1 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $ */
3 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * Cryptographic Subsystem.
29 * This code is derived from the Openbsd Cryptographic Framework (OCF)
30 * that has the copyright shown below. Very little of the original
35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
55 #define CRYPTO_TIMING /* enable timing support */
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
71 #include <sys/thread2.h>
72 #include <sys/mplock2.h>
76 #include <opencrypto/cryptodev.h>
77 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81 #include "cryptodev_if.h"
84 * Crypto drivers register themselves by allocating a slot in the
85 * crypto_drivers table with crypto_get_driverid() and then registering
86 * each algorithm they support with crypto_register() and crypto_kregister().
88 static struct lock crypto_drivers_lock
; /* lock on driver table */
89 #define CRYPTO_DRIVER_LOCK() lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
90 #define CRYPTO_DRIVER_UNLOCK() lockmgr(&crypto_drivers_lock, LK_RELEASE)
91 #define CRYPTO_DRIVER_ASSERT() KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
94 * Crypto device/driver capabilities structure.
97 * (d) - protected by CRYPTO_DRIVER_LOCK()
98 * (q) - protected by CRYPTO_Q_LOCK()
99 * Not tagged fields are read-only.
102 device_t cc_dev
; /* (d) device/driver */
103 u_int32_t cc_sessions
; /* (d) # of sessions */
104 u_int32_t cc_koperations
; /* (d) # os asym operations */
106 * Largest possible operator length (in bits) for each type of
107 * encryption algorithm. XXX not used
109 u_int16_t cc_max_op_len
[CRYPTO_ALGORITHM_MAX
+ 1];
110 u_int8_t cc_alg
[CRYPTO_ALGORITHM_MAX
+ 1];
111 u_int8_t cc_kalg
[CRK_ALGORITHM_MAX
+ 1];
113 int cc_flags
; /* (d) flags */
114 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
115 int cc_qblocked
; /* (q) symmetric q blocked */
116 int cc_kqblocked
; /* (q) asymmetric q blocked */
118 static struct cryptocap
*crypto_drivers
= NULL
;
119 static int crypto_drivers_num
= 0;
121 typedef struct crypto_tdinfo
{
122 TAILQ_HEAD(,cryptop
) crp_q
; /* request queues */
123 TAILQ_HEAD(,cryptkop
) crp_kq
;
125 struct lock crp_lock
;
130 * There are two queues for crypto requests; one for symmetric (e.g.
131 * cipher) operations and one for asymmetric (e.g. MOD) operations.
132 * See below for how synchronization is handled.
133 * A single lock is used to lock access to both queues. We could
134 * have one per-queue but having one simplifies handling of block/unblock
137 static struct crypto_tdinfo tdinfo_array
[MAXCPU
];
139 #define CRYPTO_Q_LOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
140 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
143 * There are two queues for processing completed crypto requests; one
144 * for the symmetric and one for the asymmetric ops. We only need one
145 * but have two to avoid type futzing (cryptop vs. cryptkop). A single
146 * lock is used to lock access to both queues. Note that this lock
147 * must be separate from the lock on request queues to insure driver
148 * callbacks don't generate lock order reversals.
150 static TAILQ_HEAD(,cryptop
) crp_ret_q
; /* callback queues */
151 static TAILQ_HEAD(,cryptkop
) crp_ret_kq
;
152 static struct lock crypto_ret_q_lock
;
153 #define CRYPTO_RETQ_LOCK() lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
154 #define CRYPTO_RETQ_UNLOCK() lockmgr(&crypto_ret_q_lock, LK_RELEASE)
155 #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
158 * Crypto op and desciptor data structures are allocated
159 * from separate object caches.
161 static struct objcache
*cryptop_oc
, *cryptodesc_oc
;
163 static MALLOC_DEFINE(M_CRYPTO_OP
, "crypto op", "crypto op");
164 static MALLOC_DEFINE(M_CRYPTO_DESC
, "crypto desc", "crypto desc");
166 int crypto_userasymcrypto
= 1; /* userland may do asym crypto reqs */
167 SYSCTL_INT(_kern
, OID_AUTO
, userasymcrypto
, CTLFLAG_RW
,
168 &crypto_userasymcrypto
, 0,
169 "Enable/disable user-mode access to asymmetric crypto support");
170 int crypto_devallowsoft
= 0; /* only use hardware crypto for asym */
171 SYSCTL_INT(_kern
, OID_AUTO
, cryptodevallowsoft
, CTLFLAG_RW
,
172 &crypto_devallowsoft
, 0,
173 "Enable/disable use of software asym crypto support");
174 int crypto_altdispatch
= 0; /* dispatch to alternative cpu */
175 SYSCTL_INT(_kern
, OID_AUTO
, cryptoaltdispatch
, CTLFLAG_RW
,
176 &crypto_altdispatch
, 0,
177 "Do not queue crypto op on current cpu");
179 MALLOC_DEFINE(M_CRYPTO_DATA
, "crypto", "crypto session records");
181 static void crypto_proc(void *dummy
);
182 static void crypto_ret_proc(void *dummy
);
183 static struct thread
*cryptoretthread
;
184 static void crypto_destroy(void);
185 static int crypto_invoke(struct cryptocap
*cap
, struct cryptop
*crp
, int hint
);
186 static int crypto_kinvoke(struct cryptkop
*krp
, int flags
);
188 static struct cryptostats cryptostats
;
189 SYSCTL_STRUCT(_kern
, OID_AUTO
, crypto_stats
, CTLFLAG_RW
, &cryptostats
,
190 cryptostats
, "Crypto system statistics");
193 static int crypto_timing
= 0;
194 SYSCTL_INT(_debug
, OID_AUTO
, crypto_timing
, CTLFLAG_RW
,
195 &crypto_timing
, 0, "Enable/disable crypto timing support");
201 crypto_tdinfo_t tdinfo
;
205 lockinit(&crypto_drivers_lock
, "crypto driver table", 0, LK_CANRECURSE
);
207 TAILQ_INIT(&crp_ret_q
);
208 TAILQ_INIT(&crp_ret_kq
);
209 lockinit(&crypto_ret_q_lock
, "crypto return queues", 0, LK_CANRECURSE
);
211 cryptop_oc
= objcache_create_simple(M_CRYPTO_OP
, sizeof(struct cryptop
));
212 cryptodesc_oc
= objcache_create_simple(M_CRYPTO_DESC
,
213 sizeof(struct cryptodesc
));
214 if (cryptodesc_oc
== NULL
|| cryptop_oc
== NULL
) {
215 kprintf("crypto_init: cannot setup crypto caches\n");
220 crypto_drivers_num
= CRYPTO_DRIVERS_INITIAL
;
221 crypto_drivers
= kmalloc(crypto_drivers_num
* sizeof(struct cryptocap
),
222 M_CRYPTO_DATA
, M_WAITOK
| M_ZERO
);
224 for (n
= 0; n
< ncpus
; ++n
) {
225 tdinfo
= &tdinfo_array
[n
];
226 TAILQ_INIT(&tdinfo
->crp_q
);
227 TAILQ_INIT(&tdinfo
->crp_kq
);
228 lockinit(&tdinfo
->crp_lock
, "crypto op queues",
230 kthread_create_cpu(crypto_proc
, tdinfo
, &tdinfo
->crp_td
,
233 kthread_create(crypto_ret_proc
, NULL
,
234 &cryptoretthread
, "crypto returns");
242 * Signal a crypto thread to terminate. We use the driver
243 * table lock to synchronize the sleep/wakeups so that we
244 * are sure the threads have terminated before we release
245 * the data structures they use. See crypto_finis below
246 * for the other half of this song-and-dance.
249 crypto_terminate(struct thread
**tp
, void *q
)
253 KKASSERT(lockstatus(&crypto_drivers_lock
, curthread
) != 0);
257 kprintf("crypto_terminate: start\n");
260 tsleep_interlock(t
, 0);
261 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
263 tsleep(t
, PINTERLOCKED
, "crypto_destroy", 0);
264 CRYPTO_DRIVER_LOCK();
265 kprintf("crypto_terminate: end\n");
272 crypto_tdinfo_t tdinfo
;
276 * Terminate any crypto threads.
278 CRYPTO_DRIVER_LOCK();
279 for (n
= 0; n
< ncpus
; ++n
) {
280 tdinfo
= &tdinfo_array
[n
];
281 crypto_terminate(&tdinfo
->crp_td
, &tdinfo
->crp_q
);
282 lockuninit(&tdinfo
->crp_lock
);
284 crypto_terminate(&cryptoretthread
, &crp_ret_q
);
285 CRYPTO_DRIVER_UNLOCK();
287 /* XXX flush queues??? */
290 * Reclaim dynamically allocated resources.
292 if (crypto_drivers
!= NULL
)
293 kfree(crypto_drivers
, M_CRYPTO_DATA
);
295 if (cryptodesc_oc
!= NULL
)
296 objcache_destroy(cryptodesc_oc
);
297 if (cryptop_oc
!= NULL
)
298 objcache_destroy(cryptop_oc
);
299 lockuninit(&crypto_ret_q_lock
);
300 lockuninit(&crypto_drivers_lock
);
303 static struct cryptocap
*
304 crypto_checkdriver(u_int32_t hid
)
306 if (crypto_drivers
== NULL
)
308 return (hid
>= crypto_drivers_num
? NULL
: &crypto_drivers
[hid
]);
312 * Compare a driver's list of supported algorithms against another
313 * list; return non-zero if all algorithms are supported.
316 driver_suitable(const struct cryptocap
*cap
, const struct cryptoini
*cri
)
318 const struct cryptoini
*cr
;
320 /* See if all the algorithms are supported. */
321 for (cr
= cri
; cr
; cr
= cr
->cri_next
)
322 if (cap
->cc_alg
[cr
->cri_alg
] == 0)
328 * Select a driver for a new session that supports the specified
329 * algorithms and, optionally, is constrained according to the flags.
330 * The algorithm we use here is pretty stupid; just use the
331 * first driver that supports all the algorithms we need. If there
332 * are multiple drivers we choose the driver with the fewest active
333 * sessions. We prefer hardware-backed drivers to software ones.
335 * XXX We need more smarts here (in real life too, but that's
336 * XXX another story altogether).
338 static struct cryptocap
*
339 crypto_select_driver(const struct cryptoini
*cri
, int flags
)
341 struct cryptocap
*cap
, *best
;
344 CRYPTO_DRIVER_ASSERT();
347 * Look first for hardware crypto devices if permitted.
349 if (flags
& CRYPTOCAP_F_HARDWARE
)
350 match
= CRYPTOCAP_F_HARDWARE
;
352 match
= CRYPTOCAP_F_SOFTWARE
;
355 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
356 cap
= &crypto_drivers
[hid
];
358 * If it's not initialized, is in the process of
359 * going away, or is not appropriate (hardware
360 * or software based on match), then skip.
362 if (cap
->cc_dev
== NULL
||
363 (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) ||
364 (cap
->cc_flags
& match
) == 0)
367 /* verify all the algorithms are supported. */
368 if (driver_suitable(cap
, cri
)) {
370 cap
->cc_sessions
< best
->cc_sessions
)
376 if (match
== CRYPTOCAP_F_HARDWARE
&& (flags
& CRYPTOCAP_F_SOFTWARE
)) {
377 /* sort of an Algol 68-style for loop */
378 match
= CRYPTOCAP_F_SOFTWARE
;
385 * Create a new session. The crid argument specifies a crypto
386 * driver to use or constraints on a driver to select (hardware
387 * only, software only, either). Whatever driver is selected
388 * must be capable of the requested crypto algorithms.
391 crypto_newsession(u_int64_t
*sid
, struct cryptoini
*cri
, int crid
)
393 struct cryptocap
*cap
;
397 CRYPTO_DRIVER_LOCK();
398 if ((crid
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
400 * Use specified driver; verify it is capable.
402 cap
= crypto_checkdriver(crid
);
403 if (cap
!= NULL
&& !driver_suitable(cap
, cri
))
407 * No requested driver; select based on crid flags.
409 cap
= crypto_select_driver(cri
, crid
);
411 * if NULL then can't do everything in one session.
412 * XXX Fix this. We need to inject a "virtual" session
413 * XXX layer right about here.
417 /* Call the driver initialization routine. */
418 hid
= cap
- crypto_drivers
;
419 lid
= hid
; /* Pass the driver ID. */
420 err
= CRYPTODEV_NEWSESSION(cap
->cc_dev
, &lid
, cri
);
422 (*sid
) = (cap
->cc_flags
& 0xff000000)
423 | (hid
& 0x00ffffff);
425 (*sid
) |= (lid
& 0xffffffff);
430 CRYPTO_DRIVER_UNLOCK();
435 crypto_remove(struct cryptocap
*cap
)
438 KKASSERT(lockstatus(&crypto_drivers_lock
, curthread
) != 0);
439 if (cap
->cc_sessions
== 0 && cap
->cc_koperations
== 0)
440 bzero(cap
, sizeof(*cap
));
444 * Delete an existing session (or a reserved session on an unregistered
448 crypto_freesession(u_int64_t sid
)
450 struct cryptocap
*cap
;
454 CRYPTO_DRIVER_LOCK();
456 if (crypto_drivers
== NULL
) {
461 /* Determine two IDs. */
462 hid
= CRYPTO_SESID2HID(sid
);
464 if (hid
>= crypto_drivers_num
) {
468 cap
= &crypto_drivers
[hid
];
470 if (cap
->cc_sessions
)
473 /* Call the driver cleanup routine, if available. */
474 err
= CRYPTODEV_FREESESSION(cap
->cc_dev
, sid
);
476 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
)
480 CRYPTO_DRIVER_UNLOCK();
485 * Return an unused driver id. Used by drivers prior to registering
486 * support for the algorithms they handle.
489 crypto_get_driverid(device_t dev
, int flags
)
491 struct cryptocap
*newdrv
;
494 if ((flags
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
495 kprintf("%s: no flags specified when registering driver\n",
496 device_get_nameunit(dev
));
500 CRYPTO_DRIVER_LOCK();
502 for (i
= 0; i
< crypto_drivers_num
; i
++) {
503 if (crypto_drivers
[i
].cc_dev
== NULL
&&
504 (crypto_drivers
[i
].cc_flags
& CRYPTOCAP_F_CLEANUP
) == 0) {
509 /* Out of entries, allocate some more. */
510 if (i
== crypto_drivers_num
) {
511 /* Be careful about wrap-around. */
512 if (2 * crypto_drivers_num
<= crypto_drivers_num
) {
513 CRYPTO_DRIVER_UNLOCK();
514 kprintf("crypto: driver count wraparound!\n");
518 newdrv
= kmalloc(2 * crypto_drivers_num
*
519 sizeof(struct cryptocap
),
520 M_CRYPTO_DATA
, M_WAITOK
|M_ZERO
);
522 bcopy(crypto_drivers
, newdrv
,
523 crypto_drivers_num
* sizeof(struct cryptocap
));
525 crypto_drivers_num
*= 2;
527 kfree(crypto_drivers
, M_CRYPTO_DATA
);
528 crypto_drivers
= newdrv
;
531 /* NB: state is zero'd on free */
532 crypto_drivers
[i
].cc_sessions
= 1; /* Mark */
533 crypto_drivers
[i
].cc_dev
= dev
;
534 crypto_drivers
[i
].cc_flags
= flags
;
536 kprintf("crypto: assign %s driver id %u, flags %u\n",
537 device_get_nameunit(dev
), i
, flags
);
539 CRYPTO_DRIVER_UNLOCK();
545 * Lookup a driver by name. We match against the full device
546 * name and unit, and against just the name. The latter gives
547 * us a simple widlcarding by device name. On success return the
548 * driver/hardware identifier; otherwise return -1.
551 crypto_find_driver(const char *match
)
553 int i
, len
= strlen(match
);
555 CRYPTO_DRIVER_LOCK();
556 for (i
= 0; i
< crypto_drivers_num
; i
++) {
557 device_t dev
= crypto_drivers
[i
].cc_dev
;
559 (crypto_drivers
[i
].cc_flags
& CRYPTOCAP_F_CLEANUP
))
561 if (strncmp(match
, device_get_nameunit(dev
), len
) == 0 ||
562 strncmp(match
, device_get_name(dev
), len
) == 0)
565 CRYPTO_DRIVER_UNLOCK();
566 return i
< crypto_drivers_num
? i
: -1;
570 * Return the device_t for the specified driver or NULL
571 * if the driver identifier is invalid.
574 crypto_find_device_byhid(int hid
)
576 struct cryptocap
*cap
= crypto_checkdriver(hid
);
577 return cap
!= NULL
? cap
->cc_dev
: NULL
;
581 * Return the device/driver capabilities.
584 crypto_getcaps(int hid
)
586 struct cryptocap
*cap
= crypto_checkdriver(hid
);
587 return cap
!= NULL
? cap
->cc_flags
: 0;
591 * Register support for a key-related algorithm. This routine
592 * is called once for each algorithm supported a driver.
595 crypto_kregister(u_int32_t driverid
, int kalg
, u_int32_t flags
)
597 struct cryptocap
*cap
;
600 CRYPTO_DRIVER_LOCK();
602 cap
= crypto_checkdriver(driverid
);
604 (CRK_ALGORITM_MIN
<= kalg
&& kalg
<= CRK_ALGORITHM_MAX
)) {
606 * XXX Do some performance testing to determine placing.
607 * XXX We probably need an auxiliary data structure that
608 * XXX describes relative performances.
611 cap
->cc_kalg
[kalg
] = flags
| CRYPTO_ALG_FLAG_SUPPORTED
;
613 kprintf("crypto: %s registers key alg %u flags %u\n"
614 , device_get_nameunit(cap
->cc_dev
)
623 CRYPTO_DRIVER_UNLOCK();
628 * Register support for a non-key-related algorithm. This routine
629 * is called once for each such algorithm supported by a driver.
632 crypto_register(u_int32_t driverid
, int alg
, u_int16_t maxoplen
,
635 struct cryptocap
*cap
;
638 CRYPTO_DRIVER_LOCK();
640 cap
= crypto_checkdriver(driverid
);
641 /* NB: algorithms are in the range [1..max] */
643 (CRYPTO_ALGORITHM_MIN
<= alg
&& alg
<= CRYPTO_ALGORITHM_MAX
)) {
645 * XXX Do some performance testing to determine placing.
646 * XXX We probably need an auxiliary data structure that
647 * XXX describes relative performances.
650 cap
->cc_alg
[alg
] = flags
| CRYPTO_ALG_FLAG_SUPPORTED
;
651 cap
->cc_max_op_len
[alg
] = maxoplen
;
653 kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
654 , device_get_nameunit(cap
->cc_dev
)
659 cap
->cc_sessions
= 0; /* Unmark */
664 CRYPTO_DRIVER_UNLOCK();
669 driver_finis(struct cryptocap
*cap
)
673 CRYPTO_DRIVER_ASSERT();
675 ses
= cap
->cc_sessions
;
676 kops
= cap
->cc_koperations
;
677 bzero(cap
, sizeof(*cap
));
678 if (ses
!= 0 || kops
!= 0) {
680 * If there are pending sessions,
681 * just mark as invalid.
683 cap
->cc_flags
|= CRYPTOCAP_F_CLEANUP
;
684 cap
->cc_sessions
= ses
;
685 cap
->cc_koperations
= kops
;
690 * Unregister a crypto driver. If there are pending sessions using it,
691 * leave enough information around so that subsequent calls using those
692 * sessions will correctly detect the driver has been unregistered and
696 crypto_unregister(u_int32_t driverid
, int alg
)
698 struct cryptocap
*cap
;
701 CRYPTO_DRIVER_LOCK();
702 cap
= crypto_checkdriver(driverid
);
704 (CRYPTO_ALGORITHM_MIN
<= alg
&& alg
<= CRYPTO_ALGORITHM_MAX
) &&
705 cap
->cc_alg
[alg
] != 0) {
706 cap
->cc_alg
[alg
] = 0;
707 cap
->cc_max_op_len
[alg
] = 0;
709 /* Was this the last algorithm ? */
710 for (i
= 1; i
<= CRYPTO_ALGORITHM_MAX
; i
++) {
711 if (cap
->cc_alg
[i
] != 0)
715 if (i
== CRYPTO_ALGORITHM_MAX
+ 1)
721 CRYPTO_DRIVER_UNLOCK();
727 * Unregister all algorithms associated with a crypto driver.
728 * If there are pending sessions using it, leave enough information
729 * around so that subsequent calls using those sessions will
730 * correctly detect the driver has been unregistered and reroute
734 crypto_unregister_all(u_int32_t driverid
)
736 struct cryptocap
*cap
;
739 CRYPTO_DRIVER_LOCK();
740 cap
= crypto_checkdriver(driverid
);
747 CRYPTO_DRIVER_UNLOCK();
753 * Clear blockage on a driver. The what parameter indicates whether
754 * the driver is now ready for cryptop's and/or cryptokop's.
757 crypto_unblock(u_int32_t driverid
, int what
)
759 crypto_tdinfo_t tdinfo
;
760 struct cryptocap
*cap
;
764 CRYPTO_DRIVER_LOCK();
765 cap
= crypto_checkdriver(driverid
);
767 if (what
& CRYPTO_SYMQ
)
768 cap
->cc_qblocked
= 0;
769 if (what
& CRYPTO_ASYMQ
)
770 cap
->cc_kqblocked
= 0;
771 for (n
= 0; n
< ncpus
; ++n
) {
772 tdinfo
= &tdinfo_array
[n
];
773 CRYPTO_Q_LOCK(tdinfo
);
774 if (tdinfo
[n
].crp_sleep
)
775 wakeup_one(&tdinfo
->crp_q
);
776 CRYPTO_Q_UNLOCK(tdinfo
);
782 CRYPTO_DRIVER_UNLOCK();
787 static volatile int dispatch_rover
;
790 * Add a crypto request to a queue, to be processed by the kernel thread.
793 crypto_dispatch(struct cryptop
*crp
)
795 crypto_tdinfo_t tdinfo
;
796 struct cryptocap
*cap
;
801 cryptostats
.cs_ops
++;
805 nanouptime(&crp
->crp_tstamp
);
808 hid
= CRYPTO_SESID2HID(crp
->crp_sid
);
811 * Dispatch the crypto op directly to the driver if the caller
812 * marked the request to be processed immediately or this is
813 * a synchronous callback chain occuring from within a crypto
816 * Fall through to queueing the driver is blocked.
818 if ((crp
->crp_flags
& CRYPTO_F_BATCH
) == 0 ||
819 curthread
->td_type
== TD_TYPE_CRYPTO
) {
820 cap
= crypto_checkdriver(hid
);
821 /* Driver cannot disappeared when there is an active session. */
822 KASSERT(cap
!= NULL
, ("%s: Driver disappeared.", __func__
));
823 if (!cap
->cc_qblocked
) {
824 result
= crypto_invoke(cap
, crp
, 0);
825 if (result
!= ERESTART
)
828 * The driver ran out of resources, put the request on
835 * Dispatch to a cpu for action if possible. Dispatch to a different
836 * cpu than the current cpu.
838 if (CRYPTO_SESID2CAPS(crp
->crp_sid
) & CRYPTOCAP_F_SMP
) {
839 n
= atomic_fetchadd_int(&dispatch_rover
, 1) & 255;
840 if (crypto_altdispatch
&& mycpu
->gd_cpuid
== n
)
846 tdinfo
= &tdinfo_array
[n
];
848 CRYPTO_Q_LOCK(tdinfo
);
849 TAILQ_INSERT_TAIL(&tdinfo
->crp_q
, crp
, crp_next
);
850 if (tdinfo
->crp_sleep
)
851 wakeup_one(&tdinfo
->crp_q
);
852 CRYPTO_Q_UNLOCK(tdinfo
);
857 * Add an asymetric crypto request to a queue,
858 * to be processed by the kernel thread.
861 crypto_kdispatch(struct cryptkop
*krp
)
863 crypto_tdinfo_t tdinfo
;
867 cryptostats
.cs_kops
++;
870 /* not sure how to test F_SMP here */
871 n
= atomic_fetchadd_int(&dispatch_rover
, 1) & 255;
875 tdinfo
= &tdinfo_array
[n
];
877 error
= crypto_kinvoke(krp
, krp
->krp_crid
);
879 if (error
== ERESTART
) {
880 CRYPTO_Q_LOCK(tdinfo
);
881 TAILQ_INSERT_TAIL(&tdinfo
->crp_kq
, krp
, krp_next
);
882 if (tdinfo
->crp_sleep
)
883 wakeup_one(&tdinfo
->crp_q
);
884 CRYPTO_Q_UNLOCK(tdinfo
);
891 * Verify a driver is suitable for the specified operation.
894 kdriver_suitable(const struct cryptocap
*cap
, const struct cryptkop
*krp
)
896 return (cap
->cc_kalg
[krp
->krp_op
] & CRYPTO_ALG_FLAG_SUPPORTED
) != 0;
900 * Select a driver for an asym operation. The driver must
901 * support the necessary algorithm. The caller can constrain
902 * which device is selected with the flags parameter. The
903 * algorithm we use here is pretty stupid; just use the first
904 * driver that supports the algorithms we need. If there are
905 * multiple suitable drivers we choose the driver with the
906 * fewest active operations. We prefer hardware-backed
907 * drivers to software ones when either may be used.
909 static struct cryptocap
*
910 crypto_select_kdriver(const struct cryptkop
*krp
, int flags
)
912 struct cryptocap
*cap
, *best
;
915 CRYPTO_DRIVER_ASSERT();
918 * Look first for hardware crypto devices if permitted.
920 if (flags
& CRYPTOCAP_F_HARDWARE
)
921 match
= CRYPTOCAP_F_HARDWARE
;
923 match
= CRYPTOCAP_F_SOFTWARE
;
926 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
927 cap
= &crypto_drivers
[hid
];
929 * If it's not initialized, is in the process of
930 * going away, or is not appropriate (hardware
931 * or software based on match), then skip.
933 if (cap
->cc_dev
== NULL
||
934 (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) ||
935 (cap
->cc_flags
& match
) == 0)
938 /* verify all the algorithms are supported. */
939 if (kdriver_suitable(cap
, krp
)) {
941 cap
->cc_koperations
< best
->cc_koperations
)
947 if (match
== CRYPTOCAP_F_HARDWARE
&& (flags
& CRYPTOCAP_F_SOFTWARE
)) {
948 /* sort of an Algol 68-style for loop */
949 match
= CRYPTOCAP_F_SOFTWARE
;
956 * Dispatch an assymetric crypto request.
959 crypto_kinvoke(struct cryptkop
*krp
, int crid
)
961 struct cryptocap
*cap
= NULL
;
964 KASSERT(krp
!= NULL
, ("%s: krp == NULL", __func__
));
965 KASSERT(krp
->krp_callback
!= NULL
,
966 ("%s: krp->crp_callback == NULL", __func__
));
968 CRYPTO_DRIVER_LOCK();
969 if ((crid
& (CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
)) == 0) {
970 cap
= crypto_checkdriver(crid
);
973 * Driver present, it must support the necessary
974 * algorithm and, if s/w drivers are excluded,
975 * it must be registered as hardware-backed.
977 if (!kdriver_suitable(cap
, krp
) ||
978 (!crypto_devallowsoft
&&
979 (cap
->cc_flags
& CRYPTOCAP_F_HARDWARE
) == 0))
984 * No requested driver; select based on crid flags.
986 if (!crypto_devallowsoft
) /* NB: disallow s/w drivers */
987 crid
&= ~CRYPTOCAP_F_SOFTWARE
;
988 cap
= crypto_select_kdriver(krp
, crid
);
990 if (cap
!= NULL
&& !cap
->cc_kqblocked
) {
991 krp
->krp_hid
= cap
- crypto_drivers
;
992 cap
->cc_koperations
++;
993 CRYPTO_DRIVER_UNLOCK();
994 error
= CRYPTODEV_KPROCESS(cap
->cc_dev
, krp
, 0);
995 CRYPTO_DRIVER_LOCK();
996 if (error
== ERESTART
) {
997 cap
->cc_koperations
--;
998 CRYPTO_DRIVER_UNLOCK();
1003 * NB: cap is !NULL if device is blocked; in
1004 * that case return ERESTART so the operation
1005 * is resubmitted if possible.
1007 error
= (cap
== NULL
) ? ENODEV
: ERESTART
;
1009 CRYPTO_DRIVER_UNLOCK();
1012 krp
->krp_status
= error
;
1018 #ifdef CRYPTO_TIMING
1020 crypto_tstat(struct cryptotstat
*ts
, struct timespec
*tv
)
1022 struct timespec now
, t
;
1025 t
.tv_sec
= now
.tv_sec
- tv
->tv_sec
;
1026 t
.tv_nsec
= now
.tv_nsec
- tv
->tv_nsec
;
1027 if (t
.tv_nsec
< 0) {
1029 t
.tv_nsec
+= 1000000000;
1031 timespecadd(&ts
->acc
, &t
);
1032 if (timespeccmp(&t
, &ts
->min
, <))
1034 if (timespeccmp(&t
, &ts
->max
, >))
1043 * Dispatch a crypto request to the appropriate crypto devices.
1046 crypto_invoke(struct cryptocap
*cap
, struct cryptop
*crp
, int hint
)
1049 KASSERT(crp
!= NULL
, ("%s: crp == NULL", __func__
));
1050 KASSERT(crp
->crp_callback
!= NULL
,
1051 ("%s: crp->crp_callback == NULL", __func__
));
1052 KASSERT(crp
->crp_desc
!= NULL
, ("%s: crp->crp_desc == NULL", __func__
));
1054 #ifdef CRYPTO_TIMING
1056 crypto_tstat(&cryptostats
.cs_invoke
, &crp
->crp_tstamp
);
1058 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
) {
1059 struct cryptodesc
*crd
;
1063 * Driver has unregistered; migrate the session and return
1064 * an error to the caller so they'll resubmit the op.
1066 * XXX: What if there are more already queued requests for this
1069 crypto_freesession(crp
->crp_sid
);
1071 for (crd
= crp
->crp_desc
; crd
->crd_next
; crd
= crd
->crd_next
)
1072 crd
->CRD_INI
.cri_next
= &(crd
->crd_next
->CRD_INI
);
1074 /* XXX propagate flags from initial session? */
1075 if (crypto_newsession(&nid
, &(crp
->crp_desc
->CRD_INI
),
1076 CRYPTOCAP_F_HARDWARE
| CRYPTOCAP_F_SOFTWARE
) == 0)
1079 crp
->crp_etype
= EAGAIN
;
1084 * Invoke the driver to process the request.
1086 return CRYPTODEV_PROCESS(cap
->cc_dev
, crp
, hint
);
1091 * Release a set of crypto descriptors.
1094 crypto_freereq(struct cryptop
*crp
)
1096 struct cryptodesc
*crd
;
1098 crypto_tdinfo_t tdinfo
;
1099 struct cryptop
*crp2
;
1107 for (n
= 0; n
< ncpus
; ++n
) {
1108 tdinfo
= &tdinfo_array
[n
];
1110 CRYPTO_Q_LOCK(tdinfo
);
1111 TAILQ_FOREACH(crp2
, &tdinfo
->crp_q
, crp_next
) {
1112 KASSERT(crp2
!= crp
,
1113 ("Freeing cryptop from the crypto queue (%p).",
1116 CRYPTO_Q_UNLOCK(tdinfo
);
1119 TAILQ_FOREACH(crp2
, &crp_ret_q
, crp_next
) {
1120 KASSERT(crp2
!= crp
,
1121 ("Freeing cryptop from the return queue (%p).",
1124 CRYPTO_RETQ_UNLOCK();
1127 while ((crd
= crp
->crp_desc
) != NULL
) {
1128 crp
->crp_desc
= crd
->crd_next
;
1129 objcache_put(cryptodesc_oc
, crd
);
1131 objcache_put(cryptop_oc
, crp
);
1135 * Acquire a set of crypto descriptors.
1138 crypto_getreq(int num
)
1140 struct cryptodesc
*crd
;
1141 struct cryptop
*crp
;
1143 crp
= objcache_get(cryptop_oc
, M_WAITOK
);
1145 bzero(crp
, sizeof (*crp
));
1147 crd
= objcache_get(cryptodesc_oc
, M_WAITOK
);
1149 crypto_freereq(crp
);
1152 bzero(crd
, sizeof (*crd
));
1154 crd
->crd_next
= crp
->crp_desc
;
1155 crp
->crp_desc
= crd
;
1162 * Invoke the callback on behalf of the driver.
1165 crypto_done(struct cryptop
*crp
)
1167 KASSERT((crp
->crp_flags
& CRYPTO_F_DONE
) == 0,
1168 ("crypto_done: op already done, flags 0x%x", crp
->crp_flags
));
1169 crp
->crp_flags
|= CRYPTO_F_DONE
;
1170 if (crp
->crp_etype
!= 0)
1171 cryptostats
.cs_errs
++;
1172 #ifdef CRYPTO_TIMING
1174 crypto_tstat(&cryptostats
.cs_done
, &crp
->crp_tstamp
);
1177 * CBIMM means unconditionally do the callback immediately;
1178 * CBIFSYNC means do the callback immediately only if the
1179 * operation was done synchronously. Both are used to avoid
1180 * doing extraneous context switches; the latter is mostly
1181 * used with the software crypto driver.
1183 if ((crp
->crp_flags
& CRYPTO_F_CBIMM
) ||
1184 ((crp
->crp_flags
& CRYPTO_F_CBIFSYNC
) &&
1185 (CRYPTO_SESID2CAPS(crp
->crp_sid
) & CRYPTOCAP_F_SYNC
))) {
1187 * Do the callback directly. This is ok when the
1188 * callback routine does very little (e.g. the
1189 * /dev/crypto callback method just does a wakeup).
1191 #ifdef CRYPTO_TIMING
1192 if (crypto_timing
) {
1194 * NB: We must copy the timestamp before
1195 * doing the callback as the cryptop is
1196 * likely to be reclaimed.
1198 struct timespec t
= crp
->crp_tstamp
;
1199 crypto_tstat(&cryptostats
.cs_cb
, &t
);
1200 crp
->crp_callback(crp
);
1201 crypto_tstat(&cryptostats
.cs_finis
, &t
);
1204 crp
->crp_callback(crp
);
1207 * Normal case; queue the callback for the thread.
1210 if (CRYPTO_RETQ_EMPTY())
1211 wakeup_one(&crp_ret_q
); /* shared wait channel */
1212 TAILQ_INSERT_TAIL(&crp_ret_q
, crp
, crp_next
);
1213 CRYPTO_RETQ_UNLOCK();
1218 * Invoke the callback on behalf of the driver.
1221 crypto_kdone(struct cryptkop
*krp
)
1223 struct cryptocap
*cap
;
1225 if (krp
->krp_status
!= 0)
1226 cryptostats
.cs_kerrs
++;
1227 CRYPTO_DRIVER_LOCK();
1228 /* XXX: What if driver is loaded in the meantime? */
1229 if (krp
->krp_hid
< crypto_drivers_num
) {
1230 cap
= &crypto_drivers
[krp
->krp_hid
];
1231 cap
->cc_koperations
--;
1232 KASSERT(cap
->cc_koperations
>= 0, ("cc_koperations < 0"));
1233 if (cap
->cc_flags
& CRYPTOCAP_F_CLEANUP
)
1236 CRYPTO_DRIVER_UNLOCK();
1238 if (CRYPTO_RETQ_EMPTY())
1239 wakeup_one(&crp_ret_q
); /* shared wait channel */
1240 TAILQ_INSERT_TAIL(&crp_ret_kq
, krp
, krp_next
);
1241 CRYPTO_RETQ_UNLOCK();
1245 crypto_getfeat(int *featp
)
1247 int hid
, kalg
, feat
= 0;
1249 CRYPTO_DRIVER_LOCK();
1250 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
1251 const struct cryptocap
*cap
= &crypto_drivers
[hid
];
1253 if ((cap
->cc_flags
& CRYPTOCAP_F_SOFTWARE
) &&
1254 !crypto_devallowsoft
) {
1257 for (kalg
= 0; kalg
<= CRK_ALGORITHM_MAX
; kalg
++)
1258 if (cap
->cc_kalg
[kalg
] & CRYPTO_ALG_FLAG_SUPPORTED
)
1261 CRYPTO_DRIVER_UNLOCK();
1267 * Terminate a thread at module unload. The process that
1268 * initiated this is waiting for us to signal that we're gone;
1269 * wake it up and exit. We use the driver table lock to insure
1270 * we don't do the wakeup before they're waiting. There is no
1271 * race here because the waiter sleeps on the proc lock for the
1272 * thread so it gets notified at the right time because of an
1273 * extra wakeup that's done in exit1().
1276 crypto_finis(void *chan
)
1278 CRYPTO_DRIVER_LOCK();
1280 CRYPTO_DRIVER_UNLOCK();
1285 * Crypto thread, dispatches crypto requests.
1290 crypto_proc(void *arg
)
1292 crypto_tdinfo_t tdinfo
= arg
;
1293 struct cryptop
*crp
, *submit
;
1294 struct cryptkop
*krp
;
1295 struct cryptocap
*cap
;
1299 CRYPTO_Q_LOCK(tdinfo
);
1301 curthread
->td_type
= TD_TYPE_CRYPTO
;
1305 * Find the first element in the queue that can be
1306 * processed and look-ahead to see if multiple ops
1307 * are ready for the same driver.
1311 TAILQ_FOREACH(crp
, &tdinfo
->crp_q
, crp_next
) {
1312 hid
= CRYPTO_SESID2HID(crp
->crp_sid
);
1313 cap
= crypto_checkdriver(hid
);
1315 * Driver cannot disappeared when there is an active
1318 KASSERT(cap
!= NULL
, ("%s:%u Driver disappeared.",
1319 __func__
, __LINE__
));
1320 if (cap
== NULL
|| cap
->cc_dev
== NULL
) {
1321 /* Op needs to be migrated, process it. */
1326 if (!cap
->cc_qblocked
) {
1327 if (submit
!= NULL
) {
1329 * We stop on finding another op,
1330 * regardless whether its for the same
1331 * driver or not. We could keep
1332 * searching the queue but it might be
1333 * better to just use a per-driver
1336 if (CRYPTO_SESID2HID(submit
->crp_sid
) == hid
)
1337 hint
= CRYPTO_HINT_MORE
;
1341 if ((submit
->crp_flags
& CRYPTO_F_BATCH
) == 0)
1343 /* keep scanning for more are q'd */
1347 if (submit
!= NULL
) {
1348 TAILQ_REMOVE(&tdinfo
->crp_q
, submit
, crp_next
);
1349 hid
= CRYPTO_SESID2HID(submit
->crp_sid
);
1350 cap
= crypto_checkdriver(hid
);
1351 KASSERT(cap
!= NULL
, ("%s:%u Driver disappeared.",
1352 __func__
, __LINE__
));
1354 CRYPTO_Q_UNLOCK(tdinfo
);
1355 result
= crypto_invoke(cap
, submit
, hint
);
1356 CRYPTO_Q_LOCK(tdinfo
);
1358 if (result
== ERESTART
) {
1360 * The driver ran out of resources, mark the
1361 * driver ``blocked'' for cryptop's and put
1362 * the request back in the queue. It would
1363 * best to put the request back where we got
1364 * it but that's hard so for now we put it
1365 * at the front. This should be ok; putting
1366 * it at the end does not work.
1368 /* XXX validate sid again? */
1369 crypto_drivers
[CRYPTO_SESID2HID(submit
->crp_sid
)].cc_qblocked
= 1;
1370 TAILQ_INSERT_HEAD(&tdinfo
->crp_q
,
1372 cryptostats
.cs_blocks
++;
1376 /* As above, but for key ops */
1377 TAILQ_FOREACH(krp
, &tdinfo
->crp_kq
, krp_next
) {
1378 cap
= crypto_checkdriver(krp
->krp_hid
);
1379 if (cap
== NULL
|| cap
->cc_dev
== NULL
) {
1381 * Operation needs to be migrated, invalidate
1382 * the assigned device so it will reselect a
1383 * new one below. Propagate the original
1384 * crid selection flags if supplied.
1386 krp
->krp_hid
= krp
->krp_crid
&
1387 (CRYPTOCAP_F_SOFTWARE
|CRYPTOCAP_F_HARDWARE
);
1388 if (krp
->krp_hid
== 0)
1390 CRYPTOCAP_F_SOFTWARE
|CRYPTOCAP_F_HARDWARE
;
1393 if (!cap
->cc_kqblocked
)
1397 TAILQ_REMOVE(&tdinfo
->crp_kq
, krp
, krp_next
);
1399 CRYPTO_Q_UNLOCK(tdinfo
);
1400 result
= crypto_kinvoke(krp
, krp
->krp_hid
);
1401 CRYPTO_Q_LOCK(tdinfo
);
1403 if (result
== ERESTART
) {
1405 * The driver ran out of resources, mark the
1406 * driver ``blocked'' for cryptkop's and put
1407 * the request back in the queue. It would
1408 * best to put the request back where we got
1409 * it but that's hard so for now we put it
1410 * at the front. This should be ok; putting
1411 * it at the end does not work.
1413 /* XXX validate sid again? */
1414 crypto_drivers
[krp
->krp_hid
].cc_kqblocked
= 1;
1415 TAILQ_INSERT_HEAD(&tdinfo
->crp_kq
,
1417 cryptostats
.cs_kblocks
++;
1421 if (submit
== NULL
&& krp
== NULL
) {
1423 * Nothing more to be processed. Sleep until we're
1424 * woken because there are more ops to process.
1425 * This happens either by submission or by a driver
1426 * becoming unblocked and notifying us through
1427 * crypto_unblock. Note that when we wakeup we
1428 * start processing each queue again from the
1429 * front. It's not clear that it's important to
1430 * preserve this ordering since ops may finish
1431 * out of order if dispatched to different devices
1432 * and some become blocked while others do not.
1434 tdinfo
->crp_sleep
= 1;
1435 lksleep (&tdinfo
->crp_q
, &tdinfo
->crp_lock
,
1436 0, "crypto_wait", 0);
1437 tdinfo
->crp_sleep
= 0;
1438 if (tdinfo
->crp_td
== NULL
)
1440 cryptostats
.cs_intrs
++;
1443 CRYPTO_Q_UNLOCK(tdinfo
);
1445 crypto_finis(&tdinfo
->crp_q
);
1449 * Crypto returns thread, does callbacks for processed crypto requests.
1450 * Callbacks are done here, rather than in the crypto drivers, because
1451 * callbacks typically are expensive and would slow interrupt handling.
1456 crypto_ret_proc(void *dummy __unused
)
1458 struct cryptop
*crpt
;
1459 struct cryptkop
*krpt
;
1464 /* Harvest return q's for completed ops */
1465 crpt
= TAILQ_FIRST(&crp_ret_q
);
1467 TAILQ_REMOVE(&crp_ret_q
, crpt
, crp_next
);
1469 krpt
= TAILQ_FIRST(&crp_ret_kq
);
1471 TAILQ_REMOVE(&crp_ret_kq
, krpt
, krp_next
);
1473 if (crpt
!= NULL
|| krpt
!= NULL
) {
1474 CRYPTO_RETQ_UNLOCK();
1476 * Run callbacks unlocked.
1479 #ifdef CRYPTO_TIMING
1480 if (crypto_timing
) {
1482 * NB: We must copy the timestamp before
1483 * doing the callback as the cryptop is
1484 * likely to be reclaimed.
1486 struct timespec t
= crpt
->crp_tstamp
;
1487 crypto_tstat(&cryptostats
.cs_cb
, &t
);
1488 crpt
->crp_callback(crpt
);
1489 crypto_tstat(&cryptostats
.cs_finis
, &t
);
1492 crpt
->crp_callback(crpt
);
1495 krpt
->krp_callback(krpt
);
1499 * Nothing more to be processed. Sleep until we're
1500 * woken because there are more returns to process.
1502 lksleep (&crp_ret_q
, &crypto_ret_q_lock
,
1503 0, "crypto_ret_wait", 0);
1504 if (cryptoretthread
== NULL
)
1506 cryptostats
.cs_rets
++;
1509 CRYPTO_RETQ_UNLOCK();
1511 crypto_finis(&crp_ret_q
);
1516 db_show_drivers(void)
1520 db_printf("%12s %4s %4s %8s %2s %2s\n"
1528 for (hid
= 0; hid
< crypto_drivers_num
; hid
++) {
1529 const struct cryptocap
*cap
= &crypto_drivers
[hid
];
1530 if (cap
->cc_dev
== NULL
)
1532 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1533 , device_get_nameunit(cap
->cc_dev
)
1535 , cap
->cc_koperations
1543 DB_SHOW_COMMAND(crypto
, db_show_crypto
)
1545 crypto_tdinfo_t tdinfo
;
1546 struct cryptop
*crp
;
1552 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1553 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1554 "Desc", "Callback");
1556 for (n
= 0; n
< ncpus
; ++n
) {
1557 tdinfo
= &tdinfo_array
[n
];
1559 TAILQ_FOREACH(crp
, &tdinfo
->crp_q
, crp_next
) {
1560 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1561 , (int) CRYPTO_SESID2HID(crp
->crp_sid
)
1562 , (int) CRYPTO_SESID2CAPS(crp
->crp_sid
)
1563 , crp
->crp_ilen
, crp
->crp_olen
1571 if (!TAILQ_EMPTY(&crp_ret_q
)) {
1572 db_printf("\n%4s %4s %4s %8s\n",
1573 "HID", "Etype", "Flags", "Callback");
1574 TAILQ_FOREACH(crp
, &crp_ret_q
, crp_next
) {
1575 db_printf("%4u %4u %04x %8p\n"
1576 , (int) CRYPTO_SESID2HID(crp
->crp_sid
)
1585 DB_SHOW_COMMAND(kcrypto
, db_show_kcrypto
)
1587 crypto_tdinfo_t tdinfo
;
1588 struct cryptkop
*krp
;
1594 db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1595 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1597 for (n
= 0; n
< ncpus
; ++n
) {
1598 tdinfo
= &tdinfo_array
[n
];
1600 TAILQ_FOREACH(krp
, &tdinfo
->crp_kq
, krp_next
) {
1601 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1604 , krp
->krp_iparams
, krp
->krp_oparams
1605 , krp
->krp_crid
, krp
->krp_hid
1610 if (!TAILQ_EMPTY(&crp_ret_q
)) {
1611 db_printf("%4s %5s %8s %4s %8s\n",
1612 "Op", "Status", "CRID", "HID", "Callback");
1613 TAILQ_FOREACH(krp
, &crp_ret_kq
, krp_next
) {
1614 db_printf("%4u %5u %08x %4u %8p\n"
1617 , krp
->krp_crid
, krp
->krp_hid
1625 int crypto_modevent(module_t mod
, int type
, void *unused
);
1628 * Initialization code, both for static and dynamic loading.
1629 * Note this is not invoked with the usual MODULE_DECLARE
1630 * mechanism but instead is listed as a dependency by the
1631 * cryptosoft driver. This guarantees proper ordering of
1632 * calls on module load/unload.
1635 crypto_modevent(module_t mod
, int type
, void *unused
)
1641 error
= crypto_init();
1642 if (error
== 0 && bootverbose
)
1643 kprintf("crypto: <crypto core>\n");
1646 /*XXX disallow if active sessions */
1653 MODULE_VERSION(crypto
, 1);
1654 MODULE_DEPEND(crypto
, zlib
, 1, 1, 1);