Sync ACPICA with Intel's version 20161222.
[dragonfly.git] / sys / kern / kern_ntptime.c
blob9a275560e0a2b6cd59066683c64ad2ccfdf87eea
1 /***********************************************************************
2 * *
3 * Copyright (c) David L. Mills 1993-2001 *
4 * *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
15 * warranty. *
16 * *
17 **********************************************************************/
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
31 * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
34 #include "opt_ntp.h"
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/priv.h>
42 #include <sys/time.h>
43 #include <sys/timex.h>
44 #include <sys/timepps.h>
45 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
48 #include <sys/mplock2.h>
51 * Single-precision macros for 64-bit machines
53 typedef long long l_fp;
54 #define L_ADD(v, u) ((v) += (u))
55 #define L_SUB(v, u) ((v) -= (u))
56 #define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
57 #define L_NEG(v) ((v) = -(v))
58 #define L_RSHIFT(v, n) \
59 do { \
60 if ((v) < 0) \
61 (v) = -(-(v) >> (n)); \
62 else \
63 (v) = (v) >> (n); \
64 } while (0)
65 #define L_MPY(v, a) ((v) *= (a))
66 #define L_CLR(v) ((v) = 0)
67 #define L_ISNEG(v) ((v) < 0)
68 #define L_LINT(v, a) ((v) = (long long)(a) << 32)
69 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
72 * Generic NTP kernel interface
74 * These routines constitute the Network Time Protocol (NTP) interfaces
75 * for user and daemon application programs. The ntp_gettime() routine
76 * provides the time, maximum error (synch distance) and estimated error
77 * (dispersion) to client user application programs. The ntp_adjtime()
78 * routine is used by the NTP daemon to adjust the system clock to an
79 * externally derived time. The time offset and related variables set by
80 * this routine are used by other routines in this module to adjust the
81 * phase and frequency of the clock discipline loop which controls the
82 * system clock.
84 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
85 * defined), the time at each tick interrupt is derived directly from
86 * the kernel time variable. When the kernel time is reckoned in
87 * microseconds, (NTP_NANO undefined), the time is derived from the
88 * kernel time variable together with a variable representing the
89 * leftover nanoseconds at the last tick interrupt. In either case, the
90 * current nanosecond time is reckoned from these values plus an
91 * interpolated value derived by the clock routines in another
92 * architecture-specific module. The interpolation can use either a
93 * dedicated counter or a processor cycle counter (PCC) implemented in
94 * some architectures.
96 * Note that all routines must run at priority splclock or higher.
99 * Phase/frequency-lock loop (PLL/FLL) definitions
101 * The nanosecond clock discipline uses two variable types, time
102 * variables and frequency variables. Both types are represented as 64-
103 * bit fixed-point quantities with the decimal point between two 32-bit
104 * halves. On a 32-bit machine, each half is represented as a single
105 * word and mathematical operations are done using multiple-precision
106 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
107 * used.
109 * A time variable is a signed 64-bit fixed-point number in ns and
110 * fraction. It represents the remaining time offset to be amortized
111 * over succeeding tick interrupts. The maximum time offset is about
112 * 0.5 s and the resolution is about 2.3e-10 ns.
114 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
115 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
116 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117 * |s s s| ns |
118 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119 * | fraction |
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122 * A frequency variable is a signed 64-bit fixed-point number in ns/s
123 * and fraction. It represents the ns and fraction to be added to the
124 * kernel time variable at each second. The maximum frequency offset is
125 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
127 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
128 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * |s s s s s s s s s s s s s| ns/s |
131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132 * | fraction |
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock.
139 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
140 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
142 static int time_state = TIME_OK; /* clock state */
143 static int time_status = STA_UNSYNC; /* clock status bits */
144 static long time_tai; /* TAI offset (s) */
145 static long time_monitor; /* last time offset scaled (ns) */
146 static long time_constant; /* poll interval (shift) (s) */
147 static long time_precision = 1; /* clock precision (ns) */
148 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
149 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
150 static time_t time_reftime; /* time at last adjustment (s) */
151 static long time_tick; /* nanoseconds per tick (ns) */
152 static l_fp time_offset; /* time offset (ns) */
153 static l_fp time_freq; /* frequency offset (ns/s) */
154 static l_fp time_adj; /* tick adjust (ns/s) */
156 #ifdef PPS_SYNC
158 * The following variables are used when a pulse-per-second (PPS) signal
159 * is available and connected via a modem control lead. They establish
160 * the engineering parameters of the clock discipline loop when
161 * controlled by the PPS signal.
163 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
164 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
165 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
166 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
167 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
168 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
169 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
171 static struct timespec pps_tf[3]; /* phase median filter */
172 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
173 static long pps_fcount; /* frequency accumulator */
174 static long pps_jitter; /* nominal jitter (ns) */
175 static long pps_stabil; /* nominal stability (scaled ns/s) */
176 static long pps_lastsec; /* time at last calibration (s) */
177 static int pps_valid; /* signal watchdog counter */
178 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
179 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
180 static int pps_intcnt; /* wander counter */
183 * PPS signal quality monitors
185 static long pps_calcnt; /* calibration intervals */
186 static long pps_jitcnt; /* jitter limit exceeded */
187 static long pps_stbcnt; /* stability limit exceeded */
188 static long pps_errcnt; /* calibration errors */
189 #endif /* PPS_SYNC */
191 * End of phase/frequency-lock loop (PLL/FLL) definitions
194 static void ntp_init(void);
195 static void hardupdate(long offset);
198 * ntp_gettime() - NTP user application interface
200 * See the timex.h header file for synopsis and API description. Note
201 * that the TAI offset is returned in the ntvtimeval.tai structure
202 * member.
204 static int
205 ntp_sysctl(SYSCTL_HANDLER_ARGS)
207 struct ntptimeval ntv; /* temporary structure */
208 struct timespec atv; /* nanosecond time */
210 nanotime(&atv);
211 ntv.time.tv_sec = atv.tv_sec;
212 ntv.time.tv_nsec = atv.tv_nsec;
213 ntv.maxerror = time_maxerror;
214 ntv.esterror = time_esterror;
215 ntv.tai = time_tai;
216 ntv.time_state = time_state;
219 * Status word error decode. If any of these conditions occur,
220 * an error is returned, instead of the status word. Most
221 * applications will care only about the fact the system clock
222 * may not be trusted, not about the details.
224 * Hardware or software error
226 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
229 * PPS signal lost when either time or frequency synchronization
230 * requested
232 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
233 !(time_status & STA_PPSSIGNAL)) ||
236 * PPS jitter exceeded when time synchronization requested
238 (time_status & STA_PPSTIME &&
239 time_status & STA_PPSJITTER) ||
242 * PPS wander exceeded or calibration error when frequency
243 * synchronization requested
245 (time_status & STA_PPSFREQ &&
246 time_status & (STA_PPSWANDER | STA_PPSERROR)))
247 ntv.time_state = TIME_ERROR;
248 return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
251 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
252 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
253 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
255 #ifdef PPS_SYNC
256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
261 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
262 #endif
264 * ntp_adjtime() - NTP daemon application interface
266 * See the timex.h header file for synopsis and API description. Note
267 * that the timex.constant structure member has a dual purpose to set
268 * the time constant and to set the TAI offset.
270 * MPALMOSTSAFE
273 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
275 struct thread *td = curthread;
276 struct timex ntv; /* temporary structure */
277 long freq; /* frequency ns/s) */
278 int modes; /* mode bits from structure */
279 int error;
281 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
282 if (error)
283 return(error);
286 * Update selected clock variables - only the superuser can
287 * change anything. Note that there is no error checking here on
288 * the assumption the superuser should know what it is doing.
289 * Note that either the time constant or TAI offset are loaded
290 * from the ntv.constant member, depending on the mode bits. If
291 * the STA_PLL bit in the status word is cleared, the state and
292 * status words are reset to the initial values at boot.
294 modes = ntv.modes;
295 if (modes)
296 error = priv_check(td, PRIV_NTP_ADJTIME);
297 if (error)
298 return (error);
300 get_mplock();
301 crit_enter();
302 if (modes & MOD_MAXERROR)
303 time_maxerror = ntv.maxerror;
304 if (modes & MOD_ESTERROR)
305 time_esterror = ntv.esterror;
306 if (modes & MOD_STATUS) {
307 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
308 time_state = TIME_OK;
309 time_status = STA_UNSYNC;
310 #ifdef PPS_SYNC
311 pps_shift = PPS_FAVG;
312 #endif /* PPS_SYNC */
314 time_status &= STA_RONLY;
315 time_status |= ntv.status & ~STA_RONLY;
317 if (modes & MOD_TIMECONST) {
318 if (ntv.constant < 0)
319 time_constant = 0;
320 else if (ntv.constant > MAXTC)
321 time_constant = MAXTC;
322 else
323 time_constant = ntv.constant;
325 if (modes & MOD_TAI) {
326 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
327 time_tai = ntv.constant;
329 #ifdef PPS_SYNC
330 if (modes & MOD_PPSMAX) {
331 if (ntv.shift < PPS_FAVG)
332 pps_shiftmax = PPS_FAVG;
333 else if (ntv.shift > PPS_FAVGMAX)
334 pps_shiftmax = PPS_FAVGMAX;
335 else
336 pps_shiftmax = ntv.shift;
338 #endif /* PPS_SYNC */
339 if (modes & MOD_NANO)
340 time_status |= STA_NANO;
341 if (modes & MOD_MICRO)
342 time_status &= ~STA_NANO;
343 if (modes & MOD_CLKB)
344 time_status |= STA_CLK;
345 if (modes & MOD_CLKA)
346 time_status &= ~STA_CLK;
347 if (modes & MOD_OFFSET) {
348 if (time_status & STA_NANO)
349 hardupdate(ntv.offset);
350 else
351 hardupdate(ntv.offset * 1000);
354 * Note: the userland specified frequency is in seconds per second
355 * times 65536e+6. Multiply by a thousand and divide by 65336 to
356 * get nanoseconds.
358 if (modes & MOD_FREQUENCY) {
359 freq = (ntv.freq * 1000LL) >> 16;
360 if (freq > MAXFREQ)
361 L_LINT(time_freq, MAXFREQ);
362 else if (freq < -MAXFREQ)
363 L_LINT(time_freq, -MAXFREQ);
364 else
365 L_LINT(time_freq, freq);
366 #ifdef PPS_SYNC
367 pps_freq = time_freq;
368 #endif /* PPS_SYNC */
372 * Retrieve all clock variables. Note that the TAI offset is
373 * returned only by ntp_gettime();
375 if (time_status & STA_NANO)
376 ntv.offset = time_monitor;
377 else
378 ntv.offset = time_monitor / 1000; /* XXX rounding ? */
379 ntv.freq = L_GINT((time_freq / 1000LL) << 16);
380 ntv.maxerror = time_maxerror;
381 ntv.esterror = time_esterror;
382 ntv.status = time_status;
383 ntv.constant = time_constant;
384 if (time_status & STA_NANO)
385 ntv.precision = time_precision;
386 else
387 ntv.precision = time_precision / 1000;
388 ntv.tolerance = MAXFREQ * SCALE_PPM;
389 #ifdef PPS_SYNC
390 ntv.shift = pps_shift;
391 ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
392 if (time_status & STA_NANO)
393 ntv.jitter = pps_jitter;
394 else
395 ntv.jitter = pps_jitter / 1000;
396 ntv.stabil = pps_stabil;
397 ntv.calcnt = pps_calcnt;
398 ntv.errcnt = pps_errcnt;
399 ntv.jitcnt = pps_jitcnt;
400 ntv.stbcnt = pps_stbcnt;
401 #endif /* PPS_SYNC */
402 crit_exit();
403 rel_mplock();
405 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
406 if (error)
407 return (error);
410 * Status word error decode. See comments in
411 * ntp_gettime() routine.
413 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
414 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
415 !(time_status & STA_PPSSIGNAL)) ||
416 (time_status & STA_PPSTIME &&
417 time_status & STA_PPSJITTER) ||
418 (time_status & STA_PPSFREQ &&
419 time_status & (STA_PPSWANDER | STA_PPSERROR))) {
420 uap->sysmsg_result = TIME_ERROR;
421 } else {
422 uap->sysmsg_result = time_state;
424 return (error);
428 * second_overflow() - called after ntp_tick_adjust()
430 * This routine is ordinarily called from hardclock() whenever the seconds
431 * hand rolls over. It returns leap seconds to add or drop, and sets nsec_adj
432 * to the total adjustment to make over the next second in (ns << 32).
434 * This routine is only called by cpu #0.
437 ntp_update_second(time_t newsec, int64_t *nsec_adj)
439 l_fp ftemp; /* 32/64-bit temporary */
440 int adjsec = 0;
443 * On rollover of the second both the nanosecond and microsecond
444 * clocks are updated and the state machine cranked as
445 * necessary. The phase adjustment to be used for the next
446 * second is calculated and the maximum error is increased by
447 * the tolerance.
449 time_maxerror += MAXFREQ / 1000;
452 * Leap second processing. If in leap-insert state at
453 * the end of the day, the system clock is set back one
454 * second; if in leap-delete state, the system clock is
455 * set ahead one second. The nano_time() routine or
456 * external clock driver will insure that reported time
457 * is always monotonic.
459 switch (time_state) {
462 * No warning.
464 case TIME_OK:
465 if (time_status & STA_INS)
466 time_state = TIME_INS;
467 else if (time_status & STA_DEL)
468 time_state = TIME_DEL;
469 break;
472 * Insert second 23:59:60 following second
473 * 23:59:59.
475 case TIME_INS:
476 if (!(time_status & STA_INS))
477 time_state = TIME_OK;
478 else if ((newsec) % 86400 == 0) {
479 --adjsec;
480 time_state = TIME_OOP;
482 break;
485 * Delete second 23:59:59.
487 case TIME_DEL:
488 if (!(time_status & STA_DEL))
489 time_state = TIME_OK;
490 else if (((newsec) + 1) % 86400 == 0) {
491 ++adjsec;
492 time_tai--;
493 time_state = TIME_WAIT;
495 break;
498 * Insert second in progress.
500 case TIME_OOP:
501 time_tai++;
502 time_state = TIME_WAIT;
503 break;
506 * Wait for status bits to clear.
508 case TIME_WAIT:
509 if (!(time_status & (STA_INS | STA_DEL)))
510 time_state = TIME_OK;
514 * time_offset represents the total time adjustment we wish to
515 * make (over no particular period of time). time_freq represents
516 * the frequency compensation we wish to apply.
518 * time_adj represents the total adjustment we wish to make over
519 * one full second. hardclock usually applies this adjustment in
520 * time_adj / hz jumps, hz times a second.
522 ftemp = time_offset;
523 #ifdef PPS_SYNC
524 /* XXX even if PPS signal dies we should finish adjustment ? */
525 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
526 L_RSHIFT(ftemp, pps_shift);
527 else
528 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
529 #else
530 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
531 #endif /* PPS_SYNC */
532 time_adj = ftemp; /* adjustment for part of the offset */
533 L_SUB(time_offset, ftemp);
534 L_ADD(time_adj, time_freq); /* add frequency correction */
535 *nsec_adj = time_adj;
536 #ifdef PPS_SYNC
537 if (pps_valid > 0)
538 pps_valid--;
539 else
540 time_status &= ~STA_PPSSIGNAL;
541 #endif /* PPS_SYNC */
542 return(adjsec);
546 * ntp_init() - initialize variables and structures
548 * This routine must be called after the kernel variables hz and tick
549 * are set or changed and before the next tick interrupt. In this
550 * particular implementation, these values are assumed set elsewhere in
551 * the kernel. The design allows the clock frequency and tick interval
552 * to be changed while the system is running. So, this routine should
553 * probably be integrated with the code that does that.
555 static void
556 ntp_init(void)
560 * The following variable must be initialized any time the
561 * kernel variable hz is changed.
563 time_tick = NANOSECOND / hz;
566 * The following variables are initialized only at startup. Only
567 * those structures not cleared by the compiler need to be
568 * initialized, and these only in the simulator. In the actual
569 * kernel, any nonzero values here will quickly evaporate.
571 L_CLR(time_offset);
572 L_CLR(time_freq);
573 #ifdef PPS_SYNC
574 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
575 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
576 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
577 pps_fcount = 0;
578 L_CLR(pps_freq);
579 #endif /* PPS_SYNC */
582 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL);
585 * hardupdate() - local clock update
587 * This routine is called by ntp_adjtime() to update the local clock
588 * phase and frequency. The implementation is of an adaptive-parameter,
589 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
590 * time and frequency offset estimates for each call. If the kernel PPS
591 * discipline code is configured (PPS_SYNC), the PPS signal itself
592 * determines the new time offset, instead of the calling argument.
593 * Presumably, calls to ntp_adjtime() occur only when the caller
594 * believes the local clock is valid within some bound (+-128 ms with
595 * NTP). If the caller's time is far different than the PPS time, an
596 * argument will ensue, and it's not clear who will lose.
598 * For uncompensated quartz crystal oscillators and nominal update
599 * intervals less than 256 s, operation should be in phase-lock mode,
600 * where the loop is disciplined to phase. For update intervals greater
601 * than 1024 s, operation should be in frequency-lock mode, where the
602 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
603 * is selected by the STA_MODE status bit.
605 static void
606 hardupdate(long offset)
608 long mtemp;
609 l_fp ftemp;
612 * Select how the phase is to be controlled and from which
613 * source. If the PPS signal is present and enabled to
614 * discipline the time, the PPS offset is used; otherwise, the
615 * argument offset is used.
617 if (!(time_status & STA_PLL))
618 return;
619 if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
620 if (offset > MAXPHASE)
621 time_monitor = MAXPHASE;
622 else if (offset < -MAXPHASE)
623 time_monitor = -MAXPHASE;
624 else
625 time_monitor = offset;
626 L_LINT(time_offset, time_monitor);
630 * Select how the frequency is to be controlled and in which
631 * mode (PLL or FLL). If the PPS signal is present and enabled
632 * to discipline the frequency, the PPS frequency is used;
633 * otherwise, the argument offset is used to compute it.
635 if ((time_status & STA_PPSFREQ) && time_status & STA_PPSSIGNAL) {
636 time_reftime = time_uptime;
637 return;
639 if ((time_status & STA_FREQHOLD) || time_reftime == 0)
640 time_reftime = time_uptime;
641 mtemp = time_uptime - time_reftime;
642 L_LINT(ftemp, time_monitor);
643 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
644 L_MPY(ftemp, mtemp);
645 L_ADD(time_freq, ftemp);
646 time_status &= ~STA_MODE;
647 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
648 L_LINT(ftemp, (time_monitor << 4) / mtemp);
649 L_RSHIFT(ftemp, SHIFT_FLL + 4);
650 L_ADD(time_freq, ftemp);
651 time_status |= STA_MODE;
653 time_reftime = time_uptime;
654 if (L_GINT(time_freq) > MAXFREQ)
655 L_LINT(time_freq, MAXFREQ);
656 else if (L_GINT(time_freq) < -MAXFREQ)
657 L_LINT(time_freq, -MAXFREQ);
660 #ifdef PPS_SYNC
662 * hardpps() - discipline CPU clock oscillator to external PPS signal
664 * This routine is called at each PPS interrupt in order to discipline
665 * the CPU clock oscillator to the PPS signal. There are two independent
666 * first-order feedback loops, one for the phase, the other for the
667 * frequency. The phase loop measures and grooms the PPS phase offset
668 * and leaves it in a handy spot for the seconds overflow routine. The
669 * frequency loop averages successive PPS phase differences and
670 * calculates the PPS frequency offset, which is also processed by the
671 * seconds overflow routine. The code requires the caller to capture the
672 * time and architecture-dependent hardware counter values in
673 * nanoseconds at the on-time PPS signal transition.
675 * Note that, on some Unix systems this routine runs at an interrupt
676 * priority level higher than the timer interrupt routine hardclock().
677 * Therefore, the variables used are distinct from the hardclock()
678 * variables, except for the actual time and frequency variables, which
679 * are determined by this routine and updated atomically.
681 void
682 hardpps(struct timespec *tsp, long nsec)
684 long u_sec, u_nsec, v_nsec; /* temps */
685 l_fp ftemp;
688 * The signal is first processed by a range gate and frequency
689 * discriminator. The range gate rejects noise spikes outside
690 * the range +-500 us. The frequency discriminator rejects input
691 * signals with apparent frequency outside the range 1 +-500
692 * PPM. If two hits occur in the same second, we ignore the
693 * later hit; if not and a hit occurs outside the range gate,
694 * keep the later hit for later comparison, but do not process
695 * it.
697 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
698 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
699 pps_valid = PPS_VALID;
700 u_sec = tsp->tv_sec;
701 u_nsec = tsp->tv_nsec;
702 if (u_nsec >= (NANOSECOND >> 1)) {
703 u_nsec -= NANOSECOND;
704 u_sec++;
706 v_nsec = u_nsec - pps_tf[0].tv_nsec;
707 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
708 MAXFREQ)
709 return;
710 pps_tf[2] = pps_tf[1];
711 pps_tf[1] = pps_tf[0];
712 pps_tf[0].tv_sec = u_sec;
713 pps_tf[0].tv_nsec = u_nsec;
716 * Compute the difference between the current and previous
717 * counter values. If the difference exceeds 0.5 s, assume it
718 * has wrapped around, so correct 1.0 s. If the result exceeds
719 * the tick interval, the sample point has crossed a tick
720 * boundary during the last second, so correct the tick. Very
721 * intricate.
723 u_nsec = nsec;
724 if (u_nsec > (NANOSECOND >> 1))
725 u_nsec -= NANOSECOND;
726 else if (u_nsec < -(NANOSECOND >> 1))
727 u_nsec += NANOSECOND;
728 pps_fcount += u_nsec;
729 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
730 return;
731 time_status &= ~STA_PPSJITTER;
734 * A three-stage median filter is used to help denoise the PPS
735 * time. The median sample becomes the time offset estimate; the
736 * difference between the other two samples becomes the time
737 * dispersion (jitter) estimate.
739 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
740 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
741 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
742 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
743 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
744 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
745 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
746 } else {
747 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
748 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
750 } else {
751 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
752 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
753 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
754 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
755 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
756 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
757 } else {
758 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
759 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
764 * Nominal jitter is due to PPS signal noise and interrupt
765 * latency. If it exceeds the popcorn threshold, the sample is
766 * discarded. otherwise, if so enabled, the time offset is
767 * updated. We can tolerate a modest loss of data here without
768 * much degrading time accuracy.
770 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
771 time_status |= STA_PPSJITTER;
772 pps_jitcnt++;
773 } else if (time_status & STA_PPSTIME) {
774 time_monitor = -v_nsec;
775 L_LINT(time_offset, time_monitor);
777 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
778 u_sec = pps_tf[0].tv_sec - pps_lastsec;
779 if (u_sec < (1 << pps_shift))
780 return;
783 * At the end of the calibration interval the difference between
784 * the first and last counter values becomes the scaled
785 * frequency. It will later be divided by the length of the
786 * interval to determine the frequency update. If the frequency
787 * exceeds a sanity threshold, or if the actual calibration
788 * interval is not equal to the expected length, the data are
789 * discarded. We can tolerate a modest loss of data here without
790 * much degrading frequency accuracy.
792 pps_calcnt++;
793 v_nsec = -pps_fcount;
794 pps_lastsec = pps_tf[0].tv_sec;
795 pps_fcount = 0;
796 u_nsec = MAXFREQ << pps_shift;
797 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
798 pps_shift)) {
799 time_status |= STA_PPSERROR;
800 pps_errcnt++;
801 return;
805 * Here the raw frequency offset and wander (stability) is
806 * calculated. If the wander is less than the wander threshold
807 * for four consecutive averaging intervals, the interval is
808 * doubled; if it is greater than the threshold for four
809 * consecutive intervals, the interval is halved. The scaled
810 * frequency offset is converted to frequency offset. The
811 * stability metric is calculated as the average of recent
812 * frequency changes, but is used only for performance
813 * monitoring.
815 L_LINT(ftemp, v_nsec);
816 L_RSHIFT(ftemp, pps_shift);
817 L_SUB(ftemp, pps_freq);
818 u_nsec = L_GINT(ftemp);
819 if (u_nsec > PPS_MAXWANDER) {
820 L_LINT(ftemp, PPS_MAXWANDER);
821 pps_intcnt--;
822 time_status |= STA_PPSWANDER;
823 pps_stbcnt++;
824 } else if (u_nsec < -PPS_MAXWANDER) {
825 L_LINT(ftemp, -PPS_MAXWANDER);
826 pps_intcnt--;
827 time_status |= STA_PPSWANDER;
828 pps_stbcnt++;
829 } else {
830 pps_intcnt++;
832 if (pps_intcnt >= 4) {
833 pps_intcnt = 4;
834 if (pps_shift < pps_shiftmax) {
835 pps_shift++;
836 pps_intcnt = 0;
838 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
839 pps_intcnt = -4;
840 if (pps_shift > PPS_FAVG) {
841 pps_shift--;
842 pps_intcnt = 0;
845 if (u_nsec < 0)
846 u_nsec = -u_nsec;
847 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
850 * The PPS frequency is recalculated and clamped to the maximum
851 * MAXFREQ. If enabled, the system clock frequency is updated as
852 * well.
854 L_ADD(pps_freq, ftemp);
855 u_nsec = L_GINT(pps_freq);
856 if (u_nsec > MAXFREQ)
857 L_LINT(pps_freq, MAXFREQ);
858 else if (u_nsec < -MAXFREQ)
859 L_LINT(pps_freq, -MAXFREQ);
860 if (time_status & STA_PPSFREQ)
861 time_freq = pps_freq;
863 #endif /* PPS_SYNC */