hammer - Adjust hammer to new breadnx / cluster_readx API
[dragonfly.git] / contrib / mpfr / src / sin_cos.c
blob8ee95e934de87b598bbd9dc836933d6e17fbd661
1 /* mpfr_sin_cos -- sine and cosine of a floating-point number
3 Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact
27 ie, iff x = 0 */
28 int
29 mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
31 mpfr_prec_t prec, m;
32 int neg, reduce;
33 mpfr_t c, xr;
34 mpfr_srcptr xx;
35 mpfr_exp_t err, expx;
36 int inexy, inexz;
37 MPFR_ZIV_DECL (loop);
38 MPFR_SAVE_EXPO_DECL (expo);
40 MPFR_ASSERTN (y != z);
42 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
44 if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
46 MPFR_SET_NAN (y);
47 MPFR_SET_NAN (z);
48 MPFR_RET_NAN;
50 else /* x is zero */
52 MPFR_ASSERTD (MPFR_IS_ZERO (x));
53 MPFR_SET_ZERO (y);
54 MPFR_SET_SAME_SIGN (y, x);
55 /* y = 0, thus exact, but z is inexact in case of underflow
56 or overflow */
57 inexy = 0; /* y is exact */
58 inexz = mpfr_set_ui (z, 1, rnd_mode);
59 return INEX(inexy,inexz);
63 MPFR_LOG_FUNC
64 (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
65 ("sin[%Pu]=%.*Rg cos[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y,
66 mpfr_get_prec (z), mpfr_log_prec, z));
68 MPFR_SAVE_EXPO_MARK (expo);
70 prec = MAX (MPFR_PREC (y), MPFR_PREC (z));
71 m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13;
72 expx = MPFR_GET_EXP (x);
74 /* When x is close to 0, say 2^(-k), then there is a cancellation of about
75 2k bits in 1-cos(x)^2. FIXME: in that case, it would be more efficient
76 to compute sin(x) directly. VL: This is partly done by using
77 MPFR_FAST_COMPUTE_IF_SMALL_INPUT from the mpfr_sin and mpfr_cos
78 functions. Moreover, any overflow on m is avoided. */
79 if (expx < 0)
81 /* Warning: in case y = x, and the first call to
82 MPFR_FAST_COMPUTE_IF_SMALL_INPUT succeeds but the second fails,
83 we will have clobbered the original value of x.
84 The workaround is to first compute z = cos(x) in that case, since
85 y and z are different. */
86 if (y != x)
87 /* y and x differ, thus we can safely try to compute y first */
89 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
90 y, x, -2 * expx, 2, 0, rnd_mode,
91 { inexy = _inexact;
92 goto small_input; });
93 if (0)
95 small_input:
96 /* we can go here only if we can round sin(x) */
97 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
98 z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
99 { inexz = _inexact;
100 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
101 goto end; });
104 /* if we go here, one of the two MPFR_FAST_COMPUTE_IF_SMALL_INPUT
105 calls failed */
107 else /* y and x are the same variable: try to compute z first, which
108 necessarily differs */
110 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
111 z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
112 { inexz = _inexact;
113 goto small_input2; });
114 if (0)
116 small_input2:
117 /* we can go here only if we can round cos(x) */
118 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
119 y, x, -2 * expx, 2, 0, rnd_mode,
120 { inexy = _inexact;
121 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
122 goto end; });
125 m += 2 * (-expx);
128 if (prec >= MPFR_SINCOS_THRESHOLD)
130 MPFR_SAVE_EXPO_FREE (expo);
131 return mpfr_sincos_fast (y, z, x, rnd_mode);
134 mpfr_init (c);
135 mpfr_init (xr);
137 MPFR_ZIV_INIT (loop, m);
138 for (;;)
140 /* the following is copied from sin.c */
141 if (expx >= 2) /* reduce the argument */
143 reduce = 1;
144 mpfr_set_prec (c, expx + m - 1);
145 mpfr_set_prec (xr, m);
146 mpfr_const_pi (c, MPFR_RNDN);
147 mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
148 mpfr_remainder (xr, x, c, MPFR_RNDN);
149 mpfr_div_2ui (c, c, 1, MPFR_RNDN);
150 if (MPFR_SIGN (xr) > 0)
151 mpfr_sub (c, c, xr, MPFR_RNDZ);
152 else
153 mpfr_add (c, c, xr, MPFR_RNDZ);
154 if (MPFR_IS_ZERO(xr)
155 || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
156 || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
157 goto next_step;
158 xx = xr;
160 else /* the input argument is already reduced */
162 reduce = 0;
163 xx = x;
166 neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */
167 mpfr_set_prec (c, m);
168 mpfr_cos (c, xx, MPFR_RNDZ);
169 /* If no argument reduction was performed, the error is at most ulp(c),
170 otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have
171 ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later
172 case. */
173 if (reduce == 0)
174 err = m;
175 else
176 err = MPFR_GET_EXP (c) + (mpfr_exp_t) (m - 3);
177 if (!mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
178 MPFR_PREC (z) + (rnd_mode == MPFR_RNDN)))
179 goto next_step;
181 /* we can't set z now, because in case z = x, and the mpfr_can_round()
182 call below fails, we will have clobbered the input */
183 mpfr_set_prec (xr, MPFR_PREC(c));
184 mpfr_swap (xr, c); /* save the approximation of the cosine in xr */
185 mpfr_sqr (c, xr, MPFR_RNDU); /* the absolute error is bounded by
186 2^(5-m) if reduce=1, and by 2^(2-m)
187 otherwise */
188 mpfr_ui_sub (c, 1, c, MPFR_RNDN); /* error bounded by 2^(6-m) if reduce
189 is 1, and 2^(3-m) otherwise */
190 mpfr_sqrt (c, c, MPFR_RNDN); /* the absolute error is bounded by
191 2^(6-m-Exp(c)) if reduce=1, and
192 2^(3-m-Exp(c)) otherwise */
193 err = 3 + 3 * reduce - MPFR_GET_EXP (c);
194 if (neg)
195 MPFR_CHANGE_SIGN (c);
197 /* the absolute error on c is at most 2^(err-m), which we must put
198 in the form 2^(EXP(c)-err). */
199 err = MPFR_GET_EXP (c) + (mpfr_exp_t) m - err;
200 if (mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
201 MPFR_PREC (y) + (rnd_mode == MPFR_RNDN)))
202 break;
203 /* check for huge cancellation */
204 if (err < (mpfr_exp_t) MPFR_PREC (y))
205 m += MPFR_PREC (y) - err;
206 /* Check if near 1 */
207 if (MPFR_GET_EXP (c) == 1
208 && MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT)
209 m += m;
211 next_step:
212 MPFR_ZIV_NEXT (loop, m);
213 mpfr_set_prec (c, m);
215 MPFR_ZIV_FREE (loop);
217 inexy = mpfr_set (y, c, rnd_mode);
218 inexz = mpfr_set (z, xr, rnd_mode);
220 mpfr_clear (c);
221 mpfr_clear (xr);
223 end:
224 MPFR_SAVE_EXPO_FREE (expo);
225 /* FIXME: add a test for bug before revision 7355 */
226 inexy = mpfr_check_range (y, inexy, rnd_mode);
227 inexz = mpfr_check_range (z, inexz, rnd_mode);
228 MPFR_RET (INEX(inexy,inexz));
231 /*************** asymptotically fast implementation below ********************/
233 /* truncate Q from R to at most prec bits.
234 Return the number of truncated bits.
236 static mpfr_prec_t
237 reduce (mpz_t Q, mpz_srcptr R, mpfr_prec_t prec)
239 mpfr_prec_t l = mpz_sizeinbase (R, 2);
241 l = (l > prec) ? l - prec : 0;
242 mpz_fdiv_q_2exp (Q, R, l);
243 return l;
246 /* truncate S and C so that the smaller has prec bits.
247 Return the number of truncated bits.
249 static unsigned long
250 reduce2 (mpz_t S, mpz_t C, mpfr_prec_t prec)
252 unsigned long ls = mpz_sizeinbase (S, 2);
253 unsigned long lc = mpz_sizeinbase (C, 2);
254 unsigned long l;
256 l = (ls < lc) ? ls : lc; /* smaller length */
257 l = (l > prec) ? l - prec : 0;
258 mpz_fdiv_q_2exp (S, S, l);
259 mpz_fdiv_q_2exp (C, C, l);
260 return l;
263 /* return in S0/Q0 a rational approximation of sin(X) with absolute error
264 bounded by 9*2^(-prec), where 0 <= X=p/2^r <= 1/2,
265 and in C0/Q0 a rational approximation of cos(X), with relative error
266 bounded by 9*2^(-prec) (and also absolute error, since
267 |cos(X)| <= 1).
268 We have sin(X)/X = sum((-1)^i*(p/2^r)^i/(2i+1)!, i=0..infinity).
269 We use the following binary splitting formula:
270 P(a,b) = (-p)^(b-a)
271 Q(a,b) = (2a)*(2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
272 T(a,b) = 1 if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise.
274 Since we use P(a,b) for b-a=2^k only, we compute only p^(2^k).
275 We do not store the factor 2^r in Q().
277 Then sin(X)/X ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.
279 Return l such that Q0 has to be multiplied by 2^l.
281 Assumes prec >= 10.
283 static unsigned long
284 sin_bs_aux (mpz_t Q0, mpz_t S0, mpz_t C0, mpz_srcptr p, mpfr_prec_t r,
285 mpfr_prec_t prec)
287 mpz_t T[GMP_NUMB_BITS], Q[GMP_NUMB_BITS], ptoj[GMP_NUMB_BITS], pp;
288 mpfr_prec_t log2_nb_terms[GMP_NUMB_BITS], mult[GMP_NUMB_BITS];
289 mpfr_prec_t accu[GMP_NUMB_BITS], size_ptoj[GMP_NUMB_BITS];
290 mpfr_prec_t prec_i_have, r0 = r;
291 unsigned long alloc, i, j, k;
292 mpfr_prec_t l;
294 if (MPFR_UNLIKELY(mpz_cmp_ui (p, 0) == 0)) /* sin(x)/x -> 1 */
296 mpz_set_ui (Q0, 1);
297 mpz_set_ui (S0, 1);
298 mpz_set_ui (C0, 1);
299 return 0;
302 /* check that X=p/2^r <= 1/2 */
303 MPFR_ASSERTN(mpz_sizeinbase (p, 2) - (mpfr_exp_t) r <= -1);
305 mpz_init (pp);
307 /* normalize p (non-zero here) */
308 l = mpz_scan1 (p, 0);
309 mpz_fdiv_q_2exp (pp, p, l); /* p = pp * 2^l */
310 mpz_mul (pp, pp, pp);
311 r = 2 * (r - l); /* x^2 = (p/2^r0)^2 = pp / 2^r */
313 /* now p is odd */
314 alloc = 2;
315 mpz_init_set_ui (T[0], 6);
316 mpz_init_set_ui (Q[0], 6);
317 mpz_init_set (ptoj[0], pp); /* ptoj[i] = pp^(2^i) */
318 mpz_init (T[1]);
319 mpz_init (Q[1]);
320 mpz_init (ptoj[1]);
321 mpz_mul (ptoj[1], pp, pp); /* ptoj[1] = pp^2 */
322 size_ptoj[1] = mpz_sizeinbase (ptoj[1], 2);
324 mpz_mul_2exp (T[0], T[0], r);
325 mpz_sub (T[0], T[0], pp); /* 6*2^r - pp = 6*2^r*(1 - x^2/6) */
326 log2_nb_terms[0] = 1;
328 /* already take into account the factor x=p/2^r in sin(x) = x * (...) */
329 mult[0] = r - mpz_sizeinbase (pp, 2) + r0 - mpz_sizeinbase (p, 2);
330 /* we have x^3 < 1/2^mult[0] */
332 for (i = 2, k = 0, prec_i_have = mult[0]; prec_i_have < prec; i += 2)
334 /* i is even here */
335 /* invariant: Q[0]*Q[1]*...*Q[k] equals (2i-1)!,
336 we have already summed terms of index < i
337 in S[0]/Q[0], ..., S[k]/Q[k] */
338 k ++;
339 if (k + 1 >= alloc) /* necessarily k + 1 = alloc */
341 alloc ++;
342 mpz_init (T[k+1]);
343 mpz_init (Q[k+1]);
344 mpz_init (ptoj[k+1]);
345 mpz_mul (ptoj[k+1], ptoj[k], ptoj[k]); /* pp^(2^(k+1)) */
346 size_ptoj[k+1] = mpz_sizeinbase (ptoj[k+1], 2);
348 /* for i even, we have Q[k] = (2*i)*(2*i+1), T[k] = 1,
349 then Q[k+1] = (2*i+2)*(2*i+3), T[k+1] = 1,
350 which reduces to T[k] = (2*i+2)*(2*i+3)*2^r-pp,
351 Q[k] = (2*i)*(2*i+1)*(2*i+2)*(2*i+3). */
352 log2_nb_terms[k] = 1;
353 mpz_set_ui (Q[k], (2 * i + 2) * (2 * i + 3));
354 mpz_mul_2exp (T[k], Q[k], r);
355 mpz_sub (T[k], T[k], pp);
356 mpz_mul_ui (Q[k], Q[k], (2 * i) * (2 * i + 1));
357 /* the next term of the series is divided by Q[k] and multiplied
358 by pp^2/2^(2r), thus the mult. factor < 1/2^mult[k] */
359 mult[k] = mpz_sizeinbase (Q[k], 2) + 2 * r - size_ptoj[1] - 1;
360 /* the absolute contribution of the next term is 1/2^accu[k] */
361 accu[k] = (k == 0) ? mult[k] : mult[k] + accu[k-1];
362 prec_i_have = accu[k]; /* the current term is < 1/2^accu[k] */
363 j = (i + 2) / 2;
364 l = 1;
365 while ((j & 1) == 0) /* combine and reduce */
367 mpz_mul (T[k], T[k], ptoj[l]);
368 mpz_mul (T[k-1], T[k-1], Q[k]);
369 mpz_mul_2exp (T[k-1], T[k-1], r << l);
370 mpz_add (T[k-1], T[k-1], T[k]);
371 mpz_mul (Q[k-1], Q[k-1], Q[k]);
372 log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
373 is a power of 2 by construction */
374 prec_i_have = mpz_sizeinbase (Q[k], 2);
375 mult[k-1] += prec_i_have + (r << l) - size_ptoj[l] - 1;
376 accu[k-1] = (k == 1) ? mult[k-1] : mult[k-1] + accu[k-2];
377 prec_i_have = accu[k-1];
378 l ++;
379 j >>= 1;
380 k --;
384 /* accumulate all products in T[0] and Q[0]. Warning: contrary to above,
385 here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
386 l = 0; /* number of accumulated terms in the right part T[k]/Q[k] */
387 while (k > 0)
389 j = log2_nb_terms[k-1];
390 mpz_mul (T[k], T[k], ptoj[j]);
391 mpz_mul (T[k-1], T[k-1], Q[k]);
392 l += 1 << log2_nb_terms[k];
393 mpz_mul_2exp (T[k-1], T[k-1], r * l);
394 mpz_add (T[k-1], T[k-1], T[k]);
395 mpz_mul (Q[k-1], Q[k-1], Q[k]);
396 k--;
399 l = r0 + r * (i - 1); /* implicit multiplier 2^r for Q0 */
400 /* at this point T[0]/(2^l*Q[0]) is an approximation of sin(x) where the 1st
401 neglected term has contribution < 1/2^prec, thus since the series has
402 alternate signs, the error is < 1/2^prec */
404 /* we truncate Q0 to prec bits: the relative error is at most 2^(1-prec),
405 which means that Q0 = Q[0] * (1+theta) with |theta| <= 2^(1-prec)
406 [up to a power of two] */
407 l += reduce (Q0, Q[0], prec);
408 l -= reduce (T[0], T[0], prec);
409 /* multiply by x = p/2^l */
410 mpz_mul (S0, T[0], p);
411 l -= reduce (S0, S0, prec); /* S0 = T[0] * (1 + theta)^2 up to power of 2 */
412 /* sin(X) ~ S0/Q0*(1 + theta)^3 + err with |theta| <= 2^(1-prec) and
413 |err| <= 2^(-prec), thus since |S0/Q0| <= 1:
414 |sin(X) - S0/Q0| <= 4*|theta*S0/Q0| + |err| <= 9*2^(-prec) */
416 mpz_clear (pp);
417 for (j = 0; j < alloc; j ++)
419 mpz_clear (T[j]);
420 mpz_clear (Q[j]);
421 mpz_clear (ptoj[j]);
424 /* compute cos(X) from sin(X): sqrt(1-(S/Q)^2) = sqrt(Q^2-S^2)/Q
425 = sqrt(Q0^2*2^(2l)-S0^2)/Q0.
426 Write S/Q = sin(X) + eps with |eps| <= 9*2^(-prec),
427 then sqrt(Q^2-S^2) = sqrt(Q^2-Q^2*(sin(X)+eps)^2)
428 = sqrt(Q^2*cos(X)^2-Q^2*(2*sin(X)*eps+eps^2))
429 = sqrt(Q^2*cos(X)^2-Q^2*eps1) with |eps1|<=9*2^(-prec)
430 [using X<=1/2 and eps<=9*2^(-prec) and prec>=10]
432 Since we truncate the square root, we get:
433 sqrt(Q^2*cos(X)^2-Q^2*eps1)+eps2 with |eps2|<1
434 = Q*sqrt(cos(X)^2-eps1)+eps2
435 = Q*cos(X)*(1+eps3)+eps2 with |eps3| <= 6*2^(-prec)
436 = Q*cos(X)*(1+eps3+eps2/(Q*cos(X)))
437 = Q*cos(X)*(1+eps4) with |eps4| <= 9*2^(-prec)
438 since |Q| >= 2^(prec-1) */
439 /* we assume that Q0*2^l >= 2^(prec-1) */
440 MPFR_ASSERTN(l + mpz_sizeinbase (Q0, 2) >= prec);
441 mpz_mul (C0, Q0, Q0);
442 mpz_mul_2exp (C0, C0, 2 * l);
443 mpz_submul (C0, S0, S0);
444 mpz_sqrt (C0, C0);
446 return l;
449 /* Put in s and c approximations of sin(x) and cos(x) respectively.
450 Assumes 0 < x < Pi/4 and PREC(s) = PREC(c) >= 10.
451 Return err such that the relative error is bounded by 2^err ulps.
453 static int
454 sincos_aux (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
456 mpfr_prec_t prec_s, sh;
457 mpz_t Q, S, C, Q2, S2, C2, y;
458 mpfr_t x2;
459 unsigned long l, l2, j, err;
461 MPFR_ASSERTD(MPFR_PREC(s) == MPFR_PREC(c));
463 prec_s = MPFR_PREC(s);
465 mpfr_init2 (x2, MPFR_PREC(x));
466 mpz_init (Q);
467 mpz_init (S);
468 mpz_init (C);
469 mpz_init (Q2);
470 mpz_init (S2);
471 mpz_init (C2);
472 mpz_init (y);
474 mpfr_set (x2, x, MPFR_RNDN); /* exact */
475 mpz_set_ui (Q, 1);
476 l = 0;
477 mpz_set_ui (S, 0); /* sin(0) = S/(2^l*Q), exact */
478 mpz_set_ui (C, 1); /* cos(0) = C/(2^l*Q), exact */
480 /* Invariant: x = X + x2/2^(sh-1), where the part X was already treated,
481 S/(2^l*Q) ~ sin(X), C/(2^l*Q) ~ cos(X), and x2/2^(sh-1) < Pi/4.
482 'sh-1' is the number of already shifted bits in x2.
485 for (sh = 1, j = 0; mpfr_cmp_ui (x2, 0) != 0 && sh <= prec_s; sh <<= 1, j++)
487 if (sh > prec_s / 2) /* sin(x) = x + O(x^3), cos(x) = 1 + O(x^2) */
489 l2 = -mpfr_get_z_2exp (S2, x2); /* S2/2^l2 = x2 */
490 l2 += sh - 1;
491 mpz_set_ui (Q2, 1);
492 mpz_set_ui (C2, 1);
493 mpz_mul_2exp (C2, C2, l2);
494 mpfr_set_ui (x2, 0, MPFR_RNDN);
496 else
498 /* y <- trunc(x2 * 2^sh) = trunc(x * 2^(2*sh-1)) */
499 mpfr_mul_2exp (x2, x2, sh, MPFR_RNDN); /* exact */
500 mpfr_get_z (y, x2, MPFR_RNDZ); /* round towards zero: now
501 0 <= x2 < 2^sh, thus
502 0 <= x2/2^(sh-1) < 2^(1-sh) */
503 if (mpz_cmp_ui (y, 0) == 0)
504 continue;
505 mpfr_sub_z (x2, x2, y, MPFR_RNDN); /* should be exact */
506 l2 = sin_bs_aux (Q2, S2, C2, y, 2 * sh - 1, prec_s);
507 /* we now have |S2/Q2/2^l2 - sin(X)| <= 9*2^(prec_s)
508 and |C2/Q2/2^l2 - cos(X)| <= 6*2^(prec_s), with X=y/2^(2sh-1) */
510 if (sh == 1) /* S=0, C=1 */
512 l = l2;
513 mpz_swap (Q, Q2);
514 mpz_swap (S, S2);
515 mpz_swap (C, C2);
517 else
519 /* s <- s*c2+c*s2, c <- c*c2-s*s2, using Karatsuba:
520 a = s+c, b = s2+c2, t = a*b, d = s*s2, e = c*c2,
521 s <- t - d - e, c <- e - d */
522 mpz_add (y, S, C); /* a */
523 mpz_mul (C, C, C2); /* e */
524 mpz_add (C2, C2, S2); /* b */
525 mpz_mul (S2, S, S2); /* d */
526 mpz_mul (y, y, C2); /* a*b */
527 mpz_sub (S, y, S2); /* t - d */
528 mpz_sub (S, S, C); /* t - d - e */
529 mpz_sub (C, C, S2); /* e - d */
530 mpz_mul (Q, Q, Q2);
531 /* after j loops, the error is <= (11j-2)*2^(prec_s) */
532 l += l2;
533 /* reduce Q to prec_s bits */
534 l += reduce (Q, Q, prec_s);
535 /* reduce S,C to prec_s bits, error <= 11*j*2^(prec_s) */
536 l -= reduce2 (S, C, prec_s);
540 j = 11 * j;
541 for (err = 0; j > 1; j = (j + 1) / 2, err ++);
543 mpfr_set_z (s, S, MPFR_RNDN);
544 mpfr_div_z (s, s, Q, MPFR_RNDN);
545 mpfr_div_2exp (s, s, l, MPFR_RNDN);
547 mpfr_set_z (c, C, MPFR_RNDN);
548 mpfr_div_z (c, c, Q, MPFR_RNDN);
549 mpfr_div_2exp (c, c, l, MPFR_RNDN);
551 mpz_clear (Q);
552 mpz_clear (S);
553 mpz_clear (C);
554 mpz_clear (Q2);
555 mpz_clear (S2);
556 mpz_clear (C2);
557 mpz_clear (y);
558 mpfr_clear (x2);
559 return err;
562 /* Assumes x is neither NaN, +/-Inf, nor +/- 0.
563 One of s and c might be NULL, in which case the corresponding value is
564 not computed.
565 Assumes s differs from c.
568 mpfr_sincos_fast (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd)
570 int inexs, inexc;
571 mpfr_t x_red, ts, tc;
572 mpfr_prec_t w;
573 mpfr_exp_t err, errs, errc;
574 MPFR_ZIV_DECL (loop);
576 MPFR_ASSERTN(s != c);
577 if (s == NULL)
578 w = MPFR_PREC(c);
579 else if (c == NULL)
580 w = MPFR_PREC(s);
581 else
582 w = MPFR_PREC(s) >= MPFR_PREC(c) ? MPFR_PREC(s) : MPFR_PREC(c);
583 w += MPFR_INT_CEIL_LOG2(w) + 9; /* ensures w >= 10 (needed by sincos_aux) */
584 mpfr_init2 (ts, w);
585 mpfr_init2 (tc, w);
587 MPFR_ZIV_INIT (loop, w);
588 for (;;)
590 /* if 0 < x <= Pi/4, we can call sincos_aux directly */
591 if (MPFR_IS_POS(x) && mpfr_cmp_ui_2exp (x, 1686629713, -31) <= 0)
593 err = sincos_aux (ts, tc, x, MPFR_RNDN);
595 /* if -Pi/4 <= x < 0, use sin(-x)=-sin(x) */
596 else if (MPFR_IS_NEG(x) && mpfr_cmp_si_2exp (x, -1686629713, -31) >= 0)
598 mpfr_init2 (x_red, MPFR_PREC(x));
599 mpfr_neg (x_red, x, rnd); /* exact */
600 err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
601 mpfr_neg (ts, ts, MPFR_RNDN);
602 mpfr_clear (x_red);
604 else /* argument reduction is needed */
606 long q;
607 mpfr_t pi;
608 int neg = 0;
610 mpfr_init2 (x_red, w);
611 mpfr_init2 (pi, (MPFR_EXP(x) > 0) ? w + MPFR_EXP(x) : w);
612 mpfr_const_pi (pi, MPFR_RNDN);
613 mpfr_div_2exp (pi, pi, 1, MPFR_RNDN); /* Pi/2 */
614 mpfr_remquo (x_red, &q, x, pi, MPFR_RNDN);
615 /* x = q * (Pi/2 + eps1) + x_red + eps2,
616 where |eps1| <= 1/2*ulp(Pi/2) = 2^(-w-MAX(0,EXP(x))),
617 and eps2 <= 1/2*ulp(x_red) <= 1/2*ulp(Pi/2) = 2^(-w)
618 Since |q| <= x/(Pi/2) <= |x|, we have
619 q*|eps1| <= 2^(-w), thus
620 |x - q * Pi/2 - x_red| <= 2^(1-w) */
621 /* now -Pi/4 <= x_red <= Pi/4: if x_red < 0, consider -x_red */
622 if (MPFR_IS_NEG(x_red))
624 mpfr_neg (x_red, x_red, MPFR_RNDN);
625 neg = 1;
627 err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
628 err ++; /* to take into account the argument reduction */
629 if (neg) /* sin(-x) = -sin(x), cos(-x) = cos(x) */
630 mpfr_neg (ts, ts, MPFR_RNDN);
631 if (q & 2) /* sin(x+Pi) = -sin(x), cos(x+Pi) = -cos(x) */
633 mpfr_neg (ts, ts, MPFR_RNDN);
634 mpfr_neg (tc, tc, MPFR_RNDN);
636 if (q & 1) /* sin(x+Pi/2) = cos(x), cos(x+Pi/2) = -sin(x) */
638 mpfr_neg (ts, ts, MPFR_RNDN);
639 mpfr_swap (ts, tc);
641 mpfr_clear (x_red);
642 mpfr_clear (pi);
644 /* adjust errors with respect to absolute values */
645 errs = err - MPFR_EXP(ts);
646 errc = err - MPFR_EXP(tc);
647 if ((s == NULL || MPFR_CAN_ROUND (ts, w - errs, MPFR_PREC(s), rnd)) &&
648 (c == NULL || MPFR_CAN_ROUND (tc, w - errc, MPFR_PREC(c), rnd)))
649 break;
650 MPFR_ZIV_NEXT (loop, w);
651 mpfr_set_prec (ts, w);
652 mpfr_set_prec (tc, w);
654 MPFR_ZIV_FREE (loop);
656 inexs = (s == NULL) ? 0 : mpfr_set (s, ts, rnd);
657 inexc = (c == NULL) ? 0 : mpfr_set (c, tc, rnd);
659 mpfr_clear (ts);
660 mpfr_clear (tc);
661 return INEX(inexs,inexc);