Sync ACPICA with Intel's version 20161222.
[dragonfly.git] / sys / kern / subr_rman.c
blob267c47a70f97eef973386d3cea321eb573e4057b
1 /*
2 * Copyright 1998 Massachusetts Institute of Technology
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
33 * The kernel resource manager. This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly. Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
42 * There are two sorts of resources managed by this code. The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order. Most of the resources
46 * are of this type, as it is the most familiar. The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance). The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share. RMAN_GAUGE is not
52 * implemented yet.
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices. That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/bus.h> /* XXX debugging */
66 #include <sys/rman.h>
67 #include <sys/sysctl.h>
69 int rman_debug = 0;
70 TUNABLE_INT("debug.rman_debug", &rman_debug);
71 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
72 &rman_debug, 0, "rman debug");
74 #define DPRINTF(params) if (rman_debug) kprintf params
76 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
78 struct rman_head rman_head;
79 static struct lwkt_token rman_tok; /* mutex to protect rman_head */
80 static int int_rman_activate_resource(struct rman *rm, struct resource *r,
81 struct resource **whohas);
82 static int int_rman_deactivate_resource(struct resource *r);
83 static int int_rman_release_resource(struct rman *rm, struct resource *r);
85 int
86 rman_init(struct rman *rm, int cpuid)
88 static int once;
90 if (once == 0) {
91 once = 1;
92 TAILQ_INIT(&rman_head);
93 lwkt_token_init(&rman_tok, "rman");
96 if (rm->rm_type == RMAN_UNINIT)
97 panic("rman_init");
98 if (rm->rm_type == RMAN_GAUGE)
99 panic("implement RMAN_GAUGE");
101 TAILQ_INIT(&rm->rm_list);
102 rm->rm_slock = kmalloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
103 if (rm->rm_slock == NULL)
104 return ENOMEM;
105 lwkt_token_init(rm->rm_slock, "rmanslock");
107 rm->rm_cpuid = cpuid;
109 lwkt_gettoken(&rman_tok);
110 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
111 lwkt_reltoken(&rman_tok);
112 return 0;
116 * NB: this interface is not robust against programming errors which
117 * add multiple copies of the same region.
120 rman_manage_region(struct rman *rm, u_long start, u_long end)
122 struct resource *r, *s;
124 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
125 rm->rm_descr, start, end));
126 r = kmalloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
127 if (r == NULL)
128 return ENOMEM;
129 r->r_sharehead = 0;
130 r->r_start = start;
131 r->r_end = end;
132 r->r_flags = 0;
133 r->r_dev = 0;
134 r->r_rm = rm;
136 lwkt_gettoken(rm->rm_slock);
137 for (s = TAILQ_FIRST(&rm->rm_list);
138 s && s->r_end < r->r_start;
139 s = TAILQ_NEXT(s, r_link))
142 if (s == NULL)
143 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
144 else
145 TAILQ_INSERT_BEFORE(s, r, r_link);
147 lwkt_reltoken(rm->rm_slock);
148 return 0;
152 rman_fini(struct rman *rm)
154 struct resource *r;
156 lwkt_gettoken(rm->rm_slock);
157 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
158 if (r->r_flags & RF_ALLOCATED) {
159 lwkt_reltoken(rm->rm_slock);
160 return EBUSY;
165 * There really should only be one of these if we are in this
166 * state and the code is working properly, but it can't hurt.
168 while (!TAILQ_EMPTY(&rm->rm_list)) {
169 r = TAILQ_FIRST(&rm->rm_list);
170 TAILQ_REMOVE(&rm->rm_list, r, r_link);
171 kfree(r, M_RMAN);
173 lwkt_reltoken(rm->rm_slock);
175 /* XXX what's the point of this if we are going to free the struct? */
176 lwkt_gettoken(&rman_tok);
177 TAILQ_REMOVE(&rman_head, rm, rm_link);
178 lwkt_reltoken(&rman_tok);
179 kfree(rm->rm_slock, M_RMAN);
181 return 0;
184 struct resource *
185 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
186 u_int flags, device_t dev)
188 u_int want_activate;
189 struct resource *r, *s, *rv;
190 u_long rstart, rend;
192 rv = NULL;
194 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
195 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end,
196 count, flags,
197 dev == NULL ? "<null>" : device_get_nameunit(dev)));
198 want_activate = (flags & RF_ACTIVE);
199 flags &= ~RF_ACTIVE;
201 lwkt_gettoken(rm->rm_slock);
203 for (r = TAILQ_FIRST(&rm->rm_list);
204 r && r->r_end < start + count - 1;
205 r = TAILQ_NEXT(r, r_link))
208 if (r == NULL) {
209 DPRINTF(("could not find a region\n"));
210 goto out;
214 * First try to find an acceptable totally-unshared region.
216 for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
217 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
218 if (s->r_start > end - (count - 1)) {
219 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
220 s->r_start, end));
221 break;
223 if (s->r_flags & RF_ALLOCATED) {
224 DPRINTF(("region is allocated\n"));
225 continue;
227 rstart = ulmax(s->r_start, start);
228 rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
229 ~((1ul << RF_ALIGNMENT(flags)) - 1);
230 rend = ulmin(s->r_end, ulmax(start + count - 1, end));
231 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
232 rstart, rend, (rend - rstart + 1), count));
234 if ((rend - rstart + 1) >= count) {
235 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
236 rstart, rend, (rend - rstart + 1)));
237 if ((s->r_end - s->r_start + 1) == count) {
238 DPRINTF(("candidate region is entire chunk\n"));
239 rv = s;
240 rv->r_flags |= RF_ALLOCATED | flags;
241 rv->r_dev = dev;
242 goto out;
246 * If s->r_start < rstart and
247 * s->r_end > rstart + count - 1, then
248 * we need to split the region into three pieces
249 * (the middle one will get returned to the user).
250 * Otherwise, we are allocating at either the
251 * beginning or the end of s, so we only need to
252 * split it in two. The first case requires
253 * two new allocations; the second requires but one.
255 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
256 if (rv == NULL)
257 goto out;
258 rv->r_start = rstart;
259 rv->r_end = rstart + count - 1;
260 rv->r_flags = flags | RF_ALLOCATED;
261 rv->r_dev = dev;
262 rv->r_sharehead = 0;
263 rv->r_rm = rm;
265 if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
266 DPRINTF(("splitting region in three parts: "
267 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
268 s->r_start, rv->r_start - 1,
269 rv->r_start, rv->r_end,
270 rv->r_end + 1, s->r_end));
272 * We are allocating in the middle.
274 r = kmalloc(sizeof *r, M_RMAN,
275 M_NOWAIT | M_ZERO);
276 if (r == NULL) {
277 kfree(rv, M_RMAN);
278 rv = NULL;
279 goto out;
281 r->r_start = rv->r_end + 1;
282 r->r_end = s->r_end;
283 r->r_flags = s->r_flags;
284 r->r_dev = 0;
285 r->r_sharehead = 0;
286 r->r_rm = rm;
287 s->r_end = rv->r_start - 1;
288 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
289 r_link);
290 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
291 r_link);
292 } else if (s->r_start == rv->r_start) {
293 DPRINTF(("allocating from the beginning\n"));
295 * We are allocating at the beginning.
297 s->r_start = rv->r_end + 1;
298 TAILQ_INSERT_BEFORE(s, rv, r_link);
299 } else {
300 DPRINTF(("allocating at the end\n"));
302 * We are allocating at the end.
304 s->r_end = rv->r_start - 1;
305 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
306 r_link);
308 goto out;
313 * Now find an acceptable shared region, if the client's requirements
314 * allow sharing. By our implementation restriction, a candidate
315 * region must match exactly by both size and sharing type in order
316 * to be considered compatible with the client's request. (The
317 * former restriction could probably be lifted without too much
318 * additional work, but this does not seem warranted.)
320 DPRINTF(("no unshared regions found\n"));
321 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
322 goto out;
324 for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
325 if (s->r_start > end)
326 break;
327 if ((s->r_flags & flags) != flags)
328 continue;
329 rstart = ulmax(s->r_start, start);
330 rend = ulmin(s->r_end, ulmax(start + count, end));
331 if (s->r_start >= start && s->r_end <= end
332 && (s->r_end - s->r_start + 1) == count) {
333 rv = kmalloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
334 if (rv == NULL)
335 goto out;
336 rv->r_start = s->r_start;
337 rv->r_end = s->r_end;
338 rv->r_flags = s->r_flags &
339 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
340 rv->r_dev = dev;
341 rv->r_rm = rm;
342 if (s->r_sharehead == 0) {
343 s->r_sharehead = kmalloc(sizeof *s->r_sharehead,
344 M_RMAN,
345 M_NOWAIT | M_ZERO);
346 if (s->r_sharehead == 0) {
347 kfree(rv, M_RMAN);
348 rv = NULL;
349 goto out;
351 LIST_INIT(s->r_sharehead);
352 LIST_INSERT_HEAD(s->r_sharehead, s,
353 r_sharelink);
354 s->r_flags |= RF_FIRSTSHARE;
356 rv->r_sharehead = s->r_sharehead;
357 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
358 goto out;
363 * We couldn't find anything.
365 DPRINTF(("no region found\n"));
366 out:
368 * If the user specified RF_ACTIVE in the initial flags,
369 * which is reflected in `want_activate', we attempt to atomically
370 * activate the resource. If this fails, we release the resource
371 * and indicate overall failure. (This behavior probably doesn't
372 * make sense for RF_TIMESHARE-type resources.)
374 if (rv && want_activate) {
375 struct resource *whohas;
376 DPRINTF(("activating region\n"));
377 if (int_rman_activate_resource(rm, rv, &whohas)) {
378 int_rman_release_resource(rm, rv);
379 rv = NULL;
382 lwkt_reltoken(rm->rm_slock);
383 return (rv);
386 static int
387 int_rman_activate_resource(struct rman *rm, struct resource *r,
388 struct resource **whohas)
390 struct resource *s;
391 int ok;
394 * If we are not timesharing, then there is nothing much to do.
395 * If we already have the resource, then there is nothing at all to do.
396 * If we are not on a sharing list with anybody else, then there is
397 * little to do.
399 if ((r->r_flags & RF_TIMESHARE) == 0
400 || (r->r_flags & RF_ACTIVE) != 0
401 || r->r_sharehead == 0) {
402 r->r_flags |= RF_ACTIVE;
403 return 0;
406 ok = 1;
407 for (s = LIST_FIRST(r->r_sharehead); s && ok;
408 s = LIST_NEXT(s, r_sharelink)) {
409 if ((s->r_flags & RF_ACTIVE) != 0) {
410 ok = 0;
411 *whohas = s;
414 if (ok) {
415 r->r_flags |= RF_ACTIVE;
416 return 0;
418 return EBUSY;
422 rman_activate_resource(struct resource *r)
424 int rv;
425 struct resource *whohas;
426 struct rman *rm;
428 rm = r->r_rm;
429 lwkt_gettoken(rm->rm_slock);
430 rv = int_rman_activate_resource(rm, r, &whohas);
431 lwkt_reltoken(rm->rm_slock);
432 return rv;
435 #if 0
437 /* XXX */
439 rman_await_resource(struct resource *r, int slpflags, int timo)
441 int rv;
442 struct resource *whohas;
443 struct rman *rm;
445 rm = r->r_rm;
446 for (;;) {
447 lwkt_gettoken(rm->rm_slock);
448 rv = int_rman_activate_resource(rm, r, &whohas);
449 if (rv != EBUSY)
450 return (rv); /* returns with ilock held */
452 if (r->r_sharehead == 0)
453 panic("rman_await_resource");
455 * A critical section will hopefully will prevent a race
456 * between lwkt_reltoken and tsleep where a process
457 * could conceivably get in and release the resource
458 * before we have a chance to sleep on it. YYY
460 crit_enter();
461 whohas->r_flags |= RF_WANTED;
462 rv = tsleep(r->r_sharehead, slpflags, "rmwait", timo);
463 if (rv) {
464 lwkt_reltoken(rm->rm_slock);
465 crit_exit();
466 return rv;
468 crit_exit();
472 #endif
474 static int
475 int_rman_deactivate_resource(struct resource *r)
477 r->r_flags &= ~RF_ACTIVE;
478 if (r->r_flags & RF_WANTED) {
479 r->r_flags &= ~RF_WANTED;
480 wakeup(r->r_sharehead);
482 return 0;
486 rman_deactivate_resource(struct resource *r)
488 struct rman *rm;
490 rm = r->r_rm;
491 lwkt_gettoken(rm->rm_slock);
492 int_rman_deactivate_resource(r);
493 lwkt_reltoken(rm->rm_slock);
494 return 0;
497 static int
498 int_rman_release_resource(struct rman *rm, struct resource *r)
500 struct resource *s, *t;
502 if (r->r_flags & RF_ACTIVE)
503 int_rman_deactivate_resource(r);
506 * Check for a sharing list first. If there is one, then we don't
507 * have to think as hard.
509 if (r->r_sharehead) {
511 * If a sharing list exists, then we know there are at
512 * least two sharers.
514 * If we are in the main circleq, appoint someone else.
516 LIST_REMOVE(r, r_sharelink);
517 s = LIST_FIRST(r->r_sharehead);
518 if (r->r_flags & RF_FIRSTSHARE) {
519 s->r_flags |= RF_FIRSTSHARE;
520 TAILQ_INSERT_BEFORE(r, s, r_link);
521 TAILQ_REMOVE(&rm->rm_list, r, r_link);
525 * Make sure that the sharing list goes away completely
526 * if the resource is no longer being shared at all.
528 if (LIST_NEXT(s, r_sharelink) == 0) {
529 kfree(s->r_sharehead, M_RMAN);
530 s->r_sharehead = 0;
531 s->r_flags &= ~RF_FIRSTSHARE;
533 goto out;
537 * Look at the adjacent resources in the list and see if our
538 * segment can be merged with any of them.
540 s = TAILQ_PREV(r, resource_head, r_link);
541 t = TAILQ_NEXT(r, r_link);
543 if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
544 && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
546 * Merge all three segments.
548 s->r_end = t->r_end;
549 TAILQ_REMOVE(&rm->rm_list, r, r_link);
550 TAILQ_REMOVE(&rm->rm_list, t, r_link);
551 kfree(t, M_RMAN);
552 } else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
554 * Merge previous segment with ours.
556 s->r_end = r->r_end;
557 TAILQ_REMOVE(&rm->rm_list, r, r_link);
558 } else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
560 * Merge next segment with ours.
562 t->r_start = r->r_start;
563 TAILQ_REMOVE(&rm->rm_list, r, r_link);
564 } else {
566 * At this point, we know there is nothing we
567 * can potentially merge with, because on each
568 * side, there is either nothing there or what is
569 * there is still allocated. In that case, we don't
570 * want to remove r from the list; we simply want to
571 * change it to an unallocated region and return
572 * without freeing anything.
574 r->r_flags &= ~RF_ALLOCATED;
575 return 0;
578 out:
579 kfree(r, M_RMAN);
580 return 0;
584 rman_release_resource(struct resource *r)
586 struct rman *rm = r->r_rm;
587 int rv;
589 lwkt_gettoken(rm->rm_slock);
590 rv = int_rman_release_resource(rm, r);
591 lwkt_reltoken(rm->rm_slock);
592 return (rv);
595 uint32_t
596 rman_make_alignment_flags(uint32_t size)
598 int i;
601 * Find the hightest bit set, and add one if more than one bit
602 * set. We're effectively computing the ceil(log2(size)) here.
604 for (i = 32; i > 0; i--)
605 if ((1 << i) & size)
606 break;
607 if (~(1 << i) & size)
608 i++;
610 return(RF_ALIGNMENT_LOG2(i));
614 * Sysctl interface for scanning the resource lists.
616 * We take two input parameters; the index into the list of resource
617 * managers, and the resource offset into the list.
619 static int
620 sysctl_rman(SYSCTL_HANDLER_ARGS)
622 int *name = (int *)arg1;
623 u_int namelen = arg2;
624 int rman_idx, res_idx;
625 struct rman *rm;
626 struct resource *res;
627 struct u_rman urm;
628 struct u_resource ures;
629 int error;
631 if (namelen != 3)
632 return (EINVAL);
634 if (bus_data_generation_check(name[0]))
635 return (EINVAL);
636 rman_idx = name[1];
637 res_idx = name[2];
640 * Find the indexed resource manager
642 TAILQ_FOREACH(rm, &rman_head, rm_link) {
643 if (rman_idx-- == 0)
644 break;
646 if (rm == NULL)
647 return (ENOENT);
650 * If the resource index is -1, we want details on the
651 * resource manager.
653 if (res_idx == -1) {
654 urm.rm_handle = (uintptr_t)rm;
655 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
656 urm.rm_start = rm->rm_start;
657 urm.rm_size = rm->rm_end - rm->rm_start + 1;
658 urm.rm_type = rm->rm_type;
660 error = SYSCTL_OUT(req, &urm, sizeof(urm));
661 return (error);
665 * Find the indexed resource and return it.
667 TAILQ_FOREACH(res, &rm->rm_list, r_link) {
668 if (res_idx-- == 0) {
669 ures.r_handle = (uintptr_t)res;
670 ures.r_parent = (uintptr_t)res->r_rm;
671 ures.r_device = (uintptr_t)res->r_dev;
672 if (res->r_dev != NULL) {
673 if (device_get_name(res->r_dev) != NULL) {
674 ksnprintf(ures.r_devname, RM_TEXTLEN,
675 "%s%d",
676 device_get_name(res->r_dev),
677 device_get_unit(res->r_dev));
678 } else {
679 strlcpy(ures.r_devname, "nomatch",
680 RM_TEXTLEN);
682 } else {
683 ures.r_devname[0] = '\0';
685 ures.r_start = res->r_start;
686 ures.r_size = res->r_end - res->r_start + 1;
687 ures.r_flags = res->r_flags;
689 error = SYSCTL_OUT(req, &ures, sizeof(ures));
690 return (error);
693 return (ENOENT);
696 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
697 "kernel resource manager");