Sync ACPICA with Intel's version 20161222.
[dragonfly.git] / sys / netinet / tcp_subr.c
blob154557b339eef36c5ea844d40a0d9df222388c5d
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mpipe.h>
78 #include <sys/mbuf.h>
79 #ifdef INET6
80 #include <sys/domain.h>
81 #endif
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 #include <sys/socket.h>
85 #include <sys/socketops.h>
86 #include <sys/socketvar.h>
87 #include <sys/protosw.h>
88 #include <sys/random.h>
89 #include <sys/in_cksum.h>
90 #include <sys/ktr.h>
92 #include <net/route.h>
93 #include <net/if.h>
94 #include <net/netisr2.h>
96 #define _IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip6.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet/ip_icmp.h>
107 #ifdef INET6
108 #include <netinet/icmp6.h>
109 #endif
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif
121 #include <netinet6/ip6protosw.h>
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #ifdef INET6
127 #include <netinet6/ipsec6.h>
128 #endif
129 #endif
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #ifdef INET6
134 #include <netproto/ipsec/ipsec6.h>
135 #endif
136 #define IPSEC
137 #endif
139 #include <sys/md5.h>
140 #include <machine/smp.h>
142 #include <sys/msgport2.h>
143 #include <sys/mplock2.h>
144 #include <net/netmsg2.h>
146 #if !defined(KTR_TCP)
147 #define KTR_TCP KTR_ALL
148 #endif
150 KTR_INFO_MASTER(tcp);
151 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
154 #define logtcp(name) KTR_LOG(tcp_ ## name)
157 #define TCP_IW_MAXSEGS_DFLT 4
158 #define TCP_IW_CAPSEGS_DFLT 4
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
174 * Minimum MSS we accept and use. This prevents DoS attacks where
175 * we are forced to a ridiculous low MSS like 20 and send hundreds
176 * of packets instead of one. The effect scales with the available
177 * bandwidth and quickly saturates the CPU and network interface
178 * with packet generation and sending. Set to zero to disable MINMSS
179 * checking. This setting prevents us from sending too small packets.
181 int tcp_minmss = TCP_MINMSS;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
183 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 #if 0
186 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
188 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
189 #endif
191 int tcp_do_rfc1323 = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
193 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201 "Enable tcp_drain routine for extra help when low on mbufs");
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
212 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
213 * by default, but with generous values which should allow maximal
214 * bandwidth. In particular, the slop defaults to 50 (5 packets).
216 * The reason for doing this is that the limiter is the only mechanism we
217 * have which seems to do a really good job preventing receiver RX rings
218 * on network interfaces from getting blown out. Even though GigE/10GigE
219 * is supposed to flow control it looks like either it doesn't actually
220 * do it or Open Source drivers do not properly enable it.
222 * People using the limiter to reduce bottlenecks on slower WAN connections
223 * should set the slop to 20 (2 packets).
225 static int tcp_inflight_enable = 1;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
227 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 static int tcp_inflight_debug = 0;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
231 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
234 * NOTE: tcp_inflight_start is essentially the starting receive window
235 * for a connection. If set too low then fetches over tcp
236 * connections will take noticably longer to ramp-up over
237 * high-latency connections. 6144 is too low for a default,
238 * use something more reasonable.
240 static int tcp_inflight_start = 33792;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
242 &tcp_inflight_start, 0, "Start value for TCP inflight window");
244 static int tcp_inflight_min = 6144;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
246 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
248 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
250 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
252 static int tcp_inflight_stab = 50;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
254 &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
256 static int tcp_inflight_adjrtt = 2;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
258 &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
260 static int tcp_do_rfc3390 = 1;
261 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
262 &tcp_do_rfc3390, 0,
263 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
265 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
266 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
267 &tcp_iw_maxsegs, 0, "TCP IW segments max");
269 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
270 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
271 &tcp_iw_capsegs, 0, "TCP IW segments");
273 int tcp_low_rtobase = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
275 &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
277 static int tcp_do_ncr = 1;
278 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
279 &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
281 int tcp_ncr_rxtthresh_max = 16;
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
283 &tcp_ncr_rxtthresh_max, 0,
284 "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
286 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
287 static struct malloc_pipe tcptemp_mpipe;
289 static void tcp_willblock(void);
290 static void tcp_notify (struct inpcb *, int);
292 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
293 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
295 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
296 static void tcp_drain_dispatch(netmsg_t nmsg);
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
301 int cpu, error = 0;
303 for (cpu = 0; cpu < ncpus2; ++cpu) {
304 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 sizeof(struct tcp_stats))))
306 break;
307 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 sizeof(struct tcp_stats))))
309 break;
312 return (error);
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
318 * Target size of TCP PCB hash tables. Must be a power of two.
320 * Note that this can be overridden by the kernel environment
321 * variable net.inet.tcp.tcbhashsize
323 #ifndef TCBHASHSIZE
324 #define TCBHASHSIZE 512
325 #endif
328 * This is the actual shape of what we allocate using the zone
329 * allocator. Doing it this way allows us to protect both structures
330 * using the same generation count, and also eliminates the overhead
331 * of allocating tcpcbs separately. By hiding the structure here,
332 * we avoid changing most of the rest of the code (although it needs
333 * to be changed, eventually, for greater efficiency).
335 #define ALIGNMENT 32
336 #define ALIGNM1 (ALIGNMENT - 1)
337 struct inp_tp {
338 union {
339 struct inpcb inp;
340 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 } inp_tp_u;
342 struct tcpcb tcb;
343 struct tcp_callout inp_tp_rexmt;
344 struct tcp_callout inp_tp_persist;
345 struct tcp_callout inp_tp_keep;
346 struct tcp_callout inp_tp_2msl;
347 struct tcp_callout inp_tp_delack;
348 struct netmsg_tcp_timer inp_tp_timermsg;
349 struct netmsg_base inp_tp_sndmore;
351 #undef ALIGNMENT
352 #undef ALIGNM1
355 * Tcp initialization
357 void
358 tcp_init(void)
360 struct inpcbportinfo *portinfo;
361 struct inpcbinfo *ticb;
362 int hashsize = TCBHASHSIZE;
363 int cpu;
366 * note: tcptemp is used for keepalives, and it is ok for an
367 * allocation to fail so do not specify MPF_INT.
369 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 25, -1, 0, NULL, NULL, NULL);
372 tcp_delacktime = TCPTV_DELACK;
373 tcp_keepinit = TCPTV_KEEP_INIT;
374 tcp_keepidle = TCPTV_KEEP_IDLE;
375 tcp_keepintvl = TCPTV_KEEPINTVL;
376 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 tcp_msl = TCPTV_MSL;
378 tcp_rexmit_min = TCPTV_MIN;
379 tcp_rexmit_slop = TCPTV_CPU_VAR;
381 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
382 if (!powerof2(hashsize)) {
383 kprintf("WARNING: TCB hash size not a power of 2\n");
384 hashsize = 512; /* safe default */
386 tcp_tcbhashsize = hashsize;
388 portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
389 M_WAITOK);
391 for (cpu = 0; cpu < ncpus2; cpu++) {
392 ticb = &tcbinfo[cpu];
393 in_pcbinfo_init(ticb, cpu, FALSE);
394 ticb->hashbase = hashinit(hashsize, M_PCB,
395 &ticb->hashmask);
396 in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
397 ticb->portinfo = portinfo;
398 ticb->portinfo_mask = ncpus2_mask;
399 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
400 &ticb->wildcardhashmask);
401 ticb->localgrphashbase = hashinit(hashsize, M_PCB,
402 &ticb->localgrphashmask);
403 ticb->ipi_size = sizeof(struct inp_tp);
404 TAILQ_INIT(&tcpcbackq[cpu]);
407 tcp_reass_maxseg = nmbclusters / 16;
408 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
410 #ifdef INET6
411 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
412 #else
413 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
414 #endif
415 if (max_protohdr < TCP_MINPROTOHDR)
416 max_protohdr = TCP_MINPROTOHDR;
417 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
418 panic("tcp_init");
419 #undef TCP_MINPROTOHDR
422 * Initialize TCP statistics counters for each CPU.
424 for (cpu = 0; cpu < ncpus2; ++cpu)
425 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
428 * Initialize netmsgs for TCP drain
430 for (cpu = 0; cpu < ncpus2; ++cpu) {
431 netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
432 MSGF_PRIORITY, tcp_drain_dispatch);
435 syncache_init();
436 netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
439 static void
440 tcp_willblock(void)
442 struct tcpcb *tp;
443 int cpu = mycpu->gd_cpuid;
445 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
446 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
447 tp->t_flags &= ~TF_ONOUTPUTQ;
448 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
449 tcp_output(tp);
454 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
455 * tcp_template used to store this data in mbufs, but we now recopy it out
456 * of the tcpcb each time to conserve mbufs.
458 void
459 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
461 struct inpcb *inp = tp->t_inpcb;
462 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
464 #ifdef INET6
465 if (INP_ISIPV6(inp)) {
466 struct ip6_hdr *ip6;
468 ip6 = (struct ip6_hdr *)ip_ptr;
469 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
470 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
471 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
472 (IPV6_VERSION & IPV6_VERSION_MASK);
473 ip6->ip6_nxt = IPPROTO_TCP;
474 ip6->ip6_plen = sizeof(struct tcphdr);
475 ip6->ip6_src = inp->in6p_laddr;
476 ip6->ip6_dst = inp->in6p_faddr;
477 tcp_hdr->th_sum = 0;
478 } else
479 #endif
481 struct ip *ip = (struct ip *) ip_ptr;
482 u_int plen;
484 ip->ip_vhl = IP_VHL_BORING;
485 ip->ip_tos = 0;
486 ip->ip_len = 0;
487 ip->ip_id = 0;
488 ip->ip_off = 0;
489 ip->ip_ttl = 0;
490 ip->ip_sum = 0;
491 ip->ip_p = IPPROTO_TCP;
492 ip->ip_src = inp->inp_laddr;
493 ip->ip_dst = inp->inp_faddr;
495 if (tso)
496 plen = htons(IPPROTO_TCP);
497 else
498 plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
499 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
500 ip->ip_dst.s_addr, plen);
503 tcp_hdr->th_sport = inp->inp_lport;
504 tcp_hdr->th_dport = inp->inp_fport;
505 tcp_hdr->th_seq = 0;
506 tcp_hdr->th_ack = 0;
507 tcp_hdr->th_x2 = 0;
508 tcp_hdr->th_off = 5;
509 tcp_hdr->th_flags = 0;
510 tcp_hdr->th_win = 0;
511 tcp_hdr->th_urp = 0;
515 * Create template to be used to send tcp packets on a connection.
516 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
517 * use for this function is in keepalives, which use tcp_respond.
519 struct tcptemp *
520 tcp_maketemplate(struct tcpcb *tp)
522 struct tcptemp *tmp;
524 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
525 return (NULL);
526 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
527 return (tmp);
530 void
531 tcp_freetemplate(struct tcptemp *tmp)
533 mpipe_free(&tcptemp_mpipe, tmp);
537 * Send a single message to the TCP at address specified by
538 * the given TCP/IP header. If m == NULL, then we make a copy
539 * of the tcpiphdr at ti and send directly to the addressed host.
540 * This is used to force keep alive messages out using the TCP
541 * template for a connection. If flags are given then we send
542 * a message back to the TCP which originated the * segment ti,
543 * and discard the mbuf containing it and any other attached mbufs.
545 * In any case the ack and sequence number of the transmitted
546 * segment are as specified by the parameters.
548 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
550 void
551 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
552 tcp_seq ack, tcp_seq seq, int flags)
554 int tlen;
555 long win = 0;
556 struct route *ro = NULL;
557 struct route sro;
558 struct ip *ip = ipgen;
559 struct tcphdr *nth;
560 int ipflags = 0;
561 struct route_in6 *ro6 = NULL;
562 struct route_in6 sro6;
563 struct ip6_hdr *ip6 = ipgen;
564 struct inpcb *inp = NULL;
565 boolean_t use_tmpro = TRUE;
566 #ifdef INET6
567 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
568 #else
569 const boolean_t isipv6 = FALSE;
570 #endif
572 if (tp != NULL) {
573 inp = tp->t_inpcb;
574 if (!(flags & TH_RST)) {
575 win = ssb_space(&inp->inp_socket->so_rcv);
576 if (win < 0)
577 win = 0;
578 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
579 win = (long)TCP_MAXWIN << tp->rcv_scale;
582 * Don't use the route cache of a listen socket,
583 * it is not MPSAFE; use temporary route cache.
585 if (tp->t_state != TCPS_LISTEN) {
586 if (isipv6)
587 ro6 = &inp->in6p_route;
588 else
589 ro = &inp->inp_route;
590 use_tmpro = FALSE;
593 if (use_tmpro) {
594 if (isipv6) {
595 ro6 = &sro6;
596 bzero(ro6, sizeof *ro6);
597 } else {
598 ro = &sro;
599 bzero(ro, sizeof *ro);
602 if (m == NULL) {
603 m = m_gethdr(M_NOWAIT, MT_HEADER);
604 if (m == NULL)
605 return;
606 tlen = 0;
607 m->m_data += max_linkhdr;
608 if (isipv6) {
609 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
610 ip6 = mtod(m, struct ip6_hdr *);
611 nth = (struct tcphdr *)(ip6 + 1);
612 } else {
613 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
614 ip = mtod(m, struct ip *);
615 nth = (struct tcphdr *)(ip + 1);
617 bcopy(th, nth, sizeof(struct tcphdr));
618 flags = TH_ACK;
619 } else {
620 m_freem(m->m_next);
621 m->m_next = NULL;
622 m->m_data = (caddr_t)ipgen;
623 /* m_len is set later */
624 tlen = 0;
625 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
626 if (isipv6) {
627 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
628 nth = (struct tcphdr *)(ip6 + 1);
629 } else {
630 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
631 nth = (struct tcphdr *)(ip + 1);
633 if (th != nth) {
635 * this is usually a case when an extension header
636 * exists between the IPv6 header and the
637 * TCP header.
639 nth->th_sport = th->th_sport;
640 nth->th_dport = th->th_dport;
642 xchg(nth->th_dport, nth->th_sport, n_short);
643 #undef xchg
645 if (isipv6) {
646 ip6->ip6_flow = 0;
647 ip6->ip6_vfc = IPV6_VERSION;
648 ip6->ip6_nxt = IPPROTO_TCP;
649 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
650 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
651 } else {
652 tlen += sizeof(struct tcpiphdr);
653 ip->ip_len = tlen;
654 ip->ip_ttl = ip_defttl;
656 m->m_len = tlen;
657 m->m_pkthdr.len = tlen;
658 m->m_pkthdr.rcvif = NULL;
659 nth->th_seq = htonl(seq);
660 nth->th_ack = htonl(ack);
661 nth->th_x2 = 0;
662 nth->th_off = sizeof(struct tcphdr) >> 2;
663 nth->th_flags = flags;
664 if (tp != NULL)
665 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
666 else
667 nth->th_win = htons((u_short)win);
668 nth->th_urp = 0;
669 if (isipv6) {
670 nth->th_sum = 0;
671 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
672 sizeof(struct ip6_hdr),
673 tlen - sizeof(struct ip6_hdr));
674 ip6->ip6_hlim = in6_selecthlim(inp,
675 (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
676 } else {
677 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
678 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
679 m->m_pkthdr.csum_flags = CSUM_TCP;
680 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
681 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
683 #ifdef TCPDEBUG
684 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
685 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
686 #endif
687 if (isipv6) {
688 ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
689 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
690 RTFREE(ro6->ro_rt);
691 ro6->ro_rt = NULL;
693 } else {
694 if (inp != NULL && (inp->inp_flags & INP_HASH))
695 m_sethash(m, inp->inp_hashval);
696 ipflags |= IP_DEBUGROUTE;
697 ip_output(m, NULL, ro, ipflags, NULL, inp);
698 if ((ro == &sro) && (ro->ro_rt != NULL)) {
699 RTFREE(ro->ro_rt);
700 ro->ro_rt = NULL;
706 * Create a new TCP control block, making an
707 * empty reassembly queue and hooking it to the argument
708 * protocol control block. The `inp' parameter must have
709 * come from the zone allocator set up in tcp_init().
711 void
712 tcp_newtcpcb(struct inpcb *inp)
714 struct inp_tp *it;
715 struct tcpcb *tp;
716 #ifdef INET6
717 boolean_t isipv6 = INP_ISIPV6(inp);
718 #else
719 const boolean_t isipv6 = FALSE;
720 #endif
722 it = (struct inp_tp *)inp;
723 tp = &it->tcb;
724 bzero(tp, sizeof(struct tcpcb));
725 TAILQ_INIT(&tp->t_segq);
726 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
727 tp->t_rxtthresh = tcprexmtthresh;
729 /* Set up our timeouts. */
730 tp->tt_rexmt = &it->inp_tp_rexmt;
731 tp->tt_persist = &it->inp_tp_persist;
732 tp->tt_keep = &it->inp_tp_keep;
733 tp->tt_2msl = &it->inp_tp_2msl;
734 tp->tt_delack = &it->inp_tp_delack;
735 tcp_inittimers(tp);
738 * Zero out timer message. We don't create it here,
739 * since the current CPU may not be the owner of this
740 * inpcb.
742 tp->tt_msg = &it->inp_tp_timermsg;
743 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
745 tp->t_keepinit = tcp_keepinit;
746 tp->t_keepidle = tcp_keepidle;
747 tp->t_keepintvl = tcp_keepintvl;
748 tp->t_keepcnt = tcp_keepcnt;
749 tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
751 if (tcp_do_ncr)
752 tp->t_flags |= TF_NCR;
753 if (tcp_do_rfc1323)
754 tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
756 tp->t_inpcb = inp; /* XXX */
757 TCP_STATE_INIT(tp);
759 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
760 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
761 * reasonable initial retransmit time.
763 tp->t_srtt = TCPTV_SRTTBASE;
764 tp->t_rttvar =
765 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
766 tp->t_rttmin = tcp_rexmit_min;
767 tp->t_rxtcur = TCPTV_RTOBASE;
768 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
770 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
771 tp->snd_last = ticks;
772 tp->t_rcvtime = ticks;
774 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
775 * because the socket may be bound to an IPv6 wildcard address,
776 * which may match an IPv4-mapped IPv6 address.
778 inp->inp_ip_ttl = ip_defttl;
779 inp->inp_ppcb = tp;
780 tcp_sack_tcpcb_init(tp);
782 tp->tt_sndmore = &it->inp_tp_sndmore;
783 tcp_output_init(tp);
787 * Drop a TCP connection, reporting the specified error.
788 * If connection is synchronized, then send a RST to peer.
790 struct tcpcb *
791 tcp_drop(struct tcpcb *tp, int error)
793 struct socket *so = tp->t_inpcb->inp_socket;
795 if (TCPS_HAVERCVDSYN(tp->t_state)) {
796 TCP_STATE_CHANGE(tp, TCPS_CLOSED);
797 tcp_output(tp);
798 tcpstat.tcps_drops++;
799 } else
800 tcpstat.tcps_conndrops++;
801 if (error == ETIMEDOUT && tp->t_softerror)
802 error = tp->t_softerror;
803 so->so_error = error;
804 return (tcp_close(tp));
807 struct netmsg_listen_detach {
808 struct netmsg_base base;
809 struct tcpcb *nm_tp;
810 struct tcpcb *nm_tp_inh;
813 static void
814 tcp_listen_detach_handler(netmsg_t msg)
816 struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
817 struct tcpcb *tp = nmsg->nm_tp;
818 int cpu = mycpuid, nextcpu;
820 if (tp->t_flags & TF_LISTEN) {
821 syncache_destroy(tp, nmsg->nm_tp_inh);
822 tcp_pcbport_merge_oncpu(tp);
825 in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
827 nextcpu = cpu + 1;
828 if (nextcpu < ncpus2)
829 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
830 else
831 lwkt_replymsg(&nmsg->base.lmsg, 0);
835 * Close a TCP control block:
836 * discard all space held by the tcp
837 * discard internet protocol block
838 * wake up any sleepers
840 struct tcpcb *
841 tcp_close(struct tcpcb *tp)
843 struct tseg_qent *q;
844 struct inpcb *inp = tp->t_inpcb;
845 struct inpcb *inp_inh = NULL;
846 struct tcpcb *tp_inh = NULL;
847 struct socket *so = inp->inp_socket;
848 struct rtentry *rt;
849 boolean_t dosavessthresh;
850 #ifdef INET6
851 boolean_t isipv6 = INP_ISIPV6(inp);
852 #else
853 const boolean_t isipv6 = FALSE;
854 #endif
856 if (tp->t_flags & TF_LISTEN) {
858 * Pending socket/syncache inheritance
860 * If this is a listen(2) socket, find another listen(2)
861 * socket in the same local group, which could inherit
862 * the syncache and sockets pending on the completion
863 * and incompletion queues.
865 * NOTE:
866 * Currently the inheritance could only happen on the
867 * listen(2) sockets w/ SO_REUSEPORT set.
869 ASSERT_IN_NETISR(0);
870 inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
871 if (inp_inh != NULL)
872 tp_inh = intotcpcb(inp_inh);
876 * INP_WILDCARD indicates that listen(2) has been called on
877 * this socket. This implies:
878 * - A wildcard inp's hash is replicated for each protocol thread.
879 * - Syncache for this inp grows independently in each protocol
880 * thread.
881 * - There is more than one cpu
883 * We have to chain a message to the rest of the protocol threads
884 * to cleanup the wildcard hash and the syncache. The cleanup
885 * in the current protocol thread is defered till the end of this
886 * function (syncache_destroy and in_pcbdetach).
888 * NOTE:
889 * After cleanup the inp's hash and syncache entries, this inp will
890 * no longer be available to the rest of the protocol threads, so we
891 * are safe to whack the inp in the following code.
893 if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
894 struct netmsg_listen_detach nmsg;
896 KKASSERT(so->so_port == netisr_cpuport(0));
897 ASSERT_IN_NETISR(0);
898 KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
900 netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
901 MSGF_PRIORITY, tcp_listen_detach_handler);
902 nmsg.nm_tp = tp;
903 nmsg.nm_tp_inh = tp_inh;
904 lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
907 TCP_STATE_TERM(tp);
910 * Make sure that all of our timers are stopped before we
911 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
912 * timers are never used. If timer message is never created
913 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
915 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
916 tcp_callout_stop(tp, tp->tt_rexmt);
917 tcp_callout_stop(tp, tp->tt_persist);
918 tcp_callout_stop(tp, tp->tt_keep);
919 tcp_callout_stop(tp, tp->tt_2msl);
920 tcp_callout_stop(tp, tp->tt_delack);
923 if (tp->t_flags & TF_ONOUTPUTQ) {
924 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
925 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
926 tp->t_flags &= ~TF_ONOUTPUTQ;
930 * If we got enough samples through the srtt filter,
931 * save the rtt and rttvar in the routing entry.
932 * 'Enough' is arbitrarily defined as the 16 samples.
933 * 16 samples is enough for the srtt filter to converge
934 * to within 5% of the correct value; fewer samples and
935 * we could save a very bogus rtt.
937 * Don't update the default route's characteristics and don't
938 * update anything that the user "locked".
940 if (tp->t_rttupdated >= 16) {
941 u_long i = 0;
943 if (isipv6) {
944 struct sockaddr_in6 *sin6;
946 if ((rt = inp->in6p_route.ro_rt) == NULL)
947 goto no_valid_rt;
948 sin6 = (struct sockaddr_in6 *)rt_key(rt);
949 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
950 goto no_valid_rt;
951 } else
952 if ((rt = inp->inp_route.ro_rt) == NULL ||
953 ((struct sockaddr_in *)rt_key(rt))->
954 sin_addr.s_addr == INADDR_ANY)
955 goto no_valid_rt;
957 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
958 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
959 if (rt->rt_rmx.rmx_rtt && i)
961 * filter this update to half the old & half
962 * the new values, converting scale.
963 * See route.h and tcp_var.h for a
964 * description of the scaling constants.
966 rt->rt_rmx.rmx_rtt =
967 (rt->rt_rmx.rmx_rtt + i) / 2;
968 else
969 rt->rt_rmx.rmx_rtt = i;
970 tcpstat.tcps_cachedrtt++;
972 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
973 i = tp->t_rttvar *
974 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
975 if (rt->rt_rmx.rmx_rttvar && i)
976 rt->rt_rmx.rmx_rttvar =
977 (rt->rt_rmx.rmx_rttvar + i) / 2;
978 else
979 rt->rt_rmx.rmx_rttvar = i;
980 tcpstat.tcps_cachedrttvar++;
983 * The old comment here said:
984 * update the pipelimit (ssthresh) if it has been updated
985 * already or if a pipesize was specified & the threshhold
986 * got below half the pipesize. I.e., wait for bad news
987 * before we start updating, then update on both good
988 * and bad news.
990 * But we want to save the ssthresh even if no pipesize is
991 * specified explicitly in the route, because such
992 * connections still have an implicit pipesize specified
993 * by the global tcp_sendspace. In the absence of a reliable
994 * way to calculate the pipesize, it will have to do.
996 i = tp->snd_ssthresh;
997 if (rt->rt_rmx.rmx_sendpipe != 0)
998 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
999 else
1000 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1001 if (dosavessthresh ||
1002 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1003 (rt->rt_rmx.rmx_ssthresh != 0))) {
1005 * convert the limit from user data bytes to
1006 * packets then to packet data bytes.
1008 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1009 if (i < 2)
1010 i = 2;
1011 i *= tp->t_maxseg +
1012 (isipv6 ?
1013 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1014 sizeof(struct tcpiphdr));
1015 if (rt->rt_rmx.rmx_ssthresh)
1016 rt->rt_rmx.rmx_ssthresh =
1017 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1018 else
1019 rt->rt_rmx.rmx_ssthresh = i;
1020 tcpstat.tcps_cachedssthresh++;
1024 no_valid_rt:
1025 /* free the reassembly queue, if any */
1026 while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1027 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1028 m_freem(q->tqe_m);
1029 kfree(q, M_TSEGQ);
1030 atomic_add_int(&tcp_reass_qsize, -1);
1032 /* throw away SACK blocks in scoreboard*/
1033 if (TCP_DO_SACK(tp))
1034 tcp_sack_destroy(&tp->scb);
1036 inp->inp_ppcb = NULL;
1037 soisdisconnected(so);
1038 /* note: pcb detached later on */
1040 tcp_destroy_timermsg(tp);
1041 tcp_output_cancel(tp);
1043 if (tp->t_flags & TF_LISTEN) {
1044 syncache_destroy(tp, tp_inh);
1045 tcp_pcbport_merge_oncpu(tp);
1046 tcp_pcbport_destroy(tp);
1047 if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1049 * Pending sockets inheritance only needs
1050 * to be done once in the current thread,
1051 * i.e. netisr0.
1053 soinherit(so, inp_inh->inp_socket);
1056 KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1058 so_async_rcvd_drop(so);
1059 /* Drop the reference for the asynchronized pru_rcvd */
1060 sofree(so);
1063 * NOTE:
1064 * - Remove self from listen tcpcb per-cpu port cache _before_
1065 * pcbdetach.
1066 * - pcbdetach removes any wildcard hash entry on the current CPU.
1068 tcp_pcbport_remove(inp);
1069 #ifdef INET6
1070 if (isipv6)
1071 in6_pcbdetach(inp);
1072 else
1073 #endif
1074 in_pcbdetach(inp);
1076 tcpstat.tcps_closed++;
1077 return (NULL);
1080 static __inline void
1081 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1083 struct inpcbhead *head = &pcbinfo->pcblisthead;
1084 struct inpcb *inpb;
1087 * Since we run in netisr, it is MP safe, even if
1088 * we block during the inpcb list iteration, i.e.
1089 * we don't need to use inpcb marker here.
1091 ASSERT_IN_NETISR(pcbinfo->cpu);
1093 LIST_FOREACH(inpb, head, inp_list) {
1094 struct tcpcb *tcpb;
1095 struct tseg_qent *te;
1097 if (inpb->inp_flags & INP_PLACEMARKER)
1098 continue;
1100 tcpb = intotcpcb(inpb);
1101 KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1103 if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1104 TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1105 if (te->tqe_th->th_flags & TH_FIN)
1106 tcpb->t_flags &= ~TF_QUEDFIN;
1107 m_freem(te->tqe_m);
1108 kfree(te, M_TSEGQ);
1109 atomic_add_int(&tcp_reass_qsize, -1);
1110 /* retry */
1115 static void
1116 tcp_drain_dispatch(netmsg_t nmsg)
1118 crit_enter();
1119 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1120 crit_exit();
1122 tcp_drain_oncpu(&tcbinfo[mycpuid]);
1125 static void
1126 tcp_drain_ipi(void *arg __unused)
1128 int cpu = mycpuid;
1129 struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1131 crit_enter();
1132 if (msg->ms_flags & MSGF_DONE)
1133 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1134 crit_exit();
1137 void
1138 tcp_drain(void)
1140 cpumask_t mask;
1142 if (!do_tcpdrain)
1143 return;
1146 * Walk the tcpbs, if existing, and flush the reassembly queue,
1147 * if there is one...
1148 * XXX: The "Net/3" implementation doesn't imply that the TCP
1149 * reassembly queue should be flushed, but in a situation
1150 * where we're really low on mbufs, this is potentially
1151 * useful.
1152 * YYY: We may consider run tcp_drain_oncpu directly here,
1153 * however, that will require M_WAITOK memory allocation
1154 * for the inpcb marker.
1156 CPUMASK_ASSBMASK(mask, ncpus2);
1157 CPUMASK_ANDMASK(mask, smp_active_mask);
1158 if (CPUMASK_TESTNZERO(mask))
1159 lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1163 * Notify a tcp user of an asynchronous error;
1164 * store error as soft error, but wake up user
1165 * (for now, won't do anything until can select for soft error).
1167 * Do not wake up user since there currently is no mechanism for
1168 * reporting soft errors (yet - a kqueue filter may be added).
1170 static void
1171 tcp_notify(struct inpcb *inp, int error)
1173 struct tcpcb *tp = intotcpcb(inp);
1176 * Ignore some errors if we are hooked up.
1177 * If connection hasn't completed, has retransmitted several times,
1178 * and receives a second error, give up now. This is better
1179 * than waiting a long time to establish a connection that
1180 * can never complete.
1182 if (tp->t_state == TCPS_ESTABLISHED &&
1183 (error == EHOSTUNREACH || error == ENETUNREACH ||
1184 error == EHOSTDOWN)) {
1185 return;
1186 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1187 tp->t_softerror)
1188 tcp_drop(tp, error);
1189 else
1190 tp->t_softerror = error;
1191 #if 0
1192 wakeup(&so->so_timeo);
1193 sorwakeup(so);
1194 sowwakeup(so);
1195 #endif
1198 static int
1199 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1201 int error, i, n;
1202 struct inpcb *marker;
1203 struct inpcb *inp;
1204 int origcpu, ccpu;
1206 error = 0;
1207 n = 0;
1210 * The process of preparing the TCB list is too time-consuming and
1211 * resource-intensive to repeat twice on every request.
1213 if (req->oldptr == NULL) {
1214 for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1215 n += tcbinfo[ccpu].ipi_count;
1216 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1217 return (0);
1220 if (req->newptr != NULL)
1221 return (EPERM);
1223 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1224 marker->inp_flags |= INP_PLACEMARKER;
1227 * OK, now we're committed to doing something. Run the inpcb list
1228 * for each cpu in the system and construct the output. Use a
1229 * list placemarker to deal with list changes occuring during
1230 * copyout blockages (but otherwise depend on being on the correct
1231 * cpu to avoid races).
1233 origcpu = mycpu->gd_cpuid;
1234 for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1235 caddr_t inp_ppcb;
1236 struct xtcpcb xt;
1238 lwkt_migratecpu(ccpu);
1240 n = tcbinfo[ccpu].ipi_count;
1242 LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1243 i = 0;
1244 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1246 * process a snapshot of pcbs, ignoring placemarkers
1247 * and using our own to allow SYSCTL_OUT to block.
1249 LIST_REMOVE(marker, inp_list);
1250 LIST_INSERT_AFTER(inp, marker, inp_list);
1252 if (inp->inp_flags & INP_PLACEMARKER)
1253 continue;
1254 if (prison_xinpcb(req->td, inp))
1255 continue;
1257 xt.xt_len = sizeof xt;
1258 bcopy(inp, &xt.xt_inp, sizeof *inp);
1259 inp_ppcb = inp->inp_ppcb;
1260 if (inp_ppcb != NULL)
1261 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1262 else
1263 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1264 if (inp->inp_socket)
1265 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1266 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1267 break;
1268 ++i;
1270 LIST_REMOVE(marker, inp_list);
1271 if (error == 0 && i < n) {
1272 bzero(&xt, sizeof xt);
1273 xt.xt_len = sizeof xt;
1274 while (i < n) {
1275 error = SYSCTL_OUT(req, &xt, sizeof xt);
1276 if (error)
1277 break;
1278 ++i;
1284 * Make sure we are on the same cpu we were on originally, since
1285 * higher level callers expect this. Also don't pollute caches with
1286 * migrated userland data by (eventually) returning to userland
1287 * on a different cpu.
1289 lwkt_migratecpu(origcpu);
1290 kfree(marker, M_TEMP);
1291 return (error);
1294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1295 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1297 static int
1298 tcp_getcred(SYSCTL_HANDLER_ARGS)
1300 struct sockaddr_in addrs[2];
1301 struct ucred cred0, *cred = NULL;
1302 struct inpcb *inp;
1303 int cpu, origcpu, error;
1305 error = priv_check(req->td, PRIV_ROOT);
1306 if (error != 0)
1307 return (error);
1308 error = SYSCTL_IN(req, addrs, sizeof addrs);
1309 if (error != 0)
1310 return (error);
1312 origcpu = mycpuid;
1313 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1314 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1316 lwkt_migratecpu(cpu);
1318 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1319 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1320 if (inp == NULL || inp->inp_socket == NULL) {
1321 error = ENOENT;
1322 } else if (inp->inp_socket->so_cred != NULL) {
1323 cred0 = *(inp->inp_socket->so_cred);
1324 cred = &cred0;
1327 lwkt_migratecpu(origcpu);
1329 if (error)
1330 return (error);
1332 return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1335 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1336 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1338 #ifdef INET6
1339 static int
1340 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1342 struct sockaddr_in6 addrs[2];
1343 struct inpcb *inp;
1344 int error;
1346 error = priv_check(req->td, PRIV_ROOT);
1347 if (error != 0)
1348 return (error);
1349 error = SYSCTL_IN(req, addrs, sizeof addrs);
1350 if (error != 0)
1351 return (error);
1352 crit_enter();
1353 inp = in6_pcblookup_hash(&tcbinfo[0],
1354 &addrs[1].sin6_addr, addrs[1].sin6_port,
1355 &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1356 if (inp == NULL || inp->inp_socket == NULL) {
1357 error = ENOENT;
1358 goto out;
1360 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1361 out:
1362 crit_exit();
1363 return (error);
1366 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1367 0, 0,
1368 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1369 #endif
1371 struct netmsg_tcp_notify {
1372 struct netmsg_base base;
1373 inp_notify_t nm_notify;
1374 struct in_addr nm_faddr;
1375 int nm_arg;
1378 static void
1379 tcp_notifyall_oncpu(netmsg_t msg)
1381 struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1382 int nextcpu;
1384 in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1385 nm->nm_arg, nm->nm_notify);
1387 nextcpu = mycpuid + 1;
1388 if (nextcpu < ncpus2)
1389 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1390 else
1391 lwkt_replymsg(&nm->base.lmsg, 0);
1394 inp_notify_t
1395 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1396 int *arg, struct ip **ip0, int *cpuid)
1398 struct ip *ip = *ip0;
1399 struct in_addr faddr;
1400 inp_notify_t notify = tcp_notify;
1402 faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1403 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1404 return NULL;
1406 *arg = inetctlerrmap[cmd];
1407 if (cmd == PRC_QUENCH) {
1408 notify = tcp_quench;
1409 } else if (icmp_may_rst &&
1410 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1411 cmd == PRC_UNREACH_PORT ||
1412 cmd == PRC_TIMXCEED_INTRANS) &&
1413 ip != NULL) {
1414 notify = tcp_drop_syn_sent;
1415 } else if (cmd == PRC_MSGSIZE) {
1416 const struct icmp *icmp = (const struct icmp *)
1417 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1419 *arg = ntohs(icmp->icmp_nextmtu);
1420 notify = tcp_mtudisc;
1421 } else if (PRC_IS_REDIRECT(cmd)) {
1422 ip = NULL;
1423 notify = in_rtchange;
1424 } else if (cmd == PRC_HOSTDEAD) {
1425 ip = NULL;
1426 } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1427 return NULL;
1430 if (cpuid != NULL) {
1431 if (ip == NULL) {
1432 /* Go through all CPUs */
1433 *cpuid = ncpus;
1434 } else {
1435 const struct tcphdr *th;
1437 th = (const struct tcphdr *)
1438 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1439 *cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1440 ip->ip_src.s_addr, th->th_sport);
1444 *ip0 = ip;
1445 return notify;
1448 void
1449 tcp_ctlinput(netmsg_t msg)
1451 int cmd = msg->ctlinput.nm_cmd;
1452 struct sockaddr *sa = msg->ctlinput.nm_arg;
1453 struct ip *ip = msg->ctlinput.nm_extra;
1454 struct in_addr faddr;
1455 inp_notify_t notify;
1456 int arg, cpuid;
1458 notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1459 if (notify == NULL)
1460 goto done;
1462 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1463 if (ip != NULL) {
1464 const struct tcphdr *th;
1465 struct inpcb *inp;
1467 if (cpuid != mycpuid)
1468 goto done;
1470 th = (const struct tcphdr *)
1471 ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1472 inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1473 ip->ip_src, th->th_sport, 0, NULL);
1474 if (inp != NULL && inp->inp_socket != NULL) {
1475 tcp_seq icmpseq = htonl(th->th_seq);
1476 struct tcpcb *tp = intotcpcb(inp);
1478 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1479 SEQ_LT(icmpseq, tp->snd_max))
1480 notify(inp, arg);
1481 } else {
1482 struct in_conninfo inc;
1484 inc.inc_fport = th->th_dport;
1485 inc.inc_lport = th->th_sport;
1486 inc.inc_faddr = faddr;
1487 inc.inc_laddr = ip->ip_src;
1488 #ifdef INET6
1489 inc.inc_isipv6 = 0;
1490 #endif
1491 syncache_unreach(&inc, th);
1493 } else if (msg->ctlinput.nm_direct) {
1494 if (cpuid != ncpus && cpuid != mycpuid)
1495 goto done;
1496 if (mycpuid >= ncpus2)
1497 goto done;
1499 in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1500 } else {
1501 struct netmsg_tcp_notify *nm;
1503 ASSERT_IN_NETISR(0);
1504 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1505 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1506 0, tcp_notifyall_oncpu);
1507 nm->nm_faddr = faddr;
1508 nm->nm_arg = arg;
1509 nm->nm_notify = notify;
1511 lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1513 done:
1514 lwkt_replymsg(&msg->lmsg, 0);
1517 #ifdef INET6
1519 void
1520 tcp6_ctlinput(netmsg_t msg)
1522 int cmd = msg->ctlinput.nm_cmd;
1523 struct sockaddr *sa = msg->ctlinput.nm_arg;
1524 void *d = msg->ctlinput.nm_extra;
1525 struct tcphdr th;
1526 inp_notify_t notify = tcp_notify;
1527 struct ip6_hdr *ip6;
1528 struct mbuf *m;
1529 struct ip6ctlparam *ip6cp = NULL;
1530 const struct sockaddr_in6 *sa6_src = NULL;
1531 int off;
1532 struct tcp_portonly {
1533 u_int16_t th_sport;
1534 u_int16_t th_dport;
1535 } *thp;
1536 int arg;
1538 if (sa->sa_family != AF_INET6 ||
1539 sa->sa_len != sizeof(struct sockaddr_in6)) {
1540 goto out;
1543 arg = 0;
1544 if (cmd == PRC_QUENCH)
1545 notify = tcp_quench;
1546 else if (cmd == PRC_MSGSIZE) {
1547 struct ip6ctlparam *ip6cp = d;
1548 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1550 arg = ntohl(icmp6->icmp6_mtu);
1551 notify = tcp_mtudisc;
1552 } else if (!PRC_IS_REDIRECT(cmd) &&
1553 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1554 goto out;
1557 /* if the parameter is from icmp6, decode it. */
1558 if (d != NULL) {
1559 ip6cp = (struct ip6ctlparam *)d;
1560 m = ip6cp->ip6c_m;
1561 ip6 = ip6cp->ip6c_ip6;
1562 off = ip6cp->ip6c_off;
1563 sa6_src = ip6cp->ip6c_src;
1564 } else {
1565 m = NULL;
1566 ip6 = NULL;
1567 off = 0; /* fool gcc */
1568 sa6_src = &sa6_any;
1571 if (ip6 != NULL) {
1572 struct in_conninfo inc;
1574 * XXX: We assume that when IPV6 is non NULL,
1575 * M and OFF are valid.
1578 /* check if we can safely examine src and dst ports */
1579 if (m->m_pkthdr.len < off + sizeof *thp)
1580 goto out;
1582 bzero(&th, sizeof th);
1583 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1585 in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1586 (struct sockaddr *)ip6cp->ip6c_src,
1587 th.th_sport, cmd, arg, notify);
1589 inc.inc_fport = th.th_dport;
1590 inc.inc_lport = th.th_sport;
1591 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1592 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1593 inc.inc_isipv6 = 1;
1594 syncache_unreach(&inc, &th);
1595 } else {
1596 in6_pcbnotify(&tcbinfo[0], sa, 0,
1597 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1599 out:
1600 lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1603 #endif
1606 * Following is where TCP initial sequence number generation occurs.
1608 * There are two places where we must use initial sequence numbers:
1609 * 1. In SYN-ACK packets.
1610 * 2. In SYN packets.
1612 * All ISNs for SYN-ACK packets are generated by the syncache. See
1613 * tcp_syncache.c for details.
1615 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1616 * depends on this property. In addition, these ISNs should be
1617 * unguessable so as to prevent connection hijacking. To satisfy
1618 * the requirements of this situation, the algorithm outlined in
1619 * RFC 1948 is used to generate sequence numbers.
1621 * Implementation details:
1623 * Time is based off the system timer, and is corrected so that it
1624 * increases by one megabyte per second. This allows for proper
1625 * recycling on high speed LANs while still leaving over an hour
1626 * before rollover.
1628 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1629 * between seeding of isn_secret. This is normally set to zero,
1630 * as reseeding should not be necessary.
1634 #define ISN_BYTES_PER_SECOND 1048576
1636 u_char isn_secret[32];
1637 int isn_last_reseed;
1638 MD5_CTX isn_ctx;
1640 tcp_seq
1641 tcp_new_isn(struct tcpcb *tp)
1643 u_int32_t md5_buffer[4];
1644 tcp_seq new_isn;
1646 /* Seed if this is the first use, reseed if requested. */
1647 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1648 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1649 < (u_int)ticks))) {
1650 read_random_unlimited(&isn_secret, sizeof isn_secret);
1651 isn_last_reseed = ticks;
1654 /* Compute the md5 hash and return the ISN. */
1655 MD5Init(&isn_ctx);
1656 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1657 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1658 #ifdef INET6
1659 if (INP_ISIPV6(tp->t_inpcb)) {
1660 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1661 sizeof(struct in6_addr));
1662 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1663 sizeof(struct in6_addr));
1664 } else
1665 #endif
1667 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1668 sizeof(struct in_addr));
1669 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1670 sizeof(struct in_addr));
1672 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1673 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1674 new_isn = (tcp_seq) md5_buffer[0];
1675 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1676 return (new_isn);
1680 * When a source quench is received, close congestion window
1681 * to one segment. We will gradually open it again as we proceed.
1683 void
1684 tcp_quench(struct inpcb *inp, int error)
1686 struct tcpcb *tp = intotcpcb(inp);
1688 KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1689 tp->snd_cwnd = tp->t_maxseg;
1690 tp->snd_wacked = 0;
1694 * When a specific ICMP unreachable message is received and the
1695 * connection state is SYN-SENT, drop the connection. This behavior
1696 * is controlled by the icmp_may_rst sysctl.
1698 void
1699 tcp_drop_syn_sent(struct inpcb *inp, int error)
1701 struct tcpcb *tp = intotcpcb(inp);
1703 KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1704 if (tp->t_state == TCPS_SYN_SENT)
1705 tcp_drop(tp, error);
1709 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1710 * based on the new value in the route. Also nudge TCP to send something,
1711 * since we know the packet we just sent was dropped.
1712 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1714 void
1715 tcp_mtudisc(struct inpcb *inp, int mtu)
1717 struct tcpcb *tp = intotcpcb(inp);
1718 struct rtentry *rt;
1719 struct socket *so = inp->inp_socket;
1720 int maxopd, mss;
1721 #ifdef INET6
1722 boolean_t isipv6 = INP_ISIPV6(inp);
1723 #else
1724 const boolean_t isipv6 = FALSE;
1725 #endif
1727 KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1730 * If no MTU is provided in the ICMP message, use the
1731 * next lower likely value, as specified in RFC 1191.
1733 if (mtu == 0) {
1734 int oldmtu;
1736 oldmtu = tp->t_maxopd +
1737 (isipv6 ?
1738 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1739 sizeof(struct tcpiphdr));
1740 mtu = ip_next_mtu(oldmtu, 0);
1743 if (isipv6)
1744 rt = tcp_rtlookup6(&inp->inp_inc);
1745 else
1746 rt = tcp_rtlookup(&inp->inp_inc);
1747 if (rt != NULL) {
1748 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1749 mtu = rt->rt_rmx.rmx_mtu;
1751 maxopd = mtu -
1752 (isipv6 ?
1753 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1754 sizeof(struct tcpiphdr));
1757 * XXX - The following conditional probably violates the TCP
1758 * spec. The problem is that, since we don't know the
1759 * other end's MSS, we are supposed to use a conservative
1760 * default. But, if we do that, then MTU discovery will
1761 * never actually take place, because the conservative
1762 * default is much less than the MTUs typically seen
1763 * on the Internet today. For the moment, we'll sweep
1764 * this under the carpet.
1766 * The conservative default might not actually be a problem
1767 * if the only case this occurs is when sending an initial
1768 * SYN with options and data to a host we've never talked
1769 * to before. Then, they will reply with an MSS value which
1770 * will get recorded and the new parameters should get
1771 * recomputed. For Further Study.
1773 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1774 maxopd = rt->rt_rmx.rmx_mssopt;
1775 } else
1776 maxopd = mtu -
1777 (isipv6 ?
1778 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1779 sizeof(struct tcpiphdr));
1781 if (tp->t_maxopd <= maxopd)
1782 return;
1783 tp->t_maxopd = maxopd;
1785 mss = maxopd;
1786 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1787 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1788 mss -= TCPOLEN_TSTAMP_APPA;
1790 /* round down to multiple of MCLBYTES */
1791 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1792 if (mss > MCLBYTES)
1793 mss &= ~(MCLBYTES - 1);
1794 #else
1795 if (mss > MCLBYTES)
1796 mss = (mss / MCLBYTES) * MCLBYTES;
1797 #endif
1799 if (so->so_snd.ssb_hiwat < mss)
1800 mss = so->so_snd.ssb_hiwat;
1802 tp->t_maxseg = mss;
1803 tp->t_rtttime = 0;
1804 tp->snd_nxt = tp->snd_una;
1805 tcp_output(tp);
1806 tcpstat.tcps_mturesent++;
1810 * Look-up the routing entry to the peer of this inpcb. If no route
1811 * is found and it cannot be allocated the return NULL. This routine
1812 * is called by TCP routines that access the rmx structure and by tcp_mss
1813 * to get the interface MTU.
1815 struct rtentry *
1816 tcp_rtlookup(struct in_conninfo *inc)
1818 struct route *ro = &inc->inc_route;
1820 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1821 /* No route yet, so try to acquire one */
1822 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1824 * unused portions of the structure MUST be zero'd
1825 * out because rtalloc() treats it as opaque data
1827 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1828 ro->ro_dst.sa_family = AF_INET;
1829 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1830 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1831 inc->inc_faddr;
1832 rtalloc(ro);
1835 return (ro->ro_rt);
1838 #ifdef INET6
1839 struct rtentry *
1840 tcp_rtlookup6(struct in_conninfo *inc)
1842 struct route_in6 *ro6 = &inc->inc6_route;
1844 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1845 /* No route yet, so try to acquire one */
1846 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1848 * unused portions of the structure MUST be zero'd
1849 * out because rtalloc() treats it as opaque data
1851 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1852 ro6->ro_dst.sin6_family = AF_INET6;
1853 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1854 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1855 rtalloc((struct route *)ro6);
1858 return (ro6->ro_rt);
1860 #endif
1862 #ifdef IPSEC
1863 /* compute ESP/AH header size for TCP, including outer IP header. */
1864 size_t
1865 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1867 struct inpcb *inp;
1868 struct mbuf *m;
1869 size_t hdrsiz;
1870 struct ip *ip;
1871 struct tcphdr *th;
1873 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1874 return (0);
1875 MGETHDR(m, M_NOWAIT, MT_DATA);
1876 if (!m)
1877 return (0);
1879 #ifdef INET6
1880 if (INP_ISIPV6(inp)) {
1881 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1883 th = (struct tcphdr *)(ip6 + 1);
1884 m->m_pkthdr.len = m->m_len =
1885 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1886 tcp_fillheaders(tp, ip6, th, FALSE);
1887 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1888 } else
1889 #endif
1891 ip = mtod(m, struct ip *);
1892 th = (struct tcphdr *)(ip + 1);
1893 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1894 tcp_fillheaders(tp, ip, th, FALSE);
1895 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1898 m_free(m);
1899 return (hdrsiz);
1901 #endif
1904 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1906 * This code attempts to calculate the bandwidth-delay product as a
1907 * means of determining the optimal window size to maximize bandwidth,
1908 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1909 * routers. This code also does a fairly good job keeping RTTs in check
1910 * across slow links like modems. We implement an algorithm which is very
1911 * similar (but not meant to be) TCP/Vegas. The code operates on the
1912 * transmitter side of a TCP connection and so only effects the transmit
1913 * side of the connection.
1915 * BACKGROUND: TCP makes no provision for the management of buffer space
1916 * at the end points or at the intermediate routers and switches. A TCP
1917 * stream, whether using NewReno or not, will eventually buffer as
1918 * many packets as it is able and the only reason this typically works is
1919 * due to the fairly small default buffers made available for a connection
1920 * (typicaly 16K or 32K). As machines use larger windows and/or window
1921 * scaling it is now fairly easy for even a single TCP connection to blow-out
1922 * all available buffer space not only on the local interface, but on
1923 * intermediate routers and switches as well. NewReno makes a misguided
1924 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1925 * then backing off, then steadily increasing the window again until another
1926 * failure occurs, ad-infinitum. This results in terrible oscillation that
1927 * is only made worse as network loads increase and the idea of intentionally
1928 * blowing out network buffers is, frankly, a terrible way to manage network
1929 * resources.
1931 * It is far better to limit the transmit window prior to the failure
1932 * condition being achieved. There are two general ways to do this: First
1933 * you can 'scan' through different transmit window sizes and locate the
1934 * point where the RTT stops increasing, indicating that you have filled the
1935 * pipe, then scan backwards until you note that RTT stops decreasing, then
1936 * repeat ad-infinitum. This method works in principle but has severe
1937 * implementation issues due to RTT variances, timer granularity, and
1938 * instability in the algorithm which can lead to many false positives and
1939 * create oscillations as well as interact badly with other TCP streams
1940 * implementing the same algorithm.
1942 * The second method is to limit the window to the bandwidth delay product
1943 * of the link. This is the method we implement. RTT variances and our
1944 * own manipulation of the congestion window, bwnd, can potentially
1945 * destabilize the algorithm. For this reason we have to stabilize the
1946 * elements used to calculate the window. We do this by using the minimum
1947 * observed RTT, the long term average of the observed bandwidth, and
1948 * by adding two segments worth of slop. It isn't perfect but it is able
1949 * to react to changing conditions and gives us a very stable basis on
1950 * which to extend the algorithm.
1952 void
1953 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1955 u_long bw;
1956 u_long ibw;
1957 u_long bwnd;
1958 int save_ticks;
1959 int delta_ticks;
1962 * If inflight_enable is disabled in the middle of a tcp connection,
1963 * make sure snd_bwnd is effectively disabled.
1965 if (!tcp_inflight_enable) {
1966 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1967 tp->snd_bandwidth = 0;
1968 return;
1972 * Validate the delta time. If a connection is new or has been idle
1973 * a long time we have to reset the bandwidth calculator.
1975 save_ticks = ticks;
1976 cpu_ccfence();
1977 delta_ticks = save_ticks - tp->t_bw_rtttime;
1978 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1979 tp->t_bw_rtttime = save_ticks;
1980 tp->t_bw_rtseq = ack_seq;
1981 if (tp->snd_bandwidth == 0)
1982 tp->snd_bandwidth = tcp_inflight_start;
1983 return;
1987 * A delta of at least 1 tick is required. Waiting 2 ticks will
1988 * result in better (bw) accuracy. More than that and the ramp-up
1989 * will be too slow.
1991 if (delta_ticks == 0 || delta_ticks == 1)
1992 return;
1995 * Sanity check, plus ignore pure window update acks.
1997 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1998 return;
2001 * Figure out the bandwidth. Due to the tick granularity this
2002 * is a very rough number and it MUST be averaged over a fairly
2003 * long period of time. XXX we need to take into account a link
2004 * that is not using all available bandwidth, but for now our
2005 * slop will ramp us up if this case occurs and the bandwidth later
2006 * increases.
2008 ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2009 tp->t_bw_rtttime = save_ticks;
2010 tp->t_bw_rtseq = ack_seq;
2011 bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2013 tp->snd_bandwidth = bw;
2016 * Calculate the semi-static bandwidth delay product, plus two maximal
2017 * segments. The additional slop puts us squarely in the sweet
2018 * spot and also handles the bandwidth run-up case. Without the
2019 * slop we could be locking ourselves into a lower bandwidth.
2021 * At very high speeds the bw calculation can become overly sensitive
2022 * and error prone when delta_ticks is low (e.g. usually 1). To deal
2023 * with the problem the stab must be scaled to the bw. A stab of 50
2024 * (the default) increases the bw for the purposes of the bwnd
2025 * calculation by 5%.
2027 * Situations Handled:
2028 * (1) Prevents over-queueing of packets on LANs, especially on
2029 * high speed LANs, allowing larger TCP buffers to be
2030 * specified, and also does a good job preventing
2031 * over-queueing of packets over choke points like modems
2032 * (at least for the transmit side).
2034 * (2) Is able to handle changing network loads (bandwidth
2035 * drops so bwnd drops, bandwidth increases so bwnd
2036 * increases).
2038 * (3) Theoretically should stabilize in the face of multiple
2039 * connections implementing the same algorithm (this may need
2040 * a little work).
2042 * (4) Stability value (defaults to 20 = 2 maximal packets) can
2043 * be adjusted with a sysctl but typically only needs to be on
2044 * very slow connections. A value no smaller then 5 should
2045 * be used, but only reduce this default if you have no other
2046 * choice.
2049 #define USERTT ((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2050 bw += bw * tcp_inflight_stab / 1000;
2051 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2052 (int)tp->t_maxseg * 2;
2053 #undef USERTT
2055 if (tcp_inflight_debug > 0) {
2056 static int ltime;
2057 if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2058 ltime = save_ticks;
2059 kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2060 "bwnd %ld delta %d snd_win %ld\n",
2061 tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2062 bwnd, delta_ticks, tp->snd_wnd);
2065 if ((long)bwnd < tcp_inflight_min)
2066 bwnd = tcp_inflight_min;
2067 if (bwnd > tcp_inflight_max)
2068 bwnd = tcp_inflight_max;
2069 if ((long)bwnd < tp->t_maxseg * 2)
2070 bwnd = tp->t_maxseg * 2;
2071 tp->snd_bwnd = bwnd;
2074 static void
2075 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2077 struct rtentry *rt;
2078 struct inpcb *inp = tp->t_inpcb;
2079 #ifdef INET6
2080 boolean_t isipv6 = INP_ISIPV6(inp);
2081 #else
2082 const boolean_t isipv6 = FALSE;
2083 #endif
2085 /* XXX */
2086 if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2087 tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2088 if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2089 tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2091 if (isipv6)
2092 rt = tcp_rtlookup6(&inp->inp_inc);
2093 else
2094 rt = tcp_rtlookup(&inp->inp_inc);
2095 if (rt == NULL ||
2096 rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2097 rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2098 *maxsegs = tcp_iw_maxsegs;
2099 *capsegs = tcp_iw_capsegs;
2100 return;
2102 *maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2103 *capsegs = rt->rt_rmx.rmx_iwcapsegs;
2106 u_long
2107 tcp_initial_window(struct tcpcb *tp)
2109 if (tcp_do_rfc3390) {
2111 * RFC3390:
2112 * "If the SYN or SYN/ACK is lost, the initial window
2113 * used by a sender after a correctly transmitted SYN
2114 * MUST be one segment consisting of MSS bytes."
2116 * However, we do something a little bit more aggressive
2117 * then RFC3390 here:
2118 * - Only if time spent in the SYN or SYN|ACK retransmition
2119 * >= 3 seconds, the IW is reduced. We do this mainly
2120 * because when RFC3390 is published, the initial RTO is
2121 * still 3 seconds (the threshold we test here), while
2122 * after RFC6298, the initial RTO is 1 second. This
2123 * behaviour probably still falls within the spirit of
2124 * RFC3390.
2125 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2126 * Mainly to avoid sender and receiver deadlock until
2127 * delayed ACK timer expires. And even RFC2581 does not
2128 * try to reduce IW upon SYN or SYN|ACK retransmition
2129 * timeout.
2131 * See also:
2132 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2134 if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2135 return (2 * tp->t_maxseg);
2136 } else {
2137 u_long maxsegs, capsegs;
2139 tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2140 return min(maxsegs * tp->t_maxseg,
2141 max(2 * tp->t_maxseg, capsegs * 1460));
2143 } else {
2145 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2147 * Mainly to avoid sender and receiver deadlock
2148 * until delayed ACK timer expires.
2150 return (2 * tp->t_maxseg);
2154 #ifdef TCP_SIGNATURE
2156 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2158 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2159 * When called from tcp_input(), we can be sure that th_sum has been
2160 * zeroed out and verified already.
2162 * Return 0 if successful, otherwise return -1.
2164 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2165 * search with the destination IP address, and a 'magic SPI' to be
2166 * determined by the application. This is hardcoded elsewhere to 1179
2167 * right now. Another branch of this code exists which uses the SPD to
2168 * specify per-application flows but it is unstable.
2171 tcpsignature_compute(
2172 struct mbuf *m, /* mbuf chain */
2173 int len, /* length of TCP data */
2174 int optlen, /* length of TCP options */
2175 u_char *buf, /* storage for MD5 digest */
2176 u_int direction) /* direction of flow */
2178 struct ippseudo ippseudo;
2179 MD5_CTX ctx;
2180 int doff;
2181 struct ip *ip;
2182 struct ipovly *ipovly;
2183 struct secasvar *sav;
2184 struct tcphdr *th;
2185 #ifdef INET6
2186 struct ip6_hdr *ip6;
2187 struct in6_addr in6;
2188 uint32_t plen;
2189 uint16_t nhdr;
2190 #endif /* INET6 */
2191 u_short savecsum;
2193 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2194 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2196 * Extract the destination from the IP header in the mbuf.
2198 ip = mtod(m, struct ip *);
2199 #ifdef INET6
2200 ip6 = NULL; /* Make the compiler happy. */
2201 #endif /* INET6 */
2203 * Look up an SADB entry which matches the address found in
2204 * the segment.
2206 switch (IP_VHL_V(ip->ip_vhl)) {
2207 case IPVERSION:
2208 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2209 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2210 break;
2211 #ifdef INET6
2212 case (IPV6_VERSION >> 4):
2213 ip6 = mtod(m, struct ip6_hdr *);
2214 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2215 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2216 break;
2217 #endif /* INET6 */
2218 default:
2219 return (EINVAL);
2220 /* NOTREACHED */
2221 break;
2223 if (sav == NULL) {
2224 kprintf("%s: SADB lookup failed\n", __func__);
2225 return (EINVAL);
2227 MD5Init(&ctx);
2230 * Step 1: Update MD5 hash with IP pseudo-header.
2232 * XXX The ippseudo header MUST be digested in network byte order,
2233 * or else we'll fail the regression test. Assume all fields we've
2234 * been doing arithmetic on have been in host byte order.
2235 * XXX One cannot depend on ipovly->ih_len here. When called from
2236 * tcp_output(), the underlying ip_len member has not yet been set.
2238 switch (IP_VHL_V(ip->ip_vhl)) {
2239 case IPVERSION:
2240 ipovly = (struct ipovly *)ip;
2241 ippseudo.ippseudo_src = ipovly->ih_src;
2242 ippseudo.ippseudo_dst = ipovly->ih_dst;
2243 ippseudo.ippseudo_pad = 0;
2244 ippseudo.ippseudo_p = IPPROTO_TCP;
2245 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2246 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2247 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2248 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2249 break;
2250 #ifdef INET6
2252 * RFC 2385, 2.0 Proposal
2253 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2254 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2255 * extended next header value (to form 32 bits), and 32-bit segment
2256 * length.
2257 * Note: Upper-Layer Packet Length comes before Next Header.
2259 case (IPV6_VERSION >> 4):
2260 in6 = ip6->ip6_src;
2261 in6_clearscope(&in6);
2262 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2263 in6 = ip6->ip6_dst;
2264 in6_clearscope(&in6);
2265 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2266 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2267 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2268 nhdr = 0;
2269 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2270 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2271 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2272 nhdr = IPPROTO_TCP;
2273 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2274 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2275 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2276 break;
2277 #endif /* INET6 */
2278 default:
2279 return (EINVAL);
2280 /* NOTREACHED */
2281 break;
2284 * Step 2: Update MD5 hash with TCP header, excluding options.
2285 * The TCP checksum must be set to zero.
2287 savecsum = th->th_sum;
2288 th->th_sum = 0;
2289 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2290 th->th_sum = savecsum;
2292 * Step 3: Update MD5 hash with TCP segment data.
2293 * Use m_apply() to avoid an early m_pullup().
2295 if (len > 0)
2296 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2298 * Step 4: Update MD5 hash with shared secret.
2300 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2301 MD5Final(buf, &ctx);
2302 key_sa_recordxfer(sav, m);
2303 key_freesav(sav);
2304 return (0);
2308 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2311 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2312 return (0);
2314 #endif /* TCP_SIGNATURE */
2316 static void
2317 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2319 struct lwkt_msg *lmsg = &nmsg->lmsg;
2320 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2321 struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2322 int error;
2323 struct sockaddr_in *fin, *lin;
2324 #ifdef INET6
2325 struct sockaddr_in6 *fin6, *lin6;
2326 struct in6_addr f6, l6;
2327 #endif
2328 struct inpcb *inp;
2330 switch (addrs[0].ss_family) {
2331 #ifdef INET6
2332 case AF_INET6:
2333 fin6 = (struct sockaddr_in6 *)&addrs[0];
2334 lin6 = (struct sockaddr_in6 *)&addrs[1];
2335 error = in6_embedscope(&f6, fin6, NULL, NULL);
2336 if (error)
2337 goto done;
2338 error = in6_embedscope(&l6, lin6, NULL, NULL);
2339 if (error)
2340 goto done;
2341 inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2342 fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2343 break;
2344 #endif
2345 #ifdef INET
2346 case AF_INET:
2347 fin = (struct sockaddr_in *)&addrs[0];
2348 lin = (struct sockaddr_in *)&addrs[1];
2349 inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2350 fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2351 break;
2352 #endif
2353 default:
2355 * Must not reach here, since the address family was
2356 * checked in sysctl handler.
2358 panic("unknown address family %d", addrs[0].ss_family);
2360 if (inp != NULL) {
2361 struct tcpcb *tp = intotcpcb(inp);
2363 KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2364 ("in wildcard hash"));
2365 KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2366 KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2367 tcp_drop(tp, ECONNABORTED);
2368 error = 0;
2369 } else {
2370 error = ESRCH;
2372 #ifdef INET6
2373 done:
2374 #endif
2375 lwkt_replymsg(lmsg, error);
2378 static int
2379 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2381 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2382 struct sockaddr_storage addrs[2];
2383 struct sockaddr_in *fin, *lin;
2384 #ifdef INET6
2385 struct sockaddr_in6 *fin6, *lin6;
2386 #endif
2387 struct netmsg_base nmsg;
2388 struct lwkt_msg *lmsg = &nmsg.lmsg;
2389 struct lwkt_port *port = NULL;
2390 int error;
2392 fin = lin = NULL;
2393 #ifdef INET6
2394 fin6 = lin6 = NULL;
2395 #endif
2396 error = 0;
2398 if (req->oldptr != NULL || req->oldlen != 0)
2399 return (EINVAL);
2400 if (req->newptr == NULL)
2401 return (EPERM);
2402 if (req->newlen < sizeof(addrs))
2403 return (ENOMEM);
2404 error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2405 if (error)
2406 return (error);
2408 switch (addrs[0].ss_family) {
2409 #ifdef INET6
2410 case AF_INET6:
2411 fin6 = (struct sockaddr_in6 *)&addrs[0];
2412 lin6 = (struct sockaddr_in6 *)&addrs[1];
2413 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2414 lin6->sin6_len != sizeof(struct sockaddr_in6))
2415 return (EINVAL);
2416 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2417 IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2418 return (EADDRNOTAVAIL);
2419 #if 0
2420 error = sa6_embedscope(fin6, V_ip6_use_defzone);
2421 if (error)
2422 return (error);
2423 error = sa6_embedscope(lin6, V_ip6_use_defzone);
2424 if (error)
2425 return (error);
2426 #endif
2427 port = tcp6_addrport();
2428 break;
2429 #endif
2430 #ifdef INET
2431 case AF_INET:
2432 fin = (struct sockaddr_in *)&addrs[0];
2433 lin = (struct sockaddr_in *)&addrs[1];
2434 if (fin->sin_len != sizeof(struct sockaddr_in) ||
2435 lin->sin_len != sizeof(struct sockaddr_in))
2436 return (EINVAL);
2437 port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2438 lin->sin_addr.s_addr, lin->sin_port);
2439 break;
2440 #endif
2441 default:
2442 return (EINVAL);
2445 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2446 tcp_drop_sysctl_dispatch);
2447 lmsg->u.ms_resultp = addrs;
2448 return lwkt_domsg(port, lmsg, 0);
2451 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2452 CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2453 0, sysctl_tcp_drop, "", "Drop TCP connection");
2455 static int
2456 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2458 u_long state_count[TCP_NSTATES];
2459 int cpu;
2461 memset(state_count, 0, sizeof(state_count));
2462 for (cpu = 0; cpu < ncpus2; ++cpu) {
2463 int i;
2465 for (i = 0; i < TCP_NSTATES; ++i)
2466 state_count[i] += tcpstate_count[cpu].tcps_count[i];
2469 return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2471 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2472 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2473 sysctl_tcps_count, "LU", "TCP connection counts by state");
2475 void
2476 tcp_pcbport_create(struct tcpcb *tp)
2478 int cpu;
2480 KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2481 ("not a listen tcpcb"));
2483 KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2484 tp->t_pcbport = kmalloc_cachealign(sizeof(struct tcp_pcbport) * ncpus2,
2485 M_PCB, M_WAITOK);
2487 for (cpu = 0; cpu < ncpus2; ++cpu) {
2488 struct inpcbport *phd;
2490 phd = &tp->t_pcbport[cpu].t_phd;
2491 LIST_INIT(&phd->phd_pcblist);
2492 /* Though, not used ... */
2493 phd->phd_port = tp->t_inpcb->inp_lport;
2497 void
2498 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2500 struct inpcbport *phd;
2501 struct inpcb *inp;
2502 int cpu = mycpuid;
2504 KASSERT(cpu < ncpus2, ("invalid cpu%d", cpu));
2505 phd = &tp->t_pcbport[cpu].t_phd;
2507 while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2508 KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2509 ("not on tcpcb port cache"));
2510 LIST_REMOVE(inp, inp_portlist);
2511 in_pcbinsporthash_lport(inp);
2512 KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2513 inp->inp_porthash == tp->t_inpcb->inp_porthash,
2514 ("tcpcb port cache merge failed"));
2518 void
2519 tcp_pcbport_destroy(struct tcpcb *tp)
2521 #ifdef INVARIANTS
2522 int cpu;
2524 for (cpu = 0; cpu < ncpus2; ++cpu) {
2525 KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2526 ("tcpcb port cache is not empty"));
2528 #endif
2529 kfree(tp->t_pcbport, M_PCB);
2530 tp->t_pcbport = NULL;