taskq - Fix SMP panic due to incorrect lwkt_setpri() call.
[dragonfly.git] / contrib / mpfr / mpn_exp.c
blob402b5e6bd372d83aef1b58e5273fac74ba5e1aec
1 /* mpfr_mpn_exp -- auxiliary function for mpfr_get_str and mpfr_set_str
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the Arenaire and Cacao projects, INRIA.
5 Contributed by Alain Delplanque and Paul Zimmermann.
7 This file is part of the GNU MPFR Library.
9 The GNU MPFR Library is free software; you can redistribute it and/or modify
10 it under the terms of the GNU Lesser General Public License as published by
11 the Free Software Foundation; either version 2.1 of the License, or (at your
12 option) any later version.
14 The GNU MPFR Library is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
17 License for more details.
19 You should have received a copy of the GNU Lesser General Public License
20 along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
21 the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
22 MA 02110-1301, USA. */
25 #define MPFR_NEED_LONGLONG_H
26 #include "mpfr-impl.h"
28 /* this function computes an approximation of b^e in {a, n}, with exponent
29 stored in exp_r. The computed value is rounded towards zero (truncated).
30 It returns an integer f such that the final error is bounded by 2^f ulps,
31 that is:
32 a*2^exp_r <= b^e <= 2^exp_r (a + 2^f),
33 where a represents {a, n}, i.e. the integer
34 a[0] + a[1]*B + ... + a[n-1]*B^(n-1) where B=2^BITS_PER_MP_LIMB
36 Return -1 is the result is exact.
37 Return -2 if an overflow occurred in the computation of exp_r.
40 long
41 mpfr_mpn_exp (mp_limb_t *a, mp_exp_t *exp_r, int b, mp_exp_t e, size_t n)
43 mp_limb_t *c, B;
44 mp_exp_t f, h;
45 int i;
46 unsigned long t; /* number of bits in e */
47 unsigned long bits;
48 size_t n1;
49 unsigned int error; /* (number - 1) of loop a^2b inexact */
50 /* error == t means no error */
51 int err_s_a2 = 0;
52 int err_s_ab = 0; /* number of error when shift A^2, AB */
53 MPFR_TMP_DECL(marker);
55 MPFR_ASSERTN(e > 0);
56 MPFR_ASSERTN((2 <= b) && (b <= 36));
58 MPFR_TMP_MARK(marker);
60 /* initialization of a, b, f, h */
62 /* normalize the base */
63 B = (mp_limb_t) b;
64 count_leading_zeros (h, B);
66 bits = BITS_PER_MP_LIMB - h;
68 B = B << h;
69 h = - h;
71 /* allocate space for A and set it to B */
72 c = (mp_limb_t*) MPFR_TMP_ALLOC(2 * n * BYTES_PER_MP_LIMB);
73 a [n - 1] = B;
74 MPN_ZERO (a, n - 1);
75 /* initial exponent for A: invariant is A = {a, n} * 2^f */
76 f = h - (n - 1) * BITS_PER_MP_LIMB;
78 /* determine number of bits in e */
79 count_leading_zeros (t, (mp_limb_t) e);
81 t = BITS_PER_MP_LIMB - t; /* number of bits of exponent e */
83 error = t; /* error <= BITS_PER_MP_LIMB */
85 MPN_ZERO (c, 2 * n);
87 for (i = t - 2; i >= 0; i--)
90 /* determine precision needed */
91 bits = n * BITS_PER_MP_LIMB - mpn_scan1 (a, 0);
92 n1 = (n * BITS_PER_MP_LIMB - bits) / BITS_PER_MP_LIMB;
94 /* square of A : {c+2n1, 2(n-n1)} = {a+n1, n-n1}^2 */
95 mpn_sqr_n (c + 2 * n1, a + n1, n - n1);
97 /* set {c+n, 2n1-n} to 0 : {c, n} = {a, n}^2*K^n */
99 /* check overflow on f */
100 if (MPFR_UNLIKELY(f < MPFR_EXP_MIN/2 || f > MPFR_EXP_MAX/2))
102 overflow:
103 MPFR_TMP_FREE(marker);
104 return -2;
106 /* FIXME: Could f = 2*f + n * BITS_PER_MP_LIMB be used? */
107 f = 2*f;
108 MPFR_SADD_OVERFLOW (f, f, n * BITS_PER_MP_LIMB,
109 mp_exp_t, mp_exp_unsigned_t,
110 MPFR_EXP_MIN, MPFR_EXP_MAX,
111 goto overflow, goto overflow);
112 if ((c[2*n - 1] & MPFR_LIMB_HIGHBIT) == 0)
114 /* shift A by one bit to the left */
115 mpn_lshift (a, c + n, n, 1);
116 a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
117 f --;
118 if (error != t)
119 err_s_a2 ++;
121 else
122 MPN_COPY (a, c + n, n);
124 if ((error == t) && (2 * n1 <= n) &&
125 (mpn_scan1 (c + 2 * n1, 0) < (n - 2 * n1) * BITS_PER_MP_LIMB))
126 error = i;
128 if (e & ((mp_exp_t) 1 << i))
130 /* multiply A by B */
131 c[2 * n - 1] = mpn_mul_1 (c + n - 1, a, n, B);
132 f += h + BITS_PER_MP_LIMB;
133 if ((c[2 * n - 1] & MPFR_LIMB_HIGHBIT) == 0)
134 { /* shift A by one bit to the left */
135 mpn_lshift (a, c + n, n, 1);
136 a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
137 f --;
139 else
141 MPN_COPY (a, c + n, n);
142 if (error != t)
143 err_s_ab ++;
145 if ((error == t) && (c[n - 1] != 0))
146 error = i;
150 MPFR_TMP_FREE(marker);
152 *exp_r = f;
154 if (error == t)
155 return -1; /* result is exact */
156 else /* error <= t-2 <= BITS_PER_MP_LIMB-2
157 err_s_ab, err_s_a2 <= t-1 */
159 /* if there are p loops after the first inexact result, with
160 j shifts in a^2 and l shifts in a*b, then the final error is
161 at most 2^(p+ceil((j+1)/2)+l+1)*ulp(res).
162 This is bounded by 2^(5/2*t-1/2) where t is the number of bits of e.
164 error = error + err_s_ab + err_s_a2 / 2 + 3; /* <= 5t/2-1/2 */
165 #if 0
166 if ((error - 1) >= ((n * BITS_PER_MP_LIMB - 1) / 2))
167 error = n * BITS_PER_MP_LIMB; /* result is completely wrong:
168 this is very unlikely since error is
169 at most 5/2*log_2(e), and
170 n * BITS_PER_MP_LIMB is at least
171 3*log_2(e) */
172 #endif
173 return error;