1 /* $OpenBSD: moduli.c,v 1.28 2013/10/24 00:49:49 dtucker Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
42 #include <sys/param.h>
43 #include <sys/types.h>
45 #include <openssl/bn.h>
46 #include <openssl/dh.h>
61 #include "openbsd-compat/openssl-compat.h"
67 /* need line long enough for largest moduli plus headers */
68 #define QLINESIZE (100+8192)
72 * Specifies the number of the most significant bit (0 to M).
73 * WARNING: internally, usually 1 to N.
75 #define QSIZE_MINIMUM (511)
78 * Prime sieving defines
81 /* Constant: assuming 8 bit bytes and 32 bit words */
83 #define SHIFT_BYTE (2)
84 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
85 #define SHIFT_MEGABYTE (20)
86 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
89 * Using virtual memory can cause thrashing. This should be the largest
90 * number that is supported without a large amount of disk activity --
91 * that would increase the run time from hours to days or weeks!
93 #define LARGE_MINIMUM (8UL) /* megabytes */
96 * Do not increase this number beyond the unsigned integer bit size.
97 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
99 #define LARGE_MAXIMUM (127UL) /* megabytes */
102 * Constant: when used with 32-bit integers, the largest sieve prime
103 * has to be less than 2**32.
105 #define SMALL_MAXIMUM (0xffffffffUL)
107 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
108 #define TINY_NUMBER (1UL<<16)
110 /* Ensure enough bit space for testing 2*q. */
111 #define TEST_MAXIMUM (1UL<<16)
112 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
113 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
114 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
116 /* bit operations on 32-bit words */
117 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
118 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
119 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
122 * Prime testing defines
125 /* Minimum number of primality tests to perform */
126 #define TRIAL_MINIMUM (4)
129 * Sieving data (XXX - move to struct)
133 static u_int32_t
*TinySieve
, tinybits
;
135 /* sieve 2**30 in 2**16 parts */
136 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
138 /* sieve relative to the initial value */
139 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
140 static u_int32_t largebits
, largememory
; /* megabytes */
141 static BIGNUM
*largebase
;
143 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
144 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
, char *, unsigned long,
148 * print moduli out in consistent form,
151 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
152 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
159 gtm
= gmtime(&time_now
);
161 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
162 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
163 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
164 otype
, otests
, otries
, osize
, ogenerator
);
169 if (BN_print_fp(ofile
, omodulus
) < 1)
172 res
= fprintf(ofile
, "\n");
175 return (res
> 0 ? 0 : -1);
180 ** Sieve p's and q's with small factors
183 sieve_large(u_int32_t s
)
187 debug3("sieve_large %u", s
);
189 /* r = largebase mod s */
190 r
= BN_mod_word(largebase
, s
);
192 u
= 0; /* s divides into largebase exactly */
194 u
= s
- r
; /* largebase+u is first entry divisible by s */
196 if (u
< largebits
* 2) {
198 * The sieve omits p's and q's divisible by 2, so ensure that
199 * largebase+u is odd. Then, step through the sieve in
203 u
+= s
; /* Make largebase+u odd, and u even */
205 /* Mark all multiples of 2*s */
206 for (u
/= 2; u
< largebits
; u
+= s
)
207 BIT_SET(LargeSieve
, u
);
213 u
= 0; /* s divides p exactly */
215 u
= s
- r
; /* p+u is first entry divisible by s */
217 if (u
< largebits
* 4) {
219 * The sieve omits p's divisible by 4, so ensure that
220 * largebase+u is not. Then, step through the sieve in
224 if (SMALL_MAXIMUM
- u
< s
)
229 /* Mark all multiples of 4*s */
230 for (u
/= 4; u
< largebits
; u
+= s
)
231 BIT_SET(LargeSieve
, u
);
236 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
237 * to standard output.
238 * The list is checked against small known primes (less than 2**30).
241 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
244 u_int32_t j
, r
, s
, t
;
245 u_int32_t smallwords
= TINY_NUMBER
>> 6;
246 u_int32_t tinywords
= TINY_NUMBER
>> 6;
247 time_t time_start
, time_stop
;
251 largememory
= memory
;
254 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
255 error("Invalid memory amount (min %ld, max %ld)",
256 LARGE_MINIMUM
, LARGE_MAXIMUM
);
261 * Set power to the length in bits of the prime to be generated.
262 * This is changed to 1 less than the desired safe prime moduli p.
264 if (power
> TEST_MAXIMUM
) {
265 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
267 } else if (power
< TEST_MINIMUM
) {
268 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
271 power
--; /* decrement before squaring */
274 * The density of ordinary primes is on the order of 1/bits, so the
275 * density of safe primes should be about (1/bits)**2. Set test range
276 * to something well above bits**2 to be reasonably sure (but not
277 * guaranteed) of catching at least one safe prime.
279 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
282 * Need idea of how much memory is available. We don't have to use all
285 if (largememory
> LARGE_MAXIMUM
) {
286 logit("Limited memory: %u MB; limit %lu MB",
287 largememory
, LARGE_MAXIMUM
);
288 largememory
= LARGE_MAXIMUM
;
291 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
292 logit("Increased memory: %u MB; need %u bytes",
293 largememory
, (largewords
<< SHIFT_BYTE
));
294 largewords
= (largememory
<< SHIFT_MEGAWORD
);
295 } else if (largememory
> 0) {
296 logit("Decreased memory: %u MB; want %u bytes",
297 largememory
, (largewords
<< SHIFT_BYTE
));
298 largewords
= (largememory
<< SHIFT_MEGAWORD
);
301 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
302 tinybits
= tinywords
<< SHIFT_WORD
;
304 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
305 smallbits
= smallwords
<< SHIFT_WORD
;
308 * dynamically determine available memory
310 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
311 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
313 largebits
= largewords
<< SHIFT_WORD
;
314 largenumbers
= largebits
* 2; /* even numbers excluded */
316 /* validation check: count the number of primes tried */
318 if ((q
= BN_new()) == NULL
)
319 fatal("BN_new failed");
322 * Generate random starting point for subprime search, or use
323 * specified parameter.
325 if ((largebase
= BN_new()) == NULL
)
326 fatal("BN_new failed");
328 if (BN_rand(largebase
, power
, 1, 1) == 0)
329 fatal("BN_rand failed");
331 if (BN_copy(largebase
, start
) == NULL
)
332 fatal("BN_copy: failed");
336 if (BN_set_bit(largebase
, 0) == 0)
337 fatal("BN_set_bit: failed");
341 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
342 largenumbers
, power
);
343 debug2("start point: 0x%s", BN_bn2hex(largebase
));
348 for (i
= 0; i
< tinybits
; i
++) {
349 if (BIT_TEST(TinySieve
, i
))
350 continue; /* 2*i+3 is composite */
352 /* The next tiny prime */
355 /* Mark all multiples of t */
356 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
357 BIT_SET(TinySieve
, j
);
363 * Start the small block search at the next possible prime. To avoid
364 * fencepost errors, the last pass is skipped.
366 for (smallbase
= TINY_NUMBER
+ 3;
367 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
368 smallbase
+= TINY_NUMBER
) {
369 for (i
= 0; i
< tinybits
; i
++) {
370 if (BIT_TEST(TinySieve
, i
))
371 continue; /* 2*i+3 is composite */
373 /* The next tiny prime */
378 s
= 0; /* t divides into smallbase exactly */
380 /* smallbase+s is first entry divisible by t */
385 * The sieve omits even numbers, so ensure that
386 * smallbase+s is odd. Then, step through the sieve
387 * in increments of 2*t
390 s
+= t
; /* Make smallbase+s odd, and s even */
392 /* Mark all multiples of 2*t */
393 for (s
/= 2; s
< smallbits
; s
+= t
)
394 BIT_SET(SmallSieve
, s
);
400 for (i
= 0; i
< smallbits
; i
++) {
401 if (BIT_TEST(SmallSieve
, i
))
402 continue; /* 2*i+smallbase is composite */
404 /* The next small prime */
405 sieve_large((2 * i
) + smallbase
);
408 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
413 logit("%.24s Sieved with %u small primes in %ld seconds",
414 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
416 for (j
= r
= 0; j
< largebits
; j
++) {
417 if (BIT_TEST(LargeSieve
, j
))
418 continue; /* Definitely composite, skip */
420 debug2("test q = largebase+%u", 2 * j
);
421 if (BN_set_word(q
, 2 * j
) == 0)
422 fatal("BN_set_word failed");
423 if (BN_add(q
, q
, largebase
) == 0)
424 fatal("BN_add failed");
425 if (qfileout(out
, MODULI_TYPE_SOPHIE_GERMAIN
,
426 MODULI_TESTS_SIEVE
, largetries
,
427 (power
- 1) /* MSB */, (0), q
) == -1) {
441 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
447 write_checkpoint(char *cpfile
, u_int32_t lineno
)
450 char tmp
[MAXPATHLEN
];
453 r
= snprintf(tmp
, sizeof(tmp
), "%s.XXXXXXXXXX", cpfile
);
454 if (r
== -1 || r
>= MAXPATHLEN
) {
455 logit("write_checkpoint: temp pathname too long");
458 if ((r
= mkstemp(tmp
)) == -1) {
459 logit("mkstemp(%s): %s", tmp
, strerror(errno
));
462 if ((fp
= fdopen(r
, "w")) == NULL
) {
463 logit("write_checkpoint: fdopen: %s", strerror(errno
));
467 if (fprintf(fp
, "%lu\n", (unsigned long)lineno
) > 0 && fclose(fp
) == 0
468 && rename(tmp
, cpfile
) == 0)
469 debug3("wrote checkpoint line %lu to '%s'",
470 (unsigned long)lineno
, cpfile
);
472 logit("failed to write to checkpoint file '%s': %s", cpfile
,
477 read_checkpoint(char *cpfile
)
480 unsigned long lineno
= 0;
482 if ((fp
= fopen(cpfile
, "r")) == NULL
)
484 if (fscanf(fp
, "%lu\n", &lineno
) < 1)
485 logit("Failed to load checkpoint from '%s'", cpfile
);
487 logit("Loaded checkpoint from '%s' line %lu", cpfile
, lineno
);
495 unsigned long count
= 0;
496 char lp
[QLINESIZE
+ 1];
498 if (fseek(f
, 0, SEEK_SET
) != 0) {
499 debug("input file is not seekable");
502 while (fgets(lp
, QLINESIZE
+ 1, f
) != NULL
)
505 debug("input file has %lu lines", count
);
510 fmt_time(time_t seconds
)
513 static char buf
[128];
515 min
= (seconds
/ 60) % 60;
516 hr
= (seconds
/ 60 / 60) % 24;
517 day
= seconds
/ 60 / 60 / 24;
519 snprintf(buf
, sizeof buf
, "%dd %d:%02d", day
, hr
, min
);
521 snprintf(buf
, sizeof buf
, "%d:%02d", hr
, min
);
526 print_progress(unsigned long start_lineno
, unsigned long current_lineno
,
527 unsigned long end_lineno
)
529 static time_t time_start
, time_prev
;
530 time_t time_now
, elapsed
;
531 unsigned long num_to_process
, processed
, remaining
, percent
, eta
;
532 double time_per_line
;
535 time_now
= monotime();
536 if (time_start
== 0) {
537 time_start
= time_prev
= time_now
;
540 /* print progress after 1m then once per 5m */
541 if (time_now
- time_prev
< 5 * 60)
543 time_prev
= time_now
;
544 elapsed
= time_now
- time_start
;
545 processed
= current_lineno
- start_lineno
;
546 remaining
= end_lineno
- current_lineno
;
547 num_to_process
= end_lineno
- start_lineno
;
548 time_per_line
= (double)elapsed
/ processed
;
549 /* if we don't know how many we're processing just report count+time */
551 if (end_lineno
== ULONG_MAX
) {
552 logit("%.24s processed %lu in %s", ctime(&time_now
),
553 processed
, fmt_time(elapsed
));
556 percent
= 100 * processed
/ num_to_process
;
557 eta
= time_per_line
* remaining
;
558 eta_str
= xstrdup(fmt_time(eta
));
559 logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
560 ctime(&time_now
), processed
, num_to_process
, percent
,
561 fmt_time(elapsed
), eta_str
);
566 * perform a Miller-Rabin primality test
567 * on the list of candidates
568 * (checking both q and p)
569 * The result is a list of so-call "safe" primes
572 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
,
573 char *checkpoint_file
, unsigned long start_lineno
, unsigned long num_lines
)
578 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
579 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
580 unsigned long last_processed
= 0, end_lineno
;
581 time_t time_start
, time_stop
;
584 if (trials
< TRIAL_MINIMUM
) {
585 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
590 end_lineno
= count_lines(in
);
592 end_lineno
= start_lineno
+ num_lines
;
596 if ((p
= BN_new()) == NULL
)
597 fatal("BN_new failed");
598 if ((q
= BN_new()) == NULL
)
599 fatal("BN_new failed");
600 if ((ctx
= BN_CTX_new()) == NULL
)
601 fatal("BN_CTX_new failed");
603 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
604 ctime(&time_start
), trials
, generator_wanted
);
606 if (checkpoint_file
!= NULL
)
607 last_processed
= read_checkpoint(checkpoint_file
);
608 last_processed
= start_lineno
= MAX(last_processed
, start_lineno
);
609 if (end_lineno
== ULONG_MAX
)
610 debug("process from line %lu from pipe", last_processed
);
612 debug("process from line %lu to line %lu", last_processed
,
616 lp
= xmalloc(QLINESIZE
+ 1);
617 while (fgets(lp
, QLINESIZE
+ 1, in
) != NULL
&& count_in
< end_lineno
) {
619 if (count_in
<= last_processed
) {
620 debug3("skipping line %u, before checkpoint or "
621 "specified start line", count_in
);
624 if (checkpoint_file
!= NULL
)
625 write_checkpoint(checkpoint_file
, count_in
);
626 print_progress(start_lineno
, count_in
, end_lineno
);
627 if (strlen(lp
) < 14 || *lp
== '!' || *lp
== '#') {
628 debug2("%10u: comment or short line", count_in
);
632 /* XXX - fragile parser */
634 cp
= &lp
[14]; /* (skip) */
637 in_type
= strtoul(cp
, &cp
, 10);
640 in_tests
= strtoul(cp
, &cp
, 10);
642 if (in_tests
& MODULI_TESTS_COMPOSITE
) {
643 debug2("%10u: known composite", count_in
);
648 in_tries
= strtoul(cp
, &cp
, 10);
650 /* size (most significant bit) */
651 in_size
= strtoul(cp
, &cp
, 10);
653 /* generator (hex) */
654 generator_known
= strtoul(cp
, &cp
, 16);
656 /* Skip white space */
657 cp
+= strspn(cp
, " ");
661 case MODULI_TYPE_SOPHIE_GERMAIN
:
662 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
664 if (BN_hex2bn(&a
, cp
) == 0)
665 fatal("BN_hex2bn failed");
667 if (BN_lshift(p
, q
, 1) == 0)
668 fatal("BN_lshift failed");
669 if (BN_add_word(p
, 1) == 0)
670 fatal("BN_add_word failed");
674 case MODULI_TYPE_UNSTRUCTURED
:
675 case MODULI_TYPE_SAFE
:
676 case MODULI_TYPE_SCHNORR
:
677 case MODULI_TYPE_STRONG
:
678 case MODULI_TYPE_UNKNOWN
:
679 debug2("%10u: (%u)", count_in
, in_type
);
681 if (BN_hex2bn(&a
, cp
) == 0)
682 fatal("BN_hex2bn failed");
684 if (BN_rshift(q
, p
, 1) == 0)
685 fatal("BN_rshift failed");
688 debug2("Unknown prime type");
693 * due to earlier inconsistencies in interpretation, check
694 * the proposed bit size.
696 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
697 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
700 if (in_size
< QSIZE_MINIMUM
) {
701 debug2("%10u: bit size %u too short", count_in
, in_size
);
705 if (in_tests
& MODULI_TESTS_MILLER_RABIN
)
711 * guess unknown generator
713 if (generator_known
== 0) {
714 if (BN_mod_word(p
, 24) == 11)
716 else if (BN_mod_word(p
, 12) == 5)
719 u_int32_t r
= BN_mod_word(p
, 10);
721 if (r
== 3 || r
== 7)
726 * skip tests when desired generator doesn't match
728 if (generator_wanted
> 0 &&
729 generator_wanted
!= generator_known
) {
730 debug2("%10u: generator %d != %d",
731 count_in
, generator_known
, generator_wanted
);
736 * Primes with no known generator are useless for DH, so
739 if (generator_known
== 0) {
740 debug2("%10u: no known generator", count_in
);
747 * The (1/4)^N performance bound on Miller-Rabin is
748 * extremely pessimistic, so don't spend a lot of time
749 * really verifying that q is prime until after we know
750 * that p is also prime. A single pass will weed out the
751 * vast majority of composite q's.
753 if (BN_is_prime_ex(q
, 1, ctx
, NULL
) <= 0) {
754 debug("%10u: q failed first possible prime test",
760 * q is possibly prime, so go ahead and really make sure
761 * that p is prime. If it is, then we can go back and do
762 * the same for q. If p is composite, chances are that
763 * will show up on the first Rabin-Miller iteration so it
764 * doesn't hurt to specify a high iteration count.
766 if (!BN_is_prime_ex(p
, trials
, ctx
, NULL
)) {
767 debug("%10u: p is not prime", count_in
);
770 debug("%10u: p is almost certainly prime", count_in
);
772 /* recheck q more rigorously */
773 if (!BN_is_prime_ex(q
, trials
- 1, ctx
, NULL
)) {
774 debug("%10u: q is not prime", count_in
);
777 debug("%10u: q is almost certainly prime", count_in
);
779 if (qfileout(out
, MODULI_TYPE_SAFE
,
780 in_tests
| MODULI_TESTS_MILLER_RABIN
,
781 in_tries
, in_size
, generator_known
, p
)) {
795 if (checkpoint_file
!= NULL
)
796 unlink(checkpoint_file
);
798 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
799 ctime(&time_stop
), count_out
, count_possible
,
800 (long) (time_stop
- time_start
));