L2_SIZE; i++)
164 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
165 for (i = 0; i < PQ_L2_SIZE; i++)
166 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
167 /* PQ_NONE has no queue */
169 for (i = 0; i < PQ_COUNT; i++) {
170 TAILQ_INIT(&vm_page_queues[i].pl);
171 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 for (i = 0; i < VMACTION_HSIZE; i++)
175 LIST_INIT(&action_list[i]);
179 * note: place in initialized data section? Is this necessary?
181 long first_page = 0;
182 int vm_page_array_size = 0;
183 vm_page_t vm_page_array = NULL;
184 vm_paddr_t vm_low_phys_reserved;
187 * (low level boot)
189 * Sets the page size, perhaps based upon the memory size.
190 * Must be called before any use of page-size dependent functions.
192 void
193 vm_set_page_size(void)
195 if (vmstats.v_page_size == 0)
196 vmstats.v_page_size = PAGE_SIZE;
197 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
198 panic("vm_set_page_size: page size not a power of two");
202 * (low level boot)
204 * Add a new page to the freelist for use by the system. New pages
205 * are added to both the head and tail of the associated free page
206 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
207 * requests pull 'recent' adds (higher physical addresses) first.
209 * Beware that the page zeroing daemon will also be running soon after
210 * boot, moving pages from the head to the tail of the PQ_FREE queues.
212 * Must be called in a critical section.
214 static void
215 vm_add_new_page(vm_paddr_t pa)
217 struct vpgqueues *vpq;
218 vm_page_t m;
220 m = PHYS_TO_VM_PAGE(pa);
221 m->phys_addr = pa;
222 m->flags = 0;
223 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
224 m->pat_mode = PAT_WRITE_BACK;
226 * Twist for cpu localization in addition to page coloring, so
227 * different cpus selecting by m->queue get different page colors.
229 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
230 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
232 * Reserve a certain number of contiguous low memory pages for
233 * contigmalloc() to use.
235 if (pa < vm_low_phys_reserved) {
236 atomic_add_int(&vmstats.v_page_count, 1);
237 atomic_add_int(&vmstats.v_dma_pages, 1);
238 m->queue = PQ_NONE;
239 m->wire_count = 1;
240 atomic_add_int(&vmstats.v_wire_count, 1);
241 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
242 return;
246 * General page
248 m->queue = m->pc + PQ_FREE;
249 KKASSERT(m->dirty == 0);
251 atomic_add_int(&vmstats.v_page_count, 1);
252 atomic_add_int(&vmstats.v_free_count, 1);
253 vpq = &vm_page_queues[m->queue];
254 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
255 ++vpq->lcnt;
259 * (low level boot)
261 * Initializes the resident memory module.
263 * Preallocates memory for critical VM structures and arrays prior to
264 * kernel_map becoming available.
266 * Memory is allocated from (virtual2_start, virtual2_end) if available,
267 * otherwise memory is allocated from (virtual_start, virtual_end).
269 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
270 * large enough to hold vm_page_array & other structures for machines with
271 * large amounts of ram, so we want to use virtual2* when available.
273 void
274 vm_page_startup(void)
276 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
277 vm_offset_t mapped;
278 vm_size_t npages;
279 vm_paddr_t page_range;
280 vm_paddr_t new_end;
281 int i;
282 vm_paddr_t pa;
283 int nblocks;
284 vm_paddr_t last_pa;
285 vm_paddr_t end;
286 vm_paddr_t biggestone, biggestsize;
287 vm_paddr_t total;
289 total = 0;
290 biggestsize = 0;
291 biggestone = 0;
292 nblocks = 0;
293 vaddr = round_page(vaddr);
295 for (i = 0; phys_avail[i + 1]; i += 2) {
296 phys_avail[i] = round_page64(phys_avail[i]);
297 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
300 for (i = 0; phys_avail[i + 1]; i += 2) {
301 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
303 if (size > biggestsize) {
304 biggestone = i;
305 biggestsize = size;
307 ++nblocks;
308 total += size;
311 end = phys_avail[biggestone+1];
312 end = trunc_page(end);
315 * Initialize the queue headers for the free queue, the active queue
316 * and the inactive queue.
318 vm_page_queue_init();
320 #if !defined(_KERNEL_VIRTUAL)
322 * VKERNELs don't support minidumps and as such don't need
323 * vm_page_dump
325 * Allocate a bitmap to indicate that a random physical page
326 * needs to be included in a minidump.
328 * The amd64 port needs this to indicate which direct map pages
329 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
331 * However, i386 still needs this workspace internally within the
332 * minidump code. In theory, they are not needed on i386, but are
333 * included should the sf_buf code decide to use them.
335 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
336 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
337 end -= vm_page_dump_size;
338 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
339 VM_PROT_READ | VM_PROT_WRITE);
340 bzero((void *)vm_page_dump, vm_page_dump_size);
341 #endif
343 * Compute the number of pages of memory that will be available for
344 * use (taking into account the overhead of a page structure per
345 * page).
347 first_page = phys_avail[0] / PAGE_SIZE;
348 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
349 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
351 #ifndef _KERNEL_VIRTUAL
353 * (only applies to real kernels)
355 * Reserve a large amount of low memory for potential 32-bit DMA
356 * space allocations. Once device initialization is complete we
357 * release most of it, but keep (vm_dma_reserved) memory reserved
358 * for later use. Typically for X / graphics. Through trial and
359 * error we find that GPUs usually requires ~60-100MB or so.
361 * By default, 128M is left in reserve on machines with 2G+ of ram.
363 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
364 if (vm_low_phys_reserved > total / 4)
365 vm_low_phys_reserved = total / 4;
366 if (vm_dma_reserved == 0) {
367 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
368 if (vm_dma_reserved > total / 16)
369 vm_dma_reserved = total / 16;
371 #endif
372 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
373 ALIST_RECORDS_65536);
376 * Initialize the mem entry structures now, and put them in the free
377 * queue.
379 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
380 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
381 vm_page_array = (vm_page_t)mapped;
383 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
385 * since pmap_map on amd64 returns stuff out of a direct-map region,
386 * we have to manually add these pages to the minidump tracking so
387 * that they can be dumped, including the vm_page_array.
389 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
390 dump_add_page(pa);
391 #endif
394 * Clear all of the page structures
396 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
397 vm_page_array_size = page_range;
400 * Construct the free queue(s) in ascending order (by physical
401 * address) so that the first 16MB of physical memory is allocated
402 * last rather than first. On large-memory machines, this avoids
403 * the exhaustion of low physical memory before isa_dmainit has run.
405 vmstats.v_page_count = 0;
406 vmstats.v_free_count = 0;
407 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
408 pa = phys_avail[i];
409 if (i == biggestone)
410 last_pa = new_end;
411 else
412 last_pa = phys_avail[i + 1];
413 while (pa < last_pa && npages-- > 0) {
414 vm_add_new_page(pa);
415 pa += PAGE_SIZE;
418 if (virtual2_start)
419 virtual2_start = vaddr;
420 else
421 virtual_start = vaddr;
425 * We tended to reserve a ton of memory for contigmalloc(). Now that most
426 * drivers have initialized we want to return most the remaining free
427 * reserve back to the VM page queues so they can be used for normal
428 * allocations.
430 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
432 static void
433 vm_page_startup_finish(void *dummy __unused)
435 alist_blk_t blk;
436 alist_blk_t rblk;
437 alist_blk_t count;
438 alist_blk_t xcount;
439 alist_blk_t bfree;
440 vm_page_t m;
442 spin_lock(&vm_contig_spin);
443 for (;;) {
444 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
445 if (bfree <= vm_dma_reserved / PAGE_SIZE)
446 break;
447 if (count == 0)
448 break;
451 * Figure out how much of the initial reserve we have to
452 * free in order to reach our target.
454 bfree -= vm_dma_reserved / PAGE_SIZE;
455 if (count > bfree) {
456 blk += count - bfree;
457 count = bfree;
461 * Calculate the nearest power of 2 <= count.
463 for (xcount = 1; xcount <= count; xcount <<= 1)
465 xcount >>= 1;
466 blk += count - xcount;
467 count = xcount;
470 * Allocate the pages from the alist, then free them to
471 * the normal VM page queues.
473 * Pages allocated from the alist are wired. We have to
474 * busy, unwire, and free them. We must also adjust
475 * vm_low_phys_reserved before freeing any pages to prevent
476 * confusion.
478 rblk = alist_alloc(&vm_contig_alist, blk, count);
479 if (rblk != blk) {
480 kprintf("vm_page_startup_finish: Unable to return "
481 "dma space @0x%08x/%d -> 0x%08x\n",
482 blk, count, rblk);
483 break;
485 atomic_add_int(&vmstats.v_dma_pages, -count);
486 spin_unlock(&vm_contig_spin);
488 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
489 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
490 while (count) {
491 vm_page_busy_wait(m, FALSE, "cpgfr");
492 vm_page_unwire(m, 0);
493 vm_page_free(m);
494 --count;
495 ++m;
497 spin_lock(&vm_contig_spin);
499 spin_unlock(&vm_contig_spin);
502 * Print out how much DMA space drivers have already allocated and
503 * how much is left over.
505 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
506 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
507 (PAGE_SIZE / 1024),
508 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
510 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
511 vm_page_startup_finish, NULL);
515 * Scan comparison function for Red-Black tree scans. An inclusive
516 * (start,end) is expected. Other fields are not used.
519 rb_vm_page_scancmp(struct vm_page *p, void *data)
521 struct rb_vm_page_scan_info *info = data;
523 if (p->pindex < info->start_pindex)
524 return(-1);
525 if (p->pindex > info->end_pindex)
526 return(1);
527 return(0);
531 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
533 if (p1->pindex < p2->pindex)
534 return(-1);
535 if (p1->pindex > p2->pindex)
536 return(1);
537 return(0);
540 void
541 vm_page_init(vm_page_t m)
543 /* do nothing for now. Called from pmap_page_init() */
547 * Each page queue has its own spin lock, which is fairly optimal for
548 * allocating and freeing pages at least.
550 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
551 * queue spinlock via this function. Also note that m->queue cannot change
552 * unless both the page and queue are locked.
554 static __inline
555 void
556 _vm_page_queue_spin_lock(vm_page_t m)
558 u_short queue;
560 queue = m->queue;
561 if (queue != PQ_NONE) {
562 spin_lock(&vm_page_queues[queue].spin);
563 KKASSERT(queue == m->queue);
567 static __inline
568 void
569 _vm_page_queue_spin_unlock(vm_page_t m)
571 u_short queue;
573 queue = m->queue;
574 cpu_ccfence();
575 if (queue != PQ_NONE)
576 spin_unlock(&vm_page_queues[queue].spin);
579 static __inline
580 void
581 _vm_page_queues_spin_lock(u_short queue)
583 cpu_ccfence();
584 if (queue != PQ_NONE)
585 spin_lock(&vm_page_queues[queue].spin);
589 static __inline
590 void
591 _vm_page_queues_spin_unlock(u_short queue)
593 cpu_ccfence();
594 if (queue != PQ_NONE)
595 spin_unlock(&vm_page_queues[queue].spin);
598 void
599 vm_page_queue_spin_lock(vm_page_t m)
601 _vm_page_queue_spin_lock(m);
604 void
605 vm_page_queues_spin_lock(u_short queue)
607 _vm_page_queues_spin_lock(queue);
610 void
611 vm_page_queue_spin_unlock(vm_page_t m)
613 _vm_page_queue_spin_unlock(m);
616 void
617 vm_page_queues_spin_unlock(u_short queue)
619 _vm_page_queues_spin_unlock(queue);
623 * This locks the specified vm_page and its queue in the proper order
624 * (page first, then queue). The queue may change so the caller must
625 * recheck on return.
627 static __inline
628 void
629 _vm_page_and_queue_spin_lock(vm_page_t m)
631 vm_page_spin_lock(m);
632 _vm_page_queue_spin_lock(m);
635 static __inline
636 void
637 _vm_page_and_queue_spin_unlock(vm_page_t m)
639 _vm_page_queues_spin_unlock(m->queue);
640 vm_page_spin_unlock(m);
643 void
644 vm_page_and_queue_spin_unlock(vm_page_t m)
646 _vm_page_and_queue_spin_unlock(m);
649 void
650 vm_page_and_queue_spin_lock(vm_page_t m)
652 _vm_page_and_queue_spin_lock(m);
656 * Helper function removes vm_page from its current queue.
657 * Returns the base queue the page used to be on.
659 * The vm_page and the queue must be spinlocked.
660 * This function will unlock the queue but leave the page spinlocked.
662 static __inline u_short
663 _vm_page_rem_queue_spinlocked(vm_page_t m)
665 struct vpgqueues *pq;
666 u_short queue;
667 u_short oqueue;
669 queue = m->queue;
670 if (queue != PQ_NONE) {
671 pq = &vm_page_queues[queue];
672 TAILQ_REMOVE(&pq->pl, m, pageq);
673 atomic_add_int(pq->cnt, -1);
674 pq->lcnt--;
675 m->queue = PQ_NONE;
676 oqueue = queue;
677 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
678 queue -= m->pc;
679 vm_page_queues_spin_unlock(oqueue); /* intended */
681 return queue;
685 * Helper function places the vm_page on the specified queue.
687 * The vm_page must be spinlocked.
688 * This function will return with both the page and the queue locked.
690 static __inline void
691 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
693 struct vpgqueues *pq;
695 KKASSERT(m->queue == PQ_NONE);
697 if (queue != PQ_NONE) {
698 vm_page_queues_spin_lock(queue);
699 pq = &vm_page_queues[queue];
700 ++pq->lcnt;
701 atomic_add_int(pq->cnt, 1);
702 m->queue = queue;
705 * PQ_FREE is always handled LIFO style to try to provide
706 * cache-hot pages to programs.
708 if (queue - m->pc == PQ_FREE) {
709 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
710 } else if (athead) {
711 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
712 } else {
713 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
715 /* leave the queue spinlocked */
720 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
721 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
722 * did not. Only one sleep call will be made before returning.
724 * This function does NOT busy the page and on return the page is not
725 * guaranteed to be available.
727 void
728 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
730 u_int32_t flags;
732 for (;;) {
733 flags = m->flags;
734 cpu_ccfence();
736 if ((flags & PG_BUSY) == 0 &&
737 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
738 break;
740 tsleep_interlock(m, 0);
741 if (atomic_cmpset_int(&m->flags, flags,
742 flags | PG_WANTED | PG_REFERENCED)) {
743 tsleep(m, PINTERLOCKED, msg, 0);
744 break;
750 * This calculates and returns a page color given an optional VM object and
751 * either a pindex or an iterator. We attempt to return a cpu-localized
752 * pg_color that is still roughly 16-way set-associative. The CPU topology
753 * is used if it was probed.
755 * The caller may use the returned value to index into e.g. PQ_FREE when
756 * allocating a page in order to nominally obtain pages that are hopefully
757 * already localized to the requesting cpu. This function is not able to
758 * provide any sort of guarantee of this, but does its best to improve
759 * hardware cache management performance.
761 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
763 u_short
764 vm_get_pg_color(globaldata_t gd, vm_object_t object, vm_pindex_t pindex)
766 u_short pg_color;
767 int phys_id;
768 int core_id;
769 int object_pg_color;
771 phys_id = get_cpu_phys_id(gd->gd_cpuid);
772 core_id = get_cpu_core_id(gd->gd_cpuid);
773 object_pg_color = object ? object->pg_color : 0;
775 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
776 int grpsize = PQ_L2_SIZE / cpu_topology_phys_ids;
778 if (grpsize / cpu_topology_core_ids >= PQ_SET_ASSOC) {
780 * Enough space for a full break-down.
782 pg_color = phys_id * grpsize;
783 pg_color += core_id * grpsize / cpu_topology_core_ids;
784 pg_color += (pindex + object_pg_color) %
785 (grpsize / cpu_topology_core_ids);
786 } else {
788 * Not enough space, split up by physical package,
789 * then split up by core id but only down to a
790 * 16-set. If all else fails, force a 16-set.
792 pg_color = phys_id * grpsize;
793 if (grpsize > 16) {
794 pg_color += 16 * (core_id % (grpsize / 16));
795 grpsize = 16;
796 } else {
797 grpsize = 16;
799 pg_color += (pindex + object_pg_color) %
800 grpsize;
802 } else {
804 * Unknown topology, distribute things evenly.
806 pg_color = gd->gd_cpuid * PQ_L2_SIZE / ncpus;
807 pg_color += pindex + object_pg_color;
809 return pg_color;
813 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
814 * also wait for m->busy to become 0 before setting PG_BUSY.
816 void
817 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
818 int also_m_busy, const char *msg
819 VM_PAGE_DEBUG_ARGS)
821 u_int32_t flags;
823 for (;;) {
824 flags = m->flags;
825 cpu_ccfence();
826 if (flags & PG_BUSY) {
827 tsleep_interlock(m, 0);
828 if (atomic_cmpset_int(&m->flags, flags,
829 flags | PG_WANTED | PG_REFERENCED)) {
830 tsleep(m, PINTERLOCKED, msg, 0);
832 } else if (also_m_busy && (flags & PG_SBUSY)) {
833 tsleep_interlock(m, 0);
834 if (atomic_cmpset_int(&m->flags, flags,
835 flags | PG_WANTED | PG_REFERENCED)) {
836 tsleep(m, PINTERLOCKED, msg, 0);
838 } else {
839 if (atomic_cmpset_int(&m->flags, flags,
840 flags | PG_BUSY)) {
841 #ifdef VM_PAGE_DEBUG
842 m->busy_func = func;
843 m->busy_line = lineno;
844 #endif
845 break;
852 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
853 * is also 0.
855 * Returns non-zero on failure.
858 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
859 VM_PAGE_DEBUG_ARGS)
861 u_int32_t flags;
863 for (;;) {
864 flags = m->flags;
865 cpu_ccfence();
866 if (flags & PG_BUSY)
867 return TRUE;
868 if (also_m_busy && (flags & PG_SBUSY))
869 return TRUE;
870 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
871 #ifdef VM_PAGE_DEBUG
872 m->busy_func = func;
873 m->busy_line = lineno;
874 #endif
875 return FALSE;
881 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
882 * that a wakeup() should be performed.
884 * The vm_page must be spinlocked and will remain spinlocked on return.
885 * The related queue must NOT be spinlocked (which could deadlock us).
887 * (inline version)
889 static __inline
891 _vm_page_wakeup(vm_page_t m)
893 u_int32_t flags;
895 for (;;) {
896 flags = m->flags;
897 cpu_ccfence();
898 if (atomic_cmpset_int(&m->flags, flags,
899 flags & ~(PG_BUSY | PG_WANTED))) {
900 break;
903 return(flags & PG_WANTED);
907 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
908 * is typically the last call you make on a page before moving onto
909 * other things.
911 void
912 vm_page_wakeup(vm_page_t m)
914 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
915 vm_page_spin_lock(m);
916 if (_vm_page_wakeup(m)) {
917 vm_page_spin_unlock(m);
918 wakeup(m);
919 } else {
920 vm_page_spin_unlock(m);
925 * Holding a page keeps it from being reused. Other parts of the system
926 * can still disassociate the page from its current object and free it, or
927 * perform read or write I/O on it and/or otherwise manipulate the page,
928 * but if the page is held the VM system will leave the page and its data
929 * intact and not reuse the page for other purposes until the last hold
930 * reference is released. (see vm_page_wire() if you want to prevent the
931 * page from being disassociated from its object too).
933 * The caller must still validate the contents of the page and, if necessary,
934 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
935 * before manipulating the page.
937 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
939 void
940 vm_page_hold(vm_page_t m)
942 vm_page_spin_lock(m);
943 atomic_add_int(&m->hold_count, 1);
944 if (m->queue - m->pc == PQ_FREE) {
945 _vm_page_queue_spin_lock(m);
946 _vm_page_rem_queue_spinlocked(m);
947 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
948 _vm_page_queue_spin_unlock(m);
950 vm_page_spin_unlock(m);
954 * The opposite of vm_page_hold(). If the page is on the HOLD queue
955 * it was freed while held and must be moved back to the FREE queue.
957 void
958 vm_page_unhold(vm_page_t m)
960 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
961 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
962 m, m->hold_count, m->queue - m->pc));
963 vm_page_spin_lock(m);
964 atomic_add_int(&m->hold_count, -1);
965 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
966 _vm_page_queue_spin_lock(m);
967 _vm_page_rem_queue_spinlocked(m);
968 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
969 _vm_page_queue_spin_unlock(m);
971 vm_page_spin_unlock(m);
975 * vm_page_getfake:
977 * Create a fictitious page with the specified physical address and
978 * memory attribute. The memory attribute is the only the machine-
979 * dependent aspect of a fictitious page that must be initialized.
982 void
983 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
986 if ((m->flags & PG_FICTITIOUS) != 0) {
988 * The page's memattr might have changed since the
989 * previous initialization. Update the pmap to the
990 * new memattr.
992 goto memattr;
994 m->phys_addr = paddr;
995 m->queue = PQ_NONE;
996 /* Fictitious pages don't use "segind". */
997 /* Fictitious pages don't use "order" or "pool". */
998 m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
999 m->wire_count = 1;
1000 pmap_page_init(m);
1001 memattr:
1002 pmap_page_set_memattr(m, memattr);
1006 * Inserts the given vm_page into the object and object list.
1008 * The pagetables are not updated but will presumably fault the page
1009 * in if necessary, or if a kernel page the caller will at some point
1010 * enter the page into the kernel's pmap. We are not allowed to block
1011 * here so we *can't* do this anyway.
1013 * This routine may not block.
1014 * This routine must be called with the vm_object held.
1015 * This routine must be called with a critical section held.
1017 * This routine returns TRUE if the page was inserted into the object
1018 * successfully, and FALSE if the page already exists in the object.
1021 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1023 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1024 if (m->object != NULL)
1025 panic("vm_page_insert: already inserted");
1027 object->generation++;
1030 * Record the object/offset pair in this page and add the
1031 * pv_list_count of the page to the object.
1033 * The vm_page spin lock is required for interactions with the pmap.
1035 vm_page_spin_lock(m);
1036 m->object = object;
1037 m->pindex = pindex;
1038 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1039 m->object = NULL;
1040 m->pindex = 0;
1041 vm_page_spin_unlock(m);
1042 return FALSE;
1044 ++object->resident_page_count;
1045 ++mycpu->gd_vmtotal.t_rm;
1046 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
1047 vm_page_spin_unlock(m);
1050 * Since we are inserting a new and possibly dirty page,
1051 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1053 if ((m->valid & m->dirty) ||
1054 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1055 vm_object_set_writeable_dirty(object);
1058 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1060 swap_pager_page_inserted(m);
1061 return TRUE;
1065 * Removes the given vm_page_t from the (object,index) table
1067 * The underlying pmap entry (if any) is NOT removed here.
1068 * This routine may not block.
1070 * The page must be BUSY and will remain BUSY on return.
1071 * No other requirements.
1073 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1074 * it busy.
1076 void
1077 vm_page_remove(vm_page_t m)
1079 vm_object_t object;
1081 if (m->object == NULL) {
1082 return;
1085 if ((m->flags & PG_BUSY) == 0)
1086 panic("vm_page_remove: page not busy");
1088 object = m->object;
1090 vm_object_hold(object);
1093 * Remove the page from the object and update the object.
1095 * The vm_page spin lock is required for interactions with the pmap.
1097 vm_page_spin_lock(m);
1098 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1099 --object->resident_page_count;
1100 --mycpu->gd_vmtotal.t_rm;
1101 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1102 m->object = NULL;
1103 vm_page_spin_unlock(m);
1105 object->generation++;
1107 vm_object_drop(object);
1111 * Locate and return the page at (object, pindex), or NULL if the
1112 * page could not be found.
1114 * The caller must hold the vm_object token.
1116 vm_page_t
1117 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1119 vm_page_t m;
1122 * Search the hash table for this object/offset pair
1124 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1125 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1126 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1127 return(m);
1130 vm_page_t
1131 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1132 vm_pindex_t pindex,
1133 int also_m_busy, const char *msg
1134 VM_PAGE_DEBUG_ARGS)
1136 u_int32_t flags;
1137 vm_page_t m;
1139 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1140 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1141 while (m) {
1142 KKASSERT(m->object == object && m->pindex == pindex);
1143 flags = m->flags;
1144 cpu_ccfence();
1145 if (flags & PG_BUSY) {
1146 tsleep_interlock(m, 0);
1147 if (atomic_cmpset_int(&m->flags, flags,
1148 flags | PG_WANTED | PG_REFERENCED)) {
1149 tsleep(m, PINTERLOCKED, msg, 0);
1150 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1151 pindex);
1153 } else if (also_m_busy && (flags & PG_SBUSY)) {
1154 tsleep_interlock(m, 0);
1155 if (atomic_cmpset_int(&m->flags, flags,
1156 flags | PG_WANTED | PG_REFERENCED)) {
1157 tsleep(m, PINTERLOCKED, msg, 0);
1158 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1159 pindex);
1161 } else if (atomic_cmpset_int(&m->flags, flags,
1162 flags | PG_BUSY)) {
1163 #ifdef VM_PAGE_DEBUG
1164 m->busy_func = func;
1165 m->busy_line = lineno;
1166 #endif
1167 break;
1170 return m;
1174 * Attempt to lookup and busy a page.
1176 * Returns NULL if the page could not be found
1178 * Returns a vm_page and error == TRUE if the page exists but could not
1179 * be busied.
1181 * Returns a vm_page and error == FALSE on success.
1183 vm_page_t
1184 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1185 vm_pindex_t pindex,
1186 int also_m_busy, int *errorp
1187 VM_PAGE_DEBUG_ARGS)
1189 u_int32_t flags;
1190 vm_page_t m;
1192 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1193 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1194 *errorp = FALSE;
1195 while (m) {
1196 KKASSERT(m->object == object && m->pindex == pindex);
1197 flags = m->flags;
1198 cpu_ccfence();
1199 if (flags & PG_BUSY) {
1200 *errorp = TRUE;
1201 break;
1203 if (also_m_busy && (flags & PG_SBUSY)) {
1204 *errorp = TRUE;
1205 break;
1207 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1208 #ifdef VM_PAGE_DEBUG
1209 m->busy_func = func;
1210 m->busy_line = lineno;
1211 #endif
1212 break;
1215 return m;
1219 * Attempt to repurpose the passed-in page. If the passed-in page cannot
1220 * be repurposed it will be released, *must_reenter will be set to 1, and
1221 * this function will fall-through to vm_page_lookup_busy_try().
1223 * The passed-in page must be wired and not busy. The returned page will
1224 * be busied and not wired.
1226 * A different page may be returned. The returned page will be busied and
1227 * not wired.
1229 * NULL can be returned. If so, the required page could not be busied.
1230 * The passed-in page will be unwired.
1232 vm_page_t
1233 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1234 int also_m_busy, int *errorp, vm_page_t m,
1235 int *must_reenter, int *iswired)
1237 if (m) {
1239 * Do not mess with pages in a complex state, such as pages
1240 * which are mapped, as repurposing such pages can be more
1241 * expensive than simply allocatin a new one.
1243 * NOTE: Soft-busying can deadlock against putpages or I/O
1244 * so we only allow hard-busying here.
1246 KKASSERT(also_m_busy == FALSE);
1247 vm_page_busy_wait(m, also_m_busy, "biodep");
1249 if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1250 PG_FICTITIOUS | PG_SBUSY)) ||
1251 m->busy || m->wire_count != 1 || m->hold_count) {
1252 vm_page_unwire(m, 0);
1253 vm_page_wakeup(m);
1254 /* fall through to normal lookup */
1255 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1256 vm_page_unwire(m, 0);
1257 vm_page_deactivate(m);
1258 vm_page_wakeup(m);
1259 /* fall through to normal lookup */
1260 } else {
1262 * We can safely repurpose the page. It should
1263 * already be unqueued.
1265 KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1266 vm_page_remove(m);
1267 m->valid = 0;
1268 m->act_count = 0;
1269 if (vm_page_insert(m, object, pindex)) {
1270 *errorp = 0;
1271 *iswired = 1;
1273 return m;
1275 vm_page_unwire(m, 0);
1276 vm_page_free(m);
1277 /* fall through to normal lookup */
1282 * Cannot repurpose page, attempt to locate the desired page. May
1283 * return NULL.
1285 *must_reenter = 1;
1286 *iswired = 0;
1287 m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1289 return m;
1293 * Caller must hold the related vm_object
1295 vm_page_t
1296 vm_page_next(vm_page_t m)
1298 vm_page_t next;
1300 next = vm_page_rb_tree_RB_NEXT(m);
1301 if (next && next->pindex != m->pindex + 1)
1302 next = NULL;
1303 return (next);
1307 * vm_page_rename()
1309 * Move the given vm_page from its current object to the specified
1310 * target object/offset. The page must be busy and will remain so
1311 * on return.
1313 * new_object must be held.
1314 * This routine might block. XXX ?
1316 * NOTE: Swap associated with the page must be invalidated by the move. We
1317 * have to do this for several reasons: (1) we aren't freeing the
1318 * page, (2) we are dirtying the page, (3) the VM system is probably
1319 * moving the page from object A to B, and will then later move
1320 * the backing store from A to B and we can't have a conflict.
1322 * NOTE: We *always* dirty the page. It is necessary both for the
1323 * fact that we moved it, and because we may be invalidating
1324 * swap. If the page is on the cache, we have to deactivate it
1325 * or vm_page_dirty() will panic. Dirty pages are not allowed
1326 * on the cache.
1328 void
1329 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1331 KKASSERT(m->flags & PG_BUSY);
1332 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1333 if (m->object) {
1334 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1335 vm_page_remove(m);
1337 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1338 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1339 new_object, new_pindex);
1341 if (m->queue - m->pc == PQ_CACHE)
1342 vm_page_deactivate(m);
1343 vm_page_dirty(m);
1347 * vm_page_unqueue() without any wakeup. This routine is used when a page
1348 * is to remain BUSYied by the caller.
1350 * This routine may not block.
1352 void
1353 vm_page_unqueue_nowakeup(vm_page_t m)
1355 vm_page_and_queue_spin_lock(m);
1356 (void)_vm_page_rem_queue_spinlocked(m);
1357 vm_page_spin_unlock(m);
1361 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1362 * if necessary.
1364 * This routine may not block.
1366 void
1367 vm_page_unqueue(vm_page_t m)
1369 u_short queue;
1371 vm_page_and_queue_spin_lock(m);
1372 queue = _vm_page_rem_queue_spinlocked(m);
1373 if (queue == PQ_FREE || queue == PQ_CACHE) {
1374 vm_page_spin_unlock(m);
1375 pagedaemon_wakeup();
1376 } else {
1377 vm_page_spin_unlock(m);
1382 * vm_page_list_find()
1384 * Find a page on the specified queue with color optimization.
1386 * The page coloring optimization attempts to locate a page that does
1387 * not overload other nearby pages in the object in the cpu's L1 or L2
1388 * caches. We need this optimization because cpu caches tend to be
1389 * physical caches, while object spaces tend to be virtual.
1391 * The page coloring optimization also, very importantly, tries to localize
1392 * memory to cpus and physical sockets.
1394 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1395 * and the algorithm is adjusted to localize allocations on a per-core basis.
1396 * This is done by 'twisting' the colors.
1398 * The page is returned spinlocked and removed from its queue (it will
1399 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1400 * is responsible for dealing with the busy-page case (usually by
1401 * deactivating the page and looping).
1403 * NOTE: This routine is carefully inlined. A non-inlined version
1404 * is available for outside callers but the only critical path is
1405 * from within this source file.
1407 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1408 * represent stable storage, allowing us to order our locks vm_page
1409 * first, then queue.
1411 static __inline
1412 vm_page_t
1413 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1415 vm_page_t m;
1417 for (;;) {
1418 if (prefer_zero) {
1419 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl,
1420 pglist);
1421 } else {
1422 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1424 if (m == NULL) {
1425 m = _vm_page_list_find2(basequeue, index);
1426 return(m);
1428 vm_page_and_queue_spin_lock(m);
1429 if (m->queue == basequeue + index) {
1430 _vm_page_rem_queue_spinlocked(m);
1431 /* vm_page_t spin held, no queue spin */
1432 break;
1434 vm_page_and_queue_spin_unlock(m);
1436 return(m);
1440 * If we could not find the page in the desired queue try to find it in
1441 * a nearby queue.
1443 static vm_page_t
1444 _vm_page_list_find2(int basequeue, int index)
1446 struct vpgqueues *pq;
1447 vm_page_t m = NULL;
1448 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1449 int pqi;
1450 int i;
1452 index &= PQ_L2_MASK;
1453 pq = &vm_page_queues[basequeue];
1456 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1457 * else fails (PQ_L2_MASK which is 255).
1459 do {
1460 pqmask = (pqmask << 1) | 1;
1461 for (i = 0; i <= pqmask; ++i) {
1462 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1463 m = TAILQ_FIRST(&pq[pqi].pl);
1464 if (m) {
1465 _vm_page_and_queue_spin_lock(m);
1466 if (m->queue == basequeue + pqi) {
1467 _vm_page_rem_queue_spinlocked(m);
1468 return(m);
1470 _vm_page_and_queue_spin_unlock(m);
1471 --i;
1472 continue;
1475 } while (pqmask != PQ_L2_MASK);
1477 return(m);
1481 * Returns a vm_page candidate for allocation. The page is not busied so
1482 * it can move around. The caller must busy the page (and typically
1483 * deactivate it if it cannot be busied!)
1485 * Returns a spinlocked vm_page that has been removed from its queue.
1487 vm_page_t
1488 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1490 return(_vm_page_list_find(basequeue, index, prefer_zero));
1494 * Find a page on the cache queue with color optimization, remove it
1495 * from the queue, and busy it. The returned page will not be spinlocked.
1497 * A candidate failure will be deactivated. Candidates can fail due to
1498 * being busied by someone else, in which case they will be deactivated.
1500 * This routine may not block.
1503 static vm_page_t
1504 vm_page_select_cache(u_short pg_color)
1506 vm_page_t m;
1508 for (;;) {
1509 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1510 if (m == NULL)
1511 break;
1513 * (m) has been removed from its queue and spinlocked
1515 if (vm_page_busy_try(m, TRUE)) {
1516 _vm_page_deactivate_locked(m, 0);
1517 vm_page_spin_unlock(m);
1518 } else {
1520 * We successfully busied the page
1522 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1523 m->hold_count == 0 &&
1524 m->wire_count == 0 &&
1525 (m->dirty & m->valid) == 0) {
1526 vm_page_spin_unlock(m);
1527 pagedaemon_wakeup();
1528 return(m);
1532 * The page cannot be recycled, deactivate it.
1534 _vm_page_deactivate_locked(m, 0);
1535 if (_vm_page_wakeup(m)) {
1536 vm_page_spin_unlock(m);
1537 wakeup(m);
1538 } else {
1539 vm_page_spin_unlock(m);
1543 return (m);
1547 * Find a free or zero page, with specified preference. We attempt to
1548 * inline the nominal case and fall back to _vm_page_select_free()
1549 * otherwise. A busied page is removed from the queue and returned.
1551 * This routine may not block.
1553 static __inline vm_page_t
1554 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1556 vm_page_t m;
1558 for (;;) {
1559 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1560 prefer_zero);
1561 if (m == NULL)
1562 break;
1563 if (vm_page_busy_try(m, TRUE)) {
1565 * Various mechanisms such as a pmap_collect can
1566 * result in a busy page on the free queue. We
1567 * have to move the page out of the way so we can
1568 * retry the allocation. If the other thread is not
1569 * allocating the page then m->valid will remain 0 and
1570 * the pageout daemon will free the page later on.
1572 * Since we could not busy the page, however, we
1573 * cannot make assumptions as to whether the page
1574 * will be allocated by the other thread or not,
1575 * so all we can do is deactivate it to move it out
1576 * of the way. In particular, if the other thread
1577 * wires the page it may wind up on the inactive
1578 * queue and the pageout daemon will have to deal
1579 * with that case too.
1581 _vm_page_deactivate_locked(m, 0);
1582 vm_page_spin_unlock(m);
1583 } else {
1585 * Theoretically if we are able to busy the page
1586 * atomic with the queue removal (using the vm_page
1587 * lock) nobody else should be able to mess with the
1588 * page before us.
1590 KKASSERT((m->flags & (PG_UNMANAGED |
1591 PG_NEED_COMMIT)) == 0);
1592 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1593 "pg %p q=%d flags=%08x hold=%d wire=%d",
1594 m, m->queue, m->flags, m->hold_count, m->wire_count));
1595 KKASSERT(m->wire_count == 0);
1596 vm_page_spin_unlock(m);
1597 pagedaemon_wakeup();
1599 /* return busied and removed page */
1600 return(m);
1603 return(m);
1607 * vm_page_alloc()
1609 * Allocate and return a memory cell associated with this VM object/offset
1610 * pair. If object is NULL an unassociated page will be allocated.
1612 * The returned page will be busied and removed from its queues. This
1613 * routine can block and may return NULL if a race occurs and the page
1614 * is found to already exist at the specified (object, pindex).
1616 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1617 * VM_ALLOC_QUICK like normal but cannot use cache
1618 * VM_ALLOC_SYSTEM greater free drain
1619 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1620 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1621 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1622 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1623 * (see vm_page_grab())
1624 * VM_ALLOC_USE_GD ok to use per-gd cache
1626 * The object must be held if not NULL
1627 * This routine may not block
1629 * Additional special handling is required when called from an interrupt
1630 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1631 * in this case.
1633 vm_page_t
1634 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1636 globaldata_t gd = mycpu;
1637 vm_object_t obj;
1638 vm_page_t m;
1639 u_short pg_color;
1641 #if 0
1643 * Special per-cpu free VM page cache. The pages are pre-busied
1644 * and pre-zerod for us.
1646 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1647 crit_enter_gd(gd);
1648 if (gd->gd_vmpg_count) {
1649 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1650 crit_exit_gd(gd);
1651 goto done;
1653 crit_exit_gd(gd);
1655 #endif
1656 m = NULL;
1659 * CPU LOCALIZATION
1661 * CPU localization algorithm. Break the page queues up by physical
1662 * id and core id (note that two cpu threads will have the same core
1663 * id, and core_id != gd_cpuid).
1665 * This is nowhere near perfect, for example the last pindex in a
1666 * subgroup will overflow into the next cpu or package. But this
1667 * should get us good page reuse locality in heavy mixed loads.
1669 pg_color = vm_get_pg_color(gd, object, pindex);
1671 KKASSERT(page_req &
1672 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1673 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1676 * Certain system threads (pageout daemon, buf_daemon's) are
1677 * allowed to eat deeper into the free page list.
1679 if (curthread->td_flags & TDF_SYSTHREAD)
1680 page_req |= VM_ALLOC_SYSTEM;
1683 * Impose various limitations. Note that the v_free_reserved test
1684 * must match the opposite of vm_page_count_target() to avoid
1685 * livelocks, be careful.
1687 loop:
1688 if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1689 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1690 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1691 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1694 * The free queue has sufficient free pages to take one out.
1696 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1697 m = vm_page_select_free(pg_color, TRUE);
1698 else
1699 m = vm_page_select_free(pg_color, FALSE);
1700 } else if (page_req & VM_ALLOC_NORMAL) {
1702 * Allocatable from the cache (non-interrupt only). On
1703 * success, we must free the page and try again, thus
1704 * ensuring that vmstats.v_*_free_min counters are replenished.
1706 #ifdef INVARIANTS
1707 if (curthread->td_preempted) {
1708 kprintf("vm_page_alloc(): warning, attempt to allocate"
1709 " cache page from preempting interrupt\n");
1710 m = NULL;
1711 } else {
1712 m = vm_page_select_cache(pg_color);
1714 #else
1715 m = vm_page_select_cache(pg_color);
1716 #endif
1718 * On success move the page into the free queue and loop.
1720 * Only do this if we can safely acquire the vm_object lock,
1721 * because this is effectively a random page and the caller
1722 * might be holding the lock shared, we don't want to
1723 * deadlock.
1725 if (m != NULL) {
1726 KASSERT(m->dirty == 0,
1727 ("Found dirty cache page %p", m));
1728 if ((obj = m->object) != NULL) {
1729 if (vm_object_hold_try(obj)) {
1730 vm_page_protect(m, VM_PROT_NONE);
1731 vm_page_free(m);
1732 /* m->object NULL here */
1733 vm_object_drop(obj);
1734 } else {
1735 vm_page_deactivate(m);
1736 vm_page_wakeup(m);
1738 } else {
1739 vm_page_protect(m, VM_PROT_NONE);
1740 vm_page_free(m);
1742 goto loop;
1746 * On failure return NULL
1748 #if defined(DIAGNOSTIC)
1749 if (vmstats.v_cache_count > 0)
1750 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1751 #endif
1752 atomic_add_int(&vm_pageout_deficit, 1);
1753 pagedaemon_wakeup();
1754 return (NULL);
1755 } else {
1757 * No pages available, wakeup the pageout daemon and give up.
1759 atomic_add_int(&vm_pageout_deficit, 1);
1760 pagedaemon_wakeup();
1761 return (NULL);
1765 * v_free_count can race so loop if we don't find the expected
1766 * page.
1768 if (m == NULL)
1769 goto loop;
1772 * Good page found. The page has already been busied for us and
1773 * removed from its queues.
1775 KASSERT(m->dirty == 0,
1776 ("vm_page_alloc: free/cache page %p was dirty", m));
1777 KKASSERT(m->queue == PQ_NONE);
1779 #if 0
1780 done:
1781 #endif
1783 * Initialize the structure, inheriting some flags but clearing
1784 * all the rest. The page has already been busied for us.
1786 vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY));
1787 KKASSERT(m->wire_count == 0);
1788 KKASSERT(m->busy == 0);
1789 m->act_count = 0;
1790 m->valid = 0;
1793 * Caller must be holding the object lock (asserted by
1794 * vm_page_insert()).
1796 * NOTE: Inserting a page here does not insert it into any pmaps
1797 * (which could cause us to block allocating memory).
1799 * NOTE: If no object an unassociated page is allocated, m->pindex
1800 * can be used by the caller for any purpose.
1802 if (object) {
1803 if (vm_page_insert(m, object, pindex) == FALSE) {
1804 vm_page_free(m);
1805 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1806 panic("PAGE RACE %p[%ld]/%p",
1807 object, (long)pindex, m);
1808 m = NULL;
1810 } else {
1811 m->pindex = pindex;
1815 * Don't wakeup too often - wakeup the pageout daemon when
1816 * we would be nearly out of memory.
1818 pagedaemon_wakeup();
1821 * A PG_BUSY page is returned.
1823 return (m);
1827 * Returns number of pages available in our DMA memory reserve
1828 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1830 vm_size_t
1831 vm_contig_avail_pages(void)
1833 alist_blk_t blk;
1834 alist_blk_t count;
1835 alist_blk_t bfree;
1836 spin_lock(&vm_contig_spin);
1837 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1838 spin_unlock(&vm_contig_spin);
1840 return bfree;
1844 * Attempt to allocate contiguous physical memory with the specified
1845 * requirements.
1847 vm_page_t
1848 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1849 unsigned long alignment, unsigned long boundary,
1850 unsigned long size, vm_memattr_t memattr)
1852 alist_blk_t blk;
1853 vm_page_t m;
1854 int i;
1856 alignment >>= PAGE_SHIFT;
1857 if (alignment == 0)
1858 alignment = 1;
1859 boundary >>= PAGE_SHIFT;
1860 if (boundary == 0)
1861 boundary = 1;
1862 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1864 spin_lock(&vm_contig_spin);
1865 blk = alist_alloc(&vm_contig_alist, 0, size);
1866 if (blk == ALIST_BLOCK_NONE) {
1867 spin_unlock(&vm_contig_spin);
1868 if (bootverbose) {
1869 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1870 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1872 return(NULL);
1874 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1875 alist_free(&vm_contig_alist, blk, size);
1876 spin_unlock(&vm_contig_spin);
1877 if (bootverbose) {
1878 kprintf("vm_page_alloc_contig: %ldk high "
1879 "%016jx failed\n",
1880 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1881 (intmax_t)high);
1883 return(NULL);
1885 spin_unlock(&vm_contig_spin);
1886 if (vm_contig_verbose) {
1887 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1888 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1889 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1892 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1893 if (memattr != VM_MEMATTR_DEFAULT)
1894 for (i = 0;i < size;i++)
1895 pmap_page_set_memattr(&m[i], memattr);
1896 return m;
1900 * Free contiguously allocated pages. The pages will be wired but not busy.
1901 * When freeing to the alist we leave them wired and not busy.
1903 void
1904 vm_page_free_contig(vm_page_t m, unsigned long size)
1906 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1907 vm_pindex_t start = pa >> PAGE_SHIFT;
1908 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1910 if (vm_contig_verbose) {
1911 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1912 (intmax_t)pa, size / 1024);
1914 if (pa < vm_low_phys_reserved) {
1915 KKASSERT(pa + size <= vm_low_phys_reserved);
1916 spin_lock(&vm_contig_spin);
1917 alist_free(&vm_contig_alist, start, pages);
1918 spin_unlock(&vm_contig_spin);
1919 } else {
1920 while (pages) {
1921 vm_page_busy_wait(m, FALSE, "cpgfr");
1922 vm_page_unwire(m, 0);
1923 vm_page_free(m);
1924 --pages;
1925 ++m;
1933 * Wait for sufficient free memory for nominal heavy memory use kernel
1934 * operations.
1936 * WARNING! Be sure never to call this in any vm_pageout code path, which
1937 * will trivially deadlock the system.
1939 void
1940 vm_wait_nominal(void)
1942 while (vm_page_count_min(0))
1943 vm_wait(0);
1947 * Test if vm_wait_nominal() would block.
1950 vm_test_nominal(void)
1952 if (vm_page_count_min(0))
1953 return(1);
1954 return(0);
1958 * Block until free pages are available for allocation, called in various
1959 * places before memory allocations.
1961 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1962 * more generous then that.
1964 void
1965 vm_wait(int timo)
1968 * never wait forever
1970 if (timo == 0)
1971 timo = hz;
1972 lwkt_gettoken(&vm_token);
1974 if (curthread == pagethread) {
1976 * The pageout daemon itself needs pages, this is bad.
1978 if (vm_page_count_min(0)) {
1979 vm_pageout_pages_needed = 1;
1980 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1982 } else {
1984 * Wakeup the pageout daemon if necessary and wait.
1986 * Do not wait indefinitely for the target to be reached,
1987 * as load might prevent it from being reached any time soon.
1988 * But wait a little to try to slow down page allocations
1989 * and to give more important threads (the pagedaemon)
1990 * allocation priority.
1992 if (vm_page_count_target()) {
1993 if (vm_pages_needed == 0) {
1994 vm_pages_needed = 1;
1995 wakeup(&vm_pages_needed);
1997 ++vm_pages_waiting; /* SMP race ok */
1998 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2001 lwkt_reltoken(&vm_token);
2005 * Block until free pages are available for allocation
2007 * Called only from vm_fault so that processes page faulting can be
2008 * easily tracked.
2010 void
2011 vm_wait_pfault(void)
2014 * Wakeup the pageout daemon if necessary and wait.
2016 * Do not wait indefinitely for the target to be reached,
2017 * as load might prevent it from being reached any time soon.
2018 * But wait a little to try to slow down page allocations
2019 * and to give more important threads (the pagedaemon)
2020 * allocation priority.
2022 if (vm_page_count_min(0)) {
2023 lwkt_gettoken(&vm_token);
2024 while (vm_page_count_severe()) {
2025 if (vm_page_count_target()) {
2026 thread_t td;
2028 if (vm_pages_needed == 0) {
2029 vm_pages_needed = 1;
2030 wakeup(&vm_pages_needed);
2032 ++vm_pages_waiting; /* SMP race ok */
2033 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2036 * Do not stay stuck in the loop if the system is trying
2037 * to kill the process.
2039 td = curthread;
2040 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2041 break;
2044 lwkt_reltoken(&vm_token);
2049 * Put the specified page on the active list (if appropriate). Ensure
2050 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2052 * The caller should be holding the page busied ? XXX
2053 * This routine may not block.
2055 void
2056 vm_page_activate(vm_page_t m)
2058 u_short oqueue;
2060 vm_page_spin_lock(m);
2061 if (m->queue - m->pc != PQ_ACTIVE) {
2062 _vm_page_queue_spin_lock(m);
2063 oqueue = _vm_page_rem_queue_spinlocked(m);
2064 /* page is left spinlocked, queue is unlocked */
2066 if (oqueue == PQ_CACHE)
2067 mycpu->gd_cnt.v_reactivated++;
2068 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2069 if (m->act_count < ACT_INIT)
2070 m->act_count = ACT_INIT;
2071 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2073 _vm_page_and_queue_spin_unlock(m);
2074 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2075 pagedaemon_wakeup();
2076 } else {
2077 if (m->act_count < ACT_INIT)
2078 m->act_count = ACT_INIT;
2079 vm_page_spin_unlock(m);
2084 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2085 * routine is called when a page has been added to the cache or free
2086 * queues.
2088 * This routine may not block.
2090 static __inline void
2091 vm_page_free_wakeup(void)
2094 * If the pageout daemon itself needs pages, then tell it that
2095 * there are some free.
2097 if (vm_pageout_pages_needed &&
2098 vmstats.v_cache_count + vmstats.v_free_count >=
2099 vmstats.v_pageout_free_min
2101 vm_pageout_pages_needed = 0;
2102 wakeup(&vm_pageout_pages_needed);
2106 * Wakeup processes that are waiting on memory.
2108 * Generally speaking we want to wakeup stuck processes as soon as
2109 * possible. !vm_page_count_min(0) is the absolute minimum point
2110 * where we can do this. Wait a bit longer to reduce degenerate
2111 * re-blocking (vm_page_free_hysteresis). The target check is just
2112 * to make sure the min-check w/hysteresis does not exceed the
2113 * normal target.
2115 if (vm_pages_waiting) {
2116 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2117 !vm_page_count_target()) {
2118 vm_pages_waiting = 0;
2119 wakeup(&vmstats.v_free_count);
2120 ++mycpu->gd_cnt.v_ppwakeups;
2122 #if 0
2123 if (!vm_page_count_target()) {
2125 * Plenty of pages are free, wakeup everyone.
2127 vm_pages_waiting = 0;
2128 wakeup(&vmstats.v_free_count);
2129 ++mycpu->gd_cnt.v_ppwakeups;
2130 } else if (!vm_page_count_min(0)) {
2132 * Some pages are free, wakeup someone.
2134 int wcount = vm_pages_waiting;
2135 if (wcount > 0)
2136 --wcount;
2137 vm_pages_waiting = wcount;
2138 wakeup_one(&vmstats.v_free_count);
2139 ++mycpu->gd_cnt.v_ppwakeups;
2141 #endif
2146 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2147 * it from its VM object.
2149 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
2150 * return (the page will have been freed).
2152 void
2153 vm_page_free_toq(vm_page_t m)
2155 mycpu->gd_cnt.v_tfree++;
2156 KKASSERT((m->flags & PG_MAPPED) == 0);
2157 KKASSERT(m->flags & PG_BUSY);
2159 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2160 kprintf("vm_page_free: pindex(%lu), busy(%d), "
2161 "PG_BUSY(%d), hold(%d)\n",
2162 (u_long)m->pindex, m->busy,
2163 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2164 if ((m->queue - m->pc) == PQ_FREE)
2165 panic("vm_page_free: freeing free page");
2166 else
2167 panic("vm_page_free: freeing busy page");
2171 * Remove from object, spinlock the page and its queues and
2172 * remove from any queue. No queue spinlock will be held
2173 * after this section (because the page was removed from any
2174 * queue).
2176 vm_page_remove(m);
2177 vm_page_and_queue_spin_lock(m);
2178 _vm_page_rem_queue_spinlocked(m);
2181 * No further management of fictitious pages occurs beyond object
2182 * and queue removal.
2184 if ((m->flags & PG_FICTITIOUS) != 0) {
2185 vm_page_spin_unlock(m);
2186 vm_page_wakeup(m);
2187 return;
2190 m->valid = 0;
2191 vm_page_undirty(m);
2193 if (m->wire_count != 0) {
2194 if (m->wire_count > 1) {
2195 panic(
2196 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2197 m->wire_count, (long)m->pindex);
2199 panic("vm_page_free: freeing wired page");
2203 * Clear the UNMANAGED flag when freeing an unmanaged page.
2204 * Clear the NEED_COMMIT flag
2206 if (m->flags & PG_UNMANAGED)
2207 vm_page_flag_clear(m, PG_UNMANAGED);
2208 if (m->flags & PG_NEED_COMMIT)
2209 vm_page_flag_clear(m, PG_NEED_COMMIT);
2211 if (m->hold_count != 0) {
2212 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2213 } else {
2214 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2218 * This sequence allows us to clear PG_BUSY while still holding
2219 * its spin lock, which reduces contention vs allocators. We
2220 * must not leave the queue locked or _vm_page_wakeup() may
2221 * deadlock.
2223 _vm_page_queue_spin_unlock(m);
2224 if (_vm_page_wakeup(m)) {
2225 vm_page_spin_unlock(m);
2226 wakeup(m);
2227 } else {
2228 vm_page_spin_unlock(m);
2230 vm_page_free_wakeup();
2234 * vm_page_unmanage()
2236 * Prevent PV management from being done on the page. The page is
2237 * removed from the paging queues as if it were wired, and as a
2238 * consequence of no longer being managed the pageout daemon will not
2239 * touch it (since there is no way to locate the pte mappings for the
2240 * page). madvise() calls that mess with the pmap will also no longer
2241 * operate on the page.
2243 * Beyond that the page is still reasonably 'normal'. Freeing the page
2244 * will clear the flag.
2246 * This routine is used by OBJT_PHYS objects - objects using unswappable
2247 * physical memory as backing store rather then swap-backed memory and
2248 * will eventually be extended to support 4MB unmanaged physical
2249 * mappings.
2251 * Caller must be holding the page busy.
2253 void
2254 vm_page_unmanage(vm_page_t m)
2256 KKASSERT(m->flags & PG_BUSY);
2257 if ((m->flags & PG_UNMANAGED) == 0) {
2258 if (m->wire_count == 0)
2259 vm_page_unqueue(m);
2261 vm_page_flag_set(m, PG_UNMANAGED);
2265 * Mark this page as wired down by yet another map, removing it from
2266 * paging queues as necessary.
2268 * Caller must be holding the page busy.
2270 void
2271 vm_page_wire(vm_page_t m)
2274 * Only bump the wire statistics if the page is not already wired,
2275 * and only unqueue the page if it is on some queue (if it is unmanaged
2276 * it is already off the queues). Don't do anything with fictitious
2277 * pages because they are always wired.
2279 KKASSERT(m->flags & PG_BUSY);
2280 if ((m->flags & PG_FICTITIOUS) == 0) {
2281 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2282 if ((m->flags & PG_UNMANAGED) == 0)
2283 vm_page_unqueue(m);
2284 atomic_add_int(&vmstats.v_wire_count, 1);
2286 KASSERT(m->wire_count != 0,
2287 ("vm_page_wire: wire_count overflow m=%p", m));
2292 * Release one wiring of this page, potentially enabling it to be paged again.
2294 * Many pages placed on the inactive queue should actually go
2295 * into the cache, but it is difficult to figure out which. What
2296 * we do instead, if the inactive target is well met, is to put
2297 * clean pages at the head of the inactive queue instead of the tail.
2298 * This will cause them to be moved to the cache more quickly and
2299 * if not actively re-referenced, freed more quickly. If we just
2300 * stick these pages at the end of the inactive queue, heavy filesystem
2301 * meta-data accesses can cause an unnecessary paging load on memory bound
2302 * processes. This optimization causes one-time-use metadata to be
2303 * reused more quickly.
2305 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2306 * the inactive queue. This helps the pageout daemon determine memory
2307 * pressure and act on out-of-memory situations more quickly.
2309 * BUT, if we are in a low-memory situation we have no choice but to
2310 * put clean pages on the cache queue.
2312 * A number of routines use vm_page_unwire() to guarantee that the page
2313 * will go into either the inactive or active queues, and will NEVER
2314 * be placed in the cache - for example, just after dirtying a page.
2315 * dirty pages in the cache are not allowed.
2317 * This routine may not block.
2319 void
2320 vm_page_unwire(vm_page_t m, int activate)
2322 KKASSERT(m->flags & PG_BUSY);
2323 if (m->flags & PG_FICTITIOUS) {
2324 /* do nothing */
2325 } else if (m->wire_count <= 0) {
2326 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2327 } else {
2328 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2329 atomic_add_int(&vmstats.v_wire_count, -1);
2330 if (m->flags & PG_UNMANAGED) {
2332 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2333 vm_page_spin_lock(m);
2334 _vm_page_add_queue_spinlocked(m,
2335 PQ_ACTIVE + m->pc, 0);
2336 _vm_page_and_queue_spin_unlock(m);
2337 } else {
2338 vm_page_spin_lock(m);
2339 vm_page_flag_clear(m, PG_WINATCFLS);
2340 _vm_page_add_queue_spinlocked(m,
2341 PQ_INACTIVE + m->pc, 0);
2342 ++vm_swapcache_inactive_heuristic;
2343 _vm_page_and_queue_spin_unlock(m);
2350 * Move the specified page to the inactive queue. If the page has
2351 * any associated swap, the swap is deallocated.
2353 * Normally athead is 0 resulting in LRU operation. athead is set
2354 * to 1 if we want this page to be 'as if it were placed in the cache',
2355 * except without unmapping it from the process address space.
2357 * vm_page's spinlock must be held on entry and will remain held on return.
2358 * This routine may not block.
2360 static void
2361 _vm_page_deactivate_locked(vm_page_t m, int athead)
2363 u_short oqueue;
2366 * Ignore if already inactive.
2368 if (m->queue - m->pc == PQ_INACTIVE)
2369 return;
2370 _vm_page_queue_spin_lock(m);
2371 oqueue = _vm_page_rem_queue_spinlocked(m);
2373 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2374 if (oqueue == PQ_CACHE)
2375 mycpu->gd_cnt.v_reactivated++;
2376 vm_page_flag_clear(m, PG_WINATCFLS);
2377 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2378 if (athead == 0)
2379 ++vm_swapcache_inactive_heuristic;
2381 /* NOTE: PQ_NONE if condition not taken */
2382 _vm_page_queue_spin_unlock(m);
2383 /* leaves vm_page spinlocked */
2387 * Attempt to deactivate a page.
2389 * No requirements.
2391 void
2392 vm_page_deactivate(vm_page_t m)
2394 vm_page_spin_lock(m);
2395 _vm_page_deactivate_locked(m, 0);
2396 vm_page_spin_unlock(m);
2399 void
2400 vm_page_deactivate_locked(vm_page_t m)
2402 _vm_page_deactivate_locked(m, 0);
2406 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2408 * This function returns non-zero if it successfully moved the page to
2409 * PQ_CACHE.
2411 * This function unconditionally unbusies the page on return.
2414 vm_page_try_to_cache(vm_page_t m)
2416 vm_page_spin_lock(m);
2417 if (m->dirty || m->hold_count || m->wire_count ||
2418 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2419 if (_vm_page_wakeup(m)) {
2420 vm_page_spin_unlock(m);
2421 wakeup(m);
2422 } else {
2423 vm_page_spin_unlock(m);
2425 return(0);
2427 vm_page_spin_unlock(m);
2430 * Page busied by us and no longer spinlocked. Dirty pages cannot
2431 * be moved to the cache.
2433 vm_page_test_dirty(m);
2434 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2435 vm_page_wakeup(m);
2436 return(0);
2438 vm_page_cache(m);
2439 return(1);
2443 * Attempt to free the page. If we cannot free it, we do nothing.
2444 * 1 is returned on success, 0 on failure.
2446 * No requirements.
2449 vm_page_try_to_free(vm_page_t m)
2451 vm_page_spin_lock(m);
2452 if (vm_page_busy_try(m, TRUE)) {
2453 vm_page_spin_unlock(m);
2454 return(0);
2458 * The page can be in any state, including already being on the free
2459 * queue. Check to see if it really can be freed.
2461 if (m->dirty || /* can't free if it is dirty */
2462 m->hold_count || /* or held (XXX may be wrong) */
2463 m->wire_count || /* or wired */
2464 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2465 PG_NEED_COMMIT)) || /* or needs a commit */
2466 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2467 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2468 if (_vm_page_wakeup(m)) {
2469 vm_page_spin_unlock(m);
2470 wakeup(m);
2471 } else {
2472 vm_page_spin_unlock(m);
2474 return(0);
2476 vm_page_spin_unlock(m);
2479 * We can probably free the page.
2481 * Page busied by us and no longer spinlocked. Dirty pages will
2482 * not be freed by this function. We have to re-test the
2483 * dirty bit after cleaning out the pmaps.
2485 vm_page_test_dirty(m);
2486 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2487 vm_page_wakeup(m);
2488 return(0);
2490 vm_page_protect(m, VM_PROT_NONE);
2491 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2492 vm_page_wakeup(m);
2493 return(0);
2495 vm_page_free(m);
2496 return(1);
2500 * vm_page_cache
2502 * Put the specified page onto the page cache queue (if appropriate).
2504 * The page must be busy, and this routine will release the busy and
2505 * possibly even free the page.
2507 void
2508 vm_page_cache(vm_page_t m)
2510 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2511 m->busy || m->wire_count || m->hold_count) {
2512 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2513 vm_page_wakeup(m);
2514 return;
2518 * Already in the cache (and thus not mapped)
2520 if ((m->queue - m->pc) == PQ_CACHE) {
2521 KKASSERT((m->flags & PG_MAPPED) == 0);
2522 vm_page_wakeup(m);
2523 return;
2527 * Caller is required to test m->dirty, but note that the act of
2528 * removing the page from its maps can cause it to become dirty
2529 * on an SMP system due to another cpu running in usermode.
2531 if (m->dirty) {
2532 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2533 (long)m->pindex);
2537 * Remove all pmaps and indicate that the page is not
2538 * writeable or mapped. Our vm_page_protect() call may
2539 * have blocked (especially w/ VM_PROT_NONE), so recheck
2540 * everything.
2542 vm_page_protect(m, VM_PROT_NONE);
2543 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2544 m->busy || m->wire_count || m->hold_count) {
2545 vm_page_wakeup(m);
2546 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2547 vm_page_deactivate(m);
2548 vm_page_wakeup(m);
2549 } else {
2550 _vm_page_and_queue_spin_lock(m);
2551 _vm_page_rem_queue_spinlocked(m);
2552 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2553 _vm_page_queue_spin_unlock(m);
2554 if (_vm_page_wakeup(m)) {
2555 vm_page_spin_unlock(m);
2556 wakeup(m);
2557 } else {
2558 vm_page_spin_unlock(m);
2560 vm_page_free_wakeup();
2565 * vm_page_dontneed()
2567 * Cache, deactivate, or do nothing as appropriate. This routine
2568 * is typically used by madvise() MADV_DONTNEED.
2570 * Generally speaking we want to move the page into the cache so
2571 * it gets reused quickly. However, this can result in a silly syndrome
2572 * due to the page recycling too quickly. Small objects will not be
2573 * fully cached. On the otherhand, if we move the page to the inactive
2574 * queue we wind up with a problem whereby very large objects
2575 * unnecessarily blow away our inactive and cache queues.
2577 * The solution is to move the pages based on a fixed weighting. We
2578 * either leave them alone, deactivate them, or move them to the cache,
2579 * where moving them to the cache has the highest weighting.
2580 * By forcing some pages into other queues we eventually force the
2581 * system to balance the queues, potentially recovering other unrelated
2582 * space from active. The idea is to not force this to happen too
2583 * often.
2585 * The page must be busied.
2587 void
2588 vm_page_dontneed(vm_page_t m)
2590 static int dnweight;
2591 int dnw;
2592 int head;
2594 dnw = ++dnweight;
2597 * occassionally leave the page alone
2599 if ((dnw & 0x01F0) == 0 ||
2600 m->queue - m->pc == PQ_INACTIVE ||
2601 m->queue - m->pc == PQ_CACHE
2603 if (m->act_count >= ACT_INIT)
2604 --m->act_count;
2605 return;
2609 * If vm_page_dontneed() is inactivating a page, it must clear
2610 * the referenced flag; otherwise the pagedaemon will see references
2611 * on the page in the inactive queue and reactivate it. Until the
2612 * page can move to the cache queue, madvise's job is not done.
2614 vm_page_flag_clear(m, PG_REFERENCED);
2615 pmap_clear_reference(m);
2617 if (m->dirty == 0)
2618 vm_page_test_dirty(m);
2620 if (m->dirty || (dnw & 0x0070) == 0) {
2622 * Deactivate the page 3 times out of 32.
2624 head = 0;
2625 } else {
2627 * Cache the page 28 times out of every 32. Note that
2628 * the page is deactivated instead of cached, but placed
2629 * at the head of the queue instead of the tail.
2631 head = 1;
2633 vm_page_spin_lock(m);
2634 _vm_page_deactivate_locked(m, head);
2635 vm_page_spin_unlock(m);
2639 * These routines manipulate the 'soft busy' count for a page. A soft busy
2640 * is almost like PG_BUSY except that it allows certain compatible operations
2641 * to occur on the page while it is busy. For example, a page undergoing a
2642 * write can still be mapped read-only.
2644 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2645 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2646 * busy bit is cleared.
2648 void
2649 vm_page_io_start(vm_page_t m)
2651 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2652 atomic_add_char(&m->busy, 1);
2653 vm_page_flag_set(m, PG_SBUSY);
2656 void
2657 vm_page_io_finish(vm_page_t m)
2659 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2660 atomic_subtract_char(&m->busy, 1);
2661 if (m->busy == 0)
2662 vm_page_flag_clear(m, PG_SBUSY);
2666 * Indicate that a clean VM page requires a filesystem commit and cannot
2667 * be reused. Used by tmpfs.
2669 void
2670 vm_page_need_commit(vm_page_t m)
2672 vm_page_flag_set(m, PG_NEED_COMMIT);
2673 vm_object_set_writeable_dirty(m->object);
2676 void
2677 vm_page_clear_commit(vm_page_t m)
2679 vm_page_flag_clear(m, PG_NEED_COMMIT);
2683 * Grab a page, blocking if it is busy and allocating a page if necessary.
2684 * A busy page is returned or NULL. The page may or may not be valid and
2685 * might not be on a queue (the caller is responsible for the disposition of
2686 * the page).
2688 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2689 * page will be zero'd and marked valid.
2691 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2692 * valid even if it already exists.
2694 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2695 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2696 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2698 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2699 * always returned if we had blocked.
2701 * This routine may not be called from an interrupt.
2703 * No other requirements.
2705 vm_page_t
2706 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2708 vm_page_t m;
2709 int error;
2710 int shared = 1;
2712 KKASSERT(allocflags &
2713 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2714 vm_object_hold_shared(object);
2715 for (;;) {
2716 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2717 if (error) {
2718 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2719 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2720 m = NULL;
2721 break;
2723 /* retry */
2724 } else if (m == NULL) {
2725 if (shared) {
2726 vm_object_upgrade(object);
2727 shared = 0;
2729 if (allocflags & VM_ALLOC_RETRY)
2730 allocflags |= VM_ALLOC_NULL_OK;
2731 m = vm_page_alloc(object, pindex,
2732 allocflags & ~VM_ALLOC_RETRY);
2733 if (m)
2734 break;
2735 vm_wait(0);
2736 if ((allocflags & VM_ALLOC_RETRY) == 0)
2737 goto failed;
2738 } else {
2739 /* m found */
2740 break;
2745 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2747 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2748 * valid even if already valid.
2750 * NOTE! We have removed all of the PG_ZERO optimizations and also
2751 * removed the idle zeroing code. These optimizations actually
2752 * slow things down on modern cpus because the zerod area is
2753 * likely uncached, placing a memory-access burden on the
2754 * accesors taking the fault.
2756 * By always zeroing the page in-line with the fault, no
2757 * dynamic ram reads are needed and the caches are hot, ready
2758 * for userland to access the memory.
2760 if (m->valid == 0) {
2761 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2762 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2763 m->valid = VM_PAGE_BITS_ALL;
2765 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2766 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2767 m->valid = VM_PAGE_BITS_ALL;
2769 failed:
2770 vm_object_drop(object);
2771 return(m);
2775 * Mapping function for valid bits or for dirty bits in
2776 * a page. May not block.
2778 * Inputs are required to range within a page.
2780 * No requirements.
2781 * Non blocking.
2784 vm_page_bits(int base, int size)
2786 int first_bit;
2787 int last_bit;
2789 KASSERT(
2790 base + size <= PAGE_SIZE,
2791 ("vm_page_bits: illegal base/size %d/%d", base, size)
2794 if (size == 0) /* handle degenerate case */
2795 return(0);
2797 first_bit = base >> DEV_BSHIFT;
2798 last_bit = (base + size - 1) >> DEV_BSHIFT;
2800 return ((2 << last_bit) - (1 << first_bit));
2804 * Sets portions of a page valid and clean. The arguments are expected
2805 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2806 * of any partial chunks touched by the range. The invalid portion of
2807 * such chunks will be zero'd.
2809 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2810 * align base to DEV_BSIZE so as not to mark clean a partially
2811 * truncated device block. Otherwise the dirty page status might be
2812 * lost.
2814 * This routine may not block.
2816 * (base + size) must be less then or equal to PAGE_SIZE.
2818 static void
2819 _vm_page_zero_valid(vm_page_t m, int base, int size)
2821 int frag;
2822 int endoff;
2824 if (size == 0) /* handle degenerate case */
2825 return;
2828 * If the base is not DEV_BSIZE aligned and the valid
2829 * bit is clear, we have to zero out a portion of the
2830 * first block.
2833 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2834 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2836 pmap_zero_page_area(
2837 VM_PAGE_TO_PHYS(m),
2838 frag,
2839 base - frag
2844 * If the ending offset is not DEV_BSIZE aligned and the
2845 * valid bit is clear, we have to zero out a portion of
2846 * the last block.
2849 endoff = base + size;
2851 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2852 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2854 pmap_zero_page_area(
2855 VM_PAGE_TO_PHYS(m),
2856 endoff,
2857 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2863 * Set valid, clear dirty bits. If validating the entire
2864 * page we can safely clear the pmap modify bit. We also
2865 * use this opportunity to clear the PG_NOSYNC flag. If a process
2866 * takes a write fault on a MAP_NOSYNC memory area the flag will
2867 * be set again.
2869 * We set valid bits inclusive of any overlap, but we can only
2870 * clear dirty bits for DEV_BSIZE chunks that are fully within
2871 * the range.
2873 * Page must be busied?
2874 * No other requirements.
2876 void
2877 vm_page_set_valid(vm_page_t m, int base, int size)
2879 _vm_page_zero_valid(m, base, size);
2880 m->valid |= vm_page_bits(base, size);
2885 * Set valid bits and clear dirty bits.
2887 * NOTE: This function does not clear the pmap modified bit.
2888 * Also note that e.g. NFS may use a byte-granular base
2889 * and size.
2891 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2892 * this without necessarily busying the page (via bdwrite()).
2893 * So for now vm_token must also be held.
2895 * No other requirements.
2897 void
2898 vm_page_set_validclean(vm_page_t m, int base, int size)
2900 int pagebits;
2902 _vm_page_zero_valid(m, base, size);
2903 pagebits = vm_page_bits(base, size);
2904 m->valid |= pagebits;
2905 m->dirty &= ~pagebits;
2906 if (base == 0 && size == PAGE_SIZE) {
2907 /*pmap_clear_modify(m);*/
2908 vm_page_flag_clear(m, PG_NOSYNC);
2913 * Set valid & dirty. Used by buwrite()
2915 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2916 * call this function in buwrite() so for now vm_token must
2917 * be held.
2919 * No other requirements.
2921 void
2922 vm_page_set_validdirty(vm_page_t m, int base, int size)
2924 int pagebits;
2926 pagebits = vm_page_bits(base, size);
2927 m->valid |= pagebits;
2928 m->dirty |= pagebits;
2929 if (m->object)
2930 vm_object_set_writeable_dirty(m->object);
2934 * Clear dirty bits.
2936 * NOTE: This function does not clear the pmap modified bit.
2937 * Also note that e.g. NFS may use a byte-granular base
2938 * and size.
2940 * Page must be busied?
2941 * No other requirements.
2943 void
2944 vm_page_clear_dirty(vm_page_t m, int base, int size)
2946 m->dirty &= ~vm_page_bits(base, size);
2947 if (base == 0 && size == PAGE_SIZE) {
2948 /*pmap_clear_modify(m);*/
2949 vm_page_flag_clear(m, PG_NOSYNC);
2954 * Make the page all-dirty.
2956 * Also make sure the related object and vnode reflect the fact that the
2957 * object may now contain a dirty page.
2959 * Page must be busied?
2960 * No other requirements.
2962 void
2963 vm_page_dirty(vm_page_t m)
2965 #ifdef INVARIANTS
2966 int pqtype = m->queue - m->pc;
2967 #endif
2968 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2969 ("vm_page_dirty: page in free/cache queue!"));
2970 if (m->dirty != VM_PAGE_BITS_ALL) {
2971 m->dirty = VM_PAGE_BITS_ALL;
2972 if (m->object)
2973 vm_object_set_writeable_dirty(m->object);
2978 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2979 * valid and dirty bits for the effected areas are cleared.
2981 * Page must be busied?
2982 * Does not block.
2983 * No other requirements.
2985 void
2986 vm_page_set_invalid(vm_page_t m, int base, int size)
2988 int bits;
2990 bits = vm_page_bits(base, size);
2991 m->valid &= ~bits;
2992 m->dirty &= ~bits;
2993 m->object->generation++;
2997 * The kernel assumes that the invalid portions of a page contain
2998 * garbage, but such pages can be mapped into memory by user code.
2999 * When this occurs, we must zero out the non-valid portions of the
3000 * page so user code sees what it expects.
3002 * Pages are most often semi-valid when the end of a file is mapped
3003 * into memory and the file's size is not page aligned.
3005 * Page must be busied?
3006 * No other requirements.
3008 void
3009 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3011 int b;
3012 int i;
3015 * Scan the valid bits looking for invalid sections that
3016 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3017 * valid bit may be set ) have already been zerod by
3018 * vm_page_set_validclean().
3020 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3021 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3022 (m->valid & (1 << i))
3024 if (i > b) {
3025 pmap_zero_page_area(
3026 VM_PAGE_TO_PHYS(m),
3027 b << DEV_BSHIFT,
3028 (i - b) << DEV_BSHIFT
3031 b = i + 1;
3036 * setvalid is TRUE when we can safely set the zero'd areas
3037 * as being valid. We can do this if there are no cache consistency
3038 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3040 if (setvalid)
3041 m->valid = VM_PAGE_BITS_ALL;
3045 * Is a (partial) page valid? Note that the case where size == 0
3046 * will return FALSE in the degenerate case where the page is entirely
3047 * invalid, and TRUE otherwise.
3049 * Does not block.
3050 * No other requirements.
3053 vm_page_is_valid(vm_page_t m, int base, int size)
3055 int bits = vm_page_bits(base, size);
3057 if (m->valid && ((m->valid & bits) == bits))
3058 return 1;
3059 else
3060 return 0;
3064 * update dirty bits from pmap/mmu. May not block.
3066 * Caller must hold the page busy
3068 void
3069 vm_page_test_dirty(vm_page_t m)
3071 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3072 vm_page_dirty(m);
3077 * Register an action, associating it with its vm_page
3079 void
3080 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3082 struct vm_page_action_list *list;
3083 int hv;
3085 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3086 list = &action_list[hv];
3088 lwkt_gettoken(&vm_token);
3089 vm_page_flag_set(action->m, PG_ACTIONLIST);
3090 action->event = event;
3091 LIST_INSERT_HEAD(list, action, entry);
3092 lwkt_reltoken(&vm_token);
3096 * Unregister an action, disassociating it from its related vm_page
3098 void
3099 vm_page_unregister_action(vm_page_action_t action)
3101 struct vm_page_action_list *list;
3102 int hv;
3104 lwkt_gettoken(&vm_token);
3105 if (action->event != VMEVENT_NONE) {
3106 action->event = VMEVENT_NONE;
3107 LIST_REMOVE(action, entry);
3109 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3110 list = &action_list[hv];
3111 if (LIST_EMPTY(list))
3112 vm_page_flag_clear(action->m, PG_ACTIONLIST);
3114 lwkt_reltoken(&vm_token);
3118 * Issue an event on a VM page. Corresponding action structures are
3119 * removed from the page's list and called.
3121 * If the vm_page has no more pending action events we clear its
3122 * PG_ACTIONLIST flag.
3124 void
3125 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3127 struct vm_page_action_list *list;
3128 struct vm_page_action *scan;
3129 struct vm_page_action *next;
3130 int hv;
3131 int all;
3133 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3134 list = &action_list[hv];
3135 all = 1;
3137 lwkt_gettoken(&vm_token);
3138 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3139 if (scan->m == m) {
3140 if (scan->event == event) {
3141 scan->event = VMEVENT_NONE;
3142 LIST_REMOVE(scan, entry);
3143 scan->func(m, scan);
3144 /* XXX */
3145 } else {
3146 all = 0;
3150 if (all)
3151 vm_page_flag_clear(m, PG_ACTIONLIST);
3152 lwkt_reltoken(&vm_token);
3155 #include "opt_ddb.h"
3156 #ifdef DDB
3157 #include <sys/kernel.h>
3159 #include <ddb/ddb.h>
3161 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3163 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3164 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3165 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3166 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3167 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3168 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3169 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3170 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3171 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3172 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3175 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3177 int i;
3178 db_printf("PQ_FREE:");
3179 for(i=0;i<PQ_L2_SIZE;i++) {
3180 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3182 db_printf("\n");
3184 db_printf("PQ_CACHE:");
3185 for(i=0;i<PQ_L2_SIZE;i++) {
3186 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3188 db_printf("\n");
3190 db_printf("PQ_ACTIVE:");
3191 for(i=0;i<PQ_L2_SIZE;i++) {
3192 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3194 db_printf("\n");
3196 db_printf("PQ_INACTIVE:");
3197 for(i=0;i<PQ_L2_SIZE;i++) {
3198 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3200 db_printf("\n");
3202 #endif /* DDB */