test/amd64: build and install modules
[dragonfly.git] / sys / vm / vm_page.c
blob717522b7d5b9b227fe16df95ba766b20fafdd4f6
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38 * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
42 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43 * All rights reserved.
45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 * Permission to use, copy, modify and distribute this software and
48 * its documentation is hereby granted, provided that both the copyright
49 * notice and this permission notice appear in all copies of the
50 * software, derivative works or modified versions, and any portions
51 * thereof, and that both notices appear in supporting documentation.
53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 * Carnegie Mellon requests users of this software to return to
59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
60 * School of Computer Science
61 * Carnegie Mellon University
62 * Pittsburgh PA 15213-3890
64 * any improvements or extensions that they make and grant Carnegie the
65 * rights to redistribute these changes.
68 * Resident memory management module. The module manipulates 'VM pages'.
69 * A VM page is the core building block for memory management.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
97 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
99 #define ASSERT_IN_CRIT_SECTION() KKASSERT(crit_test(curthread));
101 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
102 vm_pindex_t, pindex);
104 static void
105 vm_page_queue_init(void)
107 int i;
109 for (i = 0; i < PQ_L2_SIZE; i++)
110 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
111 for (i = 0; i < PQ_L2_SIZE; i++)
112 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
114 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
115 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
116 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
117 /* PQ_NONE has no queue */
119 for (i = 0; i < PQ_COUNT; i++)
120 TAILQ_INIT(&vm_page_queues[i].pl);
124 * note: place in initialized data section? Is this necessary?
126 long first_page = 0;
127 int vm_page_array_size = 0;
128 int vm_page_zero_count = 0;
129 vm_page_t vm_page_array = 0;
132 * (low level boot)
134 * Sets the page size, perhaps based upon the memory size.
135 * Must be called before any use of page-size dependent functions.
137 void
138 vm_set_page_size(void)
140 if (vmstats.v_page_size == 0)
141 vmstats.v_page_size = PAGE_SIZE;
142 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
143 panic("vm_set_page_size: page size not a power of two");
147 * (low level boot)
149 * Add a new page to the freelist for use by the system. New pages
150 * are added to both the head and tail of the associated free page
151 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
152 * requests pull 'recent' adds (higher physical addresses) first.
154 * Must be called in a critical section.
156 vm_page_t
157 vm_add_new_page(vm_paddr_t pa)
159 struct vpgqueues *vpq;
160 vm_page_t m;
162 ++vmstats.v_page_count;
163 ++vmstats.v_free_count;
164 m = PHYS_TO_VM_PAGE(pa);
165 m->phys_addr = pa;
166 m->flags = 0;
167 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
168 m->queue = m->pc + PQ_FREE;
169 KKASSERT(m->dirty == 0);
171 vpq = &vm_page_queues[m->queue];
172 if (vpq->flipflop)
173 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
174 else
175 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
176 vpq->flipflop = 1 - vpq->flipflop;
178 vm_page_queues[m->queue].lcnt++;
179 return (m);
183 * (low level boot)
185 * Initializes the resident memory module.
187 * Allocates memory for the page cells, and for the object/offset-to-page
188 * hash table headers. Each page cell is initialized and placed on the
189 * free list.
191 * starta/enda represents the range of physical memory addresses available
192 * for use (skipping memory already used by the kernel), subject to
193 * phys_avail[]. Note that phys_avail[] has already mapped out memory
194 * already in use by the kernel.
196 vm_offset_t
197 vm_page_startup(vm_offset_t vaddr)
199 vm_offset_t mapped;
200 vm_size_t npages;
201 vm_paddr_t page_range;
202 vm_paddr_t new_end;
203 int i;
204 vm_paddr_t pa;
205 int nblocks;
206 vm_paddr_t last_pa;
207 vm_paddr_t end;
208 vm_paddr_t biggestone, biggestsize;
209 vm_paddr_t total;
211 total = 0;
212 biggestsize = 0;
213 biggestone = 0;
214 nblocks = 0;
215 vaddr = round_page(vaddr);
217 for (i = 0; phys_avail[i + 1]; i += 2) {
218 phys_avail[i] = round_page(phys_avail[i]);
219 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
222 for (i = 0; phys_avail[i + 1]; i += 2) {
223 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
225 if (size > biggestsize) {
226 biggestone = i;
227 biggestsize = size;
229 ++nblocks;
230 total += size;
233 end = phys_avail[biggestone+1];
234 end = trunc_page(end);
237 * Initialize the queue headers for the free queue, the active queue
238 * and the inactive queue.
241 vm_page_queue_init();
244 * Compute the number of pages of memory that will be available for
245 * use (taking into account the overhead of a page structure per
246 * page).
248 first_page = phys_avail[0] / PAGE_SIZE;
249 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
250 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
253 * Initialize the mem entry structures now, and put them in the free
254 * queue.
256 vm_page_array = (vm_page_t) vaddr;
257 mapped = vaddr;
260 * Validate these addresses.
262 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
263 mapped = pmap_map(mapped, new_end, end,
264 VM_PROT_READ | VM_PROT_WRITE);
265 #ifdef __amd64__
266 /* pmap_map() returns an address in the DMAP region */
267 vm_page_array = (vm_page_t) mapped;
268 mapped = vaddr;
269 #endif
272 * Clear all of the page structures
274 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
275 vm_page_array_size = page_range;
278 * Construct the free queue(s) in ascending order (by physical
279 * address) so that the first 16MB of physical memory is allocated
280 * last rather than first. On large-memory machines, this avoids
281 * the exhaustion of low physical memory before isa_dmainit has run.
283 vmstats.v_page_count = 0;
284 vmstats.v_free_count = 0;
285 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
286 pa = phys_avail[i];
287 if (i == biggestone)
288 last_pa = new_end;
289 else
290 last_pa = phys_avail[i + 1];
291 while (pa < last_pa && npages-- > 0) {
292 vm_add_new_page(pa);
293 pa += PAGE_SIZE;
296 return (mapped);
300 * Scan comparison function for Red-Black tree scans. An inclusive
301 * (start,end) is expected. Other fields are not used.
304 rb_vm_page_scancmp(struct vm_page *p, void *data)
306 struct rb_vm_page_scan_info *info = data;
308 if (p->pindex < info->start_pindex)
309 return(-1);
310 if (p->pindex > info->end_pindex)
311 return(1);
312 return(0);
316 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
318 if (p1->pindex < p2->pindex)
319 return(-1);
320 if (p1->pindex > p2->pindex)
321 return(1);
322 return(0);
326 * The opposite of vm_page_hold(). A page can be freed while being held,
327 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq()
328 * in this case to actually free it once the hold count drops to 0.
330 * This routine must be called at splvm().
332 void
333 vm_page_unhold(vm_page_t mem)
335 --mem->hold_count;
336 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
337 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
338 vm_page_busy(mem);
339 vm_page_free_toq(mem);
344 * Inserts the given mem entry into the object and object list.
346 * The pagetables are not updated but will presumably fault the page
347 * in if necessary, or if a kernel page the caller will at some point
348 * enter the page into the kernel's pmap. We are not allowed to block
349 * here so we *can't* do this anyway.
351 * This routine may not block.
352 * This routine must be called with a critical section held.
354 void
355 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
357 ASSERT_IN_CRIT_SECTION();
358 if (m->object != NULL)
359 panic("vm_page_insert: already inserted");
362 * Record the object/offset pair in this page
364 m->object = object;
365 m->pindex = pindex;
368 * Insert it into the object.
370 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
371 object->generation++;
374 * show that the object has one more resident page.
376 object->resident_page_count++;
379 * Since we are inserting a new and possibly dirty page,
380 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
382 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
383 vm_object_set_writeable_dirty(object);
387 * Removes the given vm_page_t from the global (object,index) hash table
388 * and from the object's memq.
390 * The underlying pmap entry (if any) is NOT removed here.
391 * This routine may not block.
393 * The page must be BUSY and will remain BUSY on return. No spl needs to be
394 * held on call to this routine.
396 * note: FreeBSD side effect was to unbusy the page on return. We leave
397 * it busy.
399 void
400 vm_page_remove(vm_page_t m)
402 vm_object_t object;
404 crit_enter();
405 if (m->object == NULL) {
406 crit_exit();
407 return;
410 if ((m->flags & PG_BUSY) == 0)
411 panic("vm_page_remove: page not busy");
413 object = m->object;
416 * Remove the page from the object and update the object.
418 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
419 object->resident_page_count--;
420 object->generation++;
421 m->object = NULL;
423 crit_exit();
427 * Locate and return the page at (object, pindex), or NULL if the
428 * page could not be found.
430 * This routine will operate properly without spl protection, but
431 * the returned page could be in flux if it is busy. Because an
432 * interrupt can race a caller's busy check (unbusying and freeing the
433 * page we return before the caller is able to check the busy bit),
434 * the caller should generally call this routine with a critical
435 * section held.
437 * Callers may call this routine without spl protection if they know
438 * 'for sure' that the page will not be ripped out from under them
439 * by an interrupt.
441 vm_page_t
442 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
444 vm_page_t m;
447 * Search the hash table for this object/offset pair
449 crit_enter();
450 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
451 crit_exit();
452 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
453 return(m);
457 * vm_page_rename()
459 * Move the given memory entry from its current object to the specified
460 * target object/offset.
462 * The object must be locked.
463 * This routine may not block.
465 * Note: This routine will raise itself to splvm(), the caller need not.
467 * Note: Swap associated with the page must be invalidated by the move. We
468 * have to do this for several reasons: (1) we aren't freeing the
469 * page, (2) we are dirtying the page, (3) the VM system is probably
470 * moving the page from object A to B, and will then later move
471 * the backing store from A to B and we can't have a conflict.
473 * Note: We *always* dirty the page. It is necessary both for the
474 * fact that we moved it, and because we may be invalidating
475 * swap. If the page is on the cache, we have to deactivate it
476 * or vm_page_dirty() will panic. Dirty pages are not allowed
477 * on the cache.
479 void
480 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
482 crit_enter();
483 vm_page_remove(m);
484 vm_page_insert(m, new_object, new_pindex);
485 if (m->queue - m->pc == PQ_CACHE)
486 vm_page_deactivate(m);
487 vm_page_dirty(m);
488 vm_page_wakeup(m);
489 crit_exit();
493 * vm_page_unqueue() without any wakeup. This routine is used when a page
494 * is being moved between queues or otherwise is to remain BUSYied by the
495 * caller.
497 * This routine must be called at splhigh().
498 * This routine may not block.
500 void
501 vm_page_unqueue_nowakeup(vm_page_t m)
503 int queue = m->queue;
504 struct vpgqueues *pq;
506 if (queue != PQ_NONE) {
507 pq = &vm_page_queues[queue];
508 m->queue = PQ_NONE;
509 TAILQ_REMOVE(&pq->pl, m, pageq);
510 (*pq->cnt)--;
511 pq->lcnt--;
516 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
517 * if necessary.
519 * This routine must be called at splhigh().
520 * This routine may not block.
522 void
523 vm_page_unqueue(vm_page_t m)
525 int queue = m->queue;
526 struct vpgqueues *pq;
528 if (queue != PQ_NONE) {
529 m->queue = PQ_NONE;
530 pq = &vm_page_queues[queue];
531 TAILQ_REMOVE(&pq->pl, m, pageq);
532 (*pq->cnt)--;
533 pq->lcnt--;
534 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
535 pagedaemon_wakeup();
540 * vm_page_list_find()
542 * Find a page on the specified queue with color optimization.
544 * The page coloring optimization attempts to locate a page that does
545 * not overload other nearby pages in the object in the cpu's L1 or L2
546 * caches. We need this optimization because cpu caches tend to be
547 * physical caches, while object spaces tend to be virtual.
549 * This routine must be called at splvm().
550 * This routine may not block.
552 * Note that this routine is carefully inlined. A non-inlined version
553 * is available for outside callers but the only critical path is
554 * from within this source file.
556 static __inline
557 vm_page_t
558 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
560 vm_page_t m;
562 if (prefer_zero)
563 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
564 else
565 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
566 if (m == NULL)
567 m = _vm_page_list_find2(basequeue, index);
568 return(m);
571 static vm_page_t
572 _vm_page_list_find2(int basequeue, int index)
574 int i;
575 vm_page_t m = NULL;
576 struct vpgqueues *pq;
578 pq = &vm_page_queues[basequeue];
581 * Note that for the first loop, index+i and index-i wind up at the
582 * same place. Even though this is not totally optimal, we've already
583 * blown it by missing the cache case so we do not care.
586 for(i = PQ_L2_SIZE / 2; i > 0; --i) {
587 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
588 break;
590 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
591 break;
593 return(m);
596 vm_page_t
597 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
599 return(_vm_page_list_find(basequeue, index, prefer_zero));
603 * Find a page on the cache queue with color optimization. As pages
604 * might be found, but not applicable, they are deactivated. This
605 * keeps us from using potentially busy cached pages.
607 * This routine must be called with a critical section held.
608 * This routine may not block.
610 vm_page_t
611 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
613 vm_page_t m;
615 while (TRUE) {
616 m = _vm_page_list_find(
617 PQ_CACHE,
618 (pindex + object->pg_color) & PQ_L2_MASK,
619 FALSE
621 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
622 m->hold_count || m->wire_count)) {
623 vm_page_deactivate(m);
624 continue;
626 return m;
628 /* not reached */
632 * Find a free or zero page, with specified preference. We attempt to
633 * inline the nominal case and fall back to _vm_page_select_free()
634 * otherwise.
636 * This routine must be called with a critical section held.
637 * This routine may not block.
639 static __inline vm_page_t
640 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
642 vm_page_t m;
644 m = _vm_page_list_find(
645 PQ_FREE,
646 (pindex + object->pg_color) & PQ_L2_MASK,
647 prefer_zero
649 return(m);
653 * vm_page_alloc()
655 * Allocate and return a memory cell associated with this VM object/offset
656 * pair.
658 * page_req classes:
660 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
661 * VM_ALLOC_SYSTEM greater free drain
662 * VM_ALLOC_INTERRUPT allow free list to be completely drained
663 * VM_ALLOC_ZERO advisory request for pre-zero'd page
665 * The object must be locked.
666 * This routine may not block.
667 * The returned page will be marked PG_BUSY
669 * Additional special handling is required when called from an interrupt
670 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
671 * in this case.
673 vm_page_t
674 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
676 vm_page_t m = NULL;
678 KKASSERT(object != NULL);
679 KASSERT(!vm_page_lookup(object, pindex),
680 ("vm_page_alloc: page already allocated"));
681 KKASSERT(page_req &
682 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
685 * Certain system threads (pageout daemon, buf_daemon's) are
686 * allowed to eat deeper into the free page list.
688 if (curthread->td_flags & TDF_SYSTHREAD)
689 page_req |= VM_ALLOC_SYSTEM;
691 crit_enter();
692 loop:
693 if (vmstats.v_free_count > vmstats.v_free_reserved ||
694 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
695 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
696 vmstats.v_free_count > vmstats.v_interrupt_free_min)
699 * The free queue has sufficient free pages to take one out.
701 if (page_req & VM_ALLOC_ZERO)
702 m = vm_page_select_free(object, pindex, TRUE);
703 else
704 m = vm_page_select_free(object, pindex, FALSE);
705 } else if (page_req & VM_ALLOC_NORMAL) {
707 * Allocatable from the cache (non-interrupt only). On
708 * success, we must free the page and try again, thus
709 * ensuring that vmstats.v_*_free_min counters are replenished.
711 #ifdef INVARIANTS
712 if (curthread->td_preempted) {
713 kprintf("vm_page_alloc(): warning, attempt to allocate"
714 " cache page from preempting interrupt\n");
715 m = NULL;
716 } else {
717 m = vm_page_select_cache(object, pindex);
719 #else
720 m = vm_page_select_cache(object, pindex);
721 #endif
723 * On success move the page into the free queue and loop.
725 if (m != NULL) {
726 KASSERT(m->dirty == 0,
727 ("Found dirty cache page %p", m));
728 vm_page_busy(m);
729 vm_page_protect(m, VM_PROT_NONE);
730 vm_page_free(m);
731 goto loop;
735 * On failure return NULL
737 crit_exit();
738 #if defined(DIAGNOSTIC)
739 if (vmstats.v_cache_count > 0)
740 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
741 #endif
742 vm_pageout_deficit++;
743 pagedaemon_wakeup();
744 return (NULL);
745 } else {
747 * No pages available, wakeup the pageout daemon and give up.
749 crit_exit();
750 vm_pageout_deficit++;
751 pagedaemon_wakeup();
752 return (NULL);
756 * Good page found. The page has not yet been busied. We are in
757 * a critical section.
759 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
760 KASSERT(m->dirty == 0,
761 ("vm_page_alloc: free/cache page %p was dirty", m));
764 * Remove from free queue
766 vm_page_unqueue_nowakeup(m);
769 * Initialize structure. Only the PG_ZERO flag is inherited. Set
770 * the page PG_BUSY
772 if (m->flags & PG_ZERO) {
773 vm_page_zero_count--;
774 m->flags = PG_ZERO | PG_BUSY;
775 } else {
776 m->flags = PG_BUSY;
778 m->wire_count = 0;
779 m->hold_count = 0;
780 m->act_count = 0;
781 m->busy = 0;
782 m->valid = 0;
785 * vm_page_insert() is safe prior to the crit_exit(). Note also that
786 * inserting a page here does not insert it into the pmap (which
787 * could cause us to block allocating memory). We cannot block
788 * anywhere.
790 vm_page_insert(m, object, pindex);
793 * Don't wakeup too often - wakeup the pageout daemon when
794 * we would be nearly out of memory.
796 pagedaemon_wakeup();
798 crit_exit();
801 * A PG_BUSY page is returned.
803 return (m);
807 * Block until free pages are available for allocation, called in various
808 * places before memory allocations.
810 void
811 vm_wait(int timo)
813 crit_enter();
814 if (curthread == pagethread) {
815 vm_pageout_pages_needed = 1;
816 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
817 } else {
818 if (vm_pages_needed == 0) {
819 vm_pages_needed = 1;
820 wakeup(&vm_pages_needed);
822 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
824 crit_exit();
828 * Block until free pages are available for allocation
830 * Called only in vm_fault so that processes page faulting can be
831 * easily tracked.
833 void
834 vm_waitpfault(void)
836 crit_enter();
837 if (vm_pages_needed == 0) {
838 vm_pages_needed = 1;
839 wakeup(&vm_pages_needed);
841 tsleep(&vmstats.v_free_count, 0, "pfault", 0);
842 crit_exit();
846 * Put the specified page on the active list (if appropriate). Ensure
847 * that act_count is at least ACT_INIT but do not otherwise mess with it.
849 * The page queues must be locked.
850 * This routine may not block.
852 void
853 vm_page_activate(vm_page_t m)
855 crit_enter();
856 if (m->queue != PQ_ACTIVE) {
857 if ((m->queue - m->pc) == PQ_CACHE)
858 mycpu->gd_cnt.v_reactivated++;
860 vm_page_unqueue(m);
862 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
863 m->queue = PQ_ACTIVE;
864 vm_page_queues[PQ_ACTIVE].lcnt++;
865 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
866 m, pageq);
867 if (m->act_count < ACT_INIT)
868 m->act_count = ACT_INIT;
869 vmstats.v_active_count++;
871 } else {
872 if (m->act_count < ACT_INIT)
873 m->act_count = ACT_INIT;
875 crit_exit();
879 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
880 * routine is called when a page has been added to the cache or free
881 * queues.
883 * This routine may not block.
884 * This routine must be called at splvm()
886 static __inline void
887 vm_page_free_wakeup(void)
890 * if pageout daemon needs pages, then tell it that there are
891 * some free.
893 if (vm_pageout_pages_needed &&
894 vmstats.v_cache_count + vmstats.v_free_count >=
895 vmstats.v_pageout_free_min
897 wakeup(&vm_pageout_pages_needed);
898 vm_pageout_pages_needed = 0;
902 * wakeup processes that are waiting on memory if we hit a
903 * high water mark. And wakeup scheduler process if we have
904 * lots of memory. this process will swapin processes.
906 if (vm_pages_needed && !vm_page_count_min(0)) {
907 vm_pages_needed = 0;
908 wakeup(&vmstats.v_free_count);
913 * vm_page_free_toq:
915 * Returns the given page to the PQ_FREE list, disassociating it with
916 * any VM object.
918 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
919 * return (the page will have been freed). No particular spl is required
920 * on entry.
922 * This routine may not block.
924 void
925 vm_page_free_toq(vm_page_t m)
927 struct vpgqueues *pq;
929 crit_enter();
930 mycpu->gd_cnt.v_tfree++;
932 KKASSERT((m->flags & PG_MAPPED) == 0);
934 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
935 kprintf(
936 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
937 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
938 m->hold_count);
939 if ((m->queue - m->pc) == PQ_FREE)
940 panic("vm_page_free: freeing free page");
941 else
942 panic("vm_page_free: freeing busy page");
946 * unqueue, then remove page. Note that we cannot destroy
947 * the page here because we do not want to call the pager's
948 * callback routine until after we've put the page on the
949 * appropriate free queue.
951 vm_page_unqueue_nowakeup(m);
952 vm_page_remove(m);
955 * No further management of fictitious pages occurs beyond object
956 * and queue removal.
958 if ((m->flags & PG_FICTITIOUS) != 0) {
959 vm_page_wakeup(m);
960 crit_exit();
961 return;
964 m->valid = 0;
965 vm_page_undirty(m);
967 if (m->wire_count != 0) {
968 if (m->wire_count > 1) {
969 panic(
970 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
971 m->wire_count, (long)m->pindex);
973 panic("vm_page_free: freeing wired page");
977 * Clear the UNMANAGED flag when freeing an unmanaged page.
979 if (m->flags & PG_UNMANAGED) {
980 m->flags &= ~PG_UNMANAGED;
983 if (m->hold_count != 0) {
984 m->flags &= ~PG_ZERO;
985 m->queue = PQ_HOLD;
986 } else {
987 m->queue = PQ_FREE + m->pc;
989 pq = &vm_page_queues[m->queue];
990 pq->lcnt++;
991 ++(*pq->cnt);
994 * Put zero'd pages on the end ( where we look for zero'd pages
995 * first ) and non-zerod pages at the head.
997 if (m->flags & PG_ZERO) {
998 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
999 ++vm_page_zero_count;
1000 } else {
1001 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1003 vm_page_wakeup(m);
1004 vm_page_free_wakeup();
1005 crit_exit();
1009 * vm_page_unmanage()
1011 * Prevent PV management from being done on the page. The page is
1012 * removed from the paging queues as if it were wired, and as a
1013 * consequence of no longer being managed the pageout daemon will not
1014 * touch it (since there is no way to locate the pte mappings for the
1015 * page). madvise() calls that mess with the pmap will also no longer
1016 * operate on the page.
1018 * Beyond that the page is still reasonably 'normal'. Freeing the page
1019 * will clear the flag.
1021 * This routine is used by OBJT_PHYS objects - objects using unswappable
1022 * physical memory as backing store rather then swap-backed memory and
1023 * will eventually be extended to support 4MB unmanaged physical
1024 * mappings.
1026 * Must be called with a critical section held.
1028 void
1029 vm_page_unmanage(vm_page_t m)
1031 ASSERT_IN_CRIT_SECTION();
1032 if ((m->flags & PG_UNMANAGED) == 0) {
1033 if (m->wire_count == 0)
1034 vm_page_unqueue(m);
1036 vm_page_flag_set(m, PG_UNMANAGED);
1040 * Mark this page as wired down by yet another map, removing it from
1041 * paging queues as necessary.
1043 * The page queues must be locked.
1044 * This routine may not block.
1046 void
1047 vm_page_wire(vm_page_t m)
1050 * Only bump the wire statistics if the page is not already wired,
1051 * and only unqueue the page if it is on some queue (if it is unmanaged
1052 * it is already off the queues). Don't do anything with fictitious
1053 * pages because they are always wired.
1055 crit_enter();
1056 if ((m->flags & PG_FICTITIOUS) == 0) {
1057 if (m->wire_count == 0) {
1058 if ((m->flags & PG_UNMANAGED) == 0)
1059 vm_page_unqueue(m);
1060 vmstats.v_wire_count++;
1062 m->wire_count++;
1063 KASSERT(m->wire_count != 0,
1064 ("vm_page_wire: wire_count overflow m=%p", m));
1066 crit_exit();
1070 * Release one wiring of this page, potentially enabling it to be paged again.
1072 * Many pages placed on the inactive queue should actually go
1073 * into the cache, but it is difficult to figure out which. What
1074 * we do instead, if the inactive target is well met, is to put
1075 * clean pages at the head of the inactive queue instead of the tail.
1076 * This will cause them to be moved to the cache more quickly and
1077 * if not actively re-referenced, freed more quickly. If we just
1078 * stick these pages at the end of the inactive queue, heavy filesystem
1079 * meta-data accesses can cause an unnecessary paging load on memory bound
1080 * processes. This optimization causes one-time-use metadata to be
1081 * reused more quickly.
1083 * BUT, if we are in a low-memory situation we have no choice but to
1084 * put clean pages on the cache queue.
1086 * A number of routines use vm_page_unwire() to guarantee that the page
1087 * will go into either the inactive or active queues, and will NEVER
1088 * be placed in the cache - for example, just after dirtying a page.
1089 * dirty pages in the cache are not allowed.
1091 * The page queues must be locked.
1092 * This routine may not block.
1094 void
1095 vm_page_unwire(vm_page_t m, int activate)
1097 crit_enter();
1098 if (m->flags & PG_FICTITIOUS) {
1099 /* do nothing */
1100 } else if (m->wire_count <= 0) {
1101 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1102 } else {
1103 if (--m->wire_count == 0) {
1104 --vmstats.v_wire_count;
1105 if (m->flags & PG_UNMANAGED) {
1107 } else if (activate) {
1108 TAILQ_INSERT_TAIL(
1109 &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1110 m->queue = PQ_ACTIVE;
1111 vm_page_queues[PQ_ACTIVE].lcnt++;
1112 vmstats.v_active_count++;
1113 } else {
1114 vm_page_flag_clear(m, PG_WINATCFLS);
1115 TAILQ_INSERT_TAIL(
1116 &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1117 m->queue = PQ_INACTIVE;
1118 vm_page_queues[PQ_INACTIVE].lcnt++;
1119 vmstats.v_inactive_count++;
1123 crit_exit();
1128 * Move the specified page to the inactive queue. If the page has
1129 * any associated swap, the swap is deallocated.
1131 * Normally athead is 0 resulting in LRU operation. athead is set
1132 * to 1 if we want this page to be 'as if it were placed in the cache',
1133 * except without unmapping it from the process address space.
1135 * This routine may not block.
1137 static __inline void
1138 _vm_page_deactivate(vm_page_t m, int athead)
1141 * Ignore if already inactive.
1143 if (m->queue == PQ_INACTIVE)
1144 return;
1146 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1147 if ((m->queue - m->pc) == PQ_CACHE)
1148 mycpu->gd_cnt.v_reactivated++;
1149 vm_page_flag_clear(m, PG_WINATCFLS);
1150 vm_page_unqueue(m);
1151 if (athead)
1152 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1153 else
1154 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1155 m->queue = PQ_INACTIVE;
1156 vm_page_queues[PQ_INACTIVE].lcnt++;
1157 vmstats.v_inactive_count++;
1161 void
1162 vm_page_deactivate(vm_page_t m)
1164 crit_enter();
1165 _vm_page_deactivate(m, 0);
1166 crit_exit();
1170 * vm_page_try_to_cache:
1172 * Returns 0 on failure, 1 on success
1175 vm_page_try_to_cache(vm_page_t m)
1177 crit_enter();
1178 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1179 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1180 crit_exit();
1181 return(0);
1183 vm_page_test_dirty(m);
1184 if (m->dirty) {
1185 crit_exit();
1186 return(0);
1188 vm_page_cache(m);
1189 crit_exit();
1190 return(1);
1194 * Attempt to free the page. If we cannot free it, we do nothing.
1195 * 1 is returned on success, 0 on failure.
1198 vm_page_try_to_free(vm_page_t m)
1200 crit_enter();
1201 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1202 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1203 crit_exit();
1204 return(0);
1206 vm_page_test_dirty(m);
1207 if (m->dirty) {
1208 crit_exit();
1209 return(0);
1211 vm_page_busy(m);
1212 vm_page_protect(m, VM_PROT_NONE);
1213 vm_page_free(m);
1214 crit_exit();
1215 return(1);
1219 * vm_page_cache
1221 * Put the specified page onto the page cache queue (if appropriate).
1223 * This routine may not block.
1225 void
1226 vm_page_cache(vm_page_t m)
1228 ASSERT_IN_CRIT_SECTION();
1230 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1231 m->wire_count || m->hold_count) {
1232 kprintf("vm_page_cache: attempting to cache busy/held page\n");
1233 return;
1237 * Already in the cache (and thus not mapped)
1239 if ((m->queue - m->pc) == PQ_CACHE) {
1240 KKASSERT((m->flags & PG_MAPPED) == 0);
1241 return;
1245 * Caller is required to test m->dirty, but note that the act of
1246 * removing the page from its maps can cause it to become dirty
1247 * on an SMP system due to another cpu running in usermode.
1249 if (m->dirty) {
1250 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1251 (long)m->pindex);
1255 * Remove all pmaps and indicate that the page is not
1256 * writeable or mapped. Our vm_page_protect() call may
1257 * have blocked (especially w/ VM_PROT_NONE), so recheck
1258 * everything.
1260 vm_page_busy(m);
1261 vm_page_protect(m, VM_PROT_NONE);
1262 vm_page_wakeup(m);
1263 if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1264 m->wire_count || m->hold_count) {
1265 /* do nothing */
1266 } else if (m->dirty) {
1267 vm_page_deactivate(m);
1268 } else {
1269 vm_page_unqueue_nowakeup(m);
1270 m->queue = PQ_CACHE + m->pc;
1271 vm_page_queues[m->queue].lcnt++;
1272 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1273 vmstats.v_cache_count++;
1274 vm_page_free_wakeup();
1279 * vm_page_dontneed()
1281 * Cache, deactivate, or do nothing as appropriate. This routine
1282 * is typically used by madvise() MADV_DONTNEED.
1284 * Generally speaking we want to move the page into the cache so
1285 * it gets reused quickly. However, this can result in a silly syndrome
1286 * due to the page recycling too quickly. Small objects will not be
1287 * fully cached. On the otherhand, if we move the page to the inactive
1288 * queue we wind up with a problem whereby very large objects
1289 * unnecessarily blow away our inactive and cache queues.
1291 * The solution is to move the pages based on a fixed weighting. We
1292 * either leave them alone, deactivate them, or move them to the cache,
1293 * where moving them to the cache has the highest weighting.
1294 * By forcing some pages into other queues we eventually force the
1295 * system to balance the queues, potentially recovering other unrelated
1296 * space from active. The idea is to not force this to happen too
1297 * often.
1299 void
1300 vm_page_dontneed(vm_page_t m)
1302 static int dnweight;
1303 int dnw;
1304 int head;
1306 dnw = ++dnweight;
1309 * occassionally leave the page alone
1311 crit_enter();
1312 if ((dnw & 0x01F0) == 0 ||
1313 m->queue == PQ_INACTIVE ||
1314 m->queue - m->pc == PQ_CACHE
1316 if (m->act_count >= ACT_INIT)
1317 --m->act_count;
1318 crit_exit();
1319 return;
1322 if (m->dirty == 0)
1323 vm_page_test_dirty(m);
1325 if (m->dirty || (dnw & 0x0070) == 0) {
1327 * Deactivate the page 3 times out of 32.
1329 head = 0;
1330 } else {
1332 * Cache the page 28 times out of every 32. Note that
1333 * the page is deactivated instead of cached, but placed
1334 * at the head of the queue instead of the tail.
1336 head = 1;
1338 _vm_page_deactivate(m, head);
1339 crit_exit();
1343 * Grab a page, blocking if it is busy and allocating a page if necessary.
1344 * A busy page is returned or NULL.
1346 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1347 * If VM_ALLOC_RETRY is not specified
1349 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1350 * always returned if we had blocked.
1351 * This routine will never return NULL if VM_ALLOC_RETRY is set.
1352 * This routine may not be called from an interrupt.
1353 * The returned page may not be entirely valid.
1355 * This routine may be called from mainline code without spl protection and
1356 * be guarenteed a busied page associated with the object at the specified
1357 * index.
1359 vm_page_t
1360 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1362 vm_page_t m;
1363 int generation;
1365 KKASSERT(allocflags &
1366 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1367 crit_enter();
1368 retrylookup:
1369 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1370 if (m->busy || (m->flags & PG_BUSY)) {
1371 generation = object->generation;
1373 while ((object->generation == generation) &&
1374 (m->busy || (m->flags & PG_BUSY))) {
1375 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1376 tsleep(m, 0, "pgrbwt", 0);
1377 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1378 m = NULL;
1379 goto done;
1382 goto retrylookup;
1383 } else {
1384 vm_page_busy(m);
1385 goto done;
1388 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1389 if (m == NULL) {
1390 vm_wait(0);
1391 if ((allocflags & VM_ALLOC_RETRY) == 0)
1392 goto done;
1393 goto retrylookup;
1395 done:
1396 crit_exit();
1397 return(m);
1401 * Mapping function for valid bits or for dirty bits in
1402 * a page. May not block.
1404 * Inputs are required to range within a page.
1406 __inline int
1407 vm_page_bits(int base, int size)
1409 int first_bit;
1410 int last_bit;
1412 KASSERT(
1413 base + size <= PAGE_SIZE,
1414 ("vm_page_bits: illegal base/size %d/%d", base, size)
1417 if (size == 0) /* handle degenerate case */
1418 return(0);
1420 first_bit = base >> DEV_BSHIFT;
1421 last_bit = (base + size - 1) >> DEV_BSHIFT;
1423 return ((2 << last_bit) - (1 << first_bit));
1427 * Sets portions of a page valid and clean. The arguments are expected
1428 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1429 * of any partial chunks touched by the range. The invalid portion of
1430 * such chunks will be zero'd.
1432 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1433 * align base to DEV_BSIZE so as not to mark clean a partially
1434 * truncated device block. Otherwise the dirty page status might be
1435 * lost.
1437 * This routine may not block.
1439 * (base + size) must be less then or equal to PAGE_SIZE.
1441 static void
1442 _vm_page_zero_valid(vm_page_t m, int base, int size)
1444 int frag;
1445 int endoff;
1447 if (size == 0) /* handle degenerate case */
1448 return;
1451 * If the base is not DEV_BSIZE aligned and the valid
1452 * bit is clear, we have to zero out a portion of the
1453 * first block.
1456 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1457 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1459 pmap_zero_page_area(
1460 VM_PAGE_TO_PHYS(m),
1461 frag,
1462 base - frag
1467 * If the ending offset is not DEV_BSIZE aligned and the
1468 * valid bit is clear, we have to zero out a portion of
1469 * the last block.
1472 endoff = base + size;
1474 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1475 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1477 pmap_zero_page_area(
1478 VM_PAGE_TO_PHYS(m),
1479 endoff,
1480 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1486 * Set valid, clear dirty bits. If validating the entire
1487 * page we can safely clear the pmap modify bit. We also
1488 * use this opportunity to clear the PG_NOSYNC flag. If a process
1489 * takes a write fault on a MAP_NOSYNC memory area the flag will
1490 * be set again.
1492 * We set valid bits inclusive of any overlap, but we can only
1493 * clear dirty bits for DEV_BSIZE chunks that are fully within
1494 * the range.
1496 void
1497 vm_page_set_valid(vm_page_t m, int base, int size)
1499 _vm_page_zero_valid(m, base, size);
1500 m->valid |= vm_page_bits(base, size);
1505 * Set valid bits and clear dirty bits.
1507 * NOTE: This function does not clear the pmap modified bit.
1508 * Also note that e.g. NFS may use a byte-granular base
1509 * and size.
1511 void
1512 vm_page_set_validclean(vm_page_t m, int base, int size)
1514 int pagebits;
1516 _vm_page_zero_valid(m, base, size);
1517 pagebits = vm_page_bits(base, size);
1518 m->valid |= pagebits;
1519 m->dirty &= ~pagebits;
1520 if (base == 0 && size == PAGE_SIZE) {
1521 /*pmap_clear_modify(m);*/
1522 vm_page_flag_clear(m, PG_NOSYNC);
1527 * Clear dirty bits.
1529 * NOTE: This function does not clear the pmap modified bit.
1530 * Also note that e.g. NFS may use a byte-granular base
1531 * and size.
1533 void
1534 vm_page_clear_dirty(vm_page_t m, int base, int size)
1536 m->dirty &= ~vm_page_bits(base, size);
1537 if (base == 0 && size == PAGE_SIZE) {
1538 /*pmap_clear_modify(m);*/
1539 vm_page_flag_clear(m, PG_NOSYNC);
1544 * Make the page all-dirty.
1546 * Also make sure the related object and vnode reflect the fact that the
1547 * object may now contain a dirty page.
1549 void
1550 vm_page_dirty(vm_page_t m)
1552 #ifdef INVARIANTS
1553 int pqtype = m->queue - m->pc;
1554 #endif
1555 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1556 ("vm_page_dirty: page in free/cache queue!"));
1557 if (m->dirty != VM_PAGE_BITS_ALL) {
1558 m->dirty = VM_PAGE_BITS_ALL;
1559 if (m->object)
1560 vm_object_set_writeable_dirty(m->object);
1565 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1566 * valid and dirty bits for the effected areas are cleared.
1568 * May not block.
1570 void
1571 vm_page_set_invalid(vm_page_t m, int base, int size)
1573 int bits;
1575 bits = vm_page_bits(base, size);
1576 m->valid &= ~bits;
1577 m->dirty &= ~bits;
1578 m->object->generation++;
1582 * The kernel assumes that the invalid portions of a page contain
1583 * garbage, but such pages can be mapped into memory by user code.
1584 * When this occurs, we must zero out the non-valid portions of the
1585 * page so user code sees what it expects.
1587 * Pages are most often semi-valid when the end of a file is mapped
1588 * into memory and the file's size is not page aligned.
1590 void
1591 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1593 int b;
1594 int i;
1597 * Scan the valid bits looking for invalid sections that
1598 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1599 * valid bit may be set ) have already been zerod by
1600 * vm_page_set_validclean().
1602 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1603 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1604 (m->valid & (1 << i))
1606 if (i > b) {
1607 pmap_zero_page_area(
1608 VM_PAGE_TO_PHYS(m),
1609 b << DEV_BSHIFT,
1610 (i - b) << DEV_BSHIFT
1613 b = i + 1;
1618 * setvalid is TRUE when we can safely set the zero'd areas
1619 * as being valid. We can do this if there are no cache consistency
1620 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1622 if (setvalid)
1623 m->valid = VM_PAGE_BITS_ALL;
1627 * Is a (partial) page valid? Note that the case where size == 0
1628 * will return FALSE in the degenerate case where the page is entirely
1629 * invalid, and TRUE otherwise.
1631 * May not block.
1634 vm_page_is_valid(vm_page_t m, int base, int size)
1636 int bits = vm_page_bits(base, size);
1638 if (m->valid && ((m->valid & bits) == bits))
1639 return 1;
1640 else
1641 return 0;
1645 * update dirty bits from pmap/mmu. May not block.
1647 void
1648 vm_page_test_dirty(vm_page_t m)
1650 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1651 vm_page_dirty(m);
1656 * Issue an event on a VM page. Corresponding action structures are
1657 * removed from the page's list and called.
1659 void
1660 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1662 struct vm_page_action *scan, *next;
1664 LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1665 if (scan->event == event) {
1666 scan->event = VMEVENT_NONE;
1667 LIST_REMOVE(scan, entry);
1668 scan->func(m, scan);
1673 #include "opt_ddb.h"
1674 #ifdef DDB
1675 #include <sys/kernel.h>
1677 #include <ddb/ddb.h>
1679 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1681 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1682 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1683 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1684 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1685 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1686 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1687 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1688 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1689 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1690 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1693 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1695 int i;
1696 db_printf("PQ_FREE:");
1697 for(i=0;i<PQ_L2_SIZE;i++) {
1698 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1700 db_printf("\n");
1702 db_printf("PQ_CACHE:");
1703 for(i=0;i<PQ_L2_SIZE;i++) {
1704 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1706 db_printf("\n");
1708 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1709 vm_page_queues[PQ_ACTIVE].lcnt,
1710 vm_page_queues[PQ_INACTIVE].lcnt);
1712 #endif /* DDB */