2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
117 #include <vm/vm_param.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
137 vm_object_t first_object
;
138 vm_prot_t first_prot
;
140 vm_map_entry_t entry
;
141 int lookup_still_valid
;
151 static int debug_fault
= 0;
152 SYSCTL_INT(_vm
, OID_AUTO
, debug_fault
, CTLFLAG_RW
, &debug_fault
, 0, "");
153 static int debug_cluster
= 0;
154 SYSCTL_INT(_vm
, OID_AUTO
, debug_cluster
, CTLFLAG_RW
, &debug_cluster
, 0, "");
155 int vm_shared_fault
= 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault
);
157 SYSCTL_INT(_vm
, OID_AUTO
, shared_fault
, CTLFLAG_RW
, &vm_shared_fault
, 0,
158 "Allow shared token on vm_object");
159 static long vm_shared_hit
= 0;
160 SYSCTL_LONG(_vm
, OID_AUTO
, shared_hit
, CTLFLAG_RW
, &vm_shared_hit
, 0,
161 "Successful shared faults");
162 static long vm_shared_count
= 0;
163 SYSCTL_LONG(_vm
, OID_AUTO
, shared_count
, CTLFLAG_RW
, &vm_shared_count
, 0,
164 "Shared fault attempts");
165 static long vm_shared_miss
= 0;
166 SYSCTL_LONG(_vm
, OID_AUTO
, shared_miss
, CTLFLAG_RW
, &vm_shared_miss
, 0,
167 "Unsuccessful shared faults");
169 static int vm_fault_object(struct faultstate
*, vm_pindex_t
, vm_prot_t
, int);
170 static int vm_fault_vpagetable(struct faultstate
*, vm_pindex_t
*,
173 static int vm_fault_additional_pages (vm_page_t
, int, int, vm_page_t
*, int *);
175 static void vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
);
176 static void vm_prefault(pmap_t pmap
, vm_offset_t addra
,
177 vm_map_entry_t entry
, int prot
, int fault_flags
);
178 static void vm_prefault_quick(pmap_t pmap
, vm_offset_t addra
,
179 vm_map_entry_t entry
, int prot
, int fault_flags
);
182 release_page(struct faultstate
*fs
)
184 vm_page_deactivate(fs
->m
);
185 vm_page_wakeup(fs
->m
);
190 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191 * requires relocking and then checking the timestamp.
193 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194 * not have to update fs->map_generation here.
196 * NOTE: This function can fail due to a deadlock against the caller's
197 * holding of a vm_page BUSY.
200 relock_map(struct faultstate
*fs
)
204 if (fs
->lookup_still_valid
== FALSE
&& fs
->map
) {
205 error
= vm_map_lock_read_to(fs
->map
);
207 fs
->lookup_still_valid
= TRUE
;
215 unlock_map(struct faultstate
*fs
)
217 if (fs
->lookup_still_valid
&& fs
->map
) {
218 vm_map_lookup_done(fs
->map
, fs
->entry
, 0);
219 fs
->lookup_still_valid
= FALSE
;
224 * Clean up after a successful call to vm_fault_object() so another call
225 * to vm_fault_object() can be made.
228 _cleanup_successful_fault(struct faultstate
*fs
, int relock
)
231 * We allocated a junk page for a COW operation that did
232 * not occur, the page must be freed.
234 if (fs
->object
!= fs
->first_object
) {
235 KKASSERT(fs
->first_shared
== 0);
236 vm_page_free(fs
->first_m
);
237 vm_object_pip_wakeup(fs
->object
);
244 fs
->object
= fs
->first_object
;
245 if (relock
&& fs
->lookup_still_valid
== FALSE
) {
247 vm_map_lock_read(fs
->map
);
248 fs
->lookup_still_valid
= TRUE
;
253 _unlock_things(struct faultstate
*fs
, int dealloc
)
255 _cleanup_successful_fault(fs
, 0);
257 /*vm_object_deallocate(fs->first_object);*/
258 /*fs->first_object = NULL; drop used later on */
261 if (fs
->vp
!= NULL
) {
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
274 * Determine if the pager for the current object *might* contain the page.
276 * We only need to try the pager if this is not a default object (default
277 * objects are zero-fill and have no real pager), and if we are not taking
278 * a wiring fault or if the FS entry is wired.
280 #define TRYPAGER(fs) \
281 (fs->object->type != OBJT_DEFAULT && \
282 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
287 * Handle a page fault occuring at the given address, requiring the given
288 * permissions, in the map specified. If successful, the page is inserted
289 * into the associated physical map.
291 * NOTE: The given address should be truncated to the proper page address.
293 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294 * a standard error specifying why the fault is fatal is returned.
296 * The map in question must be referenced, and remains so.
297 * The caller may hold no locks.
298 * No other requirements.
301 vm_fault(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
, int fault_flags
)
304 vm_pindex_t first_pindex
;
305 struct faultstate fs
;
313 inherit_prot
= fault_type
& VM_PROT_NOSYNC
;
315 fs
.fault_flags
= fault_flags
;
317 fs
.shared
= vm_shared_fault
;
318 fs
.first_shared
= vm_shared_fault
;
324 * vm_map interactions
327 if ((lp
= td
->td_lwp
) != NULL
)
328 lp
->lwp_flags
|= LWP_PAGING
;
329 lwkt_gettoken(&map
->token
);
333 * Find the vm_map_entry representing the backing store and resolve
334 * the top level object and page index. This may have the side
335 * effect of executing a copy-on-write on the map entry and/or
336 * creating a shadow object, but will not COW any actual VM pages.
338 * On success fs.map is left read-locked and various other fields
339 * are initialized but not otherwise referenced or locked.
341 * NOTE! vm_map_lookup will try to upgrade the fault_type to
342 * VM_FAULT_WRITE if the map entry is a virtual page table and also
343 * writable, so we can set the 'A'accessed bit in the virtual page
347 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
348 &fs
.entry
, &fs
.first_object
,
349 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
352 * If the lookup failed or the map protections are incompatible,
353 * the fault generally fails.
355 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
356 * tried to do a COW fault.
358 * If the caller is trying to do a user wiring we have more work
361 if (result
!= KERN_SUCCESS
) {
362 if (result
== KERN_FAILURE_NOFAULT
) {
363 result
= KERN_FAILURE
;
366 if (result
!= KERN_PROTECTION_FAILURE
||
367 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
)
369 if (result
== KERN_INVALID_ADDRESS
&& growstack
&&
370 map
!= &kernel_map
&& curproc
!= NULL
) {
371 result
= vm_map_growstack(curproc
, vaddr
);
372 if (result
== KERN_SUCCESS
) {
377 result
= KERN_FAILURE
;
383 * If we are user-wiring a r/w segment, and it is COW, then
384 * we need to do the COW operation. Note that we don't
385 * currently COW RO sections now, because it is NOT desirable
386 * to COW .text. We simply keep .text from ever being COW'ed
387 * and take the heat that one cannot debug wired .text sections.
389 result
= vm_map_lookup(&fs
.map
, vaddr
,
390 VM_PROT_READ
|VM_PROT_WRITE
|
391 VM_PROT_OVERRIDE_WRITE
,
392 &fs
.entry
, &fs
.first_object
,
393 &first_pindex
, &fs
.first_prot
,
395 if (result
!= KERN_SUCCESS
) {
396 /* could also be KERN_FAILURE_NOFAULT */
397 result
= KERN_FAILURE
;
402 * If we don't COW now, on a user wire, the user will never
403 * be able to write to the mapping. If we don't make this
404 * restriction, the bookkeeping would be nearly impossible.
406 * XXX We have a shared lock, this will have a MP race but
407 * I don't see how it can hurt anything.
409 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0)
410 fs
.entry
->max_protection
&= ~VM_PROT_WRITE
;
414 * fs.map is read-locked
416 * Misc checks. Save the map generation number to detect races.
418 fs
.map_generation
= fs
.map
->timestamp
;
419 fs
.lookup_still_valid
= TRUE
;
421 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
422 fs
.prot
= fs
.first_prot
; /* default (used by uksmap) */
424 if (fs
.entry
->eflags
& (MAP_ENTRY_NOFAULT
| MAP_ENTRY_KSTACK
)) {
425 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
426 panic("vm_fault: fault on nofault entry, addr: %p",
429 if ((fs
.entry
->eflags
& MAP_ENTRY_KSTACK
) &&
430 vaddr
>= fs
.entry
->start
&&
431 vaddr
< fs
.entry
->start
+ PAGE_SIZE
) {
432 panic("vm_fault: fault on stack guard, addr: %p",
438 * A user-kernel shared map has no VM object and bypasses
439 * everything. We execute the uksmap function with a temporary
440 * fictitious vm_page. The address is directly mapped with no
443 if (fs
.entry
->maptype
== VM_MAPTYPE_UKSMAP
) {
444 struct vm_page fakem
;
446 bzero(&fakem
, sizeof(fakem
));
447 fakem
.pindex
= first_pindex
;
448 fakem
.flags
= PG_BUSY
| PG_FICTITIOUS
| PG_UNMANAGED
;
449 fakem
.valid
= VM_PAGE_BITS_ALL
;
450 fakem
.pat_mode
= VM_MEMATTR_DEFAULT
;
451 if (fs
.entry
->object
.uksmap(fs
.entry
->aux
.dev
, &fakem
)) {
452 result
= KERN_FAILURE
;
456 pmap_enter(fs
.map
->pmap
, vaddr
, &fakem
, fs
.prot
| inherit_prot
,
462 * A system map entry may return a NULL object. No object means
463 * no pager means an unrecoverable kernel fault.
465 if (fs
.first_object
== NULL
) {
466 panic("vm_fault: unrecoverable fault at %p in entry %p",
467 (void *)vaddr
, fs
.entry
);
471 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
474 * Unfortunately a deadlock can occur if we are forced to page-in
475 * from swap, but diving all the way into the vm_pager_get_page()
476 * function to find out is too much. Just check the object type.
478 * The deadlock is a CAM deadlock on a busy VM page when trying
479 * to finish an I/O if another process gets stuck in
480 * vop_helper_read_shortcut() due to a swap fault.
482 if ((td
->td_flags
& TDF_NOFAULT
) &&
484 fs
.first_object
->type
== OBJT_VNODE
||
485 fs
.first_object
->type
== OBJT_SWAP
||
486 fs
.first_object
->backing_object
)) {
487 result
= KERN_FAILURE
;
493 * If the entry is wired we cannot change the page protection.
496 fault_type
= fs
.first_prot
;
499 * We generally want to avoid unnecessary exclusive modes on backing
500 * and terminal objects because this can seriously interfere with
501 * heavily fork()'d processes (particularly /bin/sh scripts).
503 * However, we also want to avoid unnecessary retries due to needed
504 * shared->exclusive promotion for common faults. Exclusive mode is
505 * always needed if any page insertion, rename, or free occurs in an
506 * object (and also indirectly if any I/O is done).
508 * The main issue here is going to be fs.first_shared. If the
509 * first_object has a backing object which isn't shadowed and the
510 * process is single-threaded we might as well use an exclusive
511 * lock/chain right off the bat.
513 if (fs
.first_shared
&& fs
.first_object
->backing_object
&&
514 LIST_EMPTY(&fs
.first_object
->shadow_head
) &&
515 td
->td_proc
&& td
->td_proc
->p_nthreads
== 1) {
520 * swap_pager_unswapped() needs an exclusive object
522 if (fault_flags
& (VM_FAULT_UNSWAP
| VM_FAULT_DIRTY
)) {
527 * Obtain a top-level object lock, shared or exclusive depending
528 * on fs.first_shared. If a shared lock winds up being insufficient
529 * we will retry with an exclusive lock.
531 * The vnode pager lock is always shared.
534 vm_object_hold_shared(fs
.first_object
);
536 vm_object_hold(fs
.first_object
);
538 fs
.vp
= vnode_pager_lock(fs
.first_object
);
541 * The page we want is at (first_object, first_pindex), but if the
542 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
543 * page table to figure out the actual pindex.
545 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
548 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
549 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
550 fs
.entry
->aux
.master_pde
,
552 if (result
== KERN_TRY_AGAIN
) {
553 vm_object_drop(fs
.first_object
);
557 if (result
!= KERN_SUCCESS
)
562 * Now we have the actual (object, pindex), fault in the page. If
563 * vm_fault_object() fails it will unlock and deallocate the FS
564 * data. If it succeeds everything remains locked and fs->object
565 * will have an additional PIP count if it is not equal to
568 * vm_fault_object will set fs->prot for the pmap operation. It is
569 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
570 * page can be safely written. However, it will force a read-only
571 * mapping for a read fault if the memory is managed by a virtual
574 * If the fault code uses the shared object lock shortcut
575 * we must not try to burst (we can't allocate VM pages).
577 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 1);
579 if (debug_fault
> 0) {
581 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
582 "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
583 result
, (intmax_t)vaddr
, fault_type
, fault_flags
,
584 fs
.m
, fs
.prot
, fs
.wired
, fs
.entry
);
587 if (result
== KERN_TRY_AGAIN
) {
588 vm_object_drop(fs
.first_object
);
592 if (result
!= KERN_SUCCESS
)
596 * On success vm_fault_object() does not unlock or deallocate, and fs.m
597 * will contain a busied page.
599 * Enter the page into the pmap and do pmap-related adjustments.
601 KKASSERT(fs
.lookup_still_valid
== TRUE
);
602 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
603 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
| inherit_prot
,
606 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
607 KKASSERT(fs
.m
->flags
& PG_BUSY
);
610 * If the page is not wired down, then put it where the pageout daemon
613 if (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) {
617 vm_page_unwire(fs
.m
, 1);
619 vm_page_activate(fs
.m
);
621 vm_page_wakeup(fs
.m
);
624 * Burst in a few more pages if possible. The fs.map should still
625 * be locked. To avoid interlocking against a vnode->getblk
626 * operation we had to be sure to unbusy our primary vm_page above
629 * A normal burst can continue down backing store, only execute
630 * if we are holding an exclusive lock, otherwise the exclusive
631 * locks the burst code gets might cause excessive SMP collisions.
633 * A quick burst can be utilized when there is no backing object
634 * (i.e. a shared file mmap).
636 if ((fault_flags
& VM_FAULT_BURST
) &&
637 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) == 0 &&
639 if (fs
.first_shared
== 0 && fs
.shared
== 0) {
640 vm_prefault(fs
.map
->pmap
, vaddr
,
641 fs
.entry
, fs
.prot
, fault_flags
);
643 vm_prefault_quick(fs
.map
->pmap
, vaddr
,
644 fs
.entry
, fs
.prot
, fault_flags
);
649 mycpu
->gd_cnt
.v_vm_faults
++;
651 ++td
->td_lwp
->lwp_ru
.ru_minflt
;
654 * Unlock everything, and return
660 td
->td_lwp
->lwp_ru
.ru_majflt
++;
662 td
->td_lwp
->lwp_ru
.ru_minflt
++;
666 /*vm_object_deallocate(fs.first_object);*/
668 /*fs.first_object = NULL; must still drop later */
670 result
= KERN_SUCCESS
;
673 vm_object_drop(fs
.first_object
);
675 lwkt_reltoken(&map
->token
);
677 lp
->lwp_flags
&= ~LWP_PAGING
;
678 if (vm_shared_fault
&& fs
.shared
== 0)
681 #if !defined(NO_SWAPPING)
683 * Check the process RSS limit and force deactivation and
684 * (asynchronous) paging if necessary. This is a complex operation,
685 * only do it for direct user-mode faults, for now.
687 * To reduce overhead implement approximately a ~16MB hysteresis.
690 if ((fault_flags
& VM_FAULT_USERMODE
) && lp
&&
691 p
->p_limit
&& map
->pmap
&& vm_pageout_memuse_mode
>= 1 &&
692 map
!= &kernel_map
) {
696 limit
= OFF_TO_IDX(qmin(p
->p_rlimit
[RLIMIT_RSS
].rlim_cur
,
697 p
->p_rlimit
[RLIMIT_RSS
].rlim_max
));
698 size
= pmap_resident_tlnw_count(map
->pmap
);
699 if (limit
>= 0 && size
> 4096 && size
- 4096 >= limit
) {
700 vm_pageout_map_deactivate_pages(map
, limit
);
709 * Fault in the specified virtual address in the current process map,
710 * returning a held VM page or NULL. See vm_fault_page() for more
716 vm_fault_page_quick(vm_offset_t va
, vm_prot_t fault_type
, int *errorp
)
718 struct lwp
*lp
= curthread
->td_lwp
;
721 m
= vm_fault_page(&lp
->lwp_vmspace
->vm_map
, va
,
722 fault_type
, VM_FAULT_NORMAL
, errorp
);
727 * Fault in the specified virtual address in the specified map, doing all
728 * necessary manipulation of the object store and all necessary I/O. Return
729 * a held VM page or NULL, and set *errorp. The related pmap is not
732 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
733 * and marked PG_REFERENCED as well.
735 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
736 * error will be returned.
741 vm_fault_page(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
,
742 int fault_flags
, int *errorp
)
744 vm_pindex_t first_pindex
;
745 struct faultstate fs
;
748 vm_prot_t orig_fault_type
= fault_type
;
751 fs
.fault_flags
= fault_flags
;
752 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
755 * Dive the pmap (concurrency possible). If we find the
756 * appropriate page we can terminate early and quickly.
758 fs
.m
= pmap_fault_page_quick(map
->pmap
, vaddr
, fault_type
);
765 * Otherwise take a concurrency hit and do a formal page
768 fs
.shared
= vm_shared_fault
;
769 fs
.first_shared
= vm_shared_fault
;
771 lwkt_gettoken(&map
->token
);
774 * swap_pager_unswapped() needs an exclusive object
776 if (fault_flags
& (VM_FAULT_UNSWAP
| VM_FAULT_DIRTY
)) {
782 * Find the vm_map_entry representing the backing store and resolve
783 * the top level object and page index. This may have the side
784 * effect of executing a copy-on-write on the map entry and/or
785 * creating a shadow object, but will not COW any actual VM pages.
787 * On success fs.map is left read-locked and various other fields
788 * are initialized but not otherwise referenced or locked.
790 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
791 * if the map entry is a virtual page table and also writable,
792 * so we can set the 'A'accessed bit in the virtual page table entry.
795 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
796 &fs
.entry
, &fs
.first_object
,
797 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
799 if (result
!= KERN_SUCCESS
) {
806 * fs.map is read-locked
808 * Misc checks. Save the map generation number to detect races.
810 fs
.map_generation
= fs
.map
->timestamp
;
811 fs
.lookup_still_valid
= TRUE
;
813 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
815 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
816 panic("vm_fault: fault on nofault entry, addr: %lx",
821 * A user-kernel shared map has no VM object and bypasses
822 * everything. We execute the uksmap function with a temporary
823 * fictitious vm_page. The address is directly mapped with no
826 if (fs
.entry
->maptype
== VM_MAPTYPE_UKSMAP
) {
827 struct vm_page fakem
;
829 bzero(&fakem
, sizeof(fakem
));
830 fakem
.pindex
= first_pindex
;
831 fakem
.flags
= PG_BUSY
| PG_FICTITIOUS
| PG_UNMANAGED
;
832 fakem
.valid
= VM_PAGE_BITS_ALL
;
833 fakem
.pat_mode
= VM_MEMATTR_DEFAULT
;
834 if (fs
.entry
->object
.uksmap(fs
.entry
->aux
.dev
, &fakem
)) {
835 *errorp
= KERN_FAILURE
;
840 fs
.m
= PHYS_TO_VM_PAGE(fakem
.phys_addr
);
850 * A system map entry may return a NULL object. No object means
851 * no pager means an unrecoverable kernel fault.
853 if (fs
.first_object
== NULL
) {
854 panic("vm_fault: unrecoverable fault at %p in entry %p",
855 (void *)vaddr
, fs
.entry
);
859 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
862 * Unfortunately a deadlock can occur if we are forced to page-in
863 * from swap, but diving all the way into the vm_pager_get_page()
864 * function to find out is too much. Just check the object type.
866 if ((curthread
->td_flags
& TDF_NOFAULT
) &&
868 fs
.first_object
->type
== OBJT_VNODE
||
869 fs
.first_object
->type
== OBJT_SWAP
||
870 fs
.first_object
->backing_object
)) {
871 *errorp
= KERN_FAILURE
;
877 * If the entry is wired we cannot change the page protection.
880 fault_type
= fs
.first_prot
;
883 * Make a reference to this object to prevent its disposal while we
884 * are messing with it. Once we have the reference, the map is free
885 * to be diddled. Since objects reference their shadows (and copies),
886 * they will stay around as well.
888 * The reference should also prevent an unexpected collapse of the
889 * parent that might move pages from the current object into the
890 * parent unexpectedly, resulting in corruption.
892 * Bump the paging-in-progress count to prevent size changes (e.g.
893 * truncation operations) during I/O. This must be done after
894 * obtaining the vnode lock in order to avoid possible deadlocks.
897 vm_object_hold_shared(fs
.first_object
);
899 vm_object_hold(fs
.first_object
);
901 fs
.vp
= vnode_pager_lock(fs
.first_object
); /* shared */
904 * The page we want is at (first_object, first_pindex), but if the
905 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
906 * page table to figure out the actual pindex.
908 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
911 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
912 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
913 fs
.entry
->aux
.master_pde
,
915 if (result
== KERN_TRY_AGAIN
) {
916 vm_object_drop(fs
.first_object
);
920 if (result
!= KERN_SUCCESS
) {
928 * Now we have the actual (object, pindex), fault in the page. If
929 * vm_fault_object() fails it will unlock and deallocate the FS
930 * data. If it succeeds everything remains locked and fs->object
931 * will have an additinal PIP count if it is not equal to
935 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 1);
937 if (result
== KERN_TRY_AGAIN
) {
938 vm_object_drop(fs
.first_object
);
942 if (result
!= KERN_SUCCESS
) {
948 if ((orig_fault_type
& VM_PROT_WRITE
) &&
949 (fs
.prot
& VM_PROT_WRITE
) == 0) {
950 *errorp
= KERN_PROTECTION_FAILURE
;
951 unlock_and_deallocate(&fs
);
957 * DO NOT UPDATE THE PMAP!!! This function may be called for
958 * a pmap unrelated to the current process pmap, in which case
959 * the current cpu core will not be listed in the pmap's pm_active
960 * mask. Thus invalidation interlocks will fail to work properly.
962 * (for example, 'ps' uses procfs to read program arguments from
963 * each process's stack).
965 * In addition to the above this function will be called to acquire
966 * a page that might already be faulted in, re-faulting it
967 * continuously is a waste of time.
969 * XXX could this have been the cause of our random seg-fault
970 * issues? procfs accesses user stacks.
972 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
974 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
, fs
.wired
, NULL
);
975 mycpu
->gd_cnt
.v_vm_faults
++;
976 if (curthread
->td_lwp
)
977 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
981 * On success vm_fault_object() does not unlock or deallocate, and fs.m
982 * will contain a busied page. So we must unlock here after having
983 * messed with the pmap.
988 * Return a held page. We are not doing any pmap manipulation so do
989 * not set PG_MAPPED. However, adjust the page flags according to
990 * the fault type because the caller may not use a managed pmapping
991 * (so we don't want to lose the fact that the page will be dirtied
992 * if a write fault was specified).
995 vm_page_activate(fs
.m
);
996 if (fault_type
& VM_PROT_WRITE
)
999 if (curthread
->td_lwp
) {
1001 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
1003 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
1008 * Unlock everything, and return the held page.
1010 vm_page_wakeup(fs
.m
);
1011 /*vm_object_deallocate(fs.first_object);*/
1012 /*fs.first_object = NULL; */
1016 if (fs
.first_object
)
1017 vm_object_drop(fs
.first_object
);
1019 lwkt_reltoken(&map
->token
);
1024 * Fault in the specified (object,offset), dirty the returned page as
1025 * needed. If the requested fault_type cannot be done NULL and an
1026 * error is returned.
1028 * A held (but not busied) page is returned.
1030 * The passed in object must be held as specified by the shared
1034 vm_fault_object_page(vm_object_t object
, vm_ooffset_t offset
,
1035 vm_prot_t fault_type
, int fault_flags
,
1036 int *sharedp
, int *errorp
)
1039 vm_pindex_t first_pindex
;
1040 struct faultstate fs
;
1041 struct vm_map_entry entry
;
1043 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object
));
1044 bzero(&entry
, sizeof(entry
));
1045 entry
.object
.vm_object
= object
;
1046 entry
.maptype
= VM_MAPTYPE_NORMAL
;
1047 entry
.protection
= entry
.max_protection
= fault_type
;
1050 fs
.fault_flags
= fault_flags
;
1052 fs
.shared
= vm_shared_fault
;
1053 fs
.first_shared
= *sharedp
;
1055 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
1058 * Might require swap block adjustments
1060 if (fs
.first_shared
&& (fault_flags
& (VM_FAULT_UNSWAP
| VM_FAULT_DIRTY
))) {
1061 fs
.first_shared
= 0;
1062 vm_object_upgrade(object
);
1066 * Retry loop as needed (typically for shared->exclusive transitions)
1069 *sharedp
= fs
.first_shared
;
1070 first_pindex
= OFF_TO_IDX(offset
);
1071 fs
.first_object
= object
;
1073 fs
.first_prot
= fault_type
;
1075 /*fs.map_generation = 0; unused */
1078 * Make a reference to this object to prevent its disposal while we
1079 * are messing with it. Once we have the reference, the map is free
1080 * to be diddled. Since objects reference their shadows (and copies),
1081 * they will stay around as well.
1083 * The reference should also prevent an unexpected collapse of the
1084 * parent that might move pages from the current object into the
1085 * parent unexpectedly, resulting in corruption.
1087 * Bump the paging-in-progress count to prevent size changes (e.g.
1088 * truncation operations) during I/O. This must be done after
1089 * obtaining the vnode lock in order to avoid possible deadlocks.
1092 fs
.vp
= vnode_pager_lock(fs
.first_object
);
1094 fs
.lookup_still_valid
= TRUE
;
1096 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
1099 /* XXX future - ability to operate on VM object using vpagetable */
1100 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
1101 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
1102 fs
.entry
->aux
.master_pde
,
1104 if (result
== KERN_TRY_AGAIN
) {
1105 if (fs
.first_shared
== 0 && *sharedp
)
1106 vm_object_upgrade(object
);
1109 if (result
!= KERN_SUCCESS
) {
1117 * Now we have the actual (object, pindex), fault in the page. If
1118 * vm_fault_object() fails it will unlock and deallocate the FS
1119 * data. If it succeeds everything remains locked and fs->object
1120 * will have an additinal PIP count if it is not equal to
1123 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1124 * We may have to upgrade its lock to handle the requested fault.
1126 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 0);
1128 if (result
== KERN_TRY_AGAIN
) {
1129 if (fs
.first_shared
== 0 && *sharedp
)
1130 vm_object_upgrade(object
);
1133 if (result
!= KERN_SUCCESS
) {
1138 if ((fault_type
& VM_PROT_WRITE
) && (fs
.prot
& VM_PROT_WRITE
) == 0) {
1139 *errorp
= KERN_PROTECTION_FAILURE
;
1140 unlock_and_deallocate(&fs
);
1145 * On success vm_fault_object() does not unlock or deallocate, so we
1146 * do it here. Note that the returned fs.m will be busied.
1151 * Return a held page. We are not doing any pmap manipulation so do
1152 * not set PG_MAPPED. However, adjust the page flags according to
1153 * the fault type because the caller may not use a managed pmapping
1154 * (so we don't want to lose the fact that the page will be dirtied
1155 * if a write fault was specified).
1158 vm_page_activate(fs
.m
);
1159 if ((fault_type
& VM_PROT_WRITE
) || (fault_flags
& VM_FAULT_DIRTY
))
1160 vm_page_dirty(fs
.m
);
1161 if (fault_flags
& VM_FAULT_UNSWAP
)
1162 swap_pager_unswapped(fs
.m
);
1165 * Indicate that the page was accessed.
1167 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
1169 if (curthread
->td_lwp
) {
1171 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
1173 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
1178 * Unlock everything, and return the held page.
1180 vm_page_wakeup(fs
.m
);
1181 /*vm_object_deallocate(fs.first_object);*/
1182 /*fs.first_object = NULL; */
1189 * Translate the virtual page number (first_pindex) that is relative
1190 * to the address space into a logical page number that is relative to the
1191 * backing object. Use the virtual page table pointed to by (vpte).
1193 * This implements an N-level page table. Any level can terminate the
1194 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1195 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1199 vm_fault_vpagetable(struct faultstate
*fs
, vm_pindex_t
*pindex
,
1200 vpte_t vpte
, int fault_type
, int allow_nofault
)
1203 struct lwbuf lwb_cache
;
1204 int vshift
= VPTE_FRAME_END
- PAGE_SHIFT
; /* index bits remaining */
1205 int result
= KERN_SUCCESS
;
1208 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs
->first_object
));
1211 * We cannot proceed if the vpte is not valid, not readable
1212 * for a read fault, or not writable for a write fault.
1214 if ((vpte
& VPTE_V
) == 0) {
1215 unlock_and_deallocate(fs
);
1216 return (KERN_FAILURE
);
1218 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_RW
) == 0) {
1219 unlock_and_deallocate(fs
);
1220 return (KERN_FAILURE
);
1222 if ((vpte
& VPTE_PS
) || vshift
== 0)
1224 KKASSERT(vshift
>= VPTE_PAGE_BITS
);
1227 * Get the page table page. Nominally we only read the page
1228 * table, but since we are actively setting VPTE_M and VPTE_A,
1229 * tell vm_fault_object() that we are writing it.
1231 * There is currently no real need to optimize this.
1233 result
= vm_fault_object(fs
, (vpte
& VPTE_FRAME
) >> PAGE_SHIFT
,
1234 VM_PROT_READ
|VM_PROT_WRITE
,
1236 if (result
!= KERN_SUCCESS
)
1240 * Process the returned fs.m and look up the page table
1241 * entry in the page table page.
1243 vshift
-= VPTE_PAGE_BITS
;
1244 lwb
= lwbuf_alloc(fs
->m
, &lwb_cache
);
1245 ptep
= ((vpte_t
*)lwbuf_kva(lwb
) +
1246 ((*pindex
>> vshift
) & VPTE_PAGE_MASK
));
1250 * Page table write-back. If the vpte is valid for the
1251 * requested operation, do a write-back to the page table.
1253 * XXX VPTE_M is not set properly for page directory pages.
1254 * It doesn't get set in the page directory if the page table
1255 * is modified during a read access.
1257 vm_page_activate(fs
->m
);
1258 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_V
) &&
1260 if ((vpte
& (VPTE_M
|VPTE_A
)) != (VPTE_M
|VPTE_A
)) {
1261 atomic_set_long(ptep
, VPTE_M
| VPTE_A
);
1262 vm_page_dirty(fs
->m
);
1265 if ((fault_type
& VM_PROT_READ
) && (vpte
& VPTE_V
)) {
1266 if ((vpte
& VPTE_A
) == 0) {
1267 atomic_set_long(ptep
, VPTE_A
);
1268 vm_page_dirty(fs
->m
);
1272 vm_page_flag_set(fs
->m
, PG_REFERENCED
);
1273 vm_page_wakeup(fs
->m
);
1275 cleanup_successful_fault(fs
);
1278 * Combine remaining address bits with the vpte.
1280 /* JG how many bits from each? */
1281 *pindex
= ((vpte
& VPTE_FRAME
) >> PAGE_SHIFT
) +
1282 (*pindex
& ((1L << vshift
) - 1));
1283 return (KERN_SUCCESS
);
1288 * This is the core of the vm_fault code.
1290 * Do all operations required to fault-in (fs.first_object, pindex). Run
1291 * through the shadow chain as necessary and do required COW or virtual
1292 * copy operations. The caller has already fully resolved the vm_map_entry
1293 * and, if appropriate, has created a copy-on-write layer. All we need to
1294 * do is iterate the object chain.
1296 * On failure (fs) is unlocked and deallocated and the caller may return or
1297 * retry depending on the failure code. On success (fs) is NOT unlocked or
1298 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1299 * will have an additional PIP count if it is not equal to fs.first_object.
1301 * If locks based on fs->first_shared or fs->shared are insufficient,
1302 * clear the appropriate field(s) and return RETRY. COWs require that
1303 * first_shared be 0, while page allocations (or frees) require that
1304 * shared be 0. Renames require that both be 0.
1306 * fs->first_object must be held on call.
1310 vm_fault_object(struct faultstate
*fs
, vm_pindex_t first_pindex
,
1311 vm_prot_t fault_type
, int allow_nofault
)
1313 vm_object_t next_object
;
1317 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs
->first_object
));
1318 fs
->prot
= fs
->first_prot
;
1319 fs
->object
= fs
->first_object
;
1320 pindex
= first_pindex
;
1322 vm_object_chain_acquire(fs
->first_object
, fs
->shared
);
1323 vm_object_pip_add(fs
->first_object
, 1);
1326 * If a read fault occurs we try to make the page writable if
1327 * possible. There are three cases where we cannot make the
1328 * page mapping writable:
1330 * (1) The mapping is read-only or the VM object is read-only,
1331 * fs->prot above will simply not have VM_PROT_WRITE set.
1333 * (2) If the mapping is a virtual page table we need to be able
1334 * to detect writes so we can set VPTE_M in the virtual page
1337 * (3) If the VM page is read-only or copy-on-write, upgrading would
1338 * just result in an unnecessary COW fault.
1340 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1341 * causes adjustments to the 'M'odify bit to also turn off write
1342 * access to force a re-fault.
1344 if (fs
->entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
1345 if ((fault_type
& VM_PROT_WRITE
) == 0)
1346 fs
->prot
&= ~VM_PROT_WRITE
;
1349 if (curthread
->td_lwp
&& curthread
->td_lwp
->lwp_vmspace
&&
1350 pmap_emulate_ad_bits(&curthread
->td_lwp
->lwp_vmspace
->vm_pmap
)) {
1351 if ((fault_type
& VM_PROT_WRITE
) == 0)
1352 fs
->prot
&= ~VM_PROT_WRITE
;
1355 /* vm_object_hold(fs->object); implied b/c object == first_object */
1359 * The entire backing chain from first_object to object
1360 * inclusive is chainlocked.
1362 * If the object is dead, we stop here
1364 if (fs
->object
->flags
& OBJ_DEAD
) {
1365 vm_object_pip_wakeup(fs
->first_object
);
1366 vm_object_chain_release_all(fs
->first_object
,
1368 if (fs
->object
!= fs
->first_object
)
1369 vm_object_drop(fs
->object
);
1370 unlock_and_deallocate(fs
);
1371 return (KERN_PROTECTION_FAILURE
);
1375 * See if the page is resident. Wait/Retry if the page is
1376 * busy (lots of stuff may have changed so we can't continue
1379 * We can theoretically allow the soft-busy case on a read
1380 * fault if the page is marked valid, but since such
1381 * pages are typically already pmap'd, putting that
1382 * special case in might be more effort then it is
1383 * worth. We cannot under any circumstances mess
1384 * around with a vm_page_t->busy page except, perhaps,
1387 fs
->m
= vm_page_lookup_busy_try(fs
->object
, pindex
,
1390 vm_object_pip_wakeup(fs
->first_object
);
1391 vm_object_chain_release_all(fs
->first_object
,
1393 if (fs
->object
!= fs
->first_object
)
1394 vm_object_drop(fs
->object
);
1396 vm_page_sleep_busy(fs
->m
, TRUE
, "vmpfw");
1397 mycpu
->gd_cnt
.v_intrans
++;
1398 /*vm_object_deallocate(fs->first_object);*/
1399 /*fs->first_object = NULL;*/
1401 return (KERN_TRY_AGAIN
);
1405 * The page is busied for us.
1407 * If reactivating a page from PQ_CACHE we may have
1410 int queue
= fs
->m
->queue
;
1411 vm_page_unqueue_nowakeup(fs
->m
);
1413 if ((queue
- fs
->m
->pc
) == PQ_CACHE
&&
1414 vm_page_count_severe()) {
1415 vm_page_activate(fs
->m
);
1416 vm_page_wakeup(fs
->m
);
1418 vm_object_pip_wakeup(fs
->first_object
);
1419 vm_object_chain_release_all(fs
->first_object
,
1421 if (fs
->object
!= fs
->first_object
)
1422 vm_object_drop(fs
->object
);
1423 unlock_and_deallocate(fs
);
1424 if (allow_nofault
== 0 ||
1425 (curthread
->td_flags
& TDF_NOFAULT
) == 0) {
1430 if (td
->td_proc
&& (td
->td_proc
->p_flags
& P_LOWMEMKILL
))
1431 return (KERN_PROTECTION_FAILURE
);
1433 return (KERN_TRY_AGAIN
);
1437 * If it still isn't completely valid (readable),
1438 * or if a read-ahead-mark is set on the VM page,
1439 * jump to readrest, else we found the page and
1442 * We can release the spl once we have marked the
1445 if (fs
->m
->object
!= &kernel_object
) {
1446 if ((fs
->m
->valid
& VM_PAGE_BITS_ALL
) !=
1450 if (fs
->m
->flags
& PG_RAM
) {
1453 vm_page_flag_clear(fs
->m
, PG_RAM
);
1457 break; /* break to PAGE HAS BEEN FOUND */
1461 * Page is not resident, If this is the search termination
1462 * or the pager might contain the page, allocate a new page.
1464 if (TRYPAGER(fs
) || fs
->object
== fs
->first_object
) {
1466 * Allocating, must be exclusive.
1468 if (fs
->object
== fs
->first_object
&&
1470 fs
->first_shared
= 0;
1471 vm_object_pip_wakeup(fs
->first_object
);
1472 vm_object_chain_release_all(fs
->first_object
,
1474 if (fs
->object
!= fs
->first_object
)
1475 vm_object_drop(fs
->object
);
1476 unlock_and_deallocate(fs
);
1477 return (KERN_TRY_AGAIN
);
1479 if (fs
->object
!= fs
->first_object
&&
1481 fs
->first_shared
= 0;
1483 vm_object_pip_wakeup(fs
->first_object
);
1484 vm_object_chain_release_all(fs
->first_object
,
1486 if (fs
->object
!= fs
->first_object
)
1487 vm_object_drop(fs
->object
);
1488 unlock_and_deallocate(fs
);
1489 return (KERN_TRY_AGAIN
);
1493 * If the page is beyond the object size we fail
1495 if (pindex
>= fs
->object
->size
) {
1496 vm_object_pip_wakeup(fs
->first_object
);
1497 vm_object_chain_release_all(fs
->first_object
,
1499 if (fs
->object
!= fs
->first_object
)
1500 vm_object_drop(fs
->object
);
1501 unlock_and_deallocate(fs
);
1502 return (KERN_PROTECTION_FAILURE
);
1506 * Allocate a new page for this object/offset pair.
1508 * It is possible for the allocation to race, so
1512 if (!vm_page_count_severe()) {
1513 fs
->m
= vm_page_alloc(fs
->object
, pindex
,
1514 ((fs
->vp
|| fs
->object
->backing_object
) ?
1515 VM_ALLOC_NULL_OK
| VM_ALLOC_NORMAL
:
1516 VM_ALLOC_NULL_OK
| VM_ALLOC_NORMAL
|
1517 VM_ALLOC_USE_GD
| VM_ALLOC_ZERO
));
1519 if (fs
->m
== NULL
) {
1520 vm_object_pip_wakeup(fs
->first_object
);
1521 vm_object_chain_release_all(fs
->first_object
,
1523 if (fs
->object
!= fs
->first_object
)
1524 vm_object_drop(fs
->object
);
1525 unlock_and_deallocate(fs
);
1526 if (allow_nofault
== 0 ||
1527 (curthread
->td_flags
& TDF_NOFAULT
) == 0) {
1532 if (td
->td_proc
&& (td
->td_proc
->p_flags
& P_LOWMEMKILL
))
1533 return (KERN_PROTECTION_FAILURE
);
1535 return (KERN_TRY_AGAIN
);
1539 * Fall through to readrest. We have a new page which
1540 * will have to be paged (since m->valid will be 0).
1546 * We have found an invalid or partially valid page, a
1547 * page with a read-ahead mark which might be partially or
1548 * fully valid (and maybe dirty too), or we have allocated
1551 * Attempt to fault-in the page if there is a chance that the
1552 * pager has it, and potentially fault in additional pages
1555 * If TRYPAGER is true then fs.m will be non-NULL and busied
1561 u_char behavior
= vm_map_entry_behavior(fs
->entry
);
1563 if (behavior
== MAP_ENTRY_BEHAV_RANDOM
)
1569 * Doing I/O may synchronously insert additional
1570 * pages so we can't be shared at this point either.
1572 * NOTE: We can't free fs->m here in the allocated
1573 * case (fs->object != fs->first_object) as
1574 * this would require an exclusively locked
1577 if (fs
->object
== fs
->first_object
&&
1579 vm_page_deactivate(fs
->m
);
1580 vm_page_wakeup(fs
->m
);
1582 fs
->first_shared
= 0;
1583 vm_object_pip_wakeup(fs
->first_object
);
1584 vm_object_chain_release_all(fs
->first_object
,
1586 if (fs
->object
!= fs
->first_object
)
1587 vm_object_drop(fs
->object
);
1588 unlock_and_deallocate(fs
);
1589 return (KERN_TRY_AGAIN
);
1591 if (fs
->object
!= fs
->first_object
&&
1593 vm_page_deactivate(fs
->m
);
1594 vm_page_wakeup(fs
->m
);
1596 fs
->first_shared
= 0;
1598 vm_object_pip_wakeup(fs
->first_object
);
1599 vm_object_chain_release_all(fs
->first_object
,
1601 if (fs
->object
!= fs
->first_object
)
1602 vm_object_drop(fs
->object
);
1603 unlock_and_deallocate(fs
);
1604 return (KERN_TRY_AGAIN
);
1608 * Avoid deadlocking against the map when doing I/O.
1609 * fs.object and the page is PG_BUSY'd.
1611 * NOTE: Once unlocked, fs->entry can become stale
1612 * so this will NULL it out.
1614 * NOTE: fs->entry is invalid until we relock the
1615 * map and verify that the timestamp has not
1621 * Acquire the page data. We still hold a ref on
1622 * fs.object and the page has been PG_BUSY's.
1624 * The pager may replace the page (for example, in
1625 * order to enter a fictitious page into the
1626 * object). If it does so it is responsible for
1627 * cleaning up the passed page and properly setting
1628 * the new page PG_BUSY.
1630 * If we got here through a PG_RAM read-ahead
1631 * mark the page may be partially dirty and thus
1632 * not freeable. Don't bother checking to see
1633 * if the pager has the page because we can't free
1634 * it anyway. We have to depend on the get_page
1635 * operation filling in any gaps whether there is
1636 * backing store or not.
1638 rv
= vm_pager_get_page(fs
->object
, &fs
->m
, seqaccess
);
1640 if (rv
== VM_PAGER_OK
) {
1642 * Relookup in case pager changed page. Pager
1643 * is responsible for disposition of old page
1646 * XXX other code segments do relookups too.
1647 * It's a bad abstraction that needs to be
1650 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
1651 if (fs
->m
== NULL
) {
1652 vm_object_pip_wakeup(fs
->first_object
);
1653 vm_object_chain_release_all(
1654 fs
->first_object
, fs
->object
);
1655 if (fs
->object
!= fs
->first_object
)
1656 vm_object_drop(fs
->object
);
1657 unlock_and_deallocate(fs
);
1658 return (KERN_TRY_AGAIN
);
1661 break; /* break to PAGE HAS BEEN FOUND */
1665 * Remove the bogus page (which does not exist at this
1666 * object/offset); before doing so, we must get back
1667 * our object lock to preserve our invariant.
1669 * Also wake up any other process that may want to bring
1672 * If this is the top-level object, we must leave the
1673 * busy page to prevent another process from rushing
1674 * past us, and inserting the page in that object at
1675 * the same time that we are.
1677 if (rv
== VM_PAGER_ERROR
) {
1679 kprintf("vm_fault: pager read error, "
1684 kprintf("vm_fault: pager read error, "
1692 * Data outside the range of the pager or an I/O error
1694 * The page may have been wired during the pagein,
1695 * e.g. by the buffer cache, and cannot simply be
1696 * freed. Call vnode_pager_freepage() to deal with it.
1698 * Also note that we cannot free the page if we are
1699 * holding the related object shared. XXX not sure
1700 * what to do in that case.
1702 if (fs
->object
!= fs
->first_object
) {
1703 vnode_pager_freepage(fs
->m
);
1706 * XXX - we cannot just fall out at this
1707 * point, m has been freed and is invalid!
1711 * XXX - the check for kernel_map is a kludge to work
1712 * around having the machine panic on a kernel space
1713 * fault w/ I/O error.
1715 if (((fs
->map
!= &kernel_map
) &&
1716 (rv
== VM_PAGER_ERROR
)) || (rv
== VM_PAGER_BAD
)) {
1718 if (fs
->first_shared
) {
1719 vm_page_deactivate(fs
->m
);
1720 vm_page_wakeup(fs
->m
);
1722 vnode_pager_freepage(fs
->m
);
1726 vm_object_pip_wakeup(fs
->first_object
);
1727 vm_object_chain_release_all(fs
->first_object
,
1729 if (fs
->object
!= fs
->first_object
)
1730 vm_object_drop(fs
->object
);
1731 unlock_and_deallocate(fs
);
1732 if (rv
== VM_PAGER_ERROR
)
1733 return (KERN_FAILURE
);
1735 return (KERN_PROTECTION_FAILURE
);
1741 * We get here if the object has a default pager (or unwiring)
1742 * or the pager doesn't have the page.
1744 * fs->first_m will be used for the COW unless we find a
1745 * deeper page to be mapped read-only, in which case the
1746 * unlock*(fs) will free first_m.
1748 if (fs
->object
== fs
->first_object
)
1749 fs
->first_m
= fs
->m
;
1752 * Move on to the next object. The chain lock should prevent
1753 * the backing_object from getting ripped out from under us.
1755 * The object lock for the next object is governed by
1758 if ((next_object
= fs
->object
->backing_object
) != NULL
) {
1760 vm_object_hold_shared(next_object
);
1762 vm_object_hold(next_object
);
1763 vm_object_chain_acquire(next_object
, fs
->shared
);
1764 KKASSERT(next_object
== fs
->object
->backing_object
);
1765 pindex
+= OFF_TO_IDX(fs
->object
->backing_object_offset
);
1768 if (next_object
== NULL
) {
1770 * If there's no object left, fill the page in the top
1771 * object with zeros.
1773 if (fs
->object
!= fs
->first_object
) {
1775 if (fs
->first_object
->backing_object
!=
1777 vm_object_hold(fs
->first_object
->backing_object
);
1780 vm_object_chain_release_all(
1781 fs
->first_object
->backing_object
,
1784 if (fs
->first_object
->backing_object
!=
1786 vm_object_drop(fs
->first_object
->backing_object
);
1789 vm_object_pip_wakeup(fs
->object
);
1790 vm_object_drop(fs
->object
);
1791 fs
->object
= fs
->first_object
;
1792 pindex
= first_pindex
;
1793 fs
->m
= fs
->first_m
;
1798 * Zero the page and mark it valid.
1800 vm_page_zero_fill(fs
->m
);
1801 mycpu
->gd_cnt
.v_zfod
++;
1802 fs
->m
->valid
= VM_PAGE_BITS_ALL
;
1803 break; /* break to PAGE HAS BEEN FOUND */
1805 if (fs
->object
!= fs
->first_object
) {
1806 vm_object_pip_wakeup(fs
->object
);
1807 vm_object_lock_swap();
1808 vm_object_drop(fs
->object
);
1810 KASSERT(fs
->object
!= next_object
,
1811 ("object loop %p", next_object
));
1812 fs
->object
= next_object
;
1813 vm_object_pip_add(fs
->object
, 1);
1817 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1820 * object still held.
1822 * local shared variable may be different from fs->shared.
1824 * If the page is being written, but isn't already owned by the
1825 * top-level object, we have to copy it into a new page owned by the
1828 KASSERT((fs
->m
->flags
& PG_BUSY
) != 0,
1829 ("vm_fault: not busy after main loop"));
1831 if (fs
->object
!= fs
->first_object
) {
1833 * We only really need to copy if we want to write it.
1835 if (fault_type
& VM_PROT_WRITE
) {
1837 * This allows pages to be virtually copied from a
1838 * backing_object into the first_object, where the
1839 * backing object has no other refs to it, and cannot
1840 * gain any more refs. Instead of a bcopy, we just
1841 * move the page from the backing object to the
1842 * first object. Note that we must mark the page
1843 * dirty in the first object so that it will go out
1844 * to swap when needed.
1848 * Must be holding exclusive locks
1850 fs
->first_shared
== 0 &&
1853 * Map, if present, has not changed
1856 fs
->map_generation
== fs
->map
->timestamp
) &&
1858 * Only one shadow object
1860 (fs
->object
->shadow_count
== 1) &&
1862 * No COW refs, except us
1864 (fs
->object
->ref_count
== 1) &&
1866 * No one else can look this object up
1868 (fs
->object
->handle
== NULL
) &&
1870 * No other ways to look the object up
1872 ((fs
->object
->type
== OBJT_DEFAULT
) ||
1873 (fs
->object
->type
== OBJT_SWAP
)) &&
1875 * We don't chase down the shadow chain
1877 (fs
->object
== fs
->first_object
->backing_object
) &&
1880 * grab the lock if we need to
1882 (fs
->lookup_still_valid
||
1884 lockmgr(&fs
->map
->lock
, LK_EXCLUSIVE
|LK_NOWAIT
) == 0)
1887 * (first_m) and (m) are both busied. We have
1888 * move (m) into (first_m)'s object/pindex
1889 * in an atomic fashion, then free (first_m).
1891 * first_object is held so second remove
1892 * followed by the rename should wind
1893 * up being atomic. vm_page_free() might
1894 * block so we don't do it until after the
1897 fs
->lookup_still_valid
= 1;
1898 vm_page_protect(fs
->first_m
, VM_PROT_NONE
);
1899 vm_page_remove(fs
->first_m
);
1900 vm_page_rename(fs
->m
, fs
->first_object
,
1902 vm_page_free(fs
->first_m
);
1903 fs
->first_m
= fs
->m
;
1905 mycpu
->gd_cnt
.v_cow_optim
++;
1908 * Oh, well, lets copy it.
1910 * Why are we unmapping the original page
1911 * here? Well, in short, not all accessors
1912 * of user memory go through the pmap. The
1913 * procfs code doesn't have access user memory
1914 * via a local pmap, so vm_fault_page*()
1915 * can't call pmap_enter(). And the umtx*()
1916 * code may modify the COW'd page via a DMAP
1917 * or kernel mapping and not via the pmap,
1918 * leaving the original page still mapped
1919 * read-only into the pmap.
1921 * So we have to remove the page from at
1922 * least the current pmap if it is in it.
1923 * Just remove it from all pmaps.
1925 KKASSERT(fs
->first_shared
== 0);
1926 vm_page_copy(fs
->m
, fs
->first_m
);
1927 vm_page_protect(fs
->m
, VM_PROT_NONE
);
1928 vm_page_event(fs
->m
, VMEVENT_COW
);
1932 * We no longer need the old page or object.
1938 * We intend to revert to first_object, undo the
1939 * chain lock through to that.
1942 if (fs
->first_object
->backing_object
!= fs
->object
)
1943 vm_object_hold(fs
->first_object
->backing_object
);
1945 vm_object_chain_release_all(
1946 fs
->first_object
->backing_object
,
1949 if (fs
->first_object
->backing_object
!= fs
->object
)
1950 vm_object_drop(fs
->first_object
->backing_object
);
1954 * fs->object != fs->first_object due to above
1957 vm_object_pip_wakeup(fs
->object
);
1958 vm_object_drop(fs
->object
);
1961 * Only use the new page below...
1963 mycpu
->gd_cnt
.v_cow_faults
++;
1964 fs
->m
= fs
->first_m
;
1965 fs
->object
= fs
->first_object
;
1966 pindex
= first_pindex
;
1969 * If it wasn't a write fault avoid having to copy
1970 * the page by mapping it read-only.
1972 fs
->prot
&= ~VM_PROT_WRITE
;
1977 * Relock the map if necessary, then check the generation count.
1978 * relock_map() will update fs->timestamp to account for the
1979 * relocking if necessary.
1981 * If the count has changed after relocking then all sorts of
1982 * crap may have happened and we have to retry.
1984 * NOTE: The relock_map() can fail due to a deadlock against
1985 * the vm_page we are holding BUSY.
1987 if (fs
->lookup_still_valid
== FALSE
&& fs
->map
) {
1988 if (relock_map(fs
) ||
1989 fs
->map
->timestamp
!= fs
->map_generation
) {
1991 vm_object_pip_wakeup(fs
->first_object
);
1992 vm_object_chain_release_all(fs
->first_object
,
1994 if (fs
->object
!= fs
->first_object
)
1995 vm_object_drop(fs
->object
);
1996 unlock_and_deallocate(fs
);
1997 return (KERN_TRY_AGAIN
);
2002 * If the fault is a write, we know that this page is being
2003 * written NOW so dirty it explicitly to save on pmap_is_modified()
2006 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2007 * if the page is already dirty to prevent data written with
2008 * the expectation of being synced from not being synced.
2009 * Likewise if this entry does not request NOSYNC then make
2010 * sure the page isn't marked NOSYNC. Applications sharing
2011 * data should use the same flags to avoid ping ponging.
2013 * Also tell the backing pager, if any, that it should remove
2014 * any swap backing since the page is now dirty.
2016 vm_page_activate(fs
->m
);
2017 if (fs
->prot
& VM_PROT_WRITE
) {
2018 vm_object_set_writeable_dirty(fs
->m
->object
);
2019 vm_set_nosync(fs
->m
, fs
->entry
);
2020 if (fs
->fault_flags
& VM_FAULT_DIRTY
) {
2021 vm_page_dirty(fs
->m
);
2022 swap_pager_unswapped(fs
->m
);
2026 vm_object_pip_wakeup(fs
->first_object
);
2027 vm_object_chain_release_all(fs
->first_object
, fs
->object
);
2028 if (fs
->object
!= fs
->first_object
)
2029 vm_object_drop(fs
->object
);
2032 * Page had better still be busy. We are still locked up and
2033 * fs->object will have another PIP reference if it is not equal
2034 * to fs->first_object.
2036 KASSERT(fs
->m
->flags
& PG_BUSY
,
2037 ("vm_fault: page %p not busy!", fs
->m
));
2040 * Sanity check: page must be completely valid or it is not fit to
2041 * map into user space. vm_pager_get_pages() ensures this.
2043 if (fs
->m
->valid
!= VM_PAGE_BITS_ALL
) {
2044 vm_page_zero_invalid(fs
->m
, TRUE
);
2045 kprintf("Warning: page %p partially invalid on fault\n", fs
->m
);
2048 return (KERN_SUCCESS
);
2052 * Hold each of the physical pages that are mapped by the specified range of
2053 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2054 * and allow the specified types of access, "prot". If all of the implied
2055 * pages are successfully held, then the number of held pages is returned
2056 * together with pointers to those pages in the array "ma". However, if any
2057 * of the pages cannot be held, -1 is returned.
2060 vm_fault_quick_hold_pages(vm_map_t map
, vm_offset_t addr
, vm_size_t len
,
2061 vm_prot_t prot
, vm_page_t
*ma
, int max_count
)
2063 vm_offset_t start
, end
;
2064 int i
, npages
, error
;
2066 start
= trunc_page(addr
);
2067 end
= round_page(addr
+ len
);
2069 npages
= howmany(end
- start
, PAGE_SIZE
);
2071 if (npages
> max_count
)
2074 for (i
= 0; i
< npages
; i
++) {
2075 // XXX error handling
2076 ma
[i
] = vm_fault_page_quick(start
+ (i
* PAGE_SIZE
),
2085 * Wire down a range of virtual addresses in a map. The entry in question
2086 * should be marked in-transition and the map must be locked. We must
2087 * release the map temporarily while faulting-in the page to avoid a
2088 * deadlock. Note that the entry may be clipped while we are blocked but
2089 * will never be freed.
2094 vm_fault_wire(vm_map_t map
, vm_map_entry_t entry
,
2095 boolean_t user_wire
, int kmflags
)
2097 boolean_t fictitious
;
2108 lwkt_gettoken(&map
->token
);
2111 wire_prot
= VM_PROT_READ
;
2112 fault_flags
= VM_FAULT_USER_WIRE
;
2114 wire_prot
= VM_PROT_READ
| VM_PROT_WRITE
;
2115 fault_flags
= VM_FAULT_CHANGE_WIRING
;
2117 if (kmflags
& KM_NOTLBSYNC
)
2118 wire_prot
|= VM_PROT_NOSYNC
;
2120 pmap
= vm_map_pmap(map
);
2121 start
= entry
->start
;
2123 switch(entry
->maptype
) {
2124 case VM_MAPTYPE_NORMAL
:
2125 case VM_MAPTYPE_VPAGETABLE
:
2126 fictitious
= entry
->object
.vm_object
&&
2127 ((entry
->object
.vm_object
->type
== OBJT_DEVICE
) ||
2128 (entry
->object
.vm_object
->type
== OBJT_MGTDEVICE
));
2130 case VM_MAPTYPE_UKSMAP
:
2138 if (entry
->eflags
& MAP_ENTRY_KSTACK
)
2144 * We simulate a fault to get the page and enter it in the physical
2147 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
2148 rv
= vm_fault(map
, va
, wire_prot
, fault_flags
);
2150 while (va
> start
) {
2152 if ((pa
= pmap_extract(pmap
, va
)) == 0)
2154 pmap_change_wiring(pmap
, va
, FALSE
, entry
);
2156 m
= PHYS_TO_VM_PAGE(pa
);
2157 vm_page_busy_wait(m
, FALSE
, "vmwrpg");
2158 vm_page_unwire(m
, 1);
2168 lwkt_reltoken(&map
->token
);
2173 * Unwire a range of virtual addresses in a map. The map should be
2177 vm_fault_unwire(vm_map_t map
, vm_map_entry_t entry
)
2179 boolean_t fictitious
;
2187 lwkt_gettoken(&map
->token
);
2189 pmap
= vm_map_pmap(map
);
2190 start
= entry
->start
;
2192 fictitious
= entry
->object
.vm_object
&&
2193 ((entry
->object
.vm_object
->type
== OBJT_DEVICE
) ||
2194 (entry
->object
.vm_object
->type
== OBJT_MGTDEVICE
));
2195 if (entry
->eflags
& MAP_ENTRY_KSTACK
)
2199 * Since the pages are wired down, we must be able to get their
2200 * mappings from the physical map system.
2202 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
2203 pa
= pmap_extract(pmap
, va
);
2205 pmap_change_wiring(pmap
, va
, FALSE
, entry
);
2207 m
= PHYS_TO_VM_PAGE(pa
);
2208 vm_page_busy_wait(m
, FALSE
, "vmwupg");
2209 vm_page_unwire(m
, 1);
2214 lwkt_reltoken(&map
->token
);
2218 * Copy all of the pages from a wired-down map entry to another.
2220 * The source and destination maps must be locked for write.
2221 * The source and destination maps token must be held
2222 * The source map entry must be wired down (or be a sharing map
2223 * entry corresponding to a main map entry that is wired down).
2225 * No other requirements.
2227 * XXX do segment optimization
2230 vm_fault_copy_entry(vm_map_t dst_map
, vm_map_t src_map
,
2231 vm_map_entry_t dst_entry
, vm_map_entry_t src_entry
)
2233 vm_object_t dst_object
;
2234 vm_object_t src_object
;
2235 vm_ooffset_t dst_offset
;
2236 vm_ooffset_t src_offset
;
2242 src_object
= src_entry
->object
.vm_object
;
2243 src_offset
= src_entry
->offset
;
2246 * Create the top-level object for the destination entry. (Doesn't
2247 * actually shadow anything - we copy the pages directly.)
2249 vm_map_entry_allocate_object(dst_entry
);
2250 dst_object
= dst_entry
->object
.vm_object
;
2252 prot
= dst_entry
->max_protection
;
2255 * Loop through all of the pages in the entry's range, copying each
2256 * one from the source object (it should be there) to the destination
2259 vm_object_hold(src_object
);
2260 vm_object_hold(dst_object
);
2261 for (vaddr
= dst_entry
->start
, dst_offset
= 0;
2262 vaddr
< dst_entry
->end
;
2263 vaddr
+= PAGE_SIZE
, dst_offset
+= PAGE_SIZE
) {
2266 * Allocate a page in the destination object
2269 dst_m
= vm_page_alloc(dst_object
,
2270 OFF_TO_IDX(dst_offset
),
2272 if (dst_m
== NULL
) {
2275 } while (dst_m
== NULL
);
2278 * Find the page in the source object, and copy it in.
2279 * (Because the source is wired down, the page will be in
2282 src_m
= vm_page_lookup(src_object
,
2283 OFF_TO_IDX(dst_offset
+ src_offset
));
2285 panic("vm_fault_copy_wired: page missing");
2287 vm_page_copy(src_m
, dst_m
);
2288 vm_page_event(src_m
, VMEVENT_COW
);
2291 * Enter it in the pmap...
2293 pmap_enter(dst_map
->pmap
, vaddr
, dst_m
, prot
, FALSE
, dst_entry
);
2296 * Mark it no longer busy, and put it on the active list.
2298 vm_page_activate(dst_m
);
2299 vm_page_wakeup(dst_m
);
2301 vm_object_drop(dst_object
);
2302 vm_object_drop(src_object
);
2308 * This routine checks around the requested page for other pages that
2309 * might be able to be faulted in. This routine brackets the viable
2310 * pages for the pages to be paged in.
2313 * m, rbehind, rahead
2316 * marray (array of vm_page_t), reqpage (index of requested page)
2319 * number of pages in marray
2322 vm_fault_additional_pages(vm_page_t m
, int rbehind
, int rahead
,
2323 vm_page_t
*marray
, int *reqpage
)
2327 vm_pindex_t pindex
, startpindex
, endpindex
, tpindex
;
2329 int cbehind
, cahead
;
2335 * we don't fault-ahead for device pager
2337 if ((object
->type
== OBJT_DEVICE
) ||
2338 (object
->type
== OBJT_MGTDEVICE
)) {
2345 * if the requested page is not available, then give up now
2347 if (!vm_pager_has_page(object
, pindex
, &cbehind
, &cahead
)) {
2348 *reqpage
= 0; /* not used by caller, fix compiler warn */
2352 if ((cbehind
== 0) && (cahead
== 0)) {
2358 if (rahead
> cahead
) {
2362 if (rbehind
> cbehind
) {
2367 * Do not do any readahead if we have insufficient free memory.
2369 * XXX code was broken disabled before and has instability
2370 * with this conditonal fixed, so shortcut for now.
2372 if (burst_fault
== 0 || vm_page_count_severe()) {
2379 * scan backward for the read behind pages -- in memory
2381 * Assume that if the page is not found an interrupt will not
2382 * create it. Theoretically interrupts can only remove (busy)
2383 * pages, not create new associations.
2386 if (rbehind
> pindex
) {
2390 startpindex
= pindex
- rbehind
;
2393 vm_object_hold(object
);
2394 for (tpindex
= pindex
; tpindex
> startpindex
; --tpindex
) {
2395 if (vm_page_lookup(object
, tpindex
- 1))
2400 while (tpindex
< pindex
) {
2401 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
|
2404 for (j
= 0; j
< i
; j
++) {
2405 vm_page_free(marray
[j
]);
2407 vm_object_drop(object
);
2416 vm_object_drop(object
);
2422 * Assign requested page
2429 * Scan forwards for read-ahead pages
2431 tpindex
= pindex
+ 1;
2432 endpindex
= tpindex
+ rahead
;
2433 if (endpindex
> object
->size
)
2434 endpindex
= object
->size
;
2436 vm_object_hold(object
);
2437 while (tpindex
< endpindex
) {
2438 if (vm_page_lookup(object
, tpindex
))
2440 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
|
2448 vm_object_drop(object
);
2456 * vm_prefault() provides a quick way of clustering pagefaults into a
2457 * processes address space. It is a "cousin" of pmap_object_init_pt,
2458 * except it runs at page fault time instead of mmap time.
2460 * vm.fast_fault Enables pre-faulting zero-fill pages
2462 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2463 * prefault. Scan stops in either direction when
2464 * a page is found to already exist.
2466 * This code used to be per-platform pmap_prefault(). It is now
2467 * machine-independent and enhanced to also pre-fault zero-fill pages
2468 * (see vm.fast_fault) as well as make them writable, which greatly
2469 * reduces the number of page faults programs incur.
2471 * Application performance when pre-faulting zero-fill pages is heavily
2472 * dependent on the application. Very tiny applications like /bin/echo
2473 * lose a little performance while applications of any appreciable size
2474 * gain performance. Prefaulting multiple pages also reduces SMP
2475 * congestion and can improve SMP performance significantly.
2477 * NOTE! prot may allow writing but this only applies to the top level
2478 * object. If we wind up mapping a page extracted from a backing
2479 * object we have to make sure it is read-only.
2481 * NOTE! The caller has already handled any COW operations on the
2482 * vm_map_entry via the normal fault code. Do NOT call this
2483 * shortcut unless the normal fault code has run on this entry.
2485 * The related map must be locked.
2486 * No other requirements.
2488 static int vm_prefault_pages
= 8;
2489 SYSCTL_INT(_vm
, OID_AUTO
, prefault_pages
, CTLFLAG_RW
, &vm_prefault_pages
, 0,
2490 "Maximum number of pages to pre-fault");
2491 static int vm_fast_fault
= 1;
2492 SYSCTL_INT(_vm
, OID_AUTO
, fast_fault
, CTLFLAG_RW
, &vm_fast_fault
, 0,
2493 "Burst fault zero-fill regions");
2496 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2497 * is not already dirty by other means. This will prevent passive
2498 * filesystem syncing as well as 'sync' from writing out the page.
2501 vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
)
2503 if (entry
->eflags
& MAP_ENTRY_NOSYNC
) {
2505 vm_page_flag_set(m
, PG_NOSYNC
);
2507 vm_page_flag_clear(m
, PG_NOSYNC
);
2512 vm_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
, int prot
,
2528 * Get stable max count value, disabled if set to 0
2530 maxpages
= vm_prefault_pages
;
2536 * We do not currently prefault mappings that use virtual page
2537 * tables. We do not prefault foreign pmaps.
2539 if (entry
->maptype
!= VM_MAPTYPE_NORMAL
)
2541 lp
= curthread
->td_lwp
;
2542 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
2546 * Limit pre-fault count to 1024 pages.
2548 if (maxpages
> 1024)
2551 object
= entry
->object
.vm_object
;
2552 KKASSERT(object
!= NULL
);
2553 KKASSERT(object
== entry
->object
.vm_object
);
2554 vm_object_hold(object
);
2555 vm_object_chain_acquire(object
, 0);
2559 for (i
= 0; i
< maxpages
; ++i
) {
2560 vm_object_t lobject
;
2561 vm_object_t nobject
;
2566 * This can eat a lot of time on a heavily contended
2567 * machine so yield on the tick if needed.
2573 * Calculate the page to pre-fault, stopping the scan in
2574 * each direction separately if the limit is reached.
2579 addr
= addra
- ((i
+ 1) >> 1) * PAGE_SIZE
;
2583 addr
= addra
+ ((i
+ 2) >> 1) * PAGE_SIZE
;
2585 if (addr
< entry
->start
) {
2591 if (addr
>= entry
->end
) {
2599 * Skip pages already mapped, and stop scanning in that
2600 * direction. When the scan terminates in both directions
2603 if (pmap_prefault_ok(pmap
, addr
) == 0) {
2614 * Follow the VM object chain to obtain the page to be mapped
2617 * If we reach the terminal object without finding a page
2618 * and we determine it would be advantageous, then allocate
2619 * a zero-fill page for the base object. The base object
2620 * is guaranteed to be OBJT_DEFAULT for this case.
2622 * In order to not have to check the pager via *haspage*()
2623 * we stop if any non-default object is encountered. e.g.
2624 * a vnode or swap object would stop the loop.
2626 index
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
2631 KKASSERT(lobject
== entry
->object
.vm_object
);
2632 /*vm_object_hold(lobject); implied */
2634 while ((m
= vm_page_lookup_busy_try(lobject
, pindex
,
2635 TRUE
, &error
)) == NULL
) {
2636 if (lobject
->type
!= OBJT_DEFAULT
)
2638 if (lobject
->backing_object
== NULL
) {
2639 if (vm_fast_fault
== 0)
2641 if ((prot
& VM_PROT_WRITE
) == 0 ||
2642 vm_page_count_min(0)) {
2647 * NOTE: Allocated from base object
2649 m
= vm_page_alloc(object
, index
,
2658 /* lobject = object .. not needed */
2661 if (lobject
->backing_object_offset
& PAGE_MASK
)
2663 nobject
= lobject
->backing_object
;
2664 vm_object_hold(nobject
);
2665 KKASSERT(nobject
== lobject
->backing_object
);
2666 pindex
+= lobject
->backing_object_offset
>> PAGE_SHIFT
;
2667 if (lobject
!= object
) {
2668 vm_object_lock_swap();
2669 vm_object_drop(lobject
);
2672 pprot
&= ~VM_PROT_WRITE
;
2673 vm_object_chain_acquire(lobject
, 0);
2677 * NOTE: A non-NULL (m) will be associated with lobject if
2678 * it was found there, otherwise it is probably a
2679 * zero-fill page associated with the base object.
2681 * Give-up if no page is available.
2684 if (lobject
!= object
) {
2686 if (object
->backing_object
!= lobject
)
2687 vm_object_hold(object
->backing_object
);
2689 vm_object_chain_release_all(
2690 object
->backing_object
, lobject
);
2692 if (object
->backing_object
!= lobject
)
2693 vm_object_drop(object
->backing_object
);
2695 vm_object_drop(lobject
);
2701 * The object must be marked dirty if we are mapping a
2702 * writable page. m->object is either lobject or object,
2703 * both of which are still held. Do this before we
2704 * potentially drop the object.
2706 if (pprot
& VM_PROT_WRITE
)
2707 vm_object_set_writeable_dirty(m
->object
);
2710 * Do not conditionalize on PG_RAM. If pages are present in
2711 * the VM system we assume optimal caching. If caching is
2712 * not optimal the I/O gravy train will be restarted when we
2713 * hit an unavailable page. We do not want to try to restart
2714 * the gravy train now because we really don't know how much
2715 * of the object has been cached. The cost for restarting
2716 * the gravy train should be low (since accesses will likely
2717 * be I/O bound anyway).
2719 if (lobject
!= object
) {
2721 if (object
->backing_object
!= lobject
)
2722 vm_object_hold(object
->backing_object
);
2724 vm_object_chain_release_all(object
->backing_object
,
2727 if (object
->backing_object
!= lobject
)
2728 vm_object_drop(object
->backing_object
);
2730 vm_object_drop(lobject
);
2734 * Enter the page into the pmap if appropriate. If we had
2735 * allocated the page we have to place it on a queue. If not
2736 * we just have to make sure it isn't on the cache queue
2737 * (pages on the cache queue are not allowed to be mapped).
2741 * Page must be zerod.
2743 vm_page_zero_fill(m
);
2744 mycpu
->gd_cnt
.v_zfod
++;
2745 m
->valid
= VM_PAGE_BITS_ALL
;
2748 * Handle dirty page case
2750 if (pprot
& VM_PROT_WRITE
)
2751 vm_set_nosync(m
, entry
);
2752 pmap_enter(pmap
, addr
, m
, pprot
, 0, entry
);
2753 mycpu
->gd_cnt
.v_vm_faults
++;
2754 if (curthread
->td_lwp
)
2755 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
2756 vm_page_deactivate(m
);
2757 if (pprot
& VM_PROT_WRITE
) {
2758 /*vm_object_set_writeable_dirty(m->object);*/
2759 vm_set_nosync(m
, entry
);
2760 if (fault_flags
& VM_FAULT_DIRTY
) {
2763 swap_pager_unswapped(m
);
2768 /* couldn't busy page, no wakeup */
2770 ((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
2771 (m
->flags
& PG_FICTITIOUS
) == 0) {
2773 * A fully valid page not undergoing soft I/O can
2774 * be immediately entered into the pmap.
2776 if ((m
->queue
- m
->pc
) == PQ_CACHE
)
2777 vm_page_deactivate(m
);
2778 if (pprot
& VM_PROT_WRITE
) {
2779 /*vm_object_set_writeable_dirty(m->object);*/
2780 vm_set_nosync(m
, entry
);
2781 if (fault_flags
& VM_FAULT_DIRTY
) {
2784 swap_pager_unswapped(m
);
2787 if (pprot
& VM_PROT_WRITE
)
2788 vm_set_nosync(m
, entry
);
2789 pmap_enter(pmap
, addr
, m
, pprot
, 0, entry
);
2790 mycpu
->gd_cnt
.v_vm_faults
++;
2791 if (curthread
->td_lwp
)
2792 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
2798 vm_object_chain_release(object
);
2799 vm_object_drop(object
);
2803 * Object can be held shared
2806 vm_prefault_quick(pmap_t pmap
, vm_offset_t addra
,
2807 vm_map_entry_t entry
, int prot
, int fault_flags
)
2820 * Get stable max count value, disabled if set to 0
2822 maxpages
= vm_prefault_pages
;
2828 * We do not currently prefault mappings that use virtual page
2829 * tables. We do not prefault foreign pmaps.
2831 if (entry
->maptype
!= VM_MAPTYPE_NORMAL
)
2833 lp
= curthread
->td_lwp
;
2834 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
2836 object
= entry
->object
.vm_object
;
2837 if (object
->backing_object
!= NULL
)
2839 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object
));
2842 * Limit pre-fault count to 1024 pages.
2844 if (maxpages
> 1024)
2849 for (i
= 0; i
< maxpages
; ++i
) {
2853 * Calculate the page to pre-fault, stopping the scan in
2854 * each direction separately if the limit is reached.
2859 addr
= addra
- ((i
+ 1) >> 1) * PAGE_SIZE
;
2863 addr
= addra
+ ((i
+ 2) >> 1) * PAGE_SIZE
;
2865 if (addr
< entry
->start
) {
2871 if (addr
>= entry
->end
) {
2879 * Follow the VM object chain to obtain the page to be mapped
2880 * into the pmap. This version of the prefault code only
2881 * works with terminal objects.
2883 * The page must already exist. If we encounter a problem
2886 * WARNING! We cannot call swap_pager_unswapped() or insert
2887 * a new vm_page with a shared token.
2889 pindex
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
2891 m
= vm_page_lookup_busy_try(object
, pindex
, TRUE
, &error
);
2892 if (m
== NULL
|| error
)
2896 * Skip pages already mapped, and stop scanning in that
2897 * direction. When the scan terminates in both directions
2900 if (pmap_prefault_ok(pmap
, addr
) == 0) {
2912 * Stop if the page cannot be trivially entered into the
2915 if (((m
->valid
& VM_PAGE_BITS_ALL
) != VM_PAGE_BITS_ALL
) ||
2916 (m
->flags
& PG_FICTITIOUS
) ||
2917 ((m
->flags
& PG_SWAPPED
) &&
2918 (prot
& VM_PROT_WRITE
) &&
2919 (fault_flags
& VM_FAULT_DIRTY
))) {
2925 * Enter the page into the pmap. The object might be held
2926 * shared so we can't do any (serious) modifying operation
2929 if ((m
->queue
- m
->pc
) == PQ_CACHE
)
2930 vm_page_deactivate(m
);
2931 if (prot
& VM_PROT_WRITE
) {
2932 vm_object_set_writeable_dirty(m
->object
);
2933 vm_set_nosync(m
, entry
);
2934 if (fault_flags
& VM_FAULT_DIRTY
) {
2936 /* can't happeen due to conditional above */
2937 /* swap_pager_unswapped(m); */
2940 pmap_enter(pmap
, addr
, m
, prot
, 0, entry
);
2941 mycpu
->gd_cnt
.v_vm_faults
++;
2942 if (curthread
->td_lwp
)
2943 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;