Sync ACPICA with Intel's version 20161222.
[dragonfly.git] / sys / kern / kern_exec.c
blob454ee9471dd519ff32138ee0c245115372ecb90c
1 /*
2 * Copyright (c) 1993, David Greenman
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
56 #include <cpu/lwbuf.h>
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
70 #include <sys/user.h>
71 #include <sys/reg.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/mplock2.h>
76 #include <vm/vm_page2.h>
78 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
79 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
81 static register_t *exec_copyout_strings (struct image_params *);
83 /* XXX This should be vm_size_t. */
84 static u_long ps_strings = PS_STRINGS;
85 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
87 /* XXX This should be vm_size_t. */
88 static u_long usrstack = USRSTACK;
89 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
91 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
92 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
93 &ps_arg_cache_limit, 0, "");
95 int ps_argsopen = 1;
96 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
98 static int ktrace_suid = 0;
99 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
101 void print_execve_args(struct image_args *args);
102 int debug_execve_args = 0;
103 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
104 0, "");
107 * Exec arguments object cache
109 static struct objcache *exec_objcache;
111 static
112 void
113 exec_objcache_init(void *arg __unused)
115 int cluster_limit;
116 size_t limsize;
119 * Maximum number of concurrent execs. This can be limiting on
120 * systems with a lot of cpu cores but it also eats a significant
121 * amount of memory.
123 cluster_limit = (ncpus < 16) ? 16 : ncpus;
124 limsize = kmem_lim_size();
125 if (limsize > 7 * 1024)
126 cluster_limit *= 2;
127 if (limsize > 15 * 1024)
128 cluster_limit *= 2;
130 exec_objcache = objcache_create_mbacked(
131 M_EXECARGS, PATH_MAX + ARG_MAX,
132 cluster_limit, 8,
133 NULL, NULL, NULL);
135 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
138 * stackgap_random specifies if the stackgap should have a random size added
139 * to it. It must be a power of 2. If non-zero, the stack gap will be
140 * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
142 static int stackgap_random = 1024;
143 static int
144 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
146 int error, new_val;
147 new_val = stackgap_random;
148 error = sysctl_handle_int(oidp, &new_val, 0, req);
149 if (error != 0 || req->newptr == NULL)
150 return (error);
151 if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
152 return (EINVAL);
153 stackgap_random = new_val;
155 return(0);
158 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
159 0, 0, sysctl_kern_stackgap, "I",
160 "Max random stack gap (power of 2), static gap if negative");
162 void
163 print_execve_args(struct image_args *args)
165 char *cp;
166 int ndx;
168 cp = args->begin_argv;
169 for (ndx = 0; ndx < args->argc; ndx++) {
170 kprintf("\targv[%d]: %s\n", ndx, cp);
171 while (*cp++ != '\0');
173 for (ndx = 0; ndx < args->envc; ndx++) {
174 kprintf("\tenvv[%d]: %s\n", ndx, cp);
175 while (*cp++ != '\0');
180 * Each of the items is a pointer to a `const struct execsw', hence the
181 * double pointer here.
183 static const struct execsw **execsw;
186 * Replace current vmspace with a new binary.
187 * Returns 0 on success, > 0 on recoverable error (use as errno).
188 * Returns -1 on lethal error which demands killing of the current
189 * process!
192 kern_execve(struct nlookupdata *nd, struct image_args *args)
194 struct thread *td = curthread;
195 struct lwp *lp = td->td_lwp;
196 struct proc *p = td->td_proc;
197 struct vnode *ovp;
198 register_t *stack_base;
199 struct pargs *pa;
200 struct sigacts *ops;
201 struct sigacts *nps;
202 int error, len, i;
203 struct image_params image_params, *imgp;
204 struct vattr attr;
205 int (*img_first) (struct image_params *);
207 if (debug_execve_args) {
208 kprintf("%s()\n", __func__);
209 print_execve_args(args);
212 KKASSERT(p);
213 lwkt_gettoken(&p->p_token);
214 imgp = &image_params;
217 * NOTE: P_INEXEC is handled by exec_new_vmspace() now. We make
218 * no modifications to the process at all until we get there.
220 * Note that multiple threads may be trying to exec at the same
221 * time. exec_new_vmspace() handles that too.
225 * Initialize part of the common data
227 imgp->proc = p;
228 imgp->args = args;
229 imgp->attr = &attr;
230 imgp->entry_addr = 0;
231 imgp->resident = 0;
232 imgp->vmspace_destroyed = 0;
233 imgp->interpreted = 0;
234 imgp->interpreter_name[0] = 0;
235 imgp->auxargs = NULL;
236 imgp->vp = NULL;
237 imgp->firstpage = NULL;
238 imgp->ps_strings = 0;
239 imgp->execpath = imgp->freepath = NULL;
240 imgp->execpathp = 0;
241 imgp->image_header = NULL;
243 interpret:
246 * Translate the file name to a vnode. Unlock the cache entry to
247 * improve parallelism for programs exec'd in parallel.
249 nd->nl_flags |= NLC_SHAREDLOCK;
250 if ((error = nlookup(nd)) != 0)
251 goto exec_fail;
252 error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
253 KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
254 nd->nl_flags &= ~NLC_NCPISLOCKED;
255 cache_unlock(&nd->nl_nch);
256 if (error)
257 goto exec_fail;
260 * Check file permissions (also 'opens' file).
261 * Include also the top level mount in the check.
263 error = exec_check_permissions(imgp, nd->nl_nch.mount);
264 if (error) {
265 vn_unlock(imgp->vp);
266 goto exec_fail_dealloc;
269 error = exec_map_first_page(imgp);
270 vn_unlock(imgp->vp);
271 if (error)
272 goto exec_fail_dealloc;
274 imgp->proc->p_osrel = 0;
276 if (debug_execve_args && imgp->interpreted) {
277 kprintf(" target is interpreted -- recursive pass\n");
278 kprintf(" interpreter: %s\n", imgp->interpreter_name);
279 print_execve_args(args);
283 * If the current process has a special image activator it
284 * wants to try first, call it. For example, emulating shell
285 * scripts differently.
287 error = -1;
288 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
289 error = img_first(imgp);
292 * If the vnode has a registered vmspace, exec the vmspace
294 if (error == -1 && imgp->vp->v_resident) {
295 error = exec_resident_imgact(imgp);
299 * Loop through the list of image activators, calling each one.
300 * An activator returns -1 if there is no match, 0 on success,
301 * and an error otherwise.
303 for (i = 0; error == -1 && execsw[i]; ++i) {
304 if (execsw[i]->ex_imgact == NULL ||
305 execsw[i]->ex_imgact == img_first) {
306 continue;
308 error = (*execsw[i]->ex_imgact)(imgp);
311 if (error) {
312 if (error == -1)
313 error = ENOEXEC;
314 goto exec_fail_dealloc;
318 * Special interpreter operation, cleanup and loop up to try to
319 * activate the interpreter.
321 if (imgp->interpreted) {
322 exec_unmap_first_page(imgp);
323 nlookup_done(nd);
324 vrele(imgp->vp);
325 imgp->vp = NULL;
326 error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
327 NLC_FOLLOW);
328 if (error)
329 goto exec_fail;
330 goto interpret;
334 * Do the best to calculate the full path to the image file
336 if (imgp->auxargs != NULL &&
337 ((args->fname != NULL && args->fname[0] == '/') ||
338 vn_fullpath(imgp->proc,
339 imgp->vp,
340 &imgp->execpath,
341 &imgp->freepath,
342 0) != 0))
343 imgp->execpath = args->fname;
346 * Copy out strings (args and env) and initialize stack base
348 stack_base = exec_copyout_strings(imgp);
349 p->p_vmspace->vm_minsaddr = (char *)stack_base;
352 * If custom stack fixup routine present for this process
353 * let it do the stack setup. If we are running a resident
354 * image there is no auxinfo or other image activator context
355 * so don't try to add fixups to the stack.
357 * Else stuff argument count as first item on stack
359 if (p->p_sysent->sv_fixup && imgp->resident == 0)
360 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
361 else
362 suword(--stack_base, imgp->args->argc);
365 * For security and other reasons, the file descriptor table cannot
366 * be shared after an exec.
368 if (p->p_fd->fd_refcnt > 1) {
369 struct filedesc *tmp;
371 error = fdcopy(p, &tmp);
372 if (error != 0)
373 goto exec_fail;
374 fdfree(p, tmp);
378 * For security and other reasons, signal handlers cannot
379 * be shared after an exec. The new proces gets a copy of the old
380 * handlers. In execsigs(), the new process will have its signals
381 * reset.
383 ops = p->p_sigacts;
384 if (ops->ps_refcnt > 1) {
385 nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
386 bcopy(ops, nps, sizeof(*nps));
387 refcount_init(&nps->ps_refcnt, 1);
388 p->p_sigacts = nps;
389 if (refcount_release(&ops->ps_refcnt)) {
390 kfree(ops, M_SUBPROC);
391 ops = NULL;
396 * For security and other reasons virtual kernels cannot be
397 * inherited by an exec. This also allows a virtual kernel
398 * to fork/exec unrelated applications.
400 if (p->p_vkernel)
401 vkernel_exit(p);
403 /* Stop profiling */
404 stopprofclock(p);
406 /* close files on exec */
407 fdcloseexec(p);
409 /* reset caught signals */
410 execsigs(p);
412 /* name this process - nameiexec(p, ndp) */
413 len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
414 bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
415 p->p_comm[len] = 0;
416 bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
419 * mark as execed, wakeup the process that vforked (if any) and tell
420 * it that it now has its own resources back
422 * We are using the P_PPWAIT as an interlock so an atomic op is
423 * necessary to synchronize with the parent's cpu.
425 p->p_flags |= P_EXEC;
426 if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
427 if (p->p_pptr->p_upmap)
428 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
429 atomic_clear_int(&p->p_flags, P_PPWAIT);
430 wakeup(p->p_pptr);
434 * Implement image setuid/setgid.
436 * Don't honor setuid/setgid if the filesystem prohibits it or if
437 * the process is being traced.
439 if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
440 ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
441 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
442 (p->p_flags & P_TRACED) == 0) {
444 * Turn off syscall tracing for set-id programs, except for
445 * root. Record any set-id flags first to make sure that
446 * we do not regain any tracing during a possible block.
448 setsugid();
449 if (p->p_tracenode && ktrace_suid == 0 &&
450 priv_check(td, PRIV_ROOT) != 0) {
451 ktrdestroy(&p->p_tracenode);
452 p->p_traceflag = 0;
454 /* Close any file descriptors 0..2 that reference procfs */
455 setugidsafety(p);
456 /* Make sure file descriptors 0..2 are in use. */
457 error = fdcheckstd(lp);
458 if (error != 0)
459 goto exec_fail_dealloc;
461 * Set the new credentials.
463 cratom_proc(p);
464 if (attr.va_mode & VSUID)
465 change_euid(attr.va_uid);
466 if (attr.va_mode & VSGID)
467 p->p_ucred->cr_gid = attr.va_gid;
470 * Clear local varsym variables
472 varsymset_clean(&p->p_varsymset);
473 } else {
474 if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
475 p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
476 p->p_flags &= ~P_SUGID;
480 * Implement correct POSIX saved-id behavior.
482 if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
483 p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
484 cratom_proc(p);
485 p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
486 p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
490 * Store the vp for use in procfs. Be sure to keep p_textvp
491 * consistent if we block during the switch-over.
493 ovp = p->p_textvp;
494 vref(imgp->vp); /* ref new vp */
495 p->p_textvp = imgp->vp;
496 if (ovp) /* release old vp */
497 vrele(ovp);
499 /* Release old namecache handle to text file */
500 if (p->p_textnch.ncp)
501 cache_drop(&p->p_textnch);
503 if (nd->nl_nch.mount)
504 cache_copy(&nd->nl_nch, &p->p_textnch);
507 * Notify others that we exec'd, and clear the P_INEXEC flag
508 * as we're now a bona fide freshly-execed process.
510 KNOTE(&p->p_klist, NOTE_EXEC);
511 p->p_flags &= ~P_INEXEC;
512 if (p->p_stops)
513 wakeup(&p->p_stype);
516 * If tracing the process, trap to debugger so breakpoints
517 * can be set before the program executes.
519 STOPEVENT(p, S_EXEC, 0);
521 if (p->p_flags & P_TRACED)
522 ksignal(p, SIGTRAP);
524 /* clear "fork but no exec" flag, as we _are_ execing */
525 p->p_acflag &= ~AFORK;
527 /* Set values passed into the program in registers. */
528 exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
529 imgp->ps_strings);
531 /* Set the access time on the vnode */
532 vn_mark_atime(imgp->vp, td);
535 * Free any previous argument cache
537 pa = p->p_args;
538 p->p_args = NULL;
539 if (pa && refcount_release(&pa->ar_ref)) {
540 kfree(pa, M_PARGS);
541 pa = NULL;
545 * Cache arguments if they fit inside our allowance
547 i = imgp->args->begin_envv - imgp->args->begin_argv;
548 if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
549 pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
550 refcount_init(&pa->ar_ref, 1);
551 pa->ar_length = i;
552 bcopy(imgp->args->begin_argv, pa->ar_args, i);
553 KKASSERT(p->p_args == NULL);
554 p->p_args = pa;
557 exec_fail_dealloc:
560 * free various allocated resources
562 if (imgp->firstpage)
563 exec_unmap_first_page(imgp);
565 if (imgp->vp) {
566 vrele(imgp->vp);
567 imgp->vp = NULL;
570 if (imgp->freepath)
571 kfree(imgp->freepath, M_TEMP);
573 if (error == 0) {
574 ++mycpu->gd_cnt.v_exec;
575 lwkt_reltoken(&p->p_token);
576 return (0);
579 exec_fail:
581 * we're done here, clear P_INEXEC if we were the ones that
582 * set it. Otherwise if vmspace_destroyed is still set we
583 * raced another thread and that thread is responsible for
584 * clearing it.
586 if (imgp->vmspace_destroyed & 2) {
587 p->p_flags &= ~P_INEXEC;
588 if (p->p_stops)
589 wakeup(&p->p_stype);
591 lwkt_reltoken(&p->p_token);
592 if (imgp->vmspace_destroyed) {
594 * Sorry, no more process anymore. exit gracefully.
595 * However we can't die right here, because our
596 * caller might have to clean up, so indicate a
597 * lethal error by returning -1.
599 return(-1);
600 } else {
601 return(error);
606 * execve() system call.
609 sys_execve(struct execve_args *uap)
611 struct nlookupdata nd;
612 struct image_args args;
613 int error;
615 bzero(&args, sizeof(args));
617 error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
618 if (error == 0) {
619 error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
620 uap->argv, uap->envv);
622 if (error == 0)
623 error = kern_execve(&nd, &args);
624 nlookup_done(&nd);
625 exec_free_args(&args);
627 if (error < 0) {
628 /* We hit a lethal error condition. Let's die now. */
629 exit1(W_EXITCODE(0, SIGABRT));
630 /* NOTREACHED */
634 * The syscall result is returned in registers to the new program.
635 * Linux will register %edx as an atexit function and we must be
636 * sure to set it to 0. XXX
638 if (error == 0)
639 uap->sysmsg_result64 = 0;
641 return (error);
645 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
646 struct lwbuf **plwb, const char **pdata)
648 int rv;
649 vm_page_t ma;
650 vm_page_t m;
651 vm_object_t object;
654 * The file has to be mappable.
656 if ((object = imgp->vp->v_object) == NULL)
657 return (EIO);
659 if (pageno >= object->size)
660 return (EIO);
663 * Shortcut using shared locks, improve concurrent execs.
665 vm_object_hold_shared(object);
666 m = vm_page_lookup(object, pageno);
667 if (m) {
668 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
669 vm_page_hold(m);
670 vm_page_sleep_busy(m, FALSE, "execpg");
671 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
672 m->object == object && m->pindex == pageno) {
673 vm_object_drop(object);
674 goto done;
676 vm_page_unhold(m);
679 vm_object_drop(object);
682 * Do it the hard way
684 vm_object_hold(object);
685 m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
686 while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
687 ma = m;
690 * get_pages unbusies all the requested pages except the
691 * primary page (at index 0 in this case). The primary
692 * page may have been wired during the pagein (e.g. by
693 * the buffer cache) so vnode_pager_freepage() must be
694 * used to properly release it.
696 rv = vm_pager_get_page(object, &ma, 1);
697 m = vm_page_lookup(object, pageno);
699 if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
700 if (m) {
701 vm_page_protect(m, VM_PROT_NONE);
702 vnode_pager_freepage(m);
704 vm_object_drop(object);
705 return EIO;
708 vm_page_hold(m);
709 vm_page_wakeup(m); /* unbusy the page */
710 vm_object_drop(object);
712 done:
713 *plwb = lwbuf_alloc(m, *plwb);
714 *pdata = (void *)lwbuf_kva(*plwb);
716 return (0);
720 * Map the first page of an executable image.
722 * NOTE: If the mapping fails we have to NULL-out firstpage which may
723 * still be pointing to our supplied lwp structure.
726 exec_map_first_page(struct image_params *imgp)
728 int err;
730 if (imgp->firstpage)
731 exec_unmap_first_page(imgp);
733 imgp->firstpage = &imgp->firstpage_cache;
734 err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
736 if (err) {
737 imgp->firstpage = NULL;
738 return err;
741 return 0;
744 void
745 exec_unmap_page(struct lwbuf *lwb)
747 vm_page_t m;
749 crit_enter();
750 if (lwb != NULL) {
751 m = lwbuf_page(lwb);
752 lwbuf_free(lwb);
753 vm_page_unhold(m);
755 crit_exit();
758 void
759 exec_unmap_first_page(struct image_params *imgp)
761 exec_unmap_page(imgp->firstpage);
762 imgp->firstpage = NULL;
763 imgp->image_header = NULL;
767 * Destroy old address space, and allocate a new stack
768 * The new stack is only SGROWSIZ large because it is grown
769 * automatically in trap.c.
771 * This is the point of no return.
774 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
776 struct vmspace *vmspace = imgp->proc->p_vmspace;
777 vm_offset_t stack_addr = USRSTACK - maxssiz;
778 struct proc *p;
779 vm_map_t map;
780 int error;
783 * Indicate that we cannot gracefully error out any more, kill
784 * any other threads present, and set P_INEXEC to indicate that
785 * we are now messing with the process structure proper.
787 * If killalllwps() races return an error which coupled with
788 * vmspace_destroyed will cause us to exit. This is what we
789 * want since another thread is patiently waiting for us to exit
790 * in that case.
792 p = curproc;
793 imgp->vmspace_destroyed = 1;
795 if (curthread->td_proc->p_nthreads > 1) {
796 error = killalllwps(1);
797 if (error)
798 return (error);
800 imgp->vmspace_destroyed |= 2; /* we are responsible for P_INEXEC */
801 p->p_flags |= P_INEXEC;
804 * Tell procfs to release its hold on the process. It
805 * will return EAGAIN.
807 if (p->p_stops)
808 wakeup(&p->p_stype);
811 * After setting P_INEXEC wait for any remaining references to
812 * the process (p) to go away.
814 * In particular, a vfork/exec sequence will replace p->p_vmspace
815 * and we must interlock anyone trying to access the space (aka
816 * procfs or sys_process.c calling procfs_domem()).
818 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
820 PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
823 * Blow away entire process VM, if address space not shared,
824 * otherwise, create a new VM space so that other threads are
825 * not disrupted. If we are execing a resident vmspace we
826 * create a duplicate of it and remap the stack.
828 map = &vmspace->vm_map;
829 if (vmcopy) {
830 vmspace_exec(imgp->proc, vmcopy);
831 vmspace = imgp->proc->p_vmspace;
832 pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
833 map = &vmspace->vm_map;
834 } else if (vmspace_getrefs(vmspace) == 1) {
835 shmexit(vmspace);
836 pmap_remove_pages(vmspace_pmap(vmspace),
837 0, VM_MAX_USER_ADDRESS);
838 vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
839 } else {
840 vmspace_exec(imgp->proc, NULL);
841 vmspace = imgp->proc->p_vmspace;
842 map = &vmspace->vm_map;
845 /* Allocate a new stack */
846 error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
847 0, VM_PROT_ALL, VM_PROT_ALL, 0);
848 if (error)
849 return (error);
851 /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
852 * VM_STACK case, but they are still used to monitor the size of the
853 * process stack so we can check the stack rlimit.
855 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
856 vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
858 return(0);
862 * Copy out argument and environment strings from the old process
863 * address space into the temporary string buffer.
866 exec_copyin_args(struct image_args *args, char *fname,
867 enum exec_path_segflg segflg, char **argv, char **envv)
869 char *argp, *envp;
870 int error = 0;
871 size_t length;
873 args->buf = objcache_get(exec_objcache, M_WAITOK);
874 if (args->buf == NULL)
875 return (ENOMEM);
876 args->begin_argv = args->buf;
877 args->endp = args->begin_argv;
878 args->space = ARG_MAX;
880 args->fname = args->buf + ARG_MAX;
883 * Copy the file name.
885 if (segflg == PATH_SYSSPACE) {
886 error = copystr(fname, args->fname, PATH_MAX, &length);
887 } else if (segflg == PATH_USERSPACE) {
888 error = copyinstr(fname, args->fname, PATH_MAX, &length);
892 * Extract argument strings. argv may not be NULL. The argv
893 * array is terminated by a NULL entry. We special-case the
894 * situation where argv[0] is NULL by passing { filename, NULL }
895 * to the new program to guarentee that the interpreter knows what
896 * file to open in case we exec an interpreted file. Note that
897 * a NULL argv[0] terminates the argv[] array.
899 * XXX the special-casing of argv[0] is historical and needs to be
900 * revisited.
902 if (argv == NULL)
903 error = EFAULT;
904 if (error == 0) {
905 while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
906 if (argp == (caddr_t)-1) {
907 error = EFAULT;
908 break;
910 error = copyinstr(argp, args->endp,
911 args->space, &length);
912 if (error) {
913 if (error == ENAMETOOLONG)
914 error = E2BIG;
915 break;
917 args->space -= length;
918 args->endp += length;
919 args->argc++;
921 if (args->argc == 0 && error == 0) {
922 length = strlen(args->fname) + 1;
923 if (length > args->space) {
924 error = E2BIG;
925 } else {
926 bcopy(args->fname, args->endp, length);
927 args->space -= length;
928 args->endp += length;
929 args->argc++;
934 args->begin_envv = args->endp;
937 * extract environment strings. envv may be NULL.
939 if (envv && error == 0) {
940 while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
941 if (envp == (caddr_t) -1) {
942 error = EFAULT;
943 break;
945 error = copyinstr(envp, args->endp,
946 args->space, &length);
947 if (error) {
948 if (error == ENAMETOOLONG)
949 error = E2BIG;
950 break;
952 args->space -= length;
953 args->endp += length;
954 args->envc++;
957 return (error);
960 void
961 exec_free_args(struct image_args *args)
963 if (args->buf) {
964 objcache_put(exec_objcache, args->buf);
965 args->buf = NULL;
970 * Copy strings out to the new process address space, constructing
971 * new arg and env vector tables. Return a pointer to the base
972 * so that it can be used as the initial stack pointer.
974 * The format is, roughly:
976 * [argv[]] <-- vectp
977 * [envp[]]
978 * [ELF_Auxargs]
980 * [args & env] <-- destp
981 * [sgap]
982 * [SPARE_USRSPACE]
983 * [execpath]
984 * [szsigcode]
985 * [ps_strings] top of user stack
988 static register_t *
989 exec_copyout_strings(struct image_params *imgp)
991 int argc, envc, sgap;
992 int gap;
993 int argsenvspace;
994 char **vectp;
995 char *stringp, *destp;
996 register_t *stack_base;
997 struct ps_strings *arginfo;
998 size_t execpath_len;
999 int szsigcode;
1002 * Calculate string base and vector table pointers.
1003 * Also deal with signal trampoline code for this exec type.
1005 if (imgp->execpath != NULL && imgp->auxargs != NULL)
1006 execpath_len = strlen(imgp->execpath) + 1;
1007 else
1008 execpath_len = 0;
1009 arginfo = (struct ps_strings *)PS_STRINGS;
1010 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1012 argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1013 gap = stackgap_random;
1014 cpu_ccfence();
1015 if (gap != 0) {
1016 if (gap < 0)
1017 sgap = ALIGN(-gap);
1018 else
1019 sgap = ALIGN(karc4random() & (gap - 1));
1020 } else {
1021 sgap = 0;
1025 * Calculate destp, which points to [args & env] and above.
1027 destp = (caddr_t)arginfo -
1028 szsigcode -
1029 roundup(execpath_len, sizeof(char *)) -
1030 SPARE_USRSPACE -
1031 sgap -
1032 argsenvspace;
1035 * install sigcode
1037 if (szsigcode) {
1038 copyout(imgp->proc->p_sysent->sv_sigcode,
1039 ((caddr_t)arginfo - szsigcode), szsigcode);
1043 * Copy the image path for the rtld
1045 if (execpath_len) {
1046 imgp->execpathp = (uintptr_t)arginfo
1047 - szsigcode
1048 - roundup(execpath_len, sizeof(char *));
1049 copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1053 * Calculate base for argv[], envp[], and ELF_Auxargs.
1055 vectp = (char **)destp - (AT_COUNT * 2);
1056 vectp -= imgp->args->argc + imgp->args->envc + 2;
1058 stack_base = (register_t *)vectp;
1060 stringp = imgp->args->begin_argv;
1061 argc = imgp->args->argc;
1062 envc = imgp->args->envc;
1065 * Copy out strings - arguments and environment (at destp)
1067 copyout(stringp, destp, ARG_MAX - imgp->args->space);
1070 * Fill in "ps_strings" struct for ps, w, etc.
1072 suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1073 suword32(&arginfo->ps_nargvstr, argc);
1076 * Fill in argument portion of vector table.
1078 for (; argc > 0; --argc) {
1079 suword(vectp++, (long)(intptr_t)destp);
1080 while (*stringp++ != 0)
1081 destp++;
1082 destp++;
1085 /* a null vector table pointer separates the argp's from the envp's */
1086 suword(vectp++, 0);
1088 suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1089 suword32(&arginfo->ps_nenvstr, envc);
1092 * Fill in environment portion of vector table.
1094 for (; envc > 0; --envc) {
1095 suword(vectp++, (long)(intptr_t)destp);
1096 while (*stringp++ != 0)
1097 destp++;
1098 destp++;
1101 /* end of vector table is a null pointer */
1102 suword(vectp, 0);
1104 return (stack_base);
1108 * Check permissions of file to execute.
1109 * Return 0 for success or error code on failure.
1112 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1114 struct proc *p = imgp->proc;
1115 struct vnode *vp = imgp->vp;
1116 struct vattr *attr = imgp->attr;
1117 int error;
1119 /* Get file attributes */
1120 error = VOP_GETATTR(vp, attr);
1121 if (error)
1122 return (error);
1125 * 1) Check if file execution is disabled for the filesystem that this
1126 * file resides on.
1127 * 2) Insure that at least one execute bit is on - otherwise root
1128 * will always succeed, and we don't want to happen unless the
1129 * file really is executable.
1130 * 3) Insure that the file is a regular file.
1132 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1133 ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1134 ((attr->va_mode & 0111) == 0) ||
1135 (attr->va_type != VREG)) {
1136 return (EACCES);
1140 * Zero length files can't be exec'd
1142 if (attr->va_size == 0)
1143 return (ENOEXEC);
1146 * Check for execute permission to file based on current credentials.
1148 error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1149 if (error)
1150 return (error);
1153 * Check number of open-for-writes on the file and deny execution
1154 * if there are any.
1156 if (vp->v_writecount)
1157 return (ETXTBSY);
1160 * Call filesystem specific open routine, which allows us to read,
1161 * write, and mmap the file. Without the VOP_OPEN we can only
1162 * stat the file.
1164 error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1165 if (error)
1166 return (error);
1168 return (0);
1172 * Exec handler registration
1175 exec_register(const struct execsw *execsw_arg)
1177 const struct execsw **es, **xs, **newexecsw;
1178 int count = 2; /* New slot and trailing NULL */
1180 if (execsw)
1181 for (es = execsw; *es; es++)
1182 count++;
1183 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1184 xs = newexecsw;
1185 if (execsw)
1186 for (es = execsw; *es; es++)
1187 *xs++ = *es;
1188 *xs++ = execsw_arg;
1189 *xs = NULL;
1190 if (execsw)
1191 kfree(execsw, M_TEMP);
1192 execsw = newexecsw;
1193 return 0;
1197 exec_unregister(const struct execsw *execsw_arg)
1199 const struct execsw **es, **xs, **newexecsw;
1200 int count = 1;
1202 if (execsw == NULL)
1203 panic("unregister with no handlers left?");
1205 for (es = execsw; *es; es++) {
1206 if (*es == execsw_arg)
1207 break;
1209 if (*es == NULL)
1210 return ENOENT;
1211 for (es = execsw; *es; es++)
1212 if (*es != execsw_arg)
1213 count++;
1214 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1215 xs = newexecsw;
1216 for (es = execsw; *es; es++)
1217 if (*es != execsw_arg)
1218 *xs++ = *es;
1219 *xs = NULL;
1220 if (execsw)
1221 kfree(execsw, M_TEMP);
1222 execsw = newexecsw;
1223 return 0;