kernel: Fix the build of the SOEKRIS kernel config.
[dragonfly.git] / sys / vm / vm_kern.c
blob9888f4b5ce11cbe1b7b3c0d68ee90510bd030386
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
66 * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
70 * Kernel memory management.
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
91 struct vm_map kernel_map;
92 struct vm_map clean_map;
93 struct vm_map buffer_map;
96 * Allocate pageable memory to the kernel's address map. "map" must
97 * be kernel_map or a submap of kernel_map.
99 * No requirements.
101 vm_offset_t
102 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
104 vm_offset_t addr;
105 int result;
107 size = round_page(size);
108 addr = vm_map_min(map);
109 result = vm_map_find(map, NULL, (vm_offset_t) 0,
110 &addr, size, PAGE_SIZE,
111 TRUE, VM_MAPTYPE_NORMAL,
112 VM_PROT_ALL, VM_PROT_ALL,
114 if (result != KERN_SUCCESS)
115 return (0);
116 return (addr);
120 * Same as kmem_alloc_pageable, except that it create a nofault entry.
122 * No requirements.
124 vm_offset_t
125 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_size_t align)
127 vm_offset_t addr;
128 int result;
130 size = round_page(size);
131 addr = vm_map_min(map);
132 result = vm_map_find(map, NULL, (vm_offset_t) 0,
133 &addr, size, align,
134 TRUE, VM_MAPTYPE_NORMAL,
135 VM_PROT_ALL, VM_PROT_ALL,
136 MAP_NOFAULT);
137 if (result != KERN_SUCCESS)
138 return (0);
139 return (addr);
143 * Allocate wired-down memory in the kernel's address map or a submap.
145 * No requirements.
147 vm_offset_t
148 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
150 vm_offset_t addr;
151 vm_offset_t gstart;
152 vm_offset_t i;
153 int count;
154 int cow;
156 size = round_page(size);
158 if (kmflags & KM_KRESERVE)
159 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
160 else
161 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
163 if (kmflags & KM_STACK) {
164 cow = MAP_IS_KSTACK;
165 gstart = PAGE_SIZE;
166 } else {
167 cow = 0;
168 gstart = 0;
172 * Use the kernel object for wired-down kernel pages. Assume that no
173 * region of the kernel object is referenced more than once.
175 * Locate sufficient space in the map. This will give us the final
176 * virtual address for the new memory, and thus will tell us the
177 * offset within the kernel map.
179 vm_map_lock(map);
180 if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
181 vm_map_unlock(map);
182 if (kmflags & KM_KRESERVE)
183 vm_map_entry_krelease(count);
184 else
185 vm_map_entry_release(count);
186 return (0);
188 vm_object_hold(&kernel_object);
189 vm_object_reference_locked(&kernel_object);
190 vm_map_insert(map, &count,
191 &kernel_object, addr, addr, addr + size,
192 VM_MAPTYPE_NORMAL,
193 VM_PROT_ALL, VM_PROT_ALL,
194 cow);
195 vm_object_drop(&kernel_object);
197 vm_map_unlock(map);
198 if (kmflags & KM_KRESERVE)
199 vm_map_entry_krelease(count);
200 else
201 vm_map_entry_release(count);
204 * Guarantee that there are pages already in this object before
205 * calling vm_map_wire. This is to prevent the following
206 * scenario:
208 * 1) Threads have swapped out, so that there is a pager for the
209 * kernel_object. 2) The kmsg zone is empty, and so we are
210 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
211 * there is no page, but there is a pager, so we call
212 * pager_data_request. But the kmsg zone is empty, so we must
213 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
214 * we get the data back from the pager, it will be (very stale)
215 * non-zero data. kmem_alloc is defined to return zero-filled memory.
217 * We're intentionally not activating the pages we allocate to prevent a
218 * race with page-out. vm_map_wire will wire the pages.
220 vm_object_hold(&kernel_object);
221 for (i = gstart; i < size; i += PAGE_SIZE) {
222 vm_page_t mem;
224 mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
225 VM_ALLOC_FORCE_ZERO | VM_ALLOC_NORMAL |
226 VM_ALLOC_RETRY);
227 vm_page_unqueue_nowakeup(mem);
228 vm_page_wakeup(mem);
230 vm_object_drop(&kernel_object);
233 * And finally, mark the data as non-pageable.
235 * NOTE: vm_map_wire() handles any kstack guard.
237 vm_map_wire(map, addr, addr + size, kmflags);
239 return (addr);
243 * Release a region of kernel virtual memory allocated with kmem_alloc,
244 * and return the physical pages associated with that region.
246 * WARNING! If the caller entered pages into the region using pmap_kenter()
247 * it must remove the pages using pmap_kremove[_quick]() before freeing the
248 * underlying kmem, otherwise resident_count will be mistabulated.
250 * No requirements.
252 void
253 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
255 vm_map_remove(map, trunc_page(addr), round_page(addr + size));
259 * Used to break a system map into smaller maps, usually to reduce
260 * contention and to provide large KVA spaces for subsystems like the
261 * buffer cache.
263 * parent Map to take range from
264 * result
265 * size Size of range to find
266 * min, max Returned endpoints of map
267 * pageable Can the region be paged
269 * No requirements.
271 void
272 kmem_suballoc(vm_map_t parent, vm_map_t result,
273 vm_offset_t *min, vm_offset_t *max, vm_size_t size)
275 int ret;
277 size = round_page(size);
279 *min = (vm_offset_t) vm_map_min(parent);
280 ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
281 min, size, PAGE_SIZE,
282 TRUE, VM_MAPTYPE_UNSPECIFIED,
283 VM_PROT_ALL, VM_PROT_ALL,
285 if (ret != KERN_SUCCESS) {
286 kprintf("kmem_suballoc: bad status return of %d.\n", ret);
287 panic("kmem_suballoc");
289 *max = *min + size;
290 pmap_reference(vm_map_pmap(parent));
291 vm_map_init(result, *min, *max, vm_map_pmap(parent));
292 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
293 panic("kmem_suballoc: unable to change range to submap");
297 * Allocates pageable memory from a sub-map of the kernel. If the submap
298 * has no room, the caller sleeps waiting for more memory in the submap.
300 * No requirements.
302 vm_offset_t
303 kmem_alloc_wait(vm_map_t map, vm_size_t size)
305 vm_offset_t addr;
306 int count;
308 size = round_page(size);
310 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
312 for (;;) {
314 * To make this work for more than one map, use the map's lock
315 * to lock out sleepers/wakers.
317 vm_map_lock(map);
318 if (vm_map_findspace(map, vm_map_min(map),
319 size, PAGE_SIZE, 0, &addr) == 0) {
320 break;
322 /* no space now; see if we can ever get space */
323 if (vm_map_max(map) - vm_map_min(map) < size) {
324 vm_map_entry_release(count);
325 vm_map_unlock(map);
326 return (0);
328 vm_map_unlock(map);
329 tsleep(map, 0, "kmaw", 0);
331 vm_map_insert(map, &count,
332 NULL, (vm_offset_t) 0,
333 addr, addr + size,
334 VM_MAPTYPE_NORMAL,
335 VM_PROT_ALL, VM_PROT_ALL,
337 vm_map_unlock(map);
338 vm_map_entry_release(count);
340 return (addr);
344 * Returns memory to a submap of the kernel, and wakes up any processes
345 * waiting for memory in that map.
347 * No requirements.
349 void
350 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
352 int count;
354 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
355 vm_map_lock(map);
356 vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
357 wakeup(map);
358 vm_map_unlock(map);
359 vm_map_entry_release(count);
363 * Create the kernel_ma for (KvaStart,KvaEnd) and insert mappings to
364 * cover areas already allocated or reserved thus far.
366 * The areas (virtual_start, virtual_end) and (virtual2_start, virtual2_end)
367 * are available so the cutouts are the areas around these ranges between
368 * KvaStart and KvaEnd.
370 * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
371 * Called from the low level boot code only.
373 void
374 kmem_init(void)
376 vm_offset_t addr;
377 vm_map_t m;
378 int count;
380 m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
381 vm_map_lock(m);
382 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
383 m->system_map = 1;
384 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
385 addr = KvaStart;
386 if (virtual2_start) {
387 if (addr < virtual2_start) {
388 vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
389 addr, virtual2_start,
390 VM_MAPTYPE_NORMAL,
391 VM_PROT_ALL, VM_PROT_ALL,
394 addr = virtual2_end;
396 if (addr < virtual_start) {
397 vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
398 addr, virtual_start,
399 VM_MAPTYPE_NORMAL,
400 VM_PROT_ALL, VM_PROT_ALL,
403 addr = virtual_end;
404 if (addr < KvaEnd) {
405 vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
406 addr, KvaEnd,
407 VM_MAPTYPE_NORMAL,
408 VM_PROT_ALL, VM_PROT_ALL,
411 /* ... and ending with the completion of the above `insert' */
412 vm_map_unlock(m);
413 vm_map_entry_release(count);
417 * No requirements.
419 static int
420 kvm_size(SYSCTL_HANDLER_ARGS)
422 unsigned long ksize = KvaSize;
424 return sysctl_handle_long(oidp, &ksize, 0, req);
426 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_ULONG|CTLFLAG_RD,
427 0, 0, kvm_size, "LU", "Size of KVM");
430 * No requirements.
432 static int
433 kvm_free(SYSCTL_HANDLER_ARGS)
435 unsigned long kfree = virtual_end - kernel_vm_end;
437 return sysctl_handle_long(oidp, &kfree, 0, req);
439 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_ULONG|CTLFLAG_RD,
440 0, 0, kvm_free, "LU", "Amount of KVM free");