HAMMER 53E/Many: Performance tuning
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blob8a6d6fea16cd12d1a68162e4b7332eb28e306bed
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.68 2008/06/10 05:06:20 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45 static int hammer_setup_parent_inodes(hammer_record_t record);
47 #ifdef DEBUG_TRUNCATE
48 extern struct hammer_inode *HammerTruncIp;
49 #endif
52 * The kernel is not actively referencing this vnode but is still holding
53 * it cached.
55 * This is called from the frontend.
57 int
58 hammer_vop_inactive(struct vop_inactive_args *ap)
60 struct hammer_inode *ip = VTOI(ap->a_vp);
63 * Degenerate case
65 if (ip == NULL) {
66 vrecycle(ap->a_vp);
67 return(0);
71 * If the inode no longer has visibility in the filesystem and is
72 * fairly clean, try to recycle it immediately. This can deadlock
73 * in vfsync() if we aren't careful.
75 * Do not queue the inode to the flusher if we still have visibility,
76 * otherwise namespace calls such as chmod will unnecessarily generate
77 * multiple inode updates.
79 hammer_inode_unloadable_check(ip, 0);
80 if (ip->ino_data.nlinks == 0) {
81 if (ip->flags & HAMMER_INODE_MODMASK)
82 hammer_flush_inode(ip, 0);
83 else
84 vrecycle(ap->a_vp);
86 return(0);
90 * Release the vnode association. This is typically (but not always)
91 * the last reference on the inode.
93 * Once the association is lost we are on our own with regards to
94 * flushing the inode.
96 int
97 hammer_vop_reclaim(struct vop_reclaim_args *ap)
99 struct hammer_inode *ip;
100 struct vnode *vp;
102 vp = ap->a_vp;
104 if ((ip = vp->v_data) != NULL) {
105 vp->v_data = NULL;
106 ip->vp = NULL;
107 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
108 ++hammer_count_reclaiming;
109 ++ip->hmp->inode_reclaims;
110 ip->flags |= HAMMER_INODE_RECLAIM;
112 hammer_rel_inode(ip, 1);
114 return(0);
118 * Return a locked vnode for the specified inode. The inode must be
119 * referenced but NOT LOCKED on entry and will remain referenced on
120 * return.
122 * Called from the frontend.
125 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
127 hammer_mount_t hmp;
128 struct vnode *vp;
129 int error = 0;
131 hmp = ip->hmp;
133 for (;;) {
134 if ((vp = ip->vp) == NULL) {
135 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
136 if (error)
137 break;
138 hammer_lock_ex(&ip->lock);
139 if (ip->vp != NULL) {
140 hammer_unlock(&ip->lock);
141 vp->v_type = VBAD;
142 vx_put(vp);
143 continue;
145 hammer_ref(&ip->lock);
146 vp = *vpp;
147 ip->vp = vp;
148 vp->v_type =
149 hammer_get_vnode_type(ip->ino_data.obj_type);
151 if (ip->flags & HAMMER_INODE_RECLAIM) {
152 --hammer_count_reclaiming;
153 --hmp->inode_reclaims;
154 ip->flags &= ~HAMMER_INODE_RECLAIM;
155 if (hmp->flags & HAMMER_MOUNT_WAITIMAX)
156 hammer_inode_wakereclaims(hmp);
159 switch(ip->ino_data.obj_type) {
160 case HAMMER_OBJTYPE_CDEV:
161 case HAMMER_OBJTYPE_BDEV:
162 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
163 addaliasu(vp, ip->ino_data.rmajor,
164 ip->ino_data.rminor);
165 break;
166 case HAMMER_OBJTYPE_FIFO:
167 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
168 break;
169 default:
170 break;
174 * Only mark as the root vnode if the ip is not
175 * historical, otherwise the VFS cache will get
176 * confused. The other half of the special handling
177 * is in hammer_vop_nlookupdotdot().
179 if (ip->obj_id == HAMMER_OBJID_ROOT &&
180 ip->obj_asof == hmp->asof) {
181 vp->v_flag |= VROOT;
184 vp->v_data = (void *)ip;
185 /* vnode locked by getnewvnode() */
186 /* make related vnode dirty if inode dirty? */
187 hammer_unlock(&ip->lock);
188 if (vp->v_type == VREG)
189 vinitvmio(vp, ip->ino_data.size);
190 break;
194 * loop if the vget fails (aka races), or if the vp
195 * no longer matches ip->vp.
197 if (vget(vp, LK_EXCLUSIVE) == 0) {
198 if (vp == ip->vp)
199 break;
200 vput(vp);
203 *vpp = vp;
204 return(error);
208 * Acquire a HAMMER inode. The returned inode is not locked. These functions
209 * do not attach or detach the related vnode (use hammer_get_vnode() for
210 * that).
212 * The flags argument is only applied for newly created inodes, and only
213 * certain flags are inherited.
215 * Called from the frontend.
217 struct hammer_inode *
218 hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
219 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
221 hammer_mount_t hmp = trans->hmp;
222 struct hammer_inode_info iinfo;
223 struct hammer_cursor cursor;
224 struct hammer_inode *ip;
227 * Determine if we already have an inode cached. If we do then
228 * we are golden.
230 iinfo.obj_id = obj_id;
231 iinfo.obj_asof = asof;
232 loop:
233 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
234 if (ip) {
235 hammer_ref(&ip->lock);
236 *errorp = 0;
237 return(ip);
241 * Impose a slow-down if HAMMER is heavily backlogged on cleaning
242 * out reclaimed inodes.
244 if (hmp->inode_reclaims > HAMMER_RECLAIM_MIN &&
245 curthread != hmp->flusher_td) {
246 hammer_inode_waitreclaims(hmp);
250 * Allocate a new inode structure and deal with races later.
252 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
253 ++hammer_count_inodes;
254 ++hmp->count_inodes;
255 ip->obj_id = obj_id;
256 ip->obj_asof = iinfo.obj_asof;
257 ip->hmp = hmp;
258 ip->flags = flags & HAMMER_INODE_RO;
259 if (hmp->ronly)
260 ip->flags |= HAMMER_INODE_RO;
261 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
262 RB_INIT(&ip->rec_tree);
263 TAILQ_INIT(&ip->target_list);
266 * Locate the on-disk inode.
268 retry:
269 hammer_init_cursor(trans, &cursor, cache, NULL);
270 cursor.key_beg.localization = HAMMER_LOCALIZE_INODE;
271 cursor.key_beg.obj_id = ip->obj_id;
272 cursor.key_beg.key = 0;
273 cursor.key_beg.create_tid = 0;
274 cursor.key_beg.delete_tid = 0;
275 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
276 cursor.key_beg.obj_type = 0;
277 cursor.asof = iinfo.obj_asof;
278 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
279 HAMMER_CURSOR_ASOF;
281 *errorp = hammer_btree_lookup(&cursor);
282 if (*errorp == EDEADLK) {
283 hammer_done_cursor(&cursor);
284 goto retry;
288 * On success the B-Tree lookup will hold the appropriate
289 * buffer cache buffers and provide a pointer to the requested
290 * information. Copy the information to the in-memory inode
291 * and cache the B-Tree node to improve future operations.
293 if (*errorp == 0) {
294 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
295 ip->ino_data = cursor.data->inode;
296 hammer_cache_node(cursor.node, &ip->cache[0]);
297 if (cache)
298 hammer_cache_node(cursor.node, cache);
302 * On success load the inode's record and data and insert the
303 * inode into the B-Tree. It is possible to race another lookup
304 * insertion of the same inode so deal with that condition too.
306 * The cursor's locked node interlocks against others creating and
307 * destroying ip while we were blocked.
309 if (*errorp == 0) {
310 hammer_ref(&ip->lock);
311 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
312 hammer_uncache_node(&ip->cache[0]);
313 hammer_uncache_node(&ip->cache[1]);
314 KKASSERT(ip->lock.refs == 1);
315 --hammer_count_inodes;
316 --hmp->count_inodes;
317 kfree(ip, M_HAMMER);
318 hammer_done_cursor(&cursor);
319 goto loop;
321 ip->flags |= HAMMER_INODE_ONDISK;
322 } else {
324 * Do not panic on read-only accesses which fail, particularly
325 * historical accesses where the snapshot might not have
326 * complete connectivity.
328 if ((flags & HAMMER_INODE_RO) == 0) {
329 kprintf("hammer_get_inode: failed ip %p obj_id %016llx cursor %p error %d\n",
330 ip, ip->obj_id, &cursor, *errorp);
331 Debugger("x");
333 if (ip->flags & HAMMER_INODE_RSV_INODES) {
334 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
335 --hmp->rsv_inodes;
337 hmp->rsv_databufs -= ip->rsv_databufs;
338 ip->rsv_databufs = 0; /* sanity */
340 --hammer_count_inodes;
341 --hmp->count_inodes;
342 kfree(ip, M_HAMMER);
343 ip = NULL;
345 hammer_done_cursor(&cursor);
346 return (ip);
350 * Create a new filesystem object, returning the inode in *ipp. The
351 * returned inode will be referenced.
353 * The inode is created in-memory.
356 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
357 struct ucred *cred, hammer_inode_t dip,
358 struct hammer_inode **ipp)
360 hammer_mount_t hmp;
361 hammer_inode_t ip;
362 uid_t xuid;
364 hmp = trans->hmp;
365 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
366 ++hammer_count_inodes;
367 ++hmp->count_inodes;
368 ip->obj_id = hammer_alloc_objid(trans, dip);
369 KKASSERT(ip->obj_id != 0);
370 ip->obj_asof = hmp->asof;
371 ip->hmp = hmp;
372 ip->flush_state = HAMMER_FST_IDLE;
373 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES;
375 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
376 RB_INIT(&ip->rec_tree);
377 TAILQ_INIT(&ip->target_list);
379 ip->ino_leaf.atime = trans->time;
380 ip->ino_data.mtime = trans->time;
381 ip->ino_data.size = 0;
382 ip->ino_data.nlinks = 0;
385 * A nohistory designator on the parent directory is inherited by
386 * the child.
388 ip->ino_data.uflags = dip->ino_data.uflags &
389 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
391 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
392 ip->ino_leaf.base.localization = HAMMER_LOCALIZE_INODE;
393 ip->ino_leaf.base.obj_id = ip->obj_id;
394 ip->ino_leaf.base.key = 0;
395 ip->ino_leaf.base.create_tid = 0;
396 ip->ino_leaf.base.delete_tid = 0;
397 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
398 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
400 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
401 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
402 ip->ino_data.mode = vap->va_mode;
403 ip->ino_data.ctime = trans->time;
404 ip->ino_data.parent_obj_id = (dip) ? dip->ino_leaf.base.obj_id : 0;
406 switch(ip->ino_leaf.base.obj_type) {
407 case HAMMER_OBJTYPE_CDEV:
408 case HAMMER_OBJTYPE_BDEV:
409 ip->ino_data.rmajor = vap->va_rmajor;
410 ip->ino_data.rminor = vap->va_rminor;
411 break;
412 default:
413 break;
417 * Calculate default uid/gid and overwrite with information from
418 * the vap.
420 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
421 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
422 &vap->va_mode);
423 ip->ino_data.mode = vap->va_mode;
425 if (vap->va_vaflags & VA_UID_UUID_VALID)
426 ip->ino_data.uid = vap->va_uid_uuid;
427 else if (vap->va_uid != (uid_t)VNOVAL)
428 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
429 else
430 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
432 if (vap->va_vaflags & VA_GID_UUID_VALID)
433 ip->ino_data.gid = vap->va_gid_uuid;
434 else if (vap->va_gid != (gid_t)VNOVAL)
435 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
436 else
437 ip->ino_data.gid = dip->ino_data.gid;
439 hammer_ref(&ip->lock);
440 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
441 hammer_unref(&ip->lock);
442 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
444 *ipp = ip;
445 return(0);
449 * Called by hammer_sync_inode().
451 static int
452 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
454 hammer_transaction_t trans = cursor->trans;
455 hammer_record_t record;
456 int error;
458 retry:
459 error = 0;
462 * If the inode has a presence on-disk then locate it and mark
463 * it deleted, setting DELONDISK.
465 * The record may or may not be physically deleted, depending on
466 * the retention policy.
468 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
469 HAMMER_INODE_ONDISK) {
470 hammer_normalize_cursor(cursor);
471 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
472 cursor->key_beg.obj_id = ip->obj_id;
473 cursor->key_beg.key = 0;
474 cursor->key_beg.create_tid = 0;
475 cursor->key_beg.delete_tid = 0;
476 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
477 cursor->key_beg.obj_type = 0;
478 cursor->asof = ip->obj_asof;
479 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
480 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
481 cursor->flags |= HAMMER_CURSOR_BACKEND;
483 error = hammer_btree_lookup(cursor);
484 if (hammer_debug_inode)
485 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
486 if (error) {
487 kprintf("error %d\n", error);
488 Debugger("hammer_update_inode");
491 if (error == 0) {
492 error = hammer_ip_delete_record(cursor, ip, trans->tid);
493 if (hammer_debug_inode)
494 kprintf(" error %d\n", error);
495 if (error && error != EDEADLK) {
496 kprintf("error %d\n", error);
497 Debugger("hammer_update_inode2");
499 if (error == 0) {
500 ip->flags |= HAMMER_INODE_DELONDISK;
502 if (cursor->node)
503 hammer_cache_node(cursor->node, &ip->cache[0]);
505 if (error == EDEADLK) {
506 hammer_done_cursor(cursor);
507 error = hammer_init_cursor(trans, cursor,
508 &ip->cache[0], ip);
509 if (hammer_debug_inode)
510 kprintf("IPDED %p %d\n", ip, error);
511 if (error == 0)
512 goto retry;
517 * Ok, write out the initial record or a new record (after deleting
518 * the old one), unless the DELETED flag is set. This routine will
519 * clear DELONDISK if it writes out a record.
521 * Update our inode statistics if this is the first application of
522 * the inode on-disk.
524 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
526 * Generate a record and write it to the media
528 record = hammer_alloc_mem_record(ip, 0);
529 record->type = HAMMER_MEM_RECORD_INODE;
530 record->flush_state = HAMMER_FST_FLUSH;
531 record->leaf = ip->sync_ino_leaf;
532 record->leaf.base.create_tid = trans->tid;
533 record->leaf.data_len = sizeof(ip->sync_ino_data);
534 record->data = (void *)&ip->sync_ino_data;
535 record->flags |= HAMMER_RECF_INTERLOCK_BE;
536 for (;;) {
537 error = hammer_ip_sync_record_cursor(cursor, record);
538 if (hammer_debug_inode)
539 kprintf("GENREC %p rec %08x %d\n",
540 ip, record->flags, error);
541 if (error != EDEADLK)
542 break;
543 hammer_done_cursor(cursor);
544 error = hammer_init_cursor(trans, cursor,
545 &ip->cache[0], ip);
546 if (hammer_debug_inode)
547 kprintf("GENREC reinit %d\n", error);
548 if (error)
549 break;
551 if (error) {
552 kprintf("error %d\n", error);
553 Debugger("hammer_update_inode3");
557 * The record isn't managed by the inode's record tree,
558 * destroy it whether we succeed or fail.
560 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
561 record->flags |= HAMMER_RECF_DELETED_FE;
562 record->flush_state = HAMMER_FST_IDLE;
563 hammer_rel_mem_record(record);
566 * Finish up.
568 if (error == 0) {
569 if (hammer_debug_inode)
570 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
571 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
572 HAMMER_INODE_ITIMES);
573 ip->flags &= ~HAMMER_INODE_DELONDISK;
576 * Root volume count of inodes
578 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
579 hammer_modify_volume_field(trans,
580 trans->rootvol,
581 vol0_stat_inodes);
582 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
583 hammer_modify_volume_done(trans->rootvol);
584 ip->flags |= HAMMER_INODE_ONDISK;
585 if (hammer_debug_inode)
586 kprintf("NOWONDISK %p\n", ip);
592 * If the inode has been destroyed, clean out any left-over flags
593 * that may have been set by the frontend.
595 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
596 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
597 HAMMER_INODE_ITIMES);
599 return(error);
603 * Update only the itimes fields. This is done no-historically. The
604 * record is updated in-place on the disk.
606 static int
607 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
609 hammer_transaction_t trans = cursor->trans;
610 struct hammer_btree_leaf_elm *leaf;
611 int error;
613 retry:
614 error = 0;
615 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
616 HAMMER_INODE_ONDISK) {
617 hammer_normalize_cursor(cursor);
618 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
619 cursor->key_beg.obj_id = ip->obj_id;
620 cursor->key_beg.key = 0;
621 cursor->key_beg.create_tid = 0;
622 cursor->key_beg.delete_tid = 0;
623 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
624 cursor->key_beg.obj_type = 0;
625 cursor->asof = ip->obj_asof;
626 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
627 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
628 cursor->flags |= HAMMER_CURSOR_BACKEND;
630 error = hammer_btree_lookup(cursor);
631 if (error) {
632 kprintf("error %d\n", error);
633 Debugger("hammer_update_itimes1");
635 if (error == 0) {
637 * Do not generate UNDO records for atime updates.
639 leaf = cursor->leaf;
640 hammer_modify_node(trans, cursor->node,
641 &leaf->atime, sizeof(leaf->atime));
642 leaf->atime = ip->sync_ino_leaf.atime;
643 hammer_modify_node_done(cursor->node);
644 /*rec->ino_mtime = ip->sync_ino_rec.ino_mtime;*/
645 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
646 /* XXX recalculate crc */
647 hammer_cache_node(cursor->node, &ip->cache[0]);
649 if (error == EDEADLK) {
650 hammer_done_cursor(cursor);
651 error = hammer_init_cursor(trans, cursor,
652 &ip->cache[0], ip);
653 if (error == 0)
654 goto retry;
657 return(error);
661 * Release a reference on an inode, flush as requested.
663 * On the last reference we queue the inode to the flusher for its final
664 * disposition.
666 void
667 hammer_rel_inode(struct hammer_inode *ip, int flush)
669 hammer_mount_t hmp = ip->hmp;
672 * Handle disposition when dropping the last ref.
674 for (;;) {
675 if (ip->lock.refs == 1) {
677 * Determine whether on-disk action is needed for
678 * the inode's final disposition.
680 KKASSERT(ip->vp == NULL);
681 hammer_inode_unloadable_check(ip, 0);
682 if (ip->flags & HAMMER_INODE_MODMASK) {
683 if (hmp->rsv_inodes > desiredvnodes) {
684 hammer_flush_inode(ip,
685 HAMMER_FLUSH_SIGNAL);
686 } else {
687 hammer_flush_inode(ip, 0);
689 } else if (ip->lock.refs == 1) {
690 hammer_unload_inode(ip);
691 break;
693 } else {
694 if (flush)
695 hammer_flush_inode(ip, 0);
698 * The inode still has multiple refs, try to drop
699 * one ref.
701 KKASSERT(ip->lock.refs >= 1);
702 if (ip->lock.refs > 1) {
703 hammer_unref(&ip->lock);
704 break;
711 * Unload and destroy the specified inode. Must be called with one remaining
712 * reference. The reference is disposed of.
714 * This can only be called in the context of the flusher.
716 static int
717 hammer_unload_inode(struct hammer_inode *ip)
719 hammer_mount_t hmp = ip->hmp;
721 KASSERT(ip->lock.refs == 1,
722 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
723 KKASSERT(ip->vp == NULL);
724 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
725 KKASSERT(ip->cursor_ip_refs == 0);
726 KKASSERT(ip->lock.lockcount == 0);
727 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
729 KKASSERT(RB_EMPTY(&ip->rec_tree));
730 KKASSERT(TAILQ_EMPTY(&ip->target_list));
732 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
734 hammer_uncache_node(&ip->cache[0]);
735 hammer_uncache_node(&ip->cache[1]);
736 if (ip->objid_cache)
737 hammer_clear_objid(ip);
738 --hammer_count_inodes;
739 --hmp->count_inodes;
740 if (hmp->flags & HAMMER_MOUNT_WAITIMAX)
741 hammer_inode_wakereclaims(hmp);
743 if (ip->flags & HAMMER_INODE_RECLAIM) {
744 --hammer_count_reclaiming;
745 --hmp->inode_reclaims;
746 ip->flags &= ~HAMMER_INODE_RECLAIM;
748 kfree(ip, M_HAMMER);
750 return(0);
754 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
755 * the read-only flag for cached inodes.
757 * This routine is called from a RB_SCAN().
760 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
762 hammer_mount_t hmp = ip->hmp;
764 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
765 ip->flags |= HAMMER_INODE_RO;
766 else
767 ip->flags &= ~HAMMER_INODE_RO;
768 return(0);
772 * A transaction has modified an inode, requiring updates as specified by
773 * the passed flags.
775 * HAMMER_INODE_DDIRTY: Inode data has been updated
776 * HAMMER_INODE_XDIRTY: Dirty in-memory records
777 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
778 * HAMMER_INODE_DELETED: Inode record/data must be deleted
779 * HAMMER_INODE_ITIMES: mtime/atime has been updated
781 void
782 hammer_modify_inode(hammer_inode_t ip, int flags)
784 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
785 (flags & (HAMMER_INODE_DDIRTY |
786 HAMMER_INODE_XDIRTY | HAMMER_INODE_BUFS |
787 HAMMER_INODE_DELETED | HAMMER_INODE_ITIMES)) == 0);
788 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
789 ip->flags |= HAMMER_INODE_RSV_INODES;
790 ++ip->hmp->rsv_inodes;
793 ip->flags |= flags;
797 * Request that an inode be flushed. This whole mess cannot block and may
798 * recurse. Once requested HAMMER will attempt to actively flush it until
799 * the flush can be done.
801 * The inode may already be flushing, or may be in a setup state. We can
802 * place the inode in a flushing state if it is currently idle and flag it
803 * to reflush if it is currently flushing.
805 void
806 hammer_flush_inode(hammer_inode_t ip, int flags)
808 hammer_record_t depend;
809 int r, good;
812 * Trivial 'nothing to flush' case. If the inode is ina SETUP
813 * state we have to put it back into an IDLE state so we can
814 * drop the extra ref.
816 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
817 if (ip->flush_state == HAMMER_FST_SETUP) {
818 ip->flush_state = HAMMER_FST_IDLE;
819 hammer_rel_inode(ip, 0);
821 return;
825 * Our flush action will depend on the current state.
827 switch(ip->flush_state) {
828 case HAMMER_FST_IDLE:
830 * We have no dependancies and can flush immediately. Some
831 * our children may not be flushable so we have to re-test
832 * with that additional knowledge.
834 hammer_flush_inode_core(ip, flags);
835 break;
836 case HAMMER_FST_SETUP:
838 * Recurse upwards through dependancies via target_list
839 * and start their flusher actions going if possible.
841 * 'good' is our connectivity. -1 means we have none and
842 * can't flush, 0 means there weren't any dependancies, and
843 * 1 means we have good connectivity.
845 good = 0;
846 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
847 r = hammer_setup_parent_inodes(depend);
848 if (r < 0 && good == 0)
849 good = -1;
850 if (r > 0)
851 good = 1;
855 * We can continue if good >= 0. Determine how many records
856 * under our inode can be flushed (and mark them).
858 if (good >= 0) {
859 hammer_flush_inode_core(ip, flags);
860 } else {
861 ip->flags |= HAMMER_INODE_REFLUSH;
862 if (flags & HAMMER_FLUSH_SIGNAL) {
863 ip->flags |= HAMMER_INODE_RESIGNAL;
864 hammer_flusher_async(ip->hmp);
867 break;
868 default:
870 * We are already flushing, flag the inode to reflush
871 * if needed after it completes its current flush.
873 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
874 ip->flags |= HAMMER_INODE_REFLUSH;
875 if (flags & HAMMER_FLUSH_SIGNAL) {
876 ip->flags |= HAMMER_INODE_RESIGNAL;
877 hammer_flusher_async(ip->hmp);
879 break;
884 * We are asked to recurse upwards and convert the record from SETUP
885 * to FLUSH if possible. record->ip is a parent of the caller's inode,
886 * and record->target_ip is the caller's inode.
888 * Return 1 if the record gives us connectivity
890 * Return 0 if the record is not relevant
892 * Return -1 if we can't resolve the dependancy and there is no connectivity.
894 static int
895 hammer_setup_parent_inodes(hammer_record_t record)
897 hammer_mount_t hmp = record->ip->hmp;
898 hammer_record_t depend;
899 hammer_inode_t ip;
900 int r, good;
902 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
903 ip = record->ip;
906 * If the record is already flushing, is it in our flush group?
908 * If it is in our flush group but it is a general record or a
909 * delete-on-disk, it does not improve our connectivity (return 0),
910 * and if the target inode is not trying to destroy itself we can't
911 * allow the operation yet anyway (the second return -1).
913 if (record->flush_state == HAMMER_FST_FLUSH) {
914 if (record->flush_group != hmp->flusher_next) {
915 ip->flags |= HAMMER_INODE_REFLUSH;
916 return(-1);
918 if (record->type == HAMMER_MEM_RECORD_ADD)
919 return(1);
920 /* GENERAL or DEL */
921 return(0);
925 * It must be a setup record. Try to resolve the setup dependancies
926 * by recursing upwards so we can place ip on the flush list.
928 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
930 good = 0;
931 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
932 r = hammer_setup_parent_inodes(depend);
933 if (r < 0 && good == 0)
934 good = -1;
935 if (r > 0)
936 good = 1;
940 * We can't flush ip because it has no connectivity (XXX also check
941 * nlinks for pre-existing connectivity!). Flag it so any resolution
942 * recurses back down.
944 if (good < 0) {
945 ip->flags |= HAMMER_INODE_REFLUSH;
946 return(good);
950 * We are go, place the parent inode in a flushing state so we can
951 * place its record in a flushing state. Note that the parent
952 * may already be flushing. The record must be in the same flush
953 * group as the parent.
955 if (ip->flush_state != HAMMER_FST_FLUSH)
956 hammer_flush_inode_core(ip, HAMMER_FLUSH_RECURSION);
957 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
958 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
960 #if 0
961 if (record->type == HAMMER_MEM_RECORD_DEL &&
962 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
964 * Regardless of flushing state we cannot sync this path if the
965 * record represents a delete-on-disk but the target inode
966 * is not ready to sync its own deletion.
968 * XXX need to count effective nlinks to determine whether
969 * the flush is ok, otherwise removing a hardlink will
970 * just leave the DEL record to rot.
972 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
973 return(-1);
974 } else
975 #endif
976 if (ip->flush_group == ip->hmp->flusher_next) {
978 * This is the record we wanted to synchronize.
980 record->flush_state = HAMMER_FST_FLUSH;
981 record->flush_group = ip->flush_group;
982 hammer_ref(&record->lock);
983 if (record->type == HAMMER_MEM_RECORD_ADD)
984 return(1);
987 * A general or delete-on-disk record does not contribute
988 * to our visibility. We can still flush it, however.
990 return(0);
991 } else {
993 * We couldn't resolve the dependancies, request that the
994 * inode be flushed when the dependancies can be resolved.
996 ip->flags |= HAMMER_INODE_REFLUSH;
997 return(-1);
1002 * This is the core routine placing an inode into the FST_FLUSH state.
1004 static void
1005 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1007 int go_count;
1010 * Set flush state and prevent the flusher from cycling into
1011 * the next flush group. Do not place the ip on the list yet.
1012 * Inodes not in the idle state get an extra reference.
1014 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1015 if (ip->flush_state == HAMMER_FST_IDLE)
1016 hammer_ref(&ip->lock);
1017 ip->flush_state = HAMMER_FST_FLUSH;
1018 ip->flush_group = ip->hmp->flusher_next;
1019 ++ip->hmp->flusher_lock;
1022 * We need to be able to vfsync/truncate from the backend.
1024 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1025 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1026 ip->flags |= HAMMER_INODE_VHELD;
1027 vref(ip->vp);
1031 * Figure out how many in-memory records we can actually flush
1032 * (not including inode meta-data, buffers, etc).
1034 if (flags & HAMMER_FLUSH_RECURSION) {
1035 go_count = 1;
1036 } else {
1037 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1038 hammer_setup_child_callback, NULL);
1042 * This is a more involved test that includes go_count. If we
1043 * can't flush, flag the inode and return. If go_count is 0 we
1044 * were are unable to flush any records in our rec_tree and
1045 * must ignore the XDIRTY flag.
1047 if (go_count == 0) {
1048 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1049 ip->flags |= HAMMER_INODE_REFLUSH;
1050 ip->flush_state = HAMMER_FST_SETUP;
1051 if (ip->flags & HAMMER_INODE_VHELD) {
1052 ip->flags &= ~HAMMER_INODE_VHELD;
1053 vrele(ip->vp);
1055 if (flags & HAMMER_FLUSH_SIGNAL) {
1056 ip->flags |= HAMMER_INODE_RESIGNAL;
1057 hammer_flusher_async(ip->hmp);
1059 if (--ip->hmp->flusher_lock == 0)
1060 wakeup(&ip->hmp->flusher_lock);
1061 return;
1066 * Snapshot the state of the inode for the backend flusher.
1068 * The truncation must be retained in the frontend until after
1069 * we've actually performed the record deletion.
1071 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1072 * and stays in ip->flags. Once set, it stays set until the
1073 * inode is destroyed.
1075 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1076 ip->sync_trunc_off = ip->trunc_off;
1077 ip->sync_ino_leaf = ip->ino_leaf;
1078 ip->sync_ino_data = ip->ino_data;
1079 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1080 ip->flags &= ~HAMMER_INODE_MODMASK;
1081 #ifdef DEBUG_TRUNCATE
1082 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1083 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1084 #endif
1087 * The flusher list inherits our inode and reference.
1089 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1090 if (--ip->hmp->flusher_lock == 0)
1091 wakeup(&ip->hmp->flusher_lock);
1093 if (flags & HAMMER_FLUSH_SIGNAL) {
1094 hammer_flusher_async(ip->hmp);
1099 * Callback for scan of ip->rec_tree. Try to include each record in our
1100 * flush. ip->flush_group has been set but the inode has not yet been
1101 * moved into a flushing state.
1103 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1104 * both inodes.
1106 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1107 * the caller from shortcutting the flush.
1109 static int
1110 hammer_setup_child_callback(hammer_record_t rec, void *data)
1112 hammer_inode_t target_ip;
1113 hammer_inode_t ip;
1114 int r;
1117 * If the record has been deleted by the backend (it's being held
1118 * by the frontend in a race), just ignore it.
1120 if (rec->flags & HAMMER_RECF_DELETED_BE)
1121 return(0);
1124 * If the record is in an idle state it has no dependancies and
1125 * can be flushed.
1127 ip = rec->ip;
1128 r = 0;
1130 switch(rec->flush_state) {
1131 case HAMMER_FST_IDLE:
1133 * Record has no setup dependancy, we can flush it.
1135 KKASSERT(rec->target_ip == NULL);
1136 rec->flush_state = HAMMER_FST_FLUSH;
1137 rec->flush_group = ip->flush_group;
1138 hammer_ref(&rec->lock);
1139 r = 1;
1140 break;
1141 case HAMMER_FST_SETUP:
1143 * Record has a setup dependancy. Try to include the
1144 * target ip in the flush.
1146 * We have to be careful here, if we do not do the right
1147 * thing we can lose track of dirty inodes and the system
1148 * will lockup trying to allocate buffers.
1150 target_ip = rec->target_ip;
1151 KKASSERT(target_ip != NULL);
1152 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1153 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1155 * If the target IP is already flushing in our group
1156 * we are golden, otherwise make sure the target
1157 * reflushes.
1159 if (target_ip->flush_group == ip->flush_group) {
1160 rec->flush_state = HAMMER_FST_FLUSH;
1161 rec->flush_group = ip->flush_group;
1162 hammer_ref(&rec->lock);
1163 r = 1;
1164 } else {
1165 target_ip->flags |= HAMMER_INODE_REFLUSH;
1167 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1169 * If the target IP is not flushing we can force
1170 * it to flush, even if it is unable to write out
1171 * any of its own records we have at least one in
1172 * hand that we CAN deal with.
1174 rec->flush_state = HAMMER_FST_FLUSH;
1175 rec->flush_group = ip->flush_group;
1176 hammer_ref(&rec->lock);
1177 hammer_flush_inode_core(target_ip,
1178 HAMMER_FLUSH_RECURSION);
1179 r = 1;
1180 } else {
1182 * General or delete-on-disk record.
1184 * XXX this needs help. If a delete-on-disk we could
1185 * disconnect the target. If the target has its own
1186 * dependancies they really need to be flushed.
1188 * XXX
1190 rec->flush_state = HAMMER_FST_FLUSH;
1191 rec->flush_group = ip->flush_group;
1192 hammer_ref(&rec->lock);
1193 hammer_flush_inode_core(target_ip,
1194 HAMMER_FLUSH_RECURSION);
1195 r = 1;
1197 break;
1198 case HAMMER_FST_FLUSH:
1200 * Record already associated with a flush group. It had
1201 * better be ours.
1203 KKASSERT(rec->flush_group == ip->flush_group);
1204 r = 1;
1205 break;
1207 return(r);
1211 * Wait for a previously queued flush to complete
1213 void
1214 hammer_wait_inode(hammer_inode_t ip)
1216 while (ip->flush_state != HAMMER_FST_IDLE) {
1217 if (ip->flush_state == HAMMER_FST_SETUP) {
1218 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1219 } else {
1220 ip->flags |= HAMMER_INODE_FLUSHW;
1221 tsleep(&ip->flags, 0, "hmrwin", 0);
1227 * Called by the backend code when a flush has been completed.
1228 * The inode has already been removed from the flush list.
1230 * A pipelined flush can occur, in which case we must re-enter the
1231 * inode on the list and re-copy its fields.
1233 void
1234 hammer_flush_inode_done(hammer_inode_t ip)
1236 int dorel = 0;
1238 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1241 * Merge left-over flags back into the frontend and fix the state.
1243 ip->flags |= ip->sync_flags;
1246 * The backend may have adjusted nlinks, so if the adjusted nlinks
1247 * does not match the fronttend set the frontend's RDIRTY flag again.
1249 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1250 ip->flags |= HAMMER_INODE_DDIRTY;
1253 * Fix up the dirty buffer status. IO completions will also
1254 * try to clean up rsv_databufs.
1256 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1257 ip->flags |= HAMMER_INODE_BUFS;
1258 } else {
1259 ip->hmp->rsv_databufs -= ip->rsv_databufs;
1260 ip->rsv_databufs = 0;
1264 * Re-set the XDIRTY flag if some of the inode's in-memory records
1265 * could not be flushed.
1267 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1268 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1269 (!RB_EMPTY(&ip->rec_tree) &&
1270 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1273 * Do not lose track of inodes which no longer have vnode
1274 * assocations, otherwise they may never get flushed again.
1276 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1277 ip->flags |= HAMMER_INODE_REFLUSH;
1280 * Adjust flush_state. The target state (idle or setup) shouldn't
1281 * be terribly important since we will reflush if we really need
1282 * to do anything. XXX
1284 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1285 ip->flush_state = HAMMER_FST_IDLE;
1286 dorel = 1;
1287 } else {
1288 ip->flush_state = HAMMER_FST_SETUP;
1292 * Clean up the vnode ref
1294 if (ip->flags & HAMMER_INODE_VHELD) {
1295 ip->flags &= ~HAMMER_INODE_VHELD;
1296 vrele(ip->vp);
1300 * If the frontend made more changes and requested another flush,
1301 * then try to get it running.
1303 if (ip->flags & HAMMER_INODE_REFLUSH) {
1304 ip->flags &= ~HAMMER_INODE_REFLUSH;
1305 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1306 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1307 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1308 } else {
1309 hammer_flush_inode(ip, 0);
1314 * If the inode is now clean drop the space reservation.
1316 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1317 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1318 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1319 --ip->hmp->rsv_inodes;
1323 * Finally, if the frontend is waiting for a flush to complete,
1324 * wake it up.
1326 if (ip->flush_state != HAMMER_FST_FLUSH) {
1327 if (ip->flags & HAMMER_INODE_FLUSHW) {
1328 ip->flags &= ~HAMMER_INODE_FLUSHW;
1329 wakeup(&ip->flags);
1332 if (dorel)
1333 hammer_rel_inode(ip, 0);
1337 * Called from hammer_sync_inode() to synchronize in-memory records
1338 * to the media.
1340 static int
1341 hammer_sync_record_callback(hammer_record_t record, void *data)
1343 hammer_cursor_t cursor = data;
1344 hammer_transaction_t trans = cursor->trans;
1345 int error;
1348 * Skip records that do not belong to the current flush.
1350 ++hammer_stats_record_iterations;
1351 if (record->flush_state != HAMMER_FST_FLUSH)
1352 return(0);
1354 #if 1
1355 if (record->flush_group != record->ip->flush_group) {
1356 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1357 Debugger("blah2");
1358 return(0);
1360 #endif
1361 KKASSERT(record->flush_group == record->ip->flush_group);
1364 * Interlock the record using the BE flag. Once BE is set the
1365 * frontend cannot change the state of FE.
1367 * NOTE: If FE is set prior to us setting BE we still sync the
1368 * record out, but the flush completion code converts it to
1369 * a delete-on-disk record instead of destroying it.
1371 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1372 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1375 * The backend may have already disposed of the record.
1377 if (record->flags & HAMMER_RECF_DELETED_BE) {
1378 error = 0;
1379 goto done;
1383 * If the whole inode is being deleting all on-disk records will
1384 * be deleted very soon, we can't sync any new records to disk
1385 * because they will be deleted in the same transaction they were
1386 * created in (delete_tid == create_tid), which will assert.
1388 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1389 * that we currently panic on.
1391 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1392 switch(record->type) {
1393 case HAMMER_MEM_RECORD_DATA:
1395 * We don't have to do anything, if the record was
1396 * committed the space will have been accounted for
1397 * in the blockmap.
1399 /* fall through */
1400 case HAMMER_MEM_RECORD_GENERAL:
1401 record->flags |= HAMMER_RECF_DELETED_FE;
1402 record->flags |= HAMMER_RECF_DELETED_BE;
1403 error = 0;
1404 goto done;
1405 case HAMMER_MEM_RECORD_ADD:
1406 panic("hammer_sync_record_callback: illegal add "
1407 "during inode deletion record %p", record);
1408 break; /* NOT REACHED */
1409 case HAMMER_MEM_RECORD_INODE:
1410 panic("hammer_sync_record_callback: attempt to "
1411 "sync inode record %p?", record);
1412 break; /* NOT REACHED */
1413 case HAMMER_MEM_RECORD_DEL:
1415 * Follow through and issue the on-disk deletion
1417 break;
1422 * If DELETED_FE is set we may have already sent dependant pieces
1423 * to the disk and we must flush the record as if it hadn't been
1424 * deleted. This creates a bit of a mess because we have to
1425 * have ip_sync_record convert the record to MEM_RECORD_DEL before
1426 * it inserts the B-Tree record. Otherwise the media sync might
1427 * be visible to the frontend.
1429 if (record->flags & HAMMER_RECF_DELETED_FE) {
1430 if (record->type == HAMMER_MEM_RECORD_ADD) {
1431 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1432 } else {
1433 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1434 return(0);
1439 * Assign the create_tid for new records. Deletions already
1440 * have the record's entire key properly set up.
1442 if (record->type != HAMMER_MEM_RECORD_DEL)
1443 record->leaf.base.create_tid = trans->tid;
1444 for (;;) {
1445 error = hammer_ip_sync_record_cursor(cursor, record);
1446 if (error != EDEADLK)
1447 break;
1448 hammer_done_cursor(cursor);
1449 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1450 record->ip);
1451 if (error)
1452 break;
1454 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1456 if (error) {
1457 error = -error;
1458 if (error != -ENOSPC) {
1459 kprintf("hammer_sync_record_callback: sync failed rec "
1460 "%p, error %d\n", record, error);
1461 Debugger("sync failed rec");
1464 done:
1465 hammer_flush_record_done(record, error);
1466 return(error);
1470 * XXX error handling
1473 hammer_sync_inode(hammer_inode_t ip)
1475 struct hammer_transaction trans;
1476 struct hammer_cursor cursor;
1477 hammer_record_t depend;
1478 hammer_record_t next;
1479 int error, tmp_error;
1480 u_int64_t nlinks;
1482 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1483 return(0);
1485 hammer_start_transaction_fls(&trans, ip->hmp);
1486 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1487 if (error)
1488 goto done;
1491 * Any directory records referencing this inode which are not in
1492 * our current flush group must adjust our nlink count for the
1493 * purposes of synchronization to disk.
1495 * Records which are in our flush group can be unlinked from our
1496 * inode now, potentially allowing the inode to be physically
1497 * deleted.
1499 nlinks = ip->ino_data.nlinks;
1500 next = TAILQ_FIRST(&ip->target_list);
1501 while ((depend = next) != NULL) {
1502 next = TAILQ_NEXT(depend, target_entry);
1503 if (depend->flush_state == HAMMER_FST_FLUSH &&
1504 depend->flush_group == ip->hmp->flusher_act) {
1506 * If this is an ADD that was deleted by the frontend
1507 * the frontend nlinks count will have already been
1508 * decremented, but the backend is going to sync its
1509 * directory entry and must account for it. The
1510 * record will be converted to a delete-on-disk when
1511 * it gets synced.
1513 * If the ADD was not deleted by the frontend we
1514 * can remove the dependancy from our target_list.
1516 if (depend->flags & HAMMER_RECF_DELETED_FE) {
1517 ++nlinks;
1518 } else {
1519 TAILQ_REMOVE(&ip->target_list, depend,
1520 target_entry);
1521 depend->target_ip = NULL;
1523 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1525 * Not part of our flush group
1527 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1528 switch(depend->type) {
1529 case HAMMER_MEM_RECORD_ADD:
1530 --nlinks;
1531 break;
1532 case HAMMER_MEM_RECORD_DEL:
1533 ++nlinks;
1534 break;
1535 default:
1536 break;
1542 * Set dirty if we had to modify the link count.
1544 if (ip->sync_ino_data.nlinks != nlinks) {
1545 KKASSERT((int64_t)nlinks >= 0);
1546 ip->sync_ino_data.nlinks = nlinks;
1547 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1550 #if 0
1552 * XXX DISABLED FOR NOW. With the new reservation support
1553 * we cannot resync pending data without confusing the hell
1554 * out of the in-memory record tree.
1557 * Queue up as many dirty buffers as we can then set a flag to
1558 * cause any further BIOs to go to the alternative queue.
1560 if (ip->flags & HAMMER_INODE_VHELD)
1561 error = vfsync(ip->vp, MNT_NOWAIT, 1, NULL, NULL);
1562 ip->flags |= HAMMER_INODE_WRITE_ALT;
1565 * The buffer cache may contain dirty buffers beyond the inode
1566 * state we copied from the frontend to the backend. Because
1567 * we are syncing our buffer cache on the backend, resync
1568 * the truncation point and the file size so we don't wipe out
1569 * any data.
1571 * Syncing the buffer cache on the frontend has serious problems
1572 * because it prevents us from passively queueing dirty inodes
1573 * to the backend (the BIO's could stall indefinitely).
1575 if (ip->flags & HAMMER_INODE_TRUNCATED) {
1576 ip->sync_trunc_off = ip->trunc_off;
1577 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1579 if (ip->sync_ino_data.size != ip->ino_data.size) {
1580 ip->sync_ino_data.size = ip->ino_data.size;
1581 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1583 #endif
1586 * If there is a trunction queued destroy any data past the (aligned)
1587 * truncation point. Userland will have dealt with the buffer
1588 * containing the truncation point for us.
1590 * We don't flush pending frontend data buffers until after we've
1591 * dealth with the truncation.
1593 * Don't bother if the inode is or has been deleted.
1595 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1597 * Interlock trunc_off. The VOP front-end may continue to
1598 * make adjustments to it while we are blocked.
1600 off_t trunc_off;
1601 off_t aligned_trunc_off;
1603 trunc_off = ip->sync_trunc_off;
1604 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1605 ~HAMMER_BUFMASK64;
1608 * Delete any whole blocks on-media. The front-end has
1609 * already cleaned out any partial block and made it
1610 * pending. The front-end may have updated trunc_off
1611 * while we were blocked so we only use sync_trunc_off.
1613 error = hammer_ip_delete_range(&cursor, ip,
1614 aligned_trunc_off,
1615 0x7FFFFFFFFFFFFFFFLL, 1);
1616 if (error)
1617 Debugger("hammer_ip_delete_range errored");
1620 * Clear the truncation flag on the backend after we have
1621 * complete the deletions. Backend data is now good again
1622 * (including new records we are about to sync, below).
1624 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1625 ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1626 } else {
1627 error = 0;
1631 * Now sync related records. These will typically be directory
1632 * entries or delete-on-disk records.
1634 * Not all records will be flushed, but clear XDIRTY anyway. We
1635 * will set it again in the frontend hammer_flush_inode_done()
1636 * if records remain.
1638 if (error == 0) {
1639 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1640 hammer_sync_record_callback, &cursor);
1641 if (tmp_error < 0)
1642 tmp_error = -error;
1643 if (tmp_error)
1644 error = tmp_error;
1648 * If we are deleting the inode the frontend had better not have
1649 * any active references on elements making up the inode.
1651 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
1652 RB_EMPTY(&ip->rec_tree) &&
1653 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1654 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1655 int count1 = 0;
1657 ip->flags |= HAMMER_INODE_DELETED;
1658 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1659 if (error == 0) {
1660 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1661 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1662 KKASSERT(RB_EMPTY(&ip->rec_tree));
1665 * Set delete_tid in both the frontend and backend
1666 * copy of the inode record. The DELETED flag handles
1667 * this, do not set RDIRTY.
1669 ip->ino_leaf.base.delete_tid = trans.tid;
1670 ip->sync_ino_leaf.base.delete_tid = trans.tid;
1673 * Adjust the inode count in the volume header
1675 if (ip->flags & HAMMER_INODE_ONDISK) {
1676 hammer_modify_volume_field(&trans,
1677 trans.rootvol,
1678 vol0_stat_inodes);
1679 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1680 hammer_modify_volume_done(trans.rootvol);
1682 } else {
1683 ip->flags &= ~HAMMER_INODE_DELETED;
1684 Debugger("hammer_ip_delete_range_all errored");
1688 ip->sync_flags &= ~HAMMER_INODE_BUFS;
1690 if (error)
1691 Debugger("RB_SCAN errored");
1694 * Now update the inode's on-disk inode-data and/or on-disk record.
1695 * DELETED and ONDISK are managed only in ip->flags.
1697 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1698 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1700 * If deleted and on-disk, don't set any additional flags.
1701 * the delete flag takes care of things.
1703 * Clear flags which may have been set by the frontend.
1705 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1706 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1707 HAMMER_INODE_DELETING);
1708 break;
1709 case HAMMER_INODE_DELETED:
1711 * Take care of the case where a deleted inode was never
1712 * flushed to the disk in the first place.
1714 * Clear flags which may have been set by the frontend.
1716 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1717 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1718 HAMMER_INODE_DELETING);
1719 while (RB_ROOT(&ip->rec_tree)) {
1720 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1721 hammer_ref(&record->lock);
1722 KKASSERT(record->lock.refs == 1);
1723 record->flags |= HAMMER_RECF_DELETED_FE;
1724 record->flags |= HAMMER_RECF_DELETED_BE;
1725 hammer_rel_mem_record(record);
1727 break;
1728 case HAMMER_INODE_ONDISK:
1730 * If already on-disk, do not set any additional flags.
1732 break;
1733 default:
1735 * If not on-disk and not deleted, set both dirty flags
1736 * to force an initial record to be written. Also set
1737 * the create_tid for the inode.
1739 * Set create_tid in both the frontend and backend
1740 * copy of the inode record.
1742 ip->ino_leaf.base.create_tid = trans.tid;
1743 ip->sync_ino_leaf.base.create_tid = trans.tid;
1744 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1745 break;
1749 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1750 * is already on-disk the old record is marked as deleted.
1752 * If DELETED is set hammer_update_inode() will delete the existing
1753 * record without writing out a new one.
1755 * If *ONLY* the ITIMES flag is set we can update the record in-place.
1757 if (ip->flags & HAMMER_INODE_DELETED) {
1758 error = hammer_update_inode(&cursor, ip);
1759 } else
1760 if ((ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) ==
1761 HAMMER_INODE_ITIMES) {
1762 error = hammer_update_itimes(&cursor, ip);
1763 } else
1764 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) {
1765 error = hammer_update_inode(&cursor, ip);
1767 if (error)
1768 Debugger("hammer_update_itimes/inode errored");
1769 done:
1771 * Save the TID we used to sync the inode with to make sure we
1772 * do not improperly reuse it.
1774 hammer_done_cursor(&cursor);
1775 hammer_done_transaction(&trans);
1776 return(error);
1780 * This routine is called when the OS is no longer actively referencing
1781 * the inode (but might still be keeping it cached), or when releasing
1782 * the last reference to an inode.
1784 * At this point if the inode's nlinks count is zero we want to destroy
1785 * it, which may mean destroying it on-media too.
1787 void
1788 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1790 struct vnode *vp;
1793 * Set the DELETING flag when the link count drops to 0 and the
1794 * OS no longer has any opens on the inode.
1796 * The backend will clear DELETING (a mod flag) and set DELETED
1797 * (a state flag) when it is actually able to perform the
1798 * operation.
1800 if (ip->ino_data.nlinks == 0 &&
1801 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
1802 ip->flags |= HAMMER_INODE_DELETING;
1803 ip->flags |= HAMMER_INODE_TRUNCATED;
1804 ip->trunc_off = 0;
1805 vp = NULL;
1806 if (getvp) {
1807 if (hammer_get_vnode(ip, &vp) != 0)
1808 return;
1812 * Final cleanup
1814 if (ip->vp) {
1815 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1816 vnode_pager_setsize(ip->vp, 0);
1818 if (getvp) {
1819 vput(vp);
1825 * Re-test an inode when a dependancy had gone away to see if we
1826 * can chain flush it.
1828 void
1829 hammer_test_inode(hammer_inode_t ip)
1831 if (ip->flags & HAMMER_INODE_REFLUSH) {
1832 ip->flags &= ~HAMMER_INODE_REFLUSH;
1833 hammer_ref(&ip->lock);
1834 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1835 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1836 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1837 } else {
1838 hammer_flush_inode(ip, 0);
1840 hammer_rel_inode(ip, 0);
1845 * When a HAMMER inode is reclaimed it may have to be queued to the backend
1846 * for its final sync to disk. Programs like blogbench can cause the backlog
1847 * to grow indefinitely. Put a cap on the number of inodes we allow to be
1848 * in this state by giving the flusher time to drain.
1850 void
1851 hammer_inode_waitreclaims(hammer_mount_t hmp)
1853 int count;
1854 int delay;
1855 int minpt;
1856 int maxpt;
1858 while (hmp->inode_reclaims > HAMMER_RECLAIM_MIN) {
1859 count = hmp->count_inodes;
1860 minpt = count * HAMMER_RECLAIM_SLOPCT / 100;
1861 maxpt = count * HAMMER_RECLAIM_MAXPCT / 100;
1863 if (hmp->inode_reclaims < minpt)
1864 break;
1865 if (hmp->inode_reclaims < maxpt) {
1866 delay = (hmp->inode_reclaims - minpt) * hz /
1867 (maxpt - minpt);
1868 if (delay == 0)
1869 delay = 1;
1870 hammer_flusher_async(hmp);
1871 tsleep(&count, 0, "hmitik", delay);
1872 break;
1874 hmp->flags |= HAMMER_MOUNT_WAITIMAX;
1875 hammer_flusher_async(hmp);
1876 tsleep(&hmp->inode_reclaims, 0, "hmimax", hz / 10);
1880 void
1881 hammer_inode_wakereclaims(hammer_mount_t hmp)
1883 int maxpt;
1885 if ((hmp->flags & HAMMER_MOUNT_WAITIMAX) == 0)
1886 return;
1887 maxpt = hmp->count_inodes * HAMMER_RECLAIM_MAXPCT / 100;
1888 if (hmp->inode_reclaims <= HAMMER_RECLAIM_MIN ||
1889 hmp->inode_reclaims < maxpt) {
1890 hmp->flags &= ~HAMMER_MOUNT_WAITIMAX;
1891 wakeup(&hmp->inode_reclaims);