2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1994 David Greenman
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
87 #include <sys/sysctl.h>
90 #include <vm/vm_param.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/vm_extern.h>
101 #include <sys/thread2.h>
102 #include <vm/vm_page2.h>
104 #define VM_FAULT_READ_AHEAD 8
105 #define VM_FAULT_READ_BEHIND 7
106 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
114 vm_object_t first_object
;
115 vm_prot_t first_prot
;
117 vm_map_entry_t entry
;
118 int lookup_still_valid
;
127 static int burst_fault
= 1;
128 SYSCTL_INT(_vm
, OID_AUTO
, burst_fault
, CTLFLAG_RW
, &burst_fault
, 0, "");
130 static int vm_fault_object(struct faultstate
*, vm_pindex_t
, vm_prot_t
);
131 static int vm_fault_vpagetable(struct faultstate
*, vm_pindex_t
*, vpte_t
, int);
132 static int vm_fault_additional_pages (vm_page_t
, int, int, vm_page_t
*, int *);
133 static int vm_fault_ratelimit(struct vmspace
*);
136 release_page(struct faultstate
*fs
)
138 vm_page_deactivate(fs
->m
);
139 vm_page_wakeup(fs
->m
);
144 unlock_map(struct faultstate
*fs
)
146 if (fs
->lookup_still_valid
&& fs
->map
) {
147 vm_map_lookup_done(fs
->map
, fs
->entry
, 0);
148 fs
->lookup_still_valid
= FALSE
;
153 * Clean up after a successful call to vm_fault_object() so another call
154 * to vm_fault_object() can be made.
157 _cleanup_successful_fault(struct faultstate
*fs
, int relock
)
159 if (fs
->object
!= fs
->first_object
) {
160 vm_page_free(fs
->first_m
);
161 vm_object_pip_wakeup(fs
->object
);
164 fs
->object
= fs
->first_object
;
165 if (relock
&& fs
->lookup_still_valid
== FALSE
) {
167 vm_map_lock_read(fs
->map
);
168 fs
->lookup_still_valid
= TRUE
;
173 _unlock_things(struct faultstate
*fs
, int dealloc
)
175 vm_object_pip_wakeup(fs
->first_object
);
176 _cleanup_successful_fault(fs
, 0);
178 vm_object_deallocate(fs
->first_object
);
179 fs
->first_object
= NULL
;
182 if (fs
->vp
!= NULL
) {
188 #define unlock_things(fs) _unlock_things(fs, 0)
189 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
190 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
195 * Determine if the pager for the current object *might* contain the page.
197 * We only need to try the pager if this is not a default object (default
198 * objects are zero-fill and have no real pager), and if we are not taking
199 * a wiring fault or if the FS entry is wired.
201 #define TRYPAGER(fs) \
202 (fs->object->type != OBJT_DEFAULT && \
203 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
208 * Handle a page fault occuring at the given address, requiring the given
209 * permissions, in the map specified. If successful, the page is inserted
210 * into the associated physical map.
212 * NOTE: The given address should be truncated to the proper page address.
214 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
215 * a standard error specifying why the fault is fatal is returned.
217 * The map in question must be referenced, and remains so.
218 * The caller may hold no locks.
221 vm_fault(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
, int fault_flags
)
224 vm_pindex_t first_pindex
;
225 struct faultstate fs
;
227 mycpu
->gd_cnt
.v_vm_faults
++;
231 fs
.fault_flags
= fault_flags
;
235 * Find the vm_map_entry representing the backing store and resolve
236 * the top level object and page index. This may have the side
237 * effect of executing a copy-on-write on the map entry and/or
238 * creating a shadow object, but will not COW any actual VM pages.
240 * On success fs.map is left read-locked and various other fields
241 * are initialized but not otherwise referenced or locked.
243 * NOTE! vm_map_lookup will try to upgrade the fault_type to
244 * VM_FAULT_WRITE if the map entry is a virtual page table and also
245 * writable, so we can set the 'A'accessed bit in the virtual page
249 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
250 &fs
.entry
, &fs
.first_object
,
251 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
254 * If the lookup failed or the map protections are incompatible,
255 * the fault generally fails. However, if the caller is trying
256 * to do a user wiring we have more work to do.
258 if (result
!= KERN_SUCCESS
) {
259 if (result
!= KERN_PROTECTION_FAILURE
)
261 if ((fs
.fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
)
265 * If we are user-wiring a r/w segment, and it is COW, then
266 * we need to do the COW operation. Note that we don't
267 * currently COW RO sections now, because it is NOT desirable
268 * to COW .text. We simply keep .text from ever being COW'ed
269 * and take the heat that one cannot debug wired .text sections.
271 result
= vm_map_lookup(&fs
.map
, vaddr
,
272 VM_PROT_READ
|VM_PROT_WRITE
|
273 VM_PROT_OVERRIDE_WRITE
,
274 &fs
.entry
, &fs
.first_object
,
275 &first_pindex
, &fs
.first_prot
,
277 if (result
!= KERN_SUCCESS
)
281 * If we don't COW now, on a user wire, the user will never
282 * be able to write to the mapping. If we don't make this
283 * restriction, the bookkeeping would be nearly impossible.
285 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0)
286 fs
.entry
->max_protection
&= ~VM_PROT_WRITE
;
290 * fs.map is read-locked
292 * Misc checks. Save the map generation number to detect races.
294 fs
.map_generation
= fs
.map
->timestamp
;
296 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
297 panic("vm_fault: fault on nofault entry, addr: %lx",
302 * A system map entry may return a NULL object. No object means
303 * no pager means an unrecoverable kernel fault.
305 if (fs
.first_object
== NULL
) {
306 panic("vm_fault: unrecoverable fault at %p in entry %p",
307 (void *)vaddr
, fs
.entry
);
311 * Make a reference to this object to prevent its disposal while we
312 * are messing with it. Once we have the reference, the map is free
313 * to be diddled. Since objects reference their shadows (and copies),
314 * they will stay around as well.
316 * Bump the paging-in-progress count to prevent size changes (e.g.
317 * truncation operations) during I/O. This must be done after
318 * obtaining the vnode lock in order to avoid possible deadlocks.
320 vm_object_reference(fs
.first_object
);
321 fs
.vp
= vnode_pager_lock(fs
.first_object
);
322 vm_object_pip_add(fs
.first_object
, 1);
324 fs
.lookup_still_valid
= TRUE
;
326 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
329 * If the entry is wired we cannot change the page protection.
332 fault_type
= fs
.first_prot
;
335 * The page we want is at (first_object, first_pindex), but if the
336 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
337 * page table to figure out the actual pindex.
339 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
342 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
343 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
344 fs
.entry
->aux
.master_pde
,
346 if (result
== KERN_TRY_AGAIN
)
348 if (result
!= KERN_SUCCESS
)
353 * Now we have the actual (object, pindex), fault in the page. If
354 * vm_fault_object() fails it will unlock and deallocate the FS
355 * data. If it succeeds everything remains locked and fs->object
356 * will have an additinal PIP count if it is not equal to
359 * vm_fault_object will set fs->prot for the pmap operation. It is
360 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
361 * page can be safely written. However, it will force a read-only
362 * mapping for a read fault if the memory is managed by a virtual
365 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
367 if (result
== KERN_TRY_AGAIN
)
369 if (result
!= KERN_SUCCESS
)
373 * On success vm_fault_object() does not unlock or deallocate, and fs.m
374 * will contain a busied page.
376 * Enter the page into the pmap and do pmap-related adjustments.
379 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
, fs
.wired
);
381 if (((fs
.fault_flags
& VM_FAULT_WIRE_MASK
) == 0) && (fs
.wired
== 0)) {
382 pmap_prefault(fs
.map
->pmap
, vaddr
, fs
.entry
);
385 vm_page_flag_clear(fs
.m
, PG_ZERO
);
386 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
389 * If the page is not wired down, then put it where the pageout daemon
392 if (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) {
396 vm_page_unwire(fs
.m
, 1);
398 vm_page_activate(fs
.m
);
401 if (curthread
->td_lwp
) {
403 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
405 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
410 * Unlock everything, and return
412 vm_page_wakeup(fs
.m
);
413 vm_object_deallocate(fs
.first_object
);
415 return (KERN_SUCCESS
);
419 * Fault in the specified virtual address in the current process map,
420 * returning a held VM page or NULL. See vm_fault_page() for more
424 vm_fault_page_quick(vm_offset_t va
, vm_prot_t fault_type
, int *errorp
)
426 struct lwp
*lp
= curthread
->td_lwp
;
429 m
= vm_fault_page(&lp
->lwp_vmspace
->vm_map
, va
,
430 fault_type
, VM_FAULT_NORMAL
, errorp
);
435 * Fault in the specified virtual address in the specified map, doing all
436 * necessary manipulation of the object store and all necessary I/O. Return
437 * a held VM page or NULL, and set *errorp. The related pmap is not
440 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
441 * and marked PG_REFERENCED as well.
443 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
444 * error will be returned.
447 vm_fault_page(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
,
448 int fault_flags
, int *errorp
)
450 vm_pindex_t first_pindex
;
451 struct faultstate fs
;
453 vm_prot_t orig_fault_type
= fault_type
;
455 mycpu
->gd_cnt
.v_vm_faults
++;
459 fs
.fault_flags
= fault_flags
;
460 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
464 * Find the vm_map_entry representing the backing store and resolve
465 * the top level object and page index. This may have the side
466 * effect of executing a copy-on-write on the map entry and/or
467 * creating a shadow object, but will not COW any actual VM pages.
469 * On success fs.map is left read-locked and various other fields
470 * are initialized but not otherwise referenced or locked.
472 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
473 * if the map entry is a virtual page table and also writable,
474 * so we can set the 'A'accessed bit in the virtual page table entry.
477 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
478 &fs
.entry
, &fs
.first_object
,
479 &first_pindex
, &fs
.first_prot
, &fs
.wired
);
481 if (result
!= KERN_SUCCESS
) {
487 * fs.map is read-locked
489 * Misc checks. Save the map generation number to detect races.
491 fs
.map_generation
= fs
.map
->timestamp
;
493 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
494 panic("vm_fault: fault on nofault entry, addr: %lx",
499 * A system map entry may return a NULL object. No object means
500 * no pager means an unrecoverable kernel fault.
502 if (fs
.first_object
== NULL
) {
503 panic("vm_fault: unrecoverable fault at %p in entry %p",
504 (void *)vaddr
, fs
.entry
);
508 * Make a reference to this object to prevent its disposal while we
509 * are messing with it. Once we have the reference, the map is free
510 * to be diddled. Since objects reference their shadows (and copies),
511 * they will stay around as well.
513 * Bump the paging-in-progress count to prevent size changes (e.g.
514 * truncation operations) during I/O. This must be done after
515 * obtaining the vnode lock in order to avoid possible deadlocks.
517 vm_object_reference(fs
.first_object
);
518 fs
.vp
= vnode_pager_lock(fs
.first_object
);
519 vm_object_pip_add(fs
.first_object
, 1);
521 fs
.lookup_still_valid
= TRUE
;
523 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
526 * If the entry is wired we cannot change the page protection.
529 fault_type
= fs
.first_prot
;
532 * The page we want is at (first_object, first_pindex), but if the
533 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
534 * page table to figure out the actual pindex.
536 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
539 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
540 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
541 fs
.entry
->aux
.master_pde
,
543 if (result
== KERN_TRY_AGAIN
)
545 if (result
!= KERN_SUCCESS
) {
552 * Now we have the actual (object, pindex), fault in the page. If
553 * vm_fault_object() fails it will unlock and deallocate the FS
554 * data. If it succeeds everything remains locked and fs->object
555 * will have an additinal PIP count if it is not equal to
558 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
560 if (result
== KERN_TRY_AGAIN
)
562 if (result
!= KERN_SUCCESS
) {
567 if ((orig_fault_type
& VM_PROT_WRITE
) &&
568 (fs
.prot
& VM_PROT_WRITE
) == 0) {
569 *errorp
= KERN_PROTECTION_FAILURE
;
570 unlock_and_deallocate(&fs
);
575 * On success vm_fault_object() does not unlock or deallocate, and fs.m
576 * will contain a busied page.
581 * Return a held page. We are not doing any pmap manipulation so do
582 * not set PG_MAPPED. However, adjust the page flags according to
583 * the fault type because the caller may not use a managed pmapping
584 * (so we don't want to lose the fact that the page will be dirtied
585 * if a write fault was specified).
588 vm_page_flag_clear(fs
.m
, PG_ZERO
);
589 if (fault_type
& VM_PROT_WRITE
)
593 * Update the pmap. We really only have to do this if a COW
594 * occured to replace the read-only page with the new page. For
595 * now just do it unconditionally. XXX
597 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
, fs
.wired
);
598 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
601 * Unbusy the page by activating it. It remains held and will not
604 vm_page_activate(fs
.m
);
606 if (curthread
->td_lwp
) {
608 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
610 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
615 * Unlock everything, and return the held page.
617 vm_page_wakeup(fs
.m
);
618 vm_object_deallocate(fs
.first_object
);
625 * Fault in the specified (object,offset), dirty the returned page as
626 * needed. If the requested fault_type cannot be done NULL and an
630 vm_fault_object_page(vm_object_t object
, vm_ooffset_t offset
,
631 vm_prot_t fault_type
, int fault_flags
, int *errorp
)
634 vm_pindex_t first_pindex
;
635 struct faultstate fs
;
636 struct vm_map_entry entry
;
638 bzero(&entry
, sizeof(entry
));
639 entry
.object
.vm_object
= object
;
640 entry
.maptype
= VM_MAPTYPE_NORMAL
;
641 entry
.protection
= entry
.max_protection
= fault_type
;
645 fs
.fault_flags
= fault_flags
;
647 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
651 fs
.first_object
= object
;
652 first_pindex
= OFF_TO_IDX(offset
);
654 fs
.first_prot
= fault_type
;
656 /*fs.map_generation = 0; unused */
659 * Make a reference to this object to prevent its disposal while we
660 * are messing with it. Once we have the reference, the map is free
661 * to be diddled. Since objects reference their shadows (and copies),
662 * they will stay around as well.
664 * Bump the paging-in-progress count to prevent size changes (e.g.
665 * truncation operations) during I/O. This must be done after
666 * obtaining the vnode lock in order to avoid possible deadlocks.
668 vm_object_reference(fs
.first_object
);
669 fs
.vp
= vnode_pager_lock(fs
.first_object
);
670 vm_object_pip_add(fs
.first_object
, 1);
672 fs
.lookup_still_valid
= TRUE
;
674 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
677 /* XXX future - ability to operate on VM object using vpagetable */
678 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
679 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
680 fs
.entry
->aux
.master_pde
,
682 if (result
== KERN_TRY_AGAIN
)
684 if (result
!= KERN_SUCCESS
) {
692 * Now we have the actual (object, pindex), fault in the page. If
693 * vm_fault_object() fails it will unlock and deallocate the FS
694 * data. If it succeeds everything remains locked and fs->object
695 * will have an additinal PIP count if it is not equal to
698 result
= vm_fault_object(&fs
, first_pindex
, fault_type
);
700 if (result
== KERN_TRY_AGAIN
)
702 if (result
!= KERN_SUCCESS
) {
707 if ((fault_type
& VM_PROT_WRITE
) && (fs
.prot
& VM_PROT_WRITE
) == 0) {
708 *errorp
= KERN_PROTECTION_FAILURE
;
709 unlock_and_deallocate(&fs
);
714 * On success vm_fault_object() does not unlock or deallocate, and fs.m
715 * will contain a busied page.
720 * Return a held page. We are not doing any pmap manipulation so do
721 * not set PG_MAPPED. However, adjust the page flags according to
722 * the fault type because the caller may not use a managed pmapping
723 * (so we don't want to lose the fact that the page will be dirtied
724 * if a write fault was specified).
727 vm_page_flag_clear(fs
.m
, PG_ZERO
);
728 if (fault_type
& VM_PROT_WRITE
)
732 * Indicate that the page was accessed.
734 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
737 * Unbusy the page by activating it. It remains held and will not
740 vm_page_activate(fs
.m
);
742 if (curthread
->td_lwp
) {
744 mycpu
->gd_cnt
.v_vm_faults
++;
745 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
747 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
752 * Unlock everything, and return the held page.
754 vm_page_wakeup(fs
.m
);
755 vm_object_deallocate(fs
.first_object
);
762 * Translate the virtual page number (first_pindex) that is relative
763 * to the address space into a logical page number that is relative to the
764 * backing object. Use the virtual page table pointed to by (vpte).
766 * This implements an N-level page table. Any level can terminate the
767 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
768 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
772 vm_fault_vpagetable(struct faultstate
*fs
, vm_pindex_t
*pindex
,
773 vpte_t vpte
, int fault_type
)
776 int vshift
= 32 - PAGE_SHIFT
; /* page index bits remaining */
777 int result
= KERN_SUCCESS
;
782 * We cannot proceed if the vpte is not valid, not readable
783 * for a read fault, or not writable for a write fault.
785 if ((vpte
& VPTE_V
) == 0) {
786 unlock_and_deallocate(fs
);
787 return (KERN_FAILURE
);
789 if ((fault_type
& VM_PROT_READ
) && (vpte
& VPTE_R
) == 0) {
790 unlock_and_deallocate(fs
);
791 return (KERN_FAILURE
);
793 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_W
) == 0) {
794 unlock_and_deallocate(fs
);
795 return (KERN_FAILURE
);
797 if ((vpte
& VPTE_PS
) || vshift
== 0)
799 KKASSERT(vshift
>= VPTE_PAGE_BITS
);
802 * Get the page table page. Nominally we only read the page
803 * table, but since we are actively setting VPTE_M and VPTE_A,
804 * tell vm_fault_object() that we are writing it.
806 * There is currently no real need to optimize this.
808 result
= vm_fault_object(fs
, vpte
>> PAGE_SHIFT
,
809 VM_PROT_READ
|VM_PROT_WRITE
);
810 if (result
!= KERN_SUCCESS
)
814 * Process the returned fs.m and look up the page table
815 * entry in the page table page.
817 vshift
-= VPTE_PAGE_BITS
;
818 sf
= sf_buf_alloc(fs
->m
, SFB_CPUPRIVATE
);
819 ptep
= ((vpte_t
*)sf_buf_kva(sf
) +
820 ((*pindex
>> vshift
) & VPTE_PAGE_MASK
));
824 * Page table write-back. If the vpte is valid for the
825 * requested operation, do a write-back to the page table.
827 * XXX VPTE_M is not set properly for page directory pages.
828 * It doesn't get set in the page directory if the page table
829 * is modified during a read access.
831 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_V
) &&
833 if ((vpte
& (VPTE_M
|VPTE_A
)) != (VPTE_M
|VPTE_A
)) {
834 atomic_set_int(ptep
, VPTE_M
|VPTE_A
);
835 vm_page_dirty(fs
->m
);
838 if ((fault_type
& VM_PROT_READ
) && (vpte
& VPTE_V
) &&
840 if ((vpte
& VPTE_A
) == 0) {
841 atomic_set_int(ptep
, VPTE_A
);
842 vm_page_dirty(fs
->m
);
846 vm_page_flag_set(fs
->m
, PG_REFERENCED
);
847 vm_page_activate(fs
->m
);
848 vm_page_wakeup(fs
->m
);
849 cleanup_successful_fault(fs
);
852 * Combine remaining address bits with the vpte.
854 *pindex
= (vpte
>> PAGE_SHIFT
) +
855 (*pindex
& ((1 << vshift
) - 1));
856 return (KERN_SUCCESS
);
861 * Do all operations required to fault-in (fs.first_object, pindex). Run
862 * through the shadow chain as necessary and do required COW or virtual
863 * copy operations. The caller has already fully resolved the vm_map_entry
864 * and, if appropriate, has created a copy-on-write layer. All we need to
865 * do is iterate the object chain.
867 * On failure (fs) is unlocked and deallocated and the caller may return or
868 * retry depending on the failure code. On success (fs) is NOT unlocked or
869 * deallocated, fs.m will contained a resolved, busied page, and fs.object
870 * will have an additional PIP count if it is not equal to fs.first_object.
874 vm_fault_object(struct faultstate
*fs
,
875 vm_pindex_t first_pindex
, vm_prot_t fault_type
)
877 vm_object_t next_object
;
878 vm_page_t marray
[VM_FAULT_READ
];
882 fs
->prot
= fs
->first_prot
;
883 fs
->object
= fs
->first_object
;
884 pindex
= first_pindex
;
887 * If a read fault occurs we try to make the page writable if
888 * possible. There are three cases where we cannot make the
889 * page mapping writable:
891 * (1) The mapping is read-only or the VM object is read-only,
892 * fs->prot above will simply not have VM_PROT_WRITE set.
894 * (2) If the mapping is a virtual page table we need to be able
895 * to detect writes so we can set VPTE_M in the virtual page
898 * (3) If the VM page is read-only or copy-on-write, upgrading would
899 * just result in an unnecessary COW fault.
901 * VM_PROT_VPAGED is set if faulting via a virtual page table and
902 * causes adjustments to the 'M'odify bit to also turn off write
903 * access to force a re-fault.
905 if (fs
->entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
906 if ((fault_type
& VM_PROT_WRITE
) == 0)
907 fs
->prot
&= ~VM_PROT_WRITE
;
912 * If the object is dead, we stop here
914 if (fs
->object
->flags
& OBJ_DEAD
) {
915 unlock_and_deallocate(fs
);
916 return (KERN_PROTECTION_FAILURE
);
920 * See if page is resident. spl protection is required
921 * to avoid an interrupt unbusy/free race against our
922 * lookup. We must hold the protection through a page
923 * allocation or busy.
926 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
930 * Wait/Retry if the page is busy. We have to do this
931 * if the page is busy via either PG_BUSY or
932 * vm_page_t->busy because the vm_pager may be using
933 * vm_page_t->busy for pageouts ( and even pageins if
934 * it is the vnode pager ), and we could end up trying
935 * to pagein and pageout the same page simultaneously.
937 * We can theoretically allow the busy case on a read
938 * fault if the page is marked valid, but since such
939 * pages are typically already pmap'd, putting that
940 * special case in might be more effort then it is
941 * worth. We cannot under any circumstances mess
942 * around with a vm_page_t->busy page except, perhaps,
945 if ((fs
->m
->flags
& PG_BUSY
) || fs
->m
->busy
) {
947 vm_page_sleep_busy(fs
->m
, TRUE
, "vmpfw");
948 mycpu
->gd_cnt
.v_intrans
++;
949 vm_object_deallocate(fs
->first_object
);
950 fs
->first_object
= NULL
;
952 return (KERN_TRY_AGAIN
);
956 * If reactivating a page from PQ_CACHE we may have
959 queue
= fs
->m
->queue
;
960 vm_page_unqueue_nowakeup(fs
->m
);
962 if ((queue
- fs
->m
->pc
) == PQ_CACHE
&&
963 vm_page_count_severe()) {
964 vm_page_activate(fs
->m
);
965 unlock_and_deallocate(fs
);
968 return (KERN_TRY_AGAIN
);
972 * Mark page busy for other processes, and the
973 * pagedaemon. If it still isn't completely valid
974 * (readable), jump to readrest, else we found the
975 * page and can return.
977 * We can release the spl once we have marked the
983 if (((fs
->m
->valid
& VM_PAGE_BITS_ALL
) != VM_PAGE_BITS_ALL
) &&
984 fs
->m
->object
!= &kernel_object
) {
987 break; /* break to PAGE HAS BEEN FOUND */
991 * Page is not resident, If this is the search termination
992 * or the pager might contain the page, allocate a new page.
994 * NOTE: We are still in a critical section.
996 if (TRYPAGER(fs
) || fs
->object
== fs
->first_object
) {
998 * If the page is beyond the object size we fail
1000 if (pindex
>= fs
->object
->size
) {
1002 unlock_and_deallocate(fs
);
1003 return (KERN_PROTECTION_FAILURE
);
1009 if (fs
->didlimit
== 0 && curproc
!= NULL
) {
1012 limticks
= vm_fault_ratelimit(curproc
->p_vmspace
);
1015 unlock_and_deallocate(fs
);
1016 tsleep(curproc
, 0, "vmrate", limticks
);
1018 return (KERN_TRY_AGAIN
);
1023 * Allocate a new page for this object/offset pair.
1026 if (!vm_page_count_severe()) {
1027 fs
->m
= vm_page_alloc(fs
->object
, pindex
,
1028 (fs
->vp
|| fs
->object
->backing_object
) ? VM_ALLOC_NORMAL
: VM_ALLOC_NORMAL
| VM_ALLOC_ZERO
);
1030 if (fs
->m
== NULL
) {
1032 unlock_and_deallocate(fs
);
1034 return (KERN_TRY_AGAIN
);
1041 * We have found a valid page or we have allocated a new page.
1042 * The page thus may not be valid or may not be entirely
1045 * Attempt to fault-in the page if there is a chance that the
1046 * pager has it, and potentially fault in additional pages
1049 * We are NOT in splvm here and if TRYPAGER is true then
1050 * fs.m will be non-NULL and will be PG_BUSY for us.
1057 u_char behavior
= vm_map_entry_behavior(fs
->entry
);
1059 if (behavior
== MAP_ENTRY_BEHAV_RANDOM
) {
1064 KKASSERT(behind
>= 0);
1065 if (behind
> VM_FAULT_READ_BEHIND
)
1066 behind
= VM_FAULT_READ_BEHIND
;
1068 ahead
= fs
->object
->size
- pindex
;
1071 if (ahead
> VM_FAULT_READ_AHEAD
)
1072 ahead
= VM_FAULT_READ_AHEAD
;
1075 if ((fs
->first_object
->type
!= OBJT_DEVICE
) &&
1076 (behavior
== MAP_ENTRY_BEHAV_SEQUENTIAL
||
1077 (behavior
!= MAP_ENTRY_BEHAV_RANDOM
&&
1078 pindex
>= fs
->entry
->lastr
&&
1079 pindex
< fs
->entry
->lastr
+ VM_FAULT_READ
))
1081 vm_pindex_t firstpindex
, tmppindex
;
1083 if (first_pindex
< 2 * VM_FAULT_READ
)
1086 firstpindex
= first_pindex
- 2 * VM_FAULT_READ
;
1089 * note: partially valid pages cannot be
1090 * included in the lookahead - NFS piecemeal
1091 * writes will barf on it badly.
1093 * spl protection is required to avoid races
1094 * between the lookup and an interrupt
1095 * unbusy/free sequence occuring prior to
1099 for (tmppindex
= first_pindex
- 1;
1100 tmppindex
>= firstpindex
;
1105 mt
= vm_page_lookup(fs
->first_object
, tmppindex
);
1106 if (mt
== NULL
|| (mt
->valid
!= VM_PAGE_BITS_ALL
))
1109 (mt
->flags
& (PG_BUSY
| PG_FICTITIOUS
| PG_UNMANAGED
)) ||
1114 vm_page_test_dirty(mt
);
1117 vm_page_protect(mt
, VM_PROT_NONE
);
1118 vm_page_deactivate(mt
);
1131 * now we find out if any other pages should be paged
1132 * in at this time this routine checks to see if the
1133 * pages surrounding this fault reside in the same
1134 * object as the page for this fault. If they do,
1135 * then they are faulted in also into the object. The
1136 * array "marray" returned contains an array of
1137 * vm_page_t structs where one of them is the
1138 * vm_page_t passed to the routine. The reqpage
1139 * return value is the index into the marray for the
1140 * vm_page_t passed to the routine.
1142 * fs.m plus the additional pages are PG_BUSY'd.
1144 faultcount
= vm_fault_additional_pages(
1145 fs
->m
, behind
, ahead
, marray
, &reqpage
);
1148 * update lastr imperfectly (we do not know how much
1149 * getpages will actually read), but good enough.
1151 fs
->entry
->lastr
= pindex
+ faultcount
- behind
;
1154 * Call the pager to retrieve the data, if any, after
1155 * releasing the lock on the map. We hold a ref on
1156 * fs.object and the pages are PG_BUSY'd.
1161 rv
= vm_pager_get_pages(fs
->object
, marray
,
1162 faultcount
, reqpage
);
1167 if (rv
== VM_PAGER_OK
) {
1169 * Found the page. Leave it busy while we play
1174 * Relookup in case pager changed page. Pager
1175 * is responsible for disposition of old page
1178 * XXX other code segments do relookups too.
1179 * It's a bad abstraction that needs to be
1182 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
1183 if (fs
->m
== NULL
) {
1184 unlock_and_deallocate(fs
);
1185 return (KERN_TRY_AGAIN
);
1189 break; /* break to PAGE HAS BEEN FOUND */
1193 * Remove the bogus page (which does not exist at this
1194 * object/offset); before doing so, we must get back
1195 * our object lock to preserve our invariant.
1197 * Also wake up any other process that may want to bring
1200 * If this is the top-level object, we must leave the
1201 * busy page to prevent another process from rushing
1202 * past us, and inserting the page in that object at
1203 * the same time that we are.
1205 if (rv
== VM_PAGER_ERROR
) {
1207 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc
->p_pid
, curproc
->p_comm
);
1209 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread
, curproc
->p_comm
);
1212 * Data outside the range of the pager or an I/O error
1214 * The page may have been wired during the pagein,
1215 * e.g. by the buffer cache, and cannot simply be
1216 * freed. Call vnode_pager_freepag() to deal with it.
1219 * XXX - the check for kernel_map is a kludge to work
1220 * around having the machine panic on a kernel space
1221 * fault w/ I/O error.
1223 if (((fs
->map
!= &kernel_map
) && (rv
== VM_PAGER_ERROR
)) ||
1224 (rv
== VM_PAGER_BAD
)) {
1225 vnode_pager_freepage(fs
->m
);
1227 unlock_and_deallocate(fs
);
1228 if (rv
== VM_PAGER_ERROR
)
1229 return (KERN_FAILURE
);
1231 return (KERN_PROTECTION_FAILURE
);
1234 if (fs
->object
!= fs
->first_object
) {
1235 vnode_pager_freepage(fs
->m
);
1238 * XXX - we cannot just fall out at this
1239 * point, m has been freed and is invalid!
1245 * We get here if the object has a default pager (or unwiring)
1246 * or the pager doesn't have the page.
1248 if (fs
->object
== fs
->first_object
)
1249 fs
->first_m
= fs
->m
;
1252 * Move on to the next object. Lock the next object before
1253 * unlocking the current one.
1255 pindex
+= OFF_TO_IDX(fs
->object
->backing_object_offset
);
1256 next_object
= fs
->object
->backing_object
;
1257 if (next_object
== NULL
) {
1259 * If there's no object left, fill the page in the top
1260 * object with zeros.
1262 if (fs
->object
!= fs
->first_object
) {
1263 vm_object_pip_wakeup(fs
->object
);
1265 fs
->object
= fs
->first_object
;
1266 pindex
= first_pindex
;
1267 fs
->m
= fs
->first_m
;
1272 * Zero the page if necessary and mark it valid.
1274 if ((fs
->m
->flags
& PG_ZERO
) == 0) {
1275 vm_page_zero_fill(fs
->m
);
1277 mycpu
->gd_cnt
.v_ozfod
++;
1279 mycpu
->gd_cnt
.v_zfod
++;
1280 fs
->m
->valid
= VM_PAGE_BITS_ALL
;
1281 break; /* break to PAGE HAS BEEN FOUND */
1283 if (fs
->object
!= fs
->first_object
) {
1284 vm_object_pip_wakeup(fs
->object
);
1286 KASSERT(fs
->object
!= next_object
, ("object loop %p", next_object
));
1287 fs
->object
= next_object
;
1288 vm_object_pip_add(fs
->object
, 1);
1292 KASSERT((fs
->m
->flags
& PG_BUSY
) != 0,
1293 ("vm_fault: not busy after main loop"));
1296 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1301 * If the page is being written, but isn't already owned by the
1302 * top-level object, we have to copy it into a new page owned by the
1305 if (fs
->object
!= fs
->first_object
) {
1307 * We only really need to copy if we want to write it.
1309 if (fault_type
& VM_PROT_WRITE
) {
1311 * This allows pages to be virtually copied from a
1312 * backing_object into the first_object, where the
1313 * backing object has no other refs to it, and cannot
1314 * gain any more refs. Instead of a bcopy, we just
1315 * move the page from the backing object to the
1316 * first object. Note that we must mark the page
1317 * dirty in the first object so that it will go out
1318 * to swap when needed.
1322 * Map, if present, has not changed
1325 fs
->map_generation
== fs
->map
->timestamp
) &&
1327 * Only one shadow object
1329 (fs
->object
->shadow_count
== 1) &&
1331 * No COW refs, except us
1333 (fs
->object
->ref_count
== 1) &&
1335 * No one else can look this object up
1337 (fs
->object
->handle
== NULL
) &&
1339 * No other ways to look the object up
1341 ((fs
->object
->type
== OBJT_DEFAULT
) ||
1342 (fs
->object
->type
== OBJT_SWAP
)) &&
1344 * We don't chase down the shadow chain
1346 (fs
->object
== fs
->first_object
->backing_object
) &&
1349 * grab the lock if we need to
1351 (fs
->lookup_still_valid
||
1353 lockmgr(&fs
->map
->lock
, LK_EXCLUSIVE
|LK_NOWAIT
) == 0)
1356 fs
->lookup_still_valid
= 1;
1358 * get rid of the unnecessary page
1360 vm_page_protect(fs
->first_m
, VM_PROT_NONE
);
1361 vm_page_free(fs
->first_m
);
1365 * grab the page and put it into the
1366 * process'es object. The page is
1367 * automatically made dirty.
1369 vm_page_rename(fs
->m
, fs
->first_object
, first_pindex
);
1370 fs
->first_m
= fs
->m
;
1371 vm_page_busy(fs
->first_m
);
1373 mycpu
->gd_cnt
.v_cow_optim
++;
1376 * Oh, well, lets copy it.
1378 vm_page_copy(fs
->m
, fs
->first_m
);
1379 vm_page_event(fs
->m
, VMEVENT_COW
);
1384 * We no longer need the old page or object.
1390 * fs->object != fs->first_object due to above
1393 vm_object_pip_wakeup(fs
->object
);
1396 * Only use the new page below...
1399 mycpu
->gd_cnt
.v_cow_faults
++;
1400 fs
->m
= fs
->first_m
;
1401 fs
->object
= fs
->first_object
;
1402 pindex
= first_pindex
;
1405 * If it wasn't a write fault avoid having to copy
1406 * the page by mapping it read-only.
1408 fs
->prot
&= ~VM_PROT_WRITE
;
1413 * We may have had to unlock a map to do I/O. If we did then
1414 * lookup_still_valid will be FALSE. If the map generation count
1415 * also changed then all sorts of things could have happened while
1416 * we were doing the I/O and we need to retry.
1419 if (!fs
->lookup_still_valid
&&
1421 (fs
->map
->timestamp
!= fs
->map_generation
)) {
1423 unlock_and_deallocate(fs
);
1424 return (KERN_TRY_AGAIN
);
1428 * If the fault is a write, we know that this page is being
1429 * written NOW so dirty it explicitly to save on pmap_is_modified()
1432 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1433 * if the page is already dirty to prevent data written with
1434 * the expectation of being synced from not being synced.
1435 * Likewise if this entry does not request NOSYNC then make
1436 * sure the page isn't marked NOSYNC. Applications sharing
1437 * data should use the same flags to avoid ping ponging.
1439 * Also tell the backing pager, if any, that it should remove
1440 * any swap backing since the page is now dirty.
1442 if (fs
->prot
& VM_PROT_WRITE
) {
1443 vm_object_set_writeable_dirty(fs
->m
->object
);
1444 if (fs
->entry
->eflags
& MAP_ENTRY_NOSYNC
) {
1445 if (fs
->m
->dirty
== 0)
1446 vm_page_flag_set(fs
->m
, PG_NOSYNC
);
1448 vm_page_flag_clear(fs
->m
, PG_NOSYNC
);
1450 if (fs
->fault_flags
& VM_FAULT_DIRTY
) {
1452 vm_page_dirty(fs
->m
);
1453 vm_pager_page_unswapped(fs
->m
);
1459 * Page had better still be busy. We are still locked up and
1460 * fs->object will have another PIP reference if it is not equal
1461 * to fs->first_object.
1463 KASSERT(fs
->m
->flags
& PG_BUSY
,
1464 ("vm_fault: page %p not busy!", fs
->m
));
1467 * Sanity check: page must be completely valid or it is not fit to
1468 * map into user space. vm_pager_get_pages() ensures this.
1470 if (fs
->m
->valid
!= VM_PAGE_BITS_ALL
) {
1471 vm_page_zero_invalid(fs
->m
, TRUE
);
1472 kprintf("Warning: page %p partially invalid on fault\n", fs
->m
);
1475 return (KERN_SUCCESS
);
1479 * Wire down a range of virtual addresses in a map. The entry in question
1480 * should be marked in-transition and the map must be locked. We must
1481 * release the map temporarily while faulting-in the page to avoid a
1482 * deadlock. Note that the entry may be clipped while we are blocked but
1483 * will never be freed.
1486 vm_fault_wire(vm_map_t map
, vm_map_entry_t entry
, boolean_t user_wire
)
1488 boolean_t fictitious
;
1496 pmap
= vm_map_pmap(map
);
1497 start
= entry
->start
;
1499 fictitious
= entry
->object
.vm_object
&&
1500 (entry
->object
.vm_object
->type
== OBJT_DEVICE
);
1506 * We simulate a fault to get the page and enter it in the physical
1509 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1511 rv
= vm_fault(map
, va
, VM_PROT_READ
,
1512 VM_FAULT_USER_WIRE
);
1514 rv
= vm_fault(map
, va
, VM_PROT_READ
|VM_PROT_WRITE
,
1515 VM_FAULT_CHANGE_WIRING
);
1518 while (va
> start
) {
1520 if ((pa
= pmap_extract(pmap
, va
)) == 0)
1522 pmap_change_wiring(pmap
, va
, FALSE
);
1524 vm_page_unwire(PHYS_TO_VM_PAGE(pa
), 1);
1531 return (KERN_SUCCESS
);
1535 * Unwire a range of virtual addresses in a map. The map should be
1539 vm_fault_unwire(vm_map_t map
, vm_map_entry_t entry
)
1541 boolean_t fictitious
;
1548 pmap
= vm_map_pmap(map
);
1549 start
= entry
->start
;
1551 fictitious
= entry
->object
.vm_object
&&
1552 (entry
->object
.vm_object
->type
== OBJT_DEVICE
);
1555 * Since the pages are wired down, we must be able to get their
1556 * mappings from the physical map system.
1558 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
1559 pa
= pmap_extract(pmap
, va
);
1561 pmap_change_wiring(pmap
, va
, FALSE
);
1563 vm_page_unwire(PHYS_TO_VM_PAGE(pa
), 1);
1569 * Reduce the rate at which memory is allocated to a process based
1570 * on the perceived load on the VM system. As the load increases
1571 * the allocation burst rate goes down and the delay increases.
1573 * Rate limiting does not apply when faulting active or inactive
1574 * pages. When faulting 'cache' pages, rate limiting only applies
1575 * if the system currently has a severe page deficit.
1577 * XXX vm_pagesupply should be increased when a page is freed.
1579 * We sleep up to 1/10 of a second.
1582 vm_fault_ratelimit(struct vmspace
*vmspace
)
1584 if (vm_load_enable
== 0)
1586 if (vmspace
->vm_pagesupply
> 0) {
1587 --vmspace
->vm_pagesupply
;
1591 if (vm_load_debug
) {
1592 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1594 (1000 - vm_load
) / 10, vm_load
* hz
/ 10000,
1595 curproc
->p_pid
, curproc
->p_comm
);
1598 vmspace
->vm_pagesupply
= (1000 - vm_load
) / 10;
1599 return(vm_load
* hz
/ 10000);
1604 * vm_fault_copy_entry
1606 * Copy all of the pages from a wired-down map entry to another.
1608 * In/out conditions:
1609 * The source and destination maps must be locked for write.
1610 * The source map entry must be wired down (or be a sharing map
1611 * entry corresponding to a main map entry that is wired down).
1615 vm_fault_copy_entry(vm_map_t dst_map
, vm_map_t src_map
,
1616 vm_map_entry_t dst_entry
, vm_map_entry_t src_entry
)
1618 vm_object_t dst_object
;
1619 vm_object_t src_object
;
1620 vm_ooffset_t dst_offset
;
1621 vm_ooffset_t src_offset
;
1631 src_object
= src_entry
->object
.vm_object
;
1632 src_offset
= src_entry
->offset
;
1635 * Create the top-level object for the destination entry. (Doesn't
1636 * actually shadow anything - we copy the pages directly.)
1638 vm_map_entry_allocate_object(dst_entry
);
1639 dst_object
= dst_entry
->object
.vm_object
;
1641 prot
= dst_entry
->max_protection
;
1644 * Loop through all of the pages in the entry's range, copying each
1645 * one from the source object (it should be there) to the destination
1648 for (vaddr
= dst_entry
->start
, dst_offset
= 0;
1649 vaddr
< dst_entry
->end
;
1650 vaddr
+= PAGE_SIZE
, dst_offset
+= PAGE_SIZE
) {
1653 * Allocate a page in the destination object
1656 dst_m
= vm_page_alloc(dst_object
,
1657 OFF_TO_IDX(dst_offset
), VM_ALLOC_NORMAL
);
1658 if (dst_m
== NULL
) {
1661 } while (dst_m
== NULL
);
1664 * Find the page in the source object, and copy it in.
1665 * (Because the source is wired down, the page will be in
1668 src_m
= vm_page_lookup(src_object
,
1669 OFF_TO_IDX(dst_offset
+ src_offset
));
1671 panic("vm_fault_copy_wired: page missing");
1673 vm_page_copy(src_m
, dst_m
);
1674 vm_page_event(src_m
, VMEVENT_COW
);
1677 * Enter it in the pmap...
1680 vm_page_flag_clear(dst_m
, PG_ZERO
);
1681 pmap_enter(dst_map
->pmap
, vaddr
, dst_m
, prot
, FALSE
);
1684 * Mark it no longer busy, and put it on the active list.
1686 vm_page_activate(dst_m
);
1687 vm_page_wakeup(dst_m
);
1693 * This routine checks around the requested page for other pages that
1694 * might be able to be faulted in. This routine brackets the viable
1695 * pages for the pages to be paged in.
1698 * m, rbehind, rahead
1701 * marray (array of vm_page_t), reqpage (index of requested page)
1704 * number of pages in marray
1707 vm_fault_additional_pages(vm_page_t m
, int rbehind
, int rahead
,
1708 vm_page_t
*marray
, int *reqpage
)
1712 vm_pindex_t pindex
, startpindex
, endpindex
, tpindex
;
1714 int cbehind
, cahead
;
1720 * we don't fault-ahead for device pager
1722 if (object
->type
== OBJT_DEVICE
) {
1729 * if the requested page is not available, then give up now
1731 if (!vm_pager_has_page(object
, pindex
, &cbehind
, &cahead
)) {
1732 *reqpage
= 0; /* not used by caller, fix compiler warn */
1736 if ((cbehind
== 0) && (cahead
== 0)) {
1742 if (rahead
> cahead
) {
1746 if (rbehind
> cbehind
) {
1751 * Do not do any readahead if we have insufficient free memory.
1753 * XXX code was broken disabled before and has instability
1754 * with this conditonal fixed, so shortcut for now.
1756 if (burst_fault
== 0 || vm_page_count_severe()) {
1763 * scan backward for the read behind pages -- in memory
1765 * Assume that if the page is not found an interrupt will not
1766 * create it. Theoretically interrupts can only remove (busy)
1767 * pages, not create new associations.
1770 if (rbehind
> pindex
) {
1774 startpindex
= pindex
- rbehind
;
1778 for (tpindex
= pindex
; tpindex
> startpindex
; --tpindex
) {
1779 if (vm_page_lookup(object
, tpindex
- 1))
1784 while (tpindex
< pindex
) {
1785 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
);
1788 for (j
= 0; j
< i
; j
++) {
1789 vm_page_free(marray
[j
]);
1805 * Assign requested page
1812 * Scan forwards for read-ahead pages
1814 tpindex
= pindex
+ 1;
1815 endpindex
= tpindex
+ rahead
;
1816 if (endpindex
> object
->size
)
1817 endpindex
= object
->size
;
1820 while (tpindex
< endpindex
) {
1821 if (vm_page_lookup(object
, tpindex
))
1823 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
);