drm: Add linux/vmalloc.h
[dragonfly.git] / sys / net / if.c
blob497d8c921b9ef56a600f6140c605089a55d859fb
1 /*
2 * Copyright (c) 1980, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if.c 8.3 (Berkeley) 1/4/94
30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
94 struct netmsg_ifaddr {
95 struct netmsg_base base;
96 struct ifaddr *ifa;
97 struct ifnet *ifp;
98 int tail;
101 struct ifsubq_stage_head {
102 TAILQ_HEAD(, ifsubq_stage) stg_head;
103 } __cachealign;
106 * System initialization
108 static void if_attachdomain(void *);
109 static void if_attachdomain1(struct ifnet *);
110 static int ifconf(u_long, caddr_t, struct ucred *);
111 static void ifinit(void *);
112 static void ifnetinit(void *);
113 static void if_slowtimo(void *);
114 static void link_rtrequest(int, struct rtentry *);
115 static int if_rtdel(struct radix_node *, void *);
116 static void if_slowtimo_dispatch(netmsg_t);
118 /* Helper functions */
119 static void ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 static int if_delmulti_serialized(struct ifnet *, struct sockaddr *);
121 static struct ifnet_array *ifnet_array_alloc(int);
122 static void ifnet_array_free(struct ifnet_array *);
123 static struct ifnet_array *ifnet_array_add(struct ifnet *,
124 const struct ifnet_array *);
125 static struct ifnet_array *ifnet_array_del(struct ifnet *,
126 const struct ifnet_array *);
128 #ifdef INET6
130 * XXX: declare here to avoid to include many inet6 related files..
131 * should be more generalized?
133 extern void nd6_setmtu(struct ifnet *);
134 #endif
136 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
137 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
139 static int ifsq_stage_cntmax = 4;
140 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
141 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
142 &ifsq_stage_cntmax, 0, "ifq staging packet count max");
144 static int if_stats_compat = 0;
145 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
146 &if_stats_compat, 0, "Compat the old ifnet stats");
148 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
149 /* Must be after netisr_init */
150 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
152 static if_com_alloc_t *if_com_alloc[256];
153 static if_com_free_t *if_com_free[256];
155 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
156 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
157 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
159 int ifqmaxlen = IFQ_MAXLEN;
160 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
162 static struct ifnet_array ifnet_array0;
163 static struct ifnet_array *ifnet_array = &ifnet_array0;
165 static struct callout if_slowtimo_timer;
166 static struct netmsg_base if_slowtimo_netmsg;
168 int if_index = 0;
169 struct ifnet **ifindex2ifnet = NULL;
170 static struct thread ifnet_threads[MAXCPU];
171 static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet");
173 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU];
175 #ifdef notyet
176 #define IFQ_KTR_STRING "ifq=%p"
177 #define IFQ_KTR_ARGS struct ifaltq *ifq
178 #ifndef KTR_IFQ
179 #define KTR_IFQ KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
184 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg)
186 #define IF_START_KTR_STRING "ifp=%p"
187 #define IF_START_KTR_ARGS struct ifnet *ifp
188 #ifndef KTR_IF_START
189 #define KTR_IF_START KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 IF_START_KTR_STRING, IF_START_KTR_ARGS);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 IF_START_KTR_STRING, IF_START_KTR_ARGS);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 IF_START_KTR_STRING, IF_START_KTR_ARGS);
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg)
203 #endif
205 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
208 * Network interface utility routines.
210 * Routines with ifa_ifwith* names take sockaddr *'s as
211 * parameters.
213 /* ARGSUSED*/
214 static void
215 ifinit(void *dummy)
217 struct ifnet *ifp;
219 callout_init_mp(&if_slowtimo_timer);
220 netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
221 MSGF_PRIORITY, if_slowtimo_dispatch);
223 /* XXX is this necessary? */
224 ifnet_lock();
225 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
226 if (ifp->if_snd.altq_maxlen == 0) {
227 if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
228 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
231 ifnet_unlock();
233 /* Start if_slowtimo */
234 lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
237 static void
238 ifsq_ifstart_ipifunc(void *arg)
240 struct ifaltq_subque *ifsq = arg;
241 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
243 crit_enter();
244 if (lmsg->ms_flags & MSGF_DONE)
245 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
246 crit_exit();
249 static __inline void
250 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
252 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
253 TAILQ_REMOVE(&head->stg_head, stage, stg_link);
254 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
255 stage->stg_cnt = 0;
256 stage->stg_len = 0;
259 static __inline void
260 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
262 KKASSERT((stage->stg_flags &
263 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
264 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
265 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
269 * Schedule ifnet.if_start on the subqueue owner CPU
271 static void
272 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
274 int cpu;
276 if (!force && curthread->td_type == TD_TYPE_NETISR &&
277 ifsq_stage_cntmax > 0) {
278 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
280 stage->stg_cnt = 0;
281 stage->stg_len = 0;
282 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
283 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
284 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
285 return;
288 cpu = ifsq_get_cpuid(ifsq);
289 if (cpu != mycpuid)
290 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
291 else
292 ifsq_ifstart_ipifunc(ifsq);
296 * NOTE:
297 * This function will release ifnet.if_start subqueue interlock,
298 * if ifnet.if_start for the subqueue does not need to be scheduled
300 static __inline int
301 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
303 if (!running || ifsq_is_empty(ifsq)
304 #ifdef ALTQ
305 || ifsq->ifsq_altq->altq_tbr != NULL
306 #endif
308 ALTQ_SQ_LOCK(ifsq);
310 * ifnet.if_start subqueue interlock is released, if:
311 * 1) Hardware can not take any packets, due to
312 * o interface is marked down
313 * o hardware queue is full (ifsq_is_oactive)
314 * Under the second situation, hardware interrupt
315 * or polling(4) will call/schedule ifnet.if_start
316 * on the subqueue when hardware queue is ready
317 * 2) There is no packet in the subqueue.
318 * Further ifq_dispatch or ifq_handoff will call/
319 * schedule ifnet.if_start on the subqueue.
320 * 3) TBR is used and it does not allow further
321 * dequeueing.
322 * TBR callout will call ifnet.if_start on the
323 * subqueue.
325 if (!running || !ifsq_data_ready(ifsq)) {
326 ifsq_clr_started(ifsq);
327 ALTQ_SQ_UNLOCK(ifsq);
328 return 0;
330 ALTQ_SQ_UNLOCK(ifsq);
332 return 1;
335 static void
336 ifsq_ifstart_dispatch(netmsg_t msg)
338 struct lwkt_msg *lmsg = &msg->base.lmsg;
339 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
340 struct ifnet *ifp = ifsq_get_ifp(ifsq);
341 struct globaldata *gd = mycpu;
342 int running = 0, need_sched;
344 crit_enter_gd(gd);
346 lwkt_replymsg(lmsg, 0); /* reply ASAP */
348 if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
350 * We need to chase the subqueue owner CPU change.
352 ifsq_ifstart_schedule(ifsq, 1);
353 crit_exit_gd(gd);
354 return;
357 ifsq_serialize_hw(ifsq);
358 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
359 ifp->if_start(ifp, ifsq);
360 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
361 running = 1;
363 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
364 ifsq_deserialize_hw(ifsq);
366 if (need_sched) {
368 * More data need to be transmitted, ifnet.if_start is
369 * scheduled on the subqueue owner CPU, and we keep going.
370 * NOTE: ifnet.if_start subqueue interlock is not released.
372 ifsq_ifstart_schedule(ifsq, 0);
375 crit_exit_gd(gd);
378 /* Device driver ifnet.if_start helper function */
379 void
380 ifsq_devstart(struct ifaltq_subque *ifsq)
382 struct ifnet *ifp = ifsq_get_ifp(ifsq);
383 int running = 0;
385 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
387 ALTQ_SQ_LOCK(ifsq);
388 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
389 ALTQ_SQ_UNLOCK(ifsq);
390 return;
392 ifsq_set_started(ifsq);
393 ALTQ_SQ_UNLOCK(ifsq);
395 ifp->if_start(ifp, ifsq);
397 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
398 running = 1;
400 if (ifsq_ifstart_need_schedule(ifsq, running)) {
402 * More data need to be transmitted, ifnet.if_start is
403 * scheduled on ifnet's CPU, and we keep going.
404 * NOTE: ifnet.if_start interlock is not released.
406 ifsq_ifstart_schedule(ifsq, 0);
410 void
411 if_devstart(struct ifnet *ifp)
413 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
416 /* Device driver ifnet.if_start schedule helper function */
417 void
418 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
420 ifsq_ifstart_schedule(ifsq, 1);
423 void
424 if_devstart_sched(struct ifnet *ifp)
426 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
429 static void
430 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
432 lwkt_serialize_enter(ifp->if_serializer);
435 static void
436 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
438 lwkt_serialize_exit(ifp->if_serializer);
441 static int
442 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
444 return lwkt_serialize_try(ifp->if_serializer);
447 #ifdef INVARIANTS
448 static void
449 if_default_serialize_assert(struct ifnet *ifp,
450 enum ifnet_serialize slz __unused,
451 boolean_t serialized)
453 if (serialized)
454 ASSERT_SERIALIZED(ifp->if_serializer);
455 else
456 ASSERT_NOT_SERIALIZED(ifp->if_serializer);
458 #endif
461 * Attach an interface to the list of "active" interfaces.
463 * The serializer is optional.
465 void
466 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
468 unsigned socksize;
469 int namelen, masklen;
470 struct sockaddr_dl *sdl, *sdl_addr;
471 struct ifaddr *ifa;
472 struct ifaltq *ifq;
473 struct ifnet **old_ifindex2ifnet = NULL;
474 struct ifnet_array *old_ifnet_array;
475 int i, q;
477 static int if_indexlim = 8;
479 if (ifp->if_serialize != NULL) {
480 KASSERT(ifp->if_deserialize != NULL &&
481 ifp->if_tryserialize != NULL &&
482 ifp->if_serialize_assert != NULL,
483 ("serialize functions are partially setup"));
486 * If the device supplies serialize functions,
487 * then clear if_serializer to catch any invalid
488 * usage of this field.
490 KASSERT(serializer == NULL,
491 ("both serialize functions and default serializer "
492 "are supplied"));
493 ifp->if_serializer = NULL;
494 } else {
495 KASSERT(ifp->if_deserialize == NULL &&
496 ifp->if_tryserialize == NULL &&
497 ifp->if_serialize_assert == NULL,
498 ("serialize functions are partially setup"));
499 ifp->if_serialize = if_default_serialize;
500 ifp->if_deserialize = if_default_deserialize;
501 ifp->if_tryserialize = if_default_tryserialize;
502 #ifdef INVARIANTS
503 ifp->if_serialize_assert = if_default_serialize_assert;
504 #endif
507 * The serializer can be passed in from the device,
508 * allowing the same serializer to be used for both
509 * the interrupt interlock and the device queue.
510 * If not specified, the netif structure will use an
511 * embedded serializer.
513 if (serializer == NULL) {
514 serializer = &ifp->if_default_serializer;
515 lwkt_serialize_init(serializer);
517 ifp->if_serializer = serializer;
521 * XXX -
522 * The old code would work if the interface passed a pre-existing
523 * chain of ifaddrs to this code. We don't trust our callers to
524 * properly initialize the tailq, however, so we no longer allow
525 * this unlikely case.
527 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
528 M_IFADDR, M_WAITOK | M_ZERO);
529 for (i = 0; i < ncpus; ++i)
530 TAILQ_INIT(&ifp->if_addrheads[i]);
532 TAILQ_INIT(&ifp->if_multiaddrs);
533 TAILQ_INIT(&ifp->if_groups);
534 getmicrotime(&ifp->if_lastchange);
537 * create a Link Level name for this device
539 namelen = strlen(ifp->if_xname);
540 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
541 socksize = masklen + ifp->if_addrlen;
542 if (socksize < sizeof(*sdl))
543 socksize = sizeof(*sdl);
544 socksize = RT_ROUNDUP(socksize);
545 ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
546 sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
547 sdl->sdl_len = socksize;
548 sdl->sdl_family = AF_LINK;
549 bcopy(ifp->if_xname, sdl->sdl_data, namelen);
550 sdl->sdl_nlen = namelen;
551 sdl->sdl_type = ifp->if_type;
552 ifp->if_lladdr = ifa;
553 ifa->ifa_ifp = ifp;
554 ifa->ifa_rtrequest = link_rtrequest;
555 ifa->ifa_addr = (struct sockaddr *)sdl;
556 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
557 ifa->ifa_netmask = (struct sockaddr *)sdl;
558 sdl->sdl_len = masklen;
559 while (namelen != 0)
560 sdl->sdl_data[--namelen] = 0xff;
561 ifa_iflink(ifa, ifp, 0 /* Insert head */);
563 ifp->if_data_pcpu = kmalloc_cachealign(
564 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
566 if (ifp->if_mapsubq == NULL)
567 ifp->if_mapsubq = ifq_mapsubq_default;
569 ifq = &ifp->if_snd;
570 ifq->altq_type = 0;
571 ifq->altq_disc = NULL;
572 ifq->altq_flags &= ALTQF_CANTCHANGE;
573 ifq->altq_tbr = NULL;
574 ifq->altq_ifp = ifp;
576 if (ifq->altq_subq_cnt <= 0)
577 ifq->altq_subq_cnt = 1;
578 ifq->altq_subq = kmalloc_cachealign(
579 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
580 M_DEVBUF, M_WAITOK | M_ZERO);
582 if (ifq->altq_maxlen == 0) {
583 if_printf(ifp, "driver didn't set altq_maxlen\n");
584 ifq_set_maxlen(ifq, ifqmaxlen);
587 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
588 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
590 ALTQ_SQ_LOCK_INIT(ifsq);
591 ifsq->ifsq_index = q;
593 ifsq->ifsq_altq = ifq;
594 ifsq->ifsq_ifp = ifp;
596 ifsq->ifsq_maxlen = ifq->altq_maxlen;
597 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
598 ifsq->ifsq_prepended = NULL;
599 ifsq->ifsq_started = 0;
600 ifsq->ifsq_hw_oactive = 0;
601 ifsq_set_cpuid(ifsq, 0);
602 if (ifp->if_serializer != NULL)
603 ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
605 ifsq->ifsq_stage =
606 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
607 M_DEVBUF, M_WAITOK | M_ZERO);
608 for (i = 0; i < ncpus; ++i)
609 ifsq->ifsq_stage[i].stg_subq = ifsq;
611 ifsq->ifsq_ifstart_nmsg =
612 kmalloc(ncpus * sizeof(struct netmsg_base),
613 M_LWKTMSG, M_WAITOK);
614 for (i = 0; i < ncpus; ++i) {
615 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
616 &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
617 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
620 ifq_set_classic(ifq);
623 * Increase mbuf cluster/jcluster limits for the mbufs that
624 * could sit on the device queues for quite some time.
626 if (ifp->if_nmbclusters > 0)
627 mcl_inclimit(ifp->if_nmbclusters);
628 if (ifp->if_nmbjclusters > 0)
629 mjcl_inclimit(ifp->if_nmbjclusters);
632 * Install this ifp into ifindex2inet, ifnet queue and ifnet
633 * array after it is setup.
635 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
636 * by ifnet lock, so that non-netisr threads could get a
637 * consistent view.
639 ifnet_lock();
641 /* Don't update if_index until ifindex2ifnet is setup */
642 ifp->if_index = if_index + 1;
643 sdl_addr->sdl_index = ifp->if_index;
646 * Install this ifp into ifindex2ifnet
648 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
649 unsigned int n;
650 struct ifnet **q;
653 * Grow ifindex2ifnet
655 if_indexlim <<= 1;
656 n = if_indexlim * sizeof(*q);
657 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
658 if (ifindex2ifnet != NULL) {
659 bcopy(ifindex2ifnet, q, n/2);
660 /* Free old ifindex2ifnet after sync all netisrs */
661 old_ifindex2ifnet = ifindex2ifnet;
663 ifindex2ifnet = q;
665 ifindex2ifnet[ifp->if_index] = ifp;
667 * Update if_index after this ifp is installed into ifindex2ifnet,
668 * so that netisrs could get a consistent view of ifindex2ifnet.
670 cpu_sfence();
671 if_index = ifp->if_index;
674 * Install this ifp into ifnet array.
676 /* Free old ifnet array after sync all netisrs */
677 old_ifnet_array = ifnet_array;
678 ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
681 * Install this ifp into ifnet queue.
683 TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
685 ifnet_unlock();
688 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
689 * are no longer accessed and we can free them safely later on.
691 netmsg_service_sync();
692 if (old_ifindex2ifnet != NULL)
693 kfree(old_ifindex2ifnet, M_IFADDR);
694 ifnet_array_free(old_ifnet_array);
696 if (!SLIST_EMPTY(&domains))
697 if_attachdomain1(ifp);
699 /* Announce the interface. */
700 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
701 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
702 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
705 static void
706 if_attachdomain(void *dummy)
708 struct ifnet *ifp;
710 ifnet_lock();
711 TAILQ_FOREACH(ifp, &ifnetlist, if_list)
712 if_attachdomain1(ifp);
713 ifnet_unlock();
715 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
716 if_attachdomain, NULL);
718 static void
719 if_attachdomain1(struct ifnet *ifp)
721 struct domain *dp;
723 crit_enter();
725 /* address family dependent data region */
726 bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
727 SLIST_FOREACH(dp, &domains, dom_next)
728 if (dp->dom_ifattach)
729 ifp->if_afdata[dp->dom_family] =
730 (*dp->dom_ifattach)(ifp);
731 crit_exit();
735 * Purge all addresses whose type is _not_ AF_LINK
737 static void
738 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
740 struct lwkt_msg *lmsg = &nmsg->lmsg;
741 struct ifnet *ifp = lmsg->u.ms_resultp;
742 struct ifaddr_container *ifac, *next;
744 ASSERT_IN_NETISR(0);
747 * The ifaddr processing in the following loop will block,
748 * however, this function is called in netisr0, in which
749 * ifaddr list changes happen, so we don't care about the
750 * blockness of the ifaddr processing here.
752 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
753 ifa_link, next) {
754 struct ifaddr *ifa = ifac->ifa;
756 /* Ignore marker */
757 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
758 continue;
760 /* Leave link ifaddr as it is */
761 if (ifa->ifa_addr->sa_family == AF_LINK)
762 continue;
763 #ifdef INET
764 /* XXX: Ugly!! ad hoc just for INET */
765 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
766 struct ifaliasreq ifr;
767 #ifdef IFADDR_DEBUG_VERBOSE
768 int i;
770 kprintf("purge in4 addr %p: ", ifa);
771 for (i = 0; i < ncpus; ++i)
772 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
773 kprintf("\n");
774 #endif
776 bzero(&ifr, sizeof ifr);
777 ifr.ifra_addr = *ifa->ifa_addr;
778 if (ifa->ifa_dstaddr)
779 ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
780 if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
781 NULL) == 0)
782 continue;
784 #endif /* INET */
785 #ifdef INET6
786 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
787 #ifdef IFADDR_DEBUG_VERBOSE
788 int i;
790 kprintf("purge in6 addr %p: ", ifa);
791 for (i = 0; i < ncpus; ++i)
792 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
793 kprintf("\n");
794 #endif
796 in6_purgeaddr(ifa);
797 /* ifp_addrhead is already updated */
798 continue;
800 #endif /* INET6 */
801 ifa_ifunlink(ifa, ifp);
802 ifa_destroy(ifa);
805 lwkt_replymsg(lmsg, 0);
808 void
809 if_purgeaddrs_nolink(struct ifnet *ifp)
811 struct netmsg_base nmsg;
812 struct lwkt_msg *lmsg = &nmsg.lmsg;
814 ASSERT_CANDOMSG_NETISR0(curthread);
816 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
817 if_purgeaddrs_nolink_dispatch);
818 lmsg->u.ms_resultp = ifp;
819 lwkt_domsg(netisr_cpuport(0), lmsg, 0);
822 static void
823 ifq_stage_detach_handler(netmsg_t nmsg)
825 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
826 int q;
828 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
829 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
830 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
832 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
833 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
835 lwkt_replymsg(&nmsg->lmsg, 0);
838 static void
839 ifq_stage_detach(struct ifaltq *ifq)
841 struct netmsg_base base;
842 int cpu;
844 netmsg_init(&base, NULL, &curthread->td_msgport, 0,
845 ifq_stage_detach_handler);
846 base.lmsg.u.ms_resultp = ifq;
848 for (cpu = 0; cpu < ncpus; ++cpu)
849 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
852 struct netmsg_if_rtdel {
853 struct netmsg_base base;
854 struct ifnet *ifp;
857 static void
858 if_rtdel_dispatch(netmsg_t msg)
860 struct netmsg_if_rtdel *rmsg = (void *)msg;
861 int i, nextcpu, cpu;
863 cpu = mycpuid;
864 for (i = 1; i <= AF_MAX; i++) {
865 struct radix_node_head *rnh;
867 if ((rnh = rt_tables[cpu][i]) == NULL)
868 continue;
869 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
872 nextcpu = cpu + 1;
873 if (nextcpu < ncpus)
874 lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
875 else
876 lwkt_replymsg(&rmsg->base.lmsg, 0);
880 * Detach an interface, removing it from the
881 * list of "active" interfaces.
883 void
884 if_detach(struct ifnet *ifp)
886 struct ifnet_array *old_ifnet_array;
887 struct netmsg_if_rtdel msg;
888 struct domain *dp;
889 int q;
891 /* Announce that the interface is gone. */
892 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
893 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
894 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
897 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
898 * array before it is whacked.
900 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
901 * by ifnet lock, so that non-netisr threads could get a
902 * consistent view.
904 ifnet_lock();
907 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
909 ifindex2ifnet[ifp->if_index] = NULL;
910 while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
911 if_index--;
914 * Remove this ifp from ifnet queue.
916 TAILQ_REMOVE(&ifnetlist, ifp, if_link);
919 * Remove this ifp from ifnet array.
921 /* Free old ifnet array after sync all netisrs */
922 old_ifnet_array = ifnet_array;
923 ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
925 ifnet_unlock();
928 * Sync all netisrs so that the old ifnet array is no longer
929 * accessed and we can free it safely later on.
931 netmsg_service_sync();
932 ifnet_array_free(old_ifnet_array);
935 * Remove routes and flush queues.
937 crit_enter();
938 #ifdef IFPOLL_ENABLE
939 if (ifp->if_flags & IFF_NPOLLING)
940 ifpoll_deregister(ifp);
941 #endif
942 if_down(ifp);
944 /* Decrease the mbuf clusters/jclusters limits increased by us */
945 if (ifp->if_nmbclusters > 0)
946 mcl_inclimit(-ifp->if_nmbclusters);
947 if (ifp->if_nmbjclusters > 0)
948 mjcl_inclimit(-ifp->if_nmbjclusters);
950 #ifdef ALTQ
951 if (ifq_is_enabled(&ifp->if_snd))
952 altq_disable(&ifp->if_snd);
953 if (ifq_is_attached(&ifp->if_snd))
954 altq_detach(&ifp->if_snd);
955 #endif
958 * Clean up all addresses.
960 ifp->if_lladdr = NULL;
962 if_purgeaddrs_nolink(ifp);
963 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
964 struct ifaddr *ifa;
966 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
967 KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
968 ("non-link ifaddr is left on if_addrheads"));
970 ifa_ifunlink(ifa, ifp);
971 ifa_destroy(ifa);
972 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
973 ("there are still ifaddrs left on if_addrheads"));
976 #ifdef INET
978 * Remove all IPv4 kernel structures related to ifp.
980 in_ifdetach(ifp);
981 #endif
983 #ifdef INET6
985 * Remove all IPv6 kernel structs related to ifp. This should be done
986 * before removing routing entries below, since IPv6 interface direct
987 * routes are expected to be removed by the IPv6-specific kernel API.
988 * Otherwise, the kernel will detect some inconsistency and bark it.
990 in6_ifdetach(ifp);
991 #endif
994 * Delete all remaining routes using this interface
996 netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
997 if_rtdel_dispatch);
998 msg.ifp = ifp;
999 rt_domsg_global(&msg.base);
1001 SLIST_FOREACH(dp, &domains, dom_next)
1002 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1003 (*dp->dom_ifdetach)(ifp,
1004 ifp->if_afdata[dp->dom_family]);
1006 kfree(ifp->if_addrheads, M_IFADDR);
1008 lwkt_synchronize_ipiqs("if_detach");
1009 ifq_stage_detach(&ifp->if_snd);
1011 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1012 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1014 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1015 kfree(ifsq->ifsq_stage, M_DEVBUF);
1017 kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1019 kfree(ifp->if_data_pcpu, M_DEVBUF);
1021 crit_exit();
1025 * Create interface group without members
1027 struct ifg_group *
1028 if_creategroup(const char *groupname)
1030 struct ifg_group *ifg = NULL;
1032 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1033 M_TEMP, M_NOWAIT)) == NULL)
1034 return (NULL);
1036 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1037 ifg->ifg_refcnt = 0;
1038 ifg->ifg_carp_demoted = 0;
1039 TAILQ_INIT(&ifg->ifg_members);
1040 #if NPF > 0
1041 pfi_attach_ifgroup(ifg);
1042 #endif
1043 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1045 return (ifg);
1049 * Add a group to an interface
1052 if_addgroup(struct ifnet *ifp, const char *groupname)
1054 struct ifg_list *ifgl;
1055 struct ifg_group *ifg = NULL;
1056 struct ifg_member *ifgm;
1058 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1059 groupname[strlen(groupname) - 1] <= '9')
1060 return (EINVAL);
1062 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1063 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1064 return (EEXIST);
1066 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1067 return (ENOMEM);
1069 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1070 kfree(ifgl, M_TEMP);
1071 return (ENOMEM);
1074 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1075 if (!strcmp(ifg->ifg_group, groupname))
1076 break;
1078 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1079 kfree(ifgl, M_TEMP);
1080 kfree(ifgm, M_TEMP);
1081 return (ENOMEM);
1084 ifg->ifg_refcnt++;
1085 ifgl->ifgl_group = ifg;
1086 ifgm->ifgm_ifp = ifp;
1088 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1089 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1091 #if NPF > 0
1092 pfi_group_change(groupname);
1093 #endif
1095 return (0);
1099 * Remove a group from an interface
1102 if_delgroup(struct ifnet *ifp, const char *groupname)
1104 struct ifg_list *ifgl;
1105 struct ifg_member *ifgm;
1107 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1108 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1109 break;
1110 if (ifgl == NULL)
1111 return (ENOENT);
1113 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1115 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1116 if (ifgm->ifgm_ifp == ifp)
1117 break;
1119 if (ifgm != NULL) {
1120 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1121 kfree(ifgm, M_TEMP);
1124 if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1125 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1126 #if NPF > 0
1127 pfi_detach_ifgroup(ifgl->ifgl_group);
1128 #endif
1129 kfree(ifgl->ifgl_group, M_TEMP);
1132 kfree(ifgl, M_TEMP);
1134 #if NPF > 0
1135 pfi_group_change(groupname);
1136 #endif
1138 return (0);
1142 * Stores all groups from an interface in memory pointed
1143 * to by data
1146 if_getgroup(caddr_t data, struct ifnet *ifp)
1148 int len, error;
1149 struct ifg_list *ifgl;
1150 struct ifg_req ifgrq, *ifgp;
1151 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1153 if (ifgr->ifgr_len == 0) {
1154 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1155 ifgr->ifgr_len += sizeof(struct ifg_req);
1156 return (0);
1159 len = ifgr->ifgr_len;
1160 ifgp = ifgr->ifgr_groups;
1161 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1162 if (len < sizeof(ifgrq))
1163 return (EINVAL);
1164 bzero(&ifgrq, sizeof ifgrq);
1165 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1166 sizeof(ifgrq.ifgrq_group));
1167 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1168 sizeof(struct ifg_req))))
1169 return (error);
1170 len -= sizeof(ifgrq);
1171 ifgp++;
1174 return (0);
1178 * Stores all members of a group in memory pointed to by data
1181 if_getgroupmembers(caddr_t data)
1183 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1184 struct ifg_group *ifg;
1185 struct ifg_member *ifgm;
1186 struct ifg_req ifgrq, *ifgp;
1187 int len, error;
1189 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1190 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1191 break;
1192 if (ifg == NULL)
1193 return (ENOENT);
1195 if (ifgr->ifgr_len == 0) {
1196 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1197 ifgr->ifgr_len += sizeof(ifgrq);
1198 return (0);
1201 len = ifgr->ifgr_len;
1202 ifgp = ifgr->ifgr_groups;
1203 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1204 if (len < sizeof(ifgrq))
1205 return (EINVAL);
1206 bzero(&ifgrq, sizeof ifgrq);
1207 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1208 sizeof(ifgrq.ifgrq_member));
1209 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1210 sizeof(struct ifg_req))))
1211 return (error);
1212 len -= sizeof(ifgrq);
1213 ifgp++;
1216 return (0);
1220 * Delete Routes for a Network Interface
1222 * Called for each routing entry via the rnh->rnh_walktree() call above
1223 * to delete all route entries referencing a detaching network interface.
1225 * Arguments:
1226 * rn pointer to node in the routing table
1227 * arg argument passed to rnh->rnh_walktree() - detaching interface
1229 * Returns:
1230 * 0 successful
1231 * errno failed - reason indicated
1234 static int
1235 if_rtdel(struct radix_node *rn, void *arg)
1237 struct rtentry *rt = (struct rtentry *)rn;
1238 struct ifnet *ifp = arg;
1239 int err;
1241 if (rt->rt_ifp == ifp) {
1244 * Protect (sorta) against walktree recursion problems
1245 * with cloned routes
1247 if (!(rt->rt_flags & RTF_UP))
1248 return (0);
1250 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1251 rt_mask(rt), rt->rt_flags,
1252 NULL);
1253 if (err) {
1254 log(LOG_WARNING, "if_rtdel: error %d\n", err);
1258 return (0);
1261 static __inline boolean_t
1262 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1264 if (old_ifa == NULL)
1265 return TRUE;
1267 if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1268 (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1269 return TRUE;
1270 if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1271 (cur_ifa->ifa_flags & IFA_ROUTE))
1272 return TRUE;
1273 return FALSE;
1277 * Locate an interface based on a complete address.
1279 struct ifaddr *
1280 ifa_ifwithaddr(struct sockaddr *addr)
1282 const struct ifnet_array *arr;
1283 int i;
1285 arr = ifnet_array_get();
1286 for (i = 0; i < arr->ifnet_count; ++i) {
1287 struct ifnet *ifp = arr->ifnet_arr[i];
1288 struct ifaddr_container *ifac;
1290 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1291 struct ifaddr *ifa = ifac->ifa;
1293 if (ifa->ifa_addr->sa_family != addr->sa_family)
1294 continue;
1295 if (sa_equal(addr, ifa->ifa_addr))
1296 return (ifa);
1297 if ((ifp->if_flags & IFF_BROADCAST) &&
1298 ifa->ifa_broadaddr &&
1299 /* IPv6 doesn't have broadcast */
1300 ifa->ifa_broadaddr->sa_len != 0 &&
1301 sa_equal(ifa->ifa_broadaddr, addr))
1302 return (ifa);
1305 return (NULL);
1309 * Locate the point to point interface with a given destination address.
1311 struct ifaddr *
1312 ifa_ifwithdstaddr(struct sockaddr *addr)
1314 const struct ifnet_array *arr;
1315 int i;
1317 arr = ifnet_array_get();
1318 for (i = 0; i < arr->ifnet_count; ++i) {
1319 struct ifnet *ifp = arr->ifnet_arr[i];
1320 struct ifaddr_container *ifac;
1322 if (!(ifp->if_flags & IFF_POINTOPOINT))
1323 continue;
1325 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1326 struct ifaddr *ifa = ifac->ifa;
1328 if (ifa->ifa_addr->sa_family != addr->sa_family)
1329 continue;
1330 if (ifa->ifa_dstaddr &&
1331 sa_equal(addr, ifa->ifa_dstaddr))
1332 return (ifa);
1335 return (NULL);
1339 * Find an interface on a specific network. If many, choice
1340 * is most specific found.
1342 struct ifaddr *
1343 ifa_ifwithnet(struct sockaddr *addr)
1345 struct ifaddr *ifa_maybe = NULL;
1346 u_int af = addr->sa_family;
1347 char *addr_data = addr->sa_data, *cplim;
1348 const struct ifnet_array *arr;
1349 int i;
1352 * AF_LINK addresses can be looked up directly by their index number,
1353 * so do that if we can.
1355 if (af == AF_LINK) {
1356 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1358 if (sdl->sdl_index && sdl->sdl_index <= if_index)
1359 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1363 * Scan though each interface, looking for ones that have
1364 * addresses in this address family.
1366 arr = ifnet_array_get();
1367 for (i = 0; i < arr->ifnet_count; ++i) {
1368 struct ifnet *ifp = arr->ifnet_arr[i];
1369 struct ifaddr_container *ifac;
1371 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1372 struct ifaddr *ifa = ifac->ifa;
1373 char *cp, *cp2, *cp3;
1375 if (ifa->ifa_addr->sa_family != af)
1376 next: continue;
1377 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1379 * This is a bit broken as it doesn't
1380 * take into account that the remote end may
1381 * be a single node in the network we are
1382 * looking for.
1383 * The trouble is that we don't know the
1384 * netmask for the remote end.
1386 if (ifa->ifa_dstaddr != NULL &&
1387 sa_equal(addr, ifa->ifa_dstaddr))
1388 return (ifa);
1389 } else {
1391 * if we have a special address handler,
1392 * then use it instead of the generic one.
1394 if (ifa->ifa_claim_addr) {
1395 if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1396 return (ifa);
1397 } else {
1398 continue;
1403 * Scan all the bits in the ifa's address.
1404 * If a bit dissagrees with what we are
1405 * looking for, mask it with the netmask
1406 * to see if it really matters.
1407 * (A byte at a time)
1409 if (ifa->ifa_netmask == 0)
1410 continue;
1411 cp = addr_data;
1412 cp2 = ifa->ifa_addr->sa_data;
1413 cp3 = ifa->ifa_netmask->sa_data;
1414 cplim = ifa->ifa_netmask->sa_len +
1415 (char *)ifa->ifa_netmask;
1416 while (cp3 < cplim)
1417 if ((*cp++ ^ *cp2++) & *cp3++)
1418 goto next; /* next address! */
1420 * If the netmask of what we just found
1421 * is more specific than what we had before
1422 * (if we had one) then remember the new one
1423 * before continuing to search for an even
1424 * better one. If the netmasks are equal,
1425 * we prefer the this ifa based on the result
1426 * of ifa_prefer().
1428 if (ifa_maybe == NULL ||
1429 rn_refines((char *)ifa->ifa_netmask,
1430 (char *)ifa_maybe->ifa_netmask) ||
1431 (sa_equal(ifa_maybe->ifa_netmask,
1432 ifa->ifa_netmask) &&
1433 ifa_prefer(ifa, ifa_maybe)))
1434 ifa_maybe = ifa;
1438 return (ifa_maybe);
1442 * Find an interface address specific to an interface best matching
1443 * a given address.
1445 struct ifaddr *
1446 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1448 struct ifaddr_container *ifac;
1449 char *cp, *cp2, *cp3;
1450 char *cplim;
1451 struct ifaddr *ifa_maybe = NULL;
1452 u_int af = addr->sa_family;
1454 if (af >= AF_MAX)
1455 return (0);
1456 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1457 struct ifaddr *ifa = ifac->ifa;
1459 if (ifa->ifa_addr->sa_family != af)
1460 continue;
1461 if (ifa_maybe == NULL)
1462 ifa_maybe = ifa;
1463 if (ifa->ifa_netmask == NULL) {
1464 if (sa_equal(addr, ifa->ifa_addr) ||
1465 (ifa->ifa_dstaddr != NULL &&
1466 sa_equal(addr, ifa->ifa_dstaddr)))
1467 return (ifa);
1468 continue;
1470 if (ifp->if_flags & IFF_POINTOPOINT) {
1471 if (sa_equal(addr, ifa->ifa_dstaddr))
1472 return (ifa);
1473 } else {
1474 cp = addr->sa_data;
1475 cp2 = ifa->ifa_addr->sa_data;
1476 cp3 = ifa->ifa_netmask->sa_data;
1477 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1478 for (; cp3 < cplim; cp3++)
1479 if ((*cp++ ^ *cp2++) & *cp3)
1480 break;
1481 if (cp3 == cplim)
1482 return (ifa);
1485 return (ifa_maybe);
1489 * Default action when installing a route with a Link Level gateway.
1490 * Lookup an appropriate real ifa to point to.
1491 * This should be moved to /sys/net/link.c eventually.
1493 static void
1494 link_rtrequest(int cmd, struct rtentry *rt)
1496 struct ifaddr *ifa;
1497 struct sockaddr *dst;
1498 struct ifnet *ifp;
1500 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1501 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1502 return;
1503 ifa = ifaof_ifpforaddr(dst, ifp);
1504 if (ifa != NULL) {
1505 IFAFREE(rt->rt_ifa);
1506 IFAREF(ifa);
1507 rt->rt_ifa = ifa;
1508 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1509 ifa->ifa_rtrequest(cmd, rt);
1513 struct netmsg_ifroute {
1514 struct netmsg_base base;
1515 struct ifnet *ifp;
1516 int flag;
1517 int fam;
1521 * Mark an interface down and notify protocols of the transition.
1523 static void
1524 if_unroute_dispatch(netmsg_t nmsg)
1526 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1527 struct ifnet *ifp = msg->ifp;
1528 int flag = msg->flag, fam = msg->fam;
1529 struct ifaddr_container *ifac;
1531 ifp->if_flags &= ~flag;
1532 getmicrotime(&ifp->if_lastchange);
1534 * The ifaddr processing in the following loop will block,
1535 * however, this function is called in netisr0, in which
1536 * ifaddr list changes happen, so we don't care about the
1537 * blockness of the ifaddr processing here.
1539 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1540 struct ifaddr *ifa = ifac->ifa;
1542 /* Ignore marker */
1543 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1544 continue;
1546 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1547 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1549 ifq_purge_all(&ifp->if_snd);
1550 rt_ifmsg(ifp);
1552 lwkt_replymsg(&nmsg->lmsg, 0);
1555 void
1556 if_unroute(struct ifnet *ifp, int flag, int fam)
1558 struct netmsg_ifroute msg;
1560 ASSERT_CANDOMSG_NETISR0(curthread);
1562 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1563 if_unroute_dispatch);
1564 msg.ifp = ifp;
1565 msg.flag = flag;
1566 msg.fam = fam;
1567 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1571 * Mark an interface up and notify protocols of the transition.
1573 static void
1574 if_route_dispatch(netmsg_t nmsg)
1576 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1577 struct ifnet *ifp = msg->ifp;
1578 int flag = msg->flag, fam = msg->fam;
1579 struct ifaddr_container *ifac;
1581 ifq_purge_all(&ifp->if_snd);
1582 ifp->if_flags |= flag;
1583 getmicrotime(&ifp->if_lastchange);
1585 * The ifaddr processing in the following loop will block,
1586 * however, this function is called in netisr0, in which
1587 * ifaddr list changes happen, so we don't care about the
1588 * blockness of the ifaddr processing here.
1590 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1591 struct ifaddr *ifa = ifac->ifa;
1593 /* Ignore marker */
1594 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1595 continue;
1597 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1598 kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1600 rt_ifmsg(ifp);
1601 #ifdef INET6
1602 in6_if_up(ifp);
1603 #endif
1605 lwkt_replymsg(&nmsg->lmsg, 0);
1608 void
1609 if_route(struct ifnet *ifp, int flag, int fam)
1611 struct netmsg_ifroute msg;
1613 ASSERT_CANDOMSG_NETISR0(curthread);
1615 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1616 if_route_dispatch);
1617 msg.ifp = ifp;
1618 msg.flag = flag;
1619 msg.fam = fam;
1620 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1624 * Mark an interface down and notify protocols of the transition. An
1625 * interface going down is also considered to be a synchronizing event.
1626 * We must ensure that all packet processing related to the interface
1627 * has completed before we return so e.g. the caller can free the ifnet
1628 * structure that the mbufs may be referencing.
1630 * NOTE: must be called at splnet or eqivalent.
1632 void
1633 if_down(struct ifnet *ifp)
1635 if_unroute(ifp, IFF_UP, AF_UNSPEC);
1636 netmsg_service_sync();
1640 * Mark an interface up and notify protocols of
1641 * the transition.
1642 * NOTE: must be called at splnet or eqivalent.
1644 void
1645 if_up(struct ifnet *ifp)
1647 if_route(ifp, IFF_UP, AF_UNSPEC);
1651 * Process a link state change.
1652 * NOTE: must be called at splsoftnet or equivalent.
1654 void
1655 if_link_state_change(struct ifnet *ifp)
1657 int link_state = ifp->if_link_state;
1659 rt_ifmsg(ifp);
1660 devctl_notify("IFNET", ifp->if_xname,
1661 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1665 * Handle interface watchdog timer routines. Called
1666 * from softclock, we decrement timers (if set) and
1667 * call the appropriate interface routine on expiration.
1669 static void
1670 if_slowtimo_dispatch(netmsg_t nmsg)
1672 struct globaldata *gd = mycpu;
1673 const struct ifnet_array *arr;
1674 int i;
1676 ASSERT_IN_NETISR(0);
1678 crit_enter_gd(gd);
1679 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1680 crit_exit_gd(gd);
1682 arr = ifnet_array_get();
1683 for (i = 0; i < arr->ifnet_count; ++i) {
1684 struct ifnet *ifp = arr->ifnet_arr[i];
1686 crit_enter_gd(gd);
1688 if (if_stats_compat) {
1689 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1690 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1691 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1692 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1693 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1694 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1695 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1696 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1697 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1698 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1699 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1702 if (ifp->if_timer == 0 || --ifp->if_timer) {
1703 crit_exit_gd(gd);
1704 continue;
1706 if (ifp->if_watchdog) {
1707 if (ifnet_tryserialize_all(ifp)) {
1708 (*ifp->if_watchdog)(ifp);
1709 ifnet_deserialize_all(ifp);
1710 } else {
1711 /* try again next timeout */
1712 ++ifp->if_timer;
1716 crit_exit_gd(gd);
1719 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1722 static void
1723 if_slowtimo(void *arg __unused)
1725 struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1727 KASSERT(mycpuid == 0, ("not on cpu0"));
1728 crit_enter();
1729 if (lmsg->ms_flags & MSGF_DONE)
1730 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1731 crit_exit();
1735 * Map interface name to
1736 * interface structure pointer.
1738 struct ifnet *
1739 ifunit(const char *name)
1741 struct ifnet *ifp;
1744 * Search all the interfaces for this name/number
1746 KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1748 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1749 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1750 break;
1752 return (ifp);
1755 struct ifnet *
1756 ifunit_netisr(const char *name)
1758 const struct ifnet_array *arr;
1759 int i;
1762 * Search all the interfaces for this name/number
1765 arr = ifnet_array_get();
1766 for (i = 0; i < arr->ifnet_count; ++i) {
1767 struct ifnet *ifp = arr->ifnet_arr[i];
1769 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1770 return ifp;
1772 return NULL;
1776 * Interface ioctls.
1779 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1781 struct ifnet *ifp;
1782 struct ifreq *ifr;
1783 struct ifstat *ifs;
1784 int error;
1785 short oif_flags;
1786 int new_flags;
1787 #ifdef COMPAT_43
1788 int ocmd;
1789 #endif
1790 size_t namelen, onamelen;
1791 char new_name[IFNAMSIZ];
1792 struct ifaddr *ifa;
1793 struct sockaddr_dl *sdl;
1795 switch (cmd) {
1796 case SIOCGIFCONF:
1797 case OSIOCGIFCONF:
1798 return (ifconf(cmd, data, cred));
1799 default:
1800 break;
1803 ifr = (struct ifreq *)data;
1805 switch (cmd) {
1806 case SIOCIFCREATE:
1807 case SIOCIFCREATE2:
1808 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1809 return (error);
1810 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1811 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1812 case SIOCIFDESTROY:
1813 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1814 return (error);
1815 return (if_clone_destroy(ifr->ifr_name));
1816 case SIOCIFGCLONERS:
1817 return (if_clone_list((struct if_clonereq *)data));
1818 default:
1819 break;
1823 * Nominal ioctl through interface, lookup the ifp and obtain a
1824 * lock to serialize the ifconfig ioctl operation.
1826 ifnet_lock();
1828 ifp = ifunit(ifr->ifr_name);
1829 if (ifp == NULL) {
1830 ifnet_unlock();
1831 return (ENXIO);
1833 error = 0;
1835 switch (cmd) {
1836 case SIOCGIFINDEX:
1837 ifr->ifr_index = ifp->if_index;
1838 break;
1840 case SIOCGIFFLAGS:
1841 ifr->ifr_flags = ifp->if_flags;
1842 ifr->ifr_flagshigh = ifp->if_flags >> 16;
1843 break;
1845 case SIOCGIFCAP:
1846 ifr->ifr_reqcap = ifp->if_capabilities;
1847 ifr->ifr_curcap = ifp->if_capenable;
1848 break;
1850 case SIOCGIFMETRIC:
1851 ifr->ifr_metric = ifp->if_metric;
1852 break;
1854 case SIOCGIFMTU:
1855 ifr->ifr_mtu = ifp->if_mtu;
1856 break;
1858 case SIOCGIFTSOLEN:
1859 ifr->ifr_tsolen = ifp->if_tsolen;
1860 break;
1862 case SIOCGIFDATA:
1863 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1864 sizeof(ifp->if_data));
1865 break;
1867 case SIOCGIFPHYS:
1868 ifr->ifr_phys = ifp->if_physical;
1869 break;
1871 case SIOCGIFPOLLCPU:
1872 ifr->ifr_pollcpu = -1;
1873 break;
1875 case SIOCSIFPOLLCPU:
1876 break;
1878 case SIOCSIFFLAGS:
1879 error = priv_check_cred(cred, PRIV_ROOT, 0);
1880 if (error)
1881 break;
1882 new_flags = (ifr->ifr_flags & 0xffff) |
1883 (ifr->ifr_flagshigh << 16);
1884 if (ifp->if_flags & IFF_SMART) {
1885 /* Smart drivers twiddle their own routes */
1886 } else if (ifp->if_flags & IFF_UP &&
1887 (new_flags & IFF_UP) == 0) {
1888 crit_enter();
1889 if_down(ifp);
1890 crit_exit();
1891 } else if (new_flags & IFF_UP &&
1892 (ifp->if_flags & IFF_UP) == 0) {
1893 crit_enter();
1894 if_up(ifp);
1895 crit_exit();
1898 #ifdef IFPOLL_ENABLE
1899 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1900 if (new_flags & IFF_NPOLLING)
1901 ifpoll_register(ifp);
1902 else
1903 ifpoll_deregister(ifp);
1905 #endif
1907 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1908 (new_flags &~ IFF_CANTCHANGE);
1909 if (new_flags & IFF_PPROMISC) {
1910 /* Permanently promiscuous mode requested */
1911 ifp->if_flags |= IFF_PROMISC;
1912 } else if (ifp->if_pcount == 0) {
1913 ifp->if_flags &= ~IFF_PROMISC;
1915 if (ifp->if_ioctl) {
1916 ifnet_serialize_all(ifp);
1917 ifp->if_ioctl(ifp, cmd, data, cred);
1918 ifnet_deserialize_all(ifp);
1920 getmicrotime(&ifp->if_lastchange);
1921 break;
1923 case SIOCSIFCAP:
1924 error = priv_check_cred(cred, PRIV_ROOT, 0);
1925 if (error)
1926 break;
1927 if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1928 error = EINVAL;
1929 break;
1931 ifnet_serialize_all(ifp);
1932 ifp->if_ioctl(ifp, cmd, data, cred);
1933 ifnet_deserialize_all(ifp);
1934 break;
1936 case SIOCSIFNAME:
1937 error = priv_check_cred(cred, PRIV_ROOT, 0);
1938 if (error)
1939 break;
1940 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1941 if (error)
1942 break;
1943 if (new_name[0] == '\0') {
1944 error = EINVAL;
1945 break;
1947 if (ifunit(new_name) != NULL) {
1948 error = EEXIST;
1949 break;
1952 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1954 /* Announce the departure of the interface. */
1955 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1957 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1958 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1959 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1960 namelen = strlen(new_name);
1961 onamelen = sdl->sdl_nlen;
1963 * Move the address if needed. This is safe because we
1964 * allocate space for a name of length IFNAMSIZ when we
1965 * create this in if_attach().
1967 if (namelen != onamelen) {
1968 bcopy(sdl->sdl_data + onamelen,
1969 sdl->sdl_data + namelen, sdl->sdl_alen);
1971 bcopy(new_name, sdl->sdl_data, namelen);
1972 sdl->sdl_nlen = namelen;
1973 sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1974 bzero(sdl->sdl_data, onamelen);
1975 while (namelen != 0)
1976 sdl->sdl_data[--namelen] = 0xff;
1978 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1980 /* Announce the return of the interface. */
1981 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1982 break;
1984 case SIOCSIFMETRIC:
1985 error = priv_check_cred(cred, PRIV_ROOT, 0);
1986 if (error)
1987 break;
1988 ifp->if_metric = ifr->ifr_metric;
1989 getmicrotime(&ifp->if_lastchange);
1990 break;
1992 case SIOCSIFPHYS:
1993 error = priv_check_cred(cred, PRIV_ROOT, 0);
1994 if (error)
1995 break;
1996 if (ifp->if_ioctl == NULL) {
1997 error = EOPNOTSUPP;
1998 break;
2000 ifnet_serialize_all(ifp);
2001 error = ifp->if_ioctl(ifp, cmd, data, cred);
2002 ifnet_deserialize_all(ifp);
2003 if (error == 0)
2004 getmicrotime(&ifp->if_lastchange);
2005 break;
2007 case SIOCSIFMTU:
2009 u_long oldmtu = ifp->if_mtu;
2011 error = priv_check_cred(cred, PRIV_ROOT, 0);
2012 if (error)
2013 break;
2014 if (ifp->if_ioctl == NULL) {
2015 error = EOPNOTSUPP;
2016 break;
2018 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2019 error = EINVAL;
2020 break;
2022 ifnet_serialize_all(ifp);
2023 error = ifp->if_ioctl(ifp, cmd, data, cred);
2024 ifnet_deserialize_all(ifp);
2025 if (error == 0) {
2026 getmicrotime(&ifp->if_lastchange);
2027 rt_ifmsg(ifp);
2030 * If the link MTU changed, do network layer specific procedure.
2032 if (ifp->if_mtu != oldmtu) {
2033 #ifdef INET6
2034 nd6_setmtu(ifp);
2035 #endif
2037 break;
2040 case SIOCSIFTSOLEN:
2041 error = priv_check_cred(cred, PRIV_ROOT, 0);
2042 if (error)
2043 break;
2045 /* XXX need driver supplied upper limit */
2046 if (ifr->ifr_tsolen <= 0) {
2047 error = EINVAL;
2048 break;
2050 ifp->if_tsolen = ifr->ifr_tsolen;
2051 break;
2053 case SIOCADDMULTI:
2054 case SIOCDELMULTI:
2055 error = priv_check_cred(cred, PRIV_ROOT, 0);
2056 if (error)
2057 break;
2059 /* Don't allow group membership on non-multicast interfaces. */
2060 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2061 error = EOPNOTSUPP;
2062 break;
2065 /* Don't let users screw up protocols' entries. */
2066 if (ifr->ifr_addr.sa_family != AF_LINK) {
2067 error = EINVAL;
2068 break;
2071 if (cmd == SIOCADDMULTI) {
2072 struct ifmultiaddr *ifma;
2073 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2074 } else {
2075 error = if_delmulti(ifp, &ifr->ifr_addr);
2077 if (error == 0)
2078 getmicrotime(&ifp->if_lastchange);
2079 break;
2081 case SIOCSIFPHYADDR:
2082 case SIOCDIFPHYADDR:
2083 #ifdef INET6
2084 case SIOCSIFPHYADDR_IN6:
2085 #endif
2086 case SIOCSLIFPHYADDR:
2087 case SIOCSIFMEDIA:
2088 case SIOCSIFGENERIC:
2089 error = priv_check_cred(cred, PRIV_ROOT, 0);
2090 if (error)
2091 break;
2092 if (ifp->if_ioctl == 0) {
2093 error = EOPNOTSUPP;
2094 break;
2096 ifnet_serialize_all(ifp);
2097 error = ifp->if_ioctl(ifp, cmd, data, cred);
2098 ifnet_deserialize_all(ifp);
2099 if (error == 0)
2100 getmicrotime(&ifp->if_lastchange);
2101 break;
2103 case SIOCGIFSTATUS:
2104 ifs = (struct ifstat *)data;
2105 ifs->ascii[0] = '\0';
2106 /* fall through */
2107 case SIOCGIFPSRCADDR:
2108 case SIOCGIFPDSTADDR:
2109 case SIOCGLIFPHYADDR:
2110 case SIOCGIFMEDIA:
2111 case SIOCGIFGENERIC:
2112 if (ifp->if_ioctl == NULL) {
2113 error = EOPNOTSUPP;
2114 break;
2116 ifnet_serialize_all(ifp);
2117 error = ifp->if_ioctl(ifp, cmd, data, cred);
2118 ifnet_deserialize_all(ifp);
2119 break;
2121 case SIOCSIFLLADDR:
2122 error = priv_check_cred(cred, PRIV_ROOT, 0);
2123 if (error)
2124 break;
2125 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2126 ifr->ifr_addr.sa_len);
2127 EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2128 break;
2130 default:
2131 oif_flags = ifp->if_flags;
2132 if (so->so_proto == 0) {
2133 error = EOPNOTSUPP;
2134 break;
2136 #ifndef COMPAT_43
2137 error = so_pru_control_direct(so, cmd, data, ifp);
2138 #else
2139 ocmd = cmd;
2141 switch (cmd) {
2142 case SIOCSIFDSTADDR:
2143 case SIOCSIFADDR:
2144 case SIOCSIFBRDADDR:
2145 case SIOCSIFNETMASK:
2146 #if BYTE_ORDER != BIG_ENDIAN
2147 if (ifr->ifr_addr.sa_family == 0 &&
2148 ifr->ifr_addr.sa_len < 16) {
2149 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
2150 ifr->ifr_addr.sa_len = 16;
2152 #else
2153 if (ifr->ifr_addr.sa_len == 0)
2154 ifr->ifr_addr.sa_len = 16;
2155 #endif
2156 break;
2157 case OSIOCGIFADDR:
2158 cmd = SIOCGIFADDR;
2159 break;
2160 case OSIOCGIFDSTADDR:
2161 cmd = SIOCGIFDSTADDR;
2162 break;
2163 case OSIOCGIFBRDADDR:
2164 cmd = SIOCGIFBRDADDR;
2165 break;
2166 case OSIOCGIFNETMASK:
2167 cmd = SIOCGIFNETMASK;
2168 break;
2169 default:
2170 break;
2173 error = so_pru_control_direct(so, cmd, data, ifp);
2175 switch (ocmd) {
2176 case OSIOCGIFADDR:
2177 case OSIOCGIFDSTADDR:
2178 case OSIOCGIFBRDADDR:
2179 case OSIOCGIFNETMASK:
2180 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
2181 break;
2183 #endif /* COMPAT_43 */
2185 if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2186 #ifdef INET6
2187 DELAY(100);/* XXX: temporary workaround for fxp issue*/
2188 if (ifp->if_flags & IFF_UP) {
2189 crit_enter();
2190 in6_if_up(ifp);
2191 crit_exit();
2193 #endif
2195 break;
2198 ifnet_unlock();
2199 return (error);
2203 * Set/clear promiscuous mode on interface ifp based on the truth value
2204 * of pswitch. The calls are reference counted so that only the first
2205 * "on" request actually has an effect, as does the final "off" request.
2206 * Results are undefined if the "off" and "on" requests are not matched.
2209 ifpromisc(struct ifnet *ifp, int pswitch)
2211 struct ifreq ifr;
2212 int error;
2213 int oldflags;
2215 oldflags = ifp->if_flags;
2216 if (ifp->if_flags & IFF_PPROMISC) {
2217 /* Do nothing if device is in permanently promiscuous mode */
2218 ifp->if_pcount += pswitch ? 1 : -1;
2219 return (0);
2221 if (pswitch) {
2223 * If the device is not configured up, we cannot put it in
2224 * promiscuous mode.
2226 if ((ifp->if_flags & IFF_UP) == 0)
2227 return (ENETDOWN);
2228 if (ifp->if_pcount++ != 0)
2229 return (0);
2230 ifp->if_flags |= IFF_PROMISC;
2231 log(LOG_INFO, "%s: promiscuous mode enabled\n",
2232 ifp->if_xname);
2233 } else {
2234 if (--ifp->if_pcount > 0)
2235 return (0);
2236 ifp->if_flags &= ~IFF_PROMISC;
2237 log(LOG_INFO, "%s: promiscuous mode disabled\n",
2238 ifp->if_xname);
2240 ifr.ifr_flags = ifp->if_flags;
2241 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2242 ifnet_serialize_all(ifp);
2243 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2244 ifnet_deserialize_all(ifp);
2245 if (error == 0)
2246 rt_ifmsg(ifp);
2247 else
2248 ifp->if_flags = oldflags;
2249 return error;
2253 * Return interface configuration
2254 * of system. List may be used
2255 * in later ioctl's (above) to get
2256 * other information.
2258 static int
2259 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2261 struct ifconf *ifc = (struct ifconf *)data;
2262 struct ifnet *ifp;
2263 struct sockaddr *sa;
2264 struct ifreq ifr, *ifrp;
2265 int space = ifc->ifc_len, error = 0;
2267 ifrp = ifc->ifc_req;
2269 ifnet_lock();
2270 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2271 struct ifaddr_container *ifac, *ifac_mark;
2272 struct ifaddr_marker mark;
2273 struct ifaddrhead *head;
2274 int addrs;
2276 if (space <= sizeof ifr)
2277 break;
2280 * Zero the stack declared structure first to prevent
2281 * memory disclosure.
2283 bzero(&ifr, sizeof(ifr));
2284 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2285 >= sizeof(ifr.ifr_name)) {
2286 error = ENAMETOOLONG;
2287 break;
2291 * Add a marker, since copyout() could block and during that
2292 * period the list could be changed. Inserting the marker to
2293 * the header of the list will not cause trouble for the code
2294 * assuming that the first element of the list is AF_LINK; the
2295 * marker will be moved to the next position w/o blocking.
2297 ifa_marker_init(&mark, ifp);
2298 ifac_mark = &mark.ifac;
2299 head = &ifp->if_addrheads[mycpuid];
2301 addrs = 0;
2302 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2303 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2304 struct ifaddr *ifa = ifac->ifa;
2306 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2307 TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2309 /* Ignore marker */
2310 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2311 continue;
2313 if (space <= sizeof ifr)
2314 break;
2315 sa = ifa->ifa_addr;
2316 if (cred->cr_prison &&
2317 prison_if(cred, sa))
2318 continue;
2319 addrs++;
2321 * Keep a reference on this ifaddr, so that it will
2322 * not be destroyed when its address is copied to
2323 * the userland, which could block.
2325 IFAREF(ifa);
2326 #ifdef COMPAT_43
2327 if (cmd == OSIOCGIFCONF) {
2328 struct osockaddr *osa =
2329 (struct osockaddr *)&ifr.ifr_addr;
2330 ifr.ifr_addr = *sa;
2331 osa->sa_family = sa->sa_family;
2332 error = copyout(&ifr, ifrp, sizeof ifr);
2333 ifrp++;
2334 } else
2335 #endif
2336 if (sa->sa_len <= sizeof(*sa)) {
2337 ifr.ifr_addr = *sa;
2338 error = copyout(&ifr, ifrp, sizeof ifr);
2339 ifrp++;
2340 } else {
2341 if (space < (sizeof ifr) + sa->sa_len -
2342 sizeof(*sa)) {
2343 IFAFREE(ifa);
2344 break;
2346 space -= sa->sa_len - sizeof(*sa);
2347 error = copyout(&ifr, ifrp,
2348 sizeof ifr.ifr_name);
2349 if (error == 0)
2350 error = copyout(sa, &ifrp->ifr_addr,
2351 sa->sa_len);
2352 ifrp = (struct ifreq *)
2353 (sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2355 IFAFREE(ifa);
2356 if (error)
2357 break;
2358 space -= sizeof ifr;
2360 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2361 if (error)
2362 break;
2363 if (!addrs) {
2364 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2365 error = copyout(&ifr, ifrp, sizeof ifr);
2366 if (error)
2367 break;
2368 space -= sizeof ifr;
2369 ifrp++;
2372 ifnet_unlock();
2374 ifc->ifc_len -= space;
2375 return (error);
2379 * Just like if_promisc(), but for all-multicast-reception mode.
2382 if_allmulti(struct ifnet *ifp, int onswitch)
2384 int error = 0;
2385 struct ifreq ifr;
2387 crit_enter();
2389 if (onswitch) {
2390 if (ifp->if_amcount++ == 0) {
2391 ifp->if_flags |= IFF_ALLMULTI;
2392 ifr.ifr_flags = ifp->if_flags;
2393 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2394 ifnet_serialize_all(ifp);
2395 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2396 NULL);
2397 ifnet_deserialize_all(ifp);
2399 } else {
2400 if (ifp->if_amcount > 1) {
2401 ifp->if_amcount--;
2402 } else {
2403 ifp->if_amcount = 0;
2404 ifp->if_flags &= ~IFF_ALLMULTI;
2405 ifr.ifr_flags = ifp->if_flags;
2406 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2407 ifnet_serialize_all(ifp);
2408 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2409 NULL);
2410 ifnet_deserialize_all(ifp);
2414 crit_exit();
2416 if (error == 0)
2417 rt_ifmsg(ifp);
2418 return error;
2422 * Add a multicast listenership to the interface in question.
2423 * The link layer provides a routine which converts
2426 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2427 struct ifmultiaddr **retifma)
2429 struct sockaddr *llsa, *dupsa;
2430 int error;
2431 struct ifmultiaddr *ifma;
2433 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2436 * If the matching multicast address already exists
2437 * then don't add a new one, just add a reference
2439 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2440 if (sa_equal(sa, ifma->ifma_addr)) {
2441 ifma->ifma_refcount++;
2442 if (retifma)
2443 *retifma = ifma;
2444 return 0;
2449 * Give the link layer a chance to accept/reject it, and also
2450 * find out which AF_LINK address this maps to, if it isn't one
2451 * already.
2453 if (ifp->if_resolvemulti) {
2454 error = ifp->if_resolvemulti(ifp, &llsa, sa);
2455 if (error)
2456 return error;
2457 } else {
2458 llsa = NULL;
2461 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2462 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2463 bcopy(sa, dupsa, sa->sa_len);
2465 ifma->ifma_addr = dupsa;
2466 ifma->ifma_lladdr = llsa;
2467 ifma->ifma_ifp = ifp;
2468 ifma->ifma_refcount = 1;
2469 ifma->ifma_protospec = NULL;
2470 rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2472 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2473 if (retifma)
2474 *retifma = ifma;
2476 if (llsa != NULL) {
2477 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2478 if (sa_equal(ifma->ifma_addr, llsa))
2479 break;
2481 if (ifma) {
2482 ifma->ifma_refcount++;
2483 } else {
2484 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2485 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2486 bcopy(llsa, dupsa, llsa->sa_len);
2487 ifma->ifma_addr = dupsa;
2488 ifma->ifma_ifp = ifp;
2489 ifma->ifma_refcount = 1;
2490 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2494 * We are certain we have added something, so call down to the
2495 * interface to let them know about it.
2497 if (ifp->if_ioctl)
2498 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2500 return 0;
2504 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2505 struct ifmultiaddr **retifma)
2507 int error;
2509 ifnet_serialize_all(ifp);
2510 error = if_addmulti_serialized(ifp, sa, retifma);
2511 ifnet_deserialize_all(ifp);
2513 return error;
2517 * Remove a reference to a multicast address on this interface. Yell
2518 * if the request does not match an existing membership.
2520 static int
2521 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2523 struct ifmultiaddr *ifma;
2525 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2527 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2528 if (sa_equal(sa, ifma->ifma_addr))
2529 break;
2530 if (ifma == NULL)
2531 return ENOENT;
2533 if (ifma->ifma_refcount > 1) {
2534 ifma->ifma_refcount--;
2535 return 0;
2538 rt_newmaddrmsg(RTM_DELMADDR, ifma);
2539 sa = ifma->ifma_lladdr;
2540 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2542 * Make sure the interface driver is notified
2543 * in the case of a link layer mcast group being left.
2545 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2546 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2547 kfree(ifma->ifma_addr, M_IFMADDR);
2548 kfree(ifma, M_IFMADDR);
2549 if (sa == NULL)
2550 return 0;
2553 * Now look for the link-layer address which corresponds to
2554 * this network address. It had been squirreled away in
2555 * ifma->ifma_lladdr for this purpose (so we don't have
2556 * to call ifp->if_resolvemulti() again), and we saved that
2557 * value in sa above. If some nasty deleted the
2558 * link-layer address out from underneath us, we can deal because
2559 * the address we stored was is not the same as the one which was
2560 * in the record for the link-layer address. (So we don't complain
2561 * in that case.)
2563 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2564 if (sa_equal(sa, ifma->ifma_addr))
2565 break;
2566 if (ifma == NULL)
2567 return 0;
2569 if (ifma->ifma_refcount > 1) {
2570 ifma->ifma_refcount--;
2571 return 0;
2574 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2575 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2576 kfree(ifma->ifma_addr, M_IFMADDR);
2577 kfree(sa, M_IFMADDR);
2578 kfree(ifma, M_IFMADDR);
2580 return 0;
2584 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2586 int error;
2588 ifnet_serialize_all(ifp);
2589 error = if_delmulti_serialized(ifp, sa);
2590 ifnet_deserialize_all(ifp);
2592 return error;
2596 * Delete all multicast group membership for an interface.
2597 * Should be used to quickly flush all multicast filters.
2599 void
2600 if_delallmulti_serialized(struct ifnet *ifp)
2602 struct ifmultiaddr *ifma, mark;
2603 struct sockaddr sa;
2605 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2607 bzero(&sa, sizeof(sa));
2608 sa.sa_family = AF_UNSPEC;
2609 sa.sa_len = sizeof(sa);
2611 bzero(&mark, sizeof(mark));
2612 mark.ifma_addr = &sa;
2614 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2615 while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2616 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2617 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2618 ifma_link);
2620 if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2621 continue;
2623 if_delmulti_serialized(ifp, ifma->ifma_addr);
2625 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2630 * Set the link layer address on an interface.
2632 * At this time we only support certain types of interfaces,
2633 * and we don't allow the length of the address to change.
2636 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2638 struct sockaddr_dl *sdl;
2639 struct ifreq ifr;
2641 sdl = IF_LLSOCKADDR(ifp);
2642 if (sdl == NULL)
2643 return (EINVAL);
2644 if (len != sdl->sdl_alen) /* don't allow length to change */
2645 return (EINVAL);
2646 switch (ifp->if_type) {
2647 case IFT_ETHER: /* these types use struct arpcom */
2648 case IFT_XETHER:
2649 case IFT_L2VLAN:
2650 case IFT_IEEE8023ADLAG:
2651 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2652 bcopy(lladdr, LLADDR(sdl), len);
2653 break;
2654 default:
2655 return (ENODEV);
2658 * If the interface is already up, we need
2659 * to re-init it in order to reprogram its
2660 * address filter.
2662 ifnet_serialize_all(ifp);
2663 if ((ifp->if_flags & IFF_UP) != 0) {
2664 #ifdef INET
2665 struct ifaddr_container *ifac;
2666 #endif
2668 ifp->if_flags &= ~IFF_UP;
2669 ifr.ifr_flags = ifp->if_flags;
2670 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2671 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2672 NULL);
2673 ifp->if_flags |= IFF_UP;
2674 ifr.ifr_flags = ifp->if_flags;
2675 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2676 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2677 NULL);
2678 #ifdef INET
2680 * Also send gratuitous ARPs to notify other nodes about
2681 * the address change.
2683 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2684 struct ifaddr *ifa = ifac->ifa;
2686 if (ifa->ifa_addr != NULL &&
2687 ifa->ifa_addr->sa_family == AF_INET)
2688 arp_gratuitous(ifp, ifa);
2690 #endif
2692 ifnet_deserialize_all(ifp);
2693 return (0);
2696 struct ifmultiaddr *
2697 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2699 struct ifmultiaddr *ifma;
2701 /* TODO: need ifnet_serialize_main */
2702 ifnet_serialize_all(ifp);
2703 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2704 if (sa_equal(ifma->ifma_addr, sa))
2705 break;
2706 ifnet_deserialize_all(ifp);
2708 return ifma;
2712 * This function locates the first real ethernet MAC from a network
2713 * card and loads it into node, returning 0 on success or ENOENT if
2714 * no suitable interfaces were found. It is used by the uuid code to
2715 * generate a unique 6-byte number.
2718 if_getanyethermac(uint16_t *node, int minlen)
2720 struct ifnet *ifp;
2721 struct sockaddr_dl *sdl;
2723 ifnet_lock();
2724 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2725 if (ifp->if_type != IFT_ETHER)
2726 continue;
2727 sdl = IF_LLSOCKADDR(ifp);
2728 if (sdl->sdl_alen < minlen)
2729 continue;
2730 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2731 minlen);
2732 ifnet_unlock();
2733 return(0);
2735 ifnet_unlock();
2736 return (ENOENT);
2740 * The name argument must be a pointer to storage which will last as
2741 * long as the interface does. For physical devices, the result of
2742 * device_get_name(dev) is a good choice and for pseudo-devices a
2743 * static string works well.
2745 void
2746 if_initname(struct ifnet *ifp, const char *name, int unit)
2748 ifp->if_dname = name;
2749 ifp->if_dunit = unit;
2750 if (unit != IF_DUNIT_NONE)
2751 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2752 else
2753 strlcpy(ifp->if_xname, name, IFNAMSIZ);
2757 if_printf(struct ifnet *ifp, const char *fmt, ...)
2759 __va_list ap;
2760 int retval;
2762 retval = kprintf("%s: ", ifp->if_xname);
2763 __va_start(ap, fmt);
2764 retval += kvprintf(fmt, ap);
2765 __va_end(ap);
2766 return (retval);
2769 struct ifnet *
2770 if_alloc(uint8_t type)
2772 struct ifnet *ifp;
2773 size_t size;
2776 * XXX temporary hack until arpcom is setup in if_l2com
2778 if (type == IFT_ETHER)
2779 size = sizeof(struct arpcom);
2780 else
2781 size = sizeof(struct ifnet);
2783 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2785 ifp->if_type = type;
2787 if (if_com_alloc[type] != NULL) {
2788 ifp->if_l2com = if_com_alloc[type](type, ifp);
2789 if (ifp->if_l2com == NULL) {
2790 kfree(ifp, M_IFNET);
2791 return (NULL);
2794 return (ifp);
2797 void
2798 if_free(struct ifnet *ifp)
2800 kfree(ifp, M_IFNET);
2803 void
2804 ifq_set_classic(struct ifaltq *ifq)
2806 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2807 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2810 void
2811 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2812 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2814 int q;
2816 KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2817 KASSERT(enqueue != NULL, ("enqueue is not specified"));
2818 KASSERT(dequeue != NULL, ("dequeue is not specified"));
2819 KASSERT(request != NULL, ("request is not specified"));
2821 ifq->altq_mapsubq = mapsubq;
2822 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2823 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2825 ifsq->ifsq_enqueue = enqueue;
2826 ifsq->ifsq_dequeue = dequeue;
2827 ifsq->ifsq_request = request;
2831 static void
2832 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2834 m->m_nextpkt = NULL;
2835 if (ifsq->ifsq_norm_tail == NULL)
2836 ifsq->ifsq_norm_head = m;
2837 else
2838 ifsq->ifsq_norm_tail->m_nextpkt = m;
2839 ifsq->ifsq_norm_tail = m;
2840 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2843 static void
2844 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2846 m->m_nextpkt = NULL;
2847 if (ifsq->ifsq_prio_tail == NULL)
2848 ifsq->ifsq_prio_head = m;
2849 else
2850 ifsq->ifsq_prio_tail->m_nextpkt = m;
2851 ifsq->ifsq_prio_tail = m;
2852 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2853 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2856 static struct mbuf *
2857 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2859 struct mbuf *m;
2861 m = ifsq->ifsq_norm_head;
2862 if (m != NULL) {
2863 if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2864 ifsq->ifsq_norm_tail = NULL;
2865 m->m_nextpkt = NULL;
2866 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2868 return m;
2871 static struct mbuf *
2872 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2874 struct mbuf *m;
2876 m = ifsq->ifsq_prio_head;
2877 if (m != NULL) {
2878 if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2879 ifsq->ifsq_prio_tail = NULL;
2880 m->m_nextpkt = NULL;
2881 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2882 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2884 return m;
2888 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2889 struct altq_pktattr *pa __unused)
2891 M_ASSERTPKTHDR(m);
2892 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2893 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2894 if ((m->m_flags & M_PRIO) &&
2895 ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2896 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2897 struct mbuf *m_drop;
2900 * Perform drop-head on normal queue
2902 m_drop = ifsq_norm_dequeue(ifsq);
2903 if (m_drop != NULL) {
2904 m_freem(m_drop);
2905 ifsq_prio_enqueue(ifsq, m);
2906 return 0;
2908 /* XXX nothing could be dropped? */
2910 m_freem(m);
2911 return ENOBUFS;
2912 } else {
2913 if (m->m_flags & M_PRIO)
2914 ifsq_prio_enqueue(ifsq, m);
2915 else
2916 ifsq_norm_enqueue(ifsq, m);
2917 return 0;
2921 struct mbuf *
2922 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2924 struct mbuf *m;
2926 switch (op) {
2927 case ALTDQ_POLL:
2928 m = ifsq->ifsq_prio_head;
2929 if (m == NULL)
2930 m = ifsq->ifsq_norm_head;
2931 break;
2933 case ALTDQ_REMOVE:
2934 m = ifsq_prio_dequeue(ifsq);
2935 if (m == NULL)
2936 m = ifsq_norm_dequeue(ifsq);
2937 break;
2939 default:
2940 panic("unsupported ALTQ dequeue op: %d", op);
2942 return m;
2946 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2948 switch (req) {
2949 case ALTRQ_PURGE:
2950 for (;;) {
2951 struct mbuf *m;
2953 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2954 if (m == NULL)
2955 break;
2956 m_freem(m);
2958 break;
2960 default:
2961 panic("unsupported ALTQ request: %d", req);
2963 return 0;
2966 static void
2967 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2969 struct ifnet *ifp = ifsq_get_ifp(ifsq);
2970 int running = 0, need_sched;
2973 * Try to do direct ifnet.if_start on the subqueue first, if there is
2974 * contention on the subqueue hardware serializer, ifnet.if_start on
2975 * the subqueue will be scheduled on the subqueue owner CPU.
2977 if (!ifsq_tryserialize_hw(ifsq)) {
2979 * Subqueue hardware serializer contention happened,
2980 * ifnet.if_start on the subqueue is scheduled on
2981 * the subqueue owner CPU, and we keep going.
2983 ifsq_ifstart_schedule(ifsq, 1);
2984 return;
2987 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2988 ifp->if_start(ifp, ifsq);
2989 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2990 running = 1;
2992 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2994 ifsq_deserialize_hw(ifsq);
2996 if (need_sched) {
2998 * More data need to be transmitted, ifnet.if_start on the
2999 * subqueue is scheduled on the subqueue owner CPU, and we
3000 * keep going.
3001 * NOTE: ifnet.if_start subqueue interlock is not released.
3003 ifsq_ifstart_schedule(ifsq, force_sched);
3008 * Subqeue packets staging mechanism:
3010 * The packets enqueued into the subqueue are staged to a certain amount
3011 * before the ifnet.if_start on the subqueue is called. In this way, the
3012 * driver could avoid writing to hardware registers upon every packet,
3013 * instead, hardware registers could be written when certain amount of
3014 * packets are put onto hardware TX ring. The measurement on several modern
3015 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
3016 * registers writing aggregation could save ~20% CPU time when 18bytes UDP
3017 * datagrams are transmitted at 1.48Mpps. The performance improvement by
3018 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
3019 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
3021 * Subqueue packets staging is performed for two entry points into drivers'
3022 * transmission function:
3023 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3024 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3026 * Subqueue packets staging will be stopped upon any of the following
3027 * conditions:
3028 * - If the count of packets enqueued on the current CPU is great than or
3029 * equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3030 * - If the total length of packets enqueued on the current CPU is great
3031 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is
3032 * cut from the hardware's MTU mainly bacause a full TCP segment's size
3033 * is usually less than hardware's MTU.
3034 * - ifsq_ifstart_schedule() is not pending on the current CPU and
3035 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3036 * released.
3037 * - The if_start_rollup(), which is registered as low priority netisr
3038 * rollup function, is called; probably because no more work is pending
3039 * for netisr.
3041 * NOTE:
3042 * Currently subqueue packet staging is only performed in netisr threads.
3045 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3047 struct ifaltq *ifq = &ifp->if_snd;
3048 struct ifaltq_subque *ifsq;
3049 int error, start = 0, len, mcast = 0, avoid_start = 0;
3050 struct ifsubq_stage_head *head = NULL;
3051 struct ifsubq_stage *stage = NULL;
3052 struct globaldata *gd = mycpu;
3053 struct thread *td = gd->gd_curthread;
3055 crit_enter_quick(td);
3057 ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3058 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3060 len = m->m_pkthdr.len;
3061 if (m->m_flags & M_MCAST)
3062 mcast = 1;
3064 if (td->td_type == TD_TYPE_NETISR) {
3065 head = &ifsubq_stage_heads[mycpuid];
3066 stage = ifsq_get_stage(ifsq, mycpuid);
3068 stage->stg_cnt++;
3069 stage->stg_len += len;
3070 if (stage->stg_cnt < ifsq_stage_cntmax &&
3071 stage->stg_len < (ifp->if_mtu - max_protohdr))
3072 avoid_start = 1;
3075 ALTQ_SQ_LOCK(ifsq);
3076 error = ifsq_enqueue_locked(ifsq, m, pa);
3077 if (error) {
3078 if (!ifsq_data_ready(ifsq)) {
3079 ALTQ_SQ_UNLOCK(ifsq);
3080 crit_exit_quick(td);
3081 return error;
3083 avoid_start = 0;
3085 if (!ifsq_is_started(ifsq)) {
3086 if (avoid_start) {
3087 ALTQ_SQ_UNLOCK(ifsq);
3089 KKASSERT(!error);
3090 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3091 ifsq_stage_insert(head, stage);
3093 IFNET_STAT_INC(ifp, obytes, len);
3094 if (mcast)
3095 IFNET_STAT_INC(ifp, omcasts, 1);
3096 crit_exit_quick(td);
3097 return error;
3101 * Hold the subqueue interlock of ifnet.if_start
3103 ifsq_set_started(ifsq);
3104 start = 1;
3106 ALTQ_SQ_UNLOCK(ifsq);
3108 if (!error) {
3109 IFNET_STAT_INC(ifp, obytes, len);
3110 if (mcast)
3111 IFNET_STAT_INC(ifp, omcasts, 1);
3114 if (stage != NULL) {
3115 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3116 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3117 if (!avoid_start) {
3118 ifsq_stage_remove(head, stage);
3119 ifsq_ifstart_schedule(ifsq, 1);
3121 crit_exit_quick(td);
3122 return error;
3125 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3126 ifsq_stage_remove(head, stage);
3127 } else {
3128 stage->stg_cnt = 0;
3129 stage->stg_len = 0;
3133 if (!start) {
3134 crit_exit_quick(td);
3135 return error;
3138 ifsq_ifstart_try(ifsq, 0);
3140 crit_exit_quick(td);
3141 return error;
3144 void *
3145 ifa_create(int size)
3147 struct ifaddr *ifa;
3148 int i;
3150 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3152 ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3153 ifa->ifa_containers =
3154 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3155 M_IFADDR, M_INTWAIT | M_ZERO);
3157 ifa->ifa_ncnt = ncpus;
3158 for (i = 0; i < ncpus; ++i) {
3159 struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3161 ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3162 ifac->ifa = ifa;
3163 ifac->ifa_refcnt = 1;
3165 #ifdef IFADDR_DEBUG
3166 kprintf("alloc ifa %p %d\n", ifa, size);
3167 #endif
3168 return ifa;
3171 void
3172 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3174 struct ifaddr *ifa = ifac->ifa;
3176 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3177 KKASSERT(ifac->ifa_refcnt == 0);
3178 KASSERT(ifac->ifa_listmask == 0,
3179 ("ifa is still on %#x lists", ifac->ifa_listmask));
3181 ifac->ifa_magic = IFA_CONTAINER_DEAD;
3183 #ifdef IFADDR_DEBUG_VERBOSE
3184 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3185 #endif
3187 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3188 ("invalid # of ifac, %d", ifa->ifa_ncnt));
3189 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3190 #ifdef IFADDR_DEBUG
3191 kprintf("free ifa %p\n", ifa);
3192 #endif
3193 kfree(ifa->ifa_containers, M_IFADDR);
3194 kfree(ifa, M_IFADDR);
3198 static void
3199 ifa_iflink_dispatch(netmsg_t nmsg)
3201 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3202 struct ifaddr *ifa = msg->ifa;
3203 struct ifnet *ifp = msg->ifp;
3204 int cpu = mycpuid;
3205 struct ifaddr_container *ifac;
3207 crit_enter();
3209 ifac = &ifa->ifa_containers[cpu];
3210 ASSERT_IFAC_VALID(ifac);
3211 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3212 ("ifaddr is on if_addrheads"));
3214 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3215 if (msg->tail)
3216 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3217 else
3218 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3220 crit_exit();
3222 ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3225 void
3226 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3228 struct netmsg_ifaddr msg;
3230 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3231 0, ifa_iflink_dispatch);
3232 msg.ifa = ifa;
3233 msg.ifp = ifp;
3234 msg.tail = tail;
3236 ifa_domsg(&msg.base.lmsg, 0);
3239 static void
3240 ifa_ifunlink_dispatch(netmsg_t nmsg)
3242 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3243 struct ifaddr *ifa = msg->ifa;
3244 struct ifnet *ifp = msg->ifp;
3245 int cpu = mycpuid;
3246 struct ifaddr_container *ifac;
3248 crit_enter();
3250 ifac = &ifa->ifa_containers[cpu];
3251 ASSERT_IFAC_VALID(ifac);
3252 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3253 ("ifaddr is not on if_addrhead"));
3255 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3256 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3258 crit_exit();
3260 ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3263 void
3264 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3266 struct netmsg_ifaddr msg;
3268 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3269 0, ifa_ifunlink_dispatch);
3270 msg.ifa = ifa;
3271 msg.ifp = ifp;
3273 ifa_domsg(&msg.base.lmsg, 0);
3276 static void
3277 ifa_destroy_dispatch(netmsg_t nmsg)
3279 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3281 IFAFREE(msg->ifa);
3282 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3285 void
3286 ifa_destroy(struct ifaddr *ifa)
3288 struct netmsg_ifaddr msg;
3290 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3291 0, ifa_destroy_dispatch);
3292 msg.ifa = ifa;
3294 ifa_domsg(&msg.base.lmsg, 0);
3297 struct lwkt_port *
3298 ifnet_portfn(int cpu)
3300 return &ifnet_threads[cpu].td_msgport;
3303 void
3304 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3306 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3308 if (next_cpu < ncpus)
3309 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3310 else
3311 lwkt_replymsg(lmsg, 0);
3315 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3317 KKASSERT(cpu < ncpus);
3318 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3321 void
3322 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3324 KKASSERT(cpu < ncpus);
3325 lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3329 * Generic netmsg service loop. Some protocols may roll their own but all
3330 * must do the basic command dispatch function call done here.
3332 static void
3333 ifnet_service_loop(void *arg __unused)
3335 netmsg_t msg;
3337 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3338 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3339 msg->base.nm_dispatch(msg);
3343 static void
3344 if_start_rollup(void)
3346 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3347 struct ifsubq_stage *stage;
3349 crit_enter();
3351 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3352 struct ifaltq_subque *ifsq = stage->stg_subq;
3353 int is_sched = 0;
3355 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3356 is_sched = 1;
3357 ifsq_stage_remove(head, stage);
3359 if (is_sched) {
3360 ifsq_ifstart_schedule(ifsq, 1);
3361 } else {
3362 int start = 0;
3364 ALTQ_SQ_LOCK(ifsq);
3365 if (!ifsq_is_started(ifsq)) {
3367 * Hold the subqueue interlock of
3368 * ifnet.if_start
3370 ifsq_set_started(ifsq);
3371 start = 1;
3373 ALTQ_SQ_UNLOCK(ifsq);
3375 if (start)
3376 ifsq_ifstart_try(ifsq, 1);
3378 KKASSERT((stage->stg_flags &
3379 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3382 crit_exit();
3385 static void
3386 ifnetinit(void *dummy __unused)
3388 int i;
3390 for (i = 0; i < ncpus; ++i) {
3391 struct thread *thr = &ifnet_threads[i];
3393 lwkt_create(ifnet_service_loop, NULL, NULL,
3394 thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3395 i, "ifnet %d", i);
3396 netmsg_service_port_init(&thr->td_msgport);
3397 lwkt_schedule(thr);
3400 for (i = 0; i < ncpus; ++i)
3401 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3402 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3405 void
3406 if_register_com_alloc(u_char type,
3407 if_com_alloc_t *a, if_com_free_t *f)
3410 KASSERT(if_com_alloc[type] == NULL,
3411 ("if_register_com_alloc: %d already registered", type));
3412 KASSERT(if_com_free[type] == NULL,
3413 ("if_register_com_alloc: %d free already registered", type));
3415 if_com_alloc[type] = a;
3416 if_com_free[type] = f;
3419 void
3420 if_deregister_com_alloc(u_char type)
3423 KASSERT(if_com_alloc[type] != NULL,
3424 ("if_deregister_com_alloc: %d not registered", type));
3425 KASSERT(if_com_free[type] != NULL,
3426 ("if_deregister_com_alloc: %d free not registered", type));
3427 if_com_alloc[type] = NULL;
3428 if_com_free[type] = NULL;
3432 if_ring_count2(int cnt, int cnt_max)
3434 int shift = 0;
3436 KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3437 ("invalid ring count max %d", cnt_max));
3439 if (cnt <= 0)
3440 cnt = cnt_max;
3441 if (cnt > ncpus2)
3442 cnt = ncpus2;
3443 if (cnt > cnt_max)
3444 cnt = cnt_max;
3446 while ((1 << (shift + 1)) <= cnt)
3447 ++shift;
3448 cnt = 1 << shift;
3450 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3451 ("calculate cnt %d, ncpus2 %d, cnt max %d",
3452 cnt, ncpus2, cnt_max));
3453 return cnt;
3456 void
3457 ifq_set_maxlen(struct ifaltq *ifq, int len)
3459 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3463 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3465 return ALTQ_SUBQ_INDEX_DEFAULT;
3469 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3471 return (cpuid & ifq->altq_subq_mask);
3474 static void
3475 ifsq_watchdog(void *arg)
3477 struct ifsubq_watchdog *wd = arg;
3478 struct ifnet *ifp;
3480 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3481 goto done;
3483 ifp = ifsq_get_ifp(wd->wd_subq);
3484 if (ifnet_tryserialize_all(ifp)) {
3485 wd->wd_watchdog(wd->wd_subq);
3486 ifnet_deserialize_all(ifp);
3487 } else {
3488 /* try again next timeout */
3489 wd->wd_timer = 1;
3491 done:
3492 ifsq_watchdog_reset(wd);
3495 static void
3496 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3498 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3499 ifsq_get_cpuid(wd->wd_subq));
3502 void
3503 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3504 ifsq_watchdog_t watchdog)
3506 callout_init_mp(&wd->wd_callout);
3507 wd->wd_timer = 0;
3508 wd->wd_subq = ifsq;
3509 wd->wd_watchdog = watchdog;
3512 void
3513 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3515 wd->wd_timer = 0;
3516 ifsq_watchdog_reset(wd);
3519 void
3520 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3522 wd->wd_timer = 0;
3523 callout_stop(&wd->wd_callout);
3526 void
3527 ifnet_lock(void)
3529 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3530 ("try holding ifnet lock in netisr"));
3531 mtx_lock(&ifnet_mtx);
3534 void
3535 ifnet_unlock(void)
3537 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3538 ("try holding ifnet lock in netisr"));
3539 mtx_unlock(&ifnet_mtx);
3542 static struct ifnet_array *
3543 ifnet_array_alloc(int count)
3545 struct ifnet_array *arr;
3547 arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3548 M_IFNET, M_WAITOK);
3549 arr->ifnet_count = count;
3551 return arr;
3554 static void
3555 ifnet_array_free(struct ifnet_array *arr)
3557 if (arr == &ifnet_array0)
3558 return;
3559 kfree(arr, M_IFNET);
3562 static struct ifnet_array *
3563 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3565 struct ifnet_array *arr;
3566 int count, i;
3568 KASSERT(old_arr->ifnet_count >= 0,
3569 ("invalid ifnet array count %d", old_arr->ifnet_count));
3570 count = old_arr->ifnet_count + 1;
3571 arr = ifnet_array_alloc(count);
3574 * Save the old ifnet array and append this ifp to the end of
3575 * the new ifnet array.
3577 for (i = 0; i < old_arr->ifnet_count; ++i) {
3578 KASSERT(old_arr->ifnet_arr[i] != ifp,
3579 ("%s is already in ifnet array", ifp->if_xname));
3580 arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3582 KASSERT(i == count - 1,
3583 ("add %s, ifnet array index mismatch, should be %d, but got %d",
3584 ifp->if_xname, count - 1, i));
3585 arr->ifnet_arr[i] = ifp;
3587 return arr;
3590 static struct ifnet_array *
3591 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3593 struct ifnet_array *arr;
3594 int count, i, idx, found = 0;
3596 KASSERT(old_arr->ifnet_count > 0,
3597 ("invalid ifnet array count %d", old_arr->ifnet_count));
3598 count = old_arr->ifnet_count - 1;
3599 arr = ifnet_array_alloc(count);
3602 * Save the old ifnet array, but skip this ifp.
3604 idx = 0;
3605 for (i = 0; i < old_arr->ifnet_count; ++i) {
3606 if (old_arr->ifnet_arr[i] == ifp) {
3607 KASSERT(!found,
3608 ("dup %s is in ifnet array", ifp->if_xname));
3609 found = 1;
3610 continue;
3612 KASSERT(idx < count,
3613 ("invalid ifnet array index %d, count %d", idx, count));
3614 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3615 ++idx;
3617 KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3618 KASSERT(idx == count,
3619 ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3620 ifp->if_xname, count, idx));
3622 return arr;
3625 const struct ifnet_array *
3626 ifnet_array_get(void)
3628 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3629 return ifnet_array;
3633 ifnet_array_isempty(void)
3635 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3636 if (ifnet_array->ifnet_count == 0)
3637 return 1;
3638 else
3639 return 0;
3642 void
3643 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3645 struct ifaddr *ifa;
3647 memset(mark, 0, sizeof(*mark));
3648 ifa = &mark->ifa;
3650 mark->ifac.ifa = ifa;
3652 ifa->ifa_addr = &mark->addr;
3653 ifa->ifa_dstaddr = &mark->dstaddr;
3654 ifa->ifa_netmask = &mark->netmask;
3655 ifa->ifa_ifp = ifp;